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Position-color jointly optimized adversarial patch
for attacking cross-modal visual-infrared dense
prediction tasks

Abstract—Currently, studies on adversarial patches in dense
prediction tasks have predominantly focused on the visible modal-
ity, with significant limitations in both patch content and location
optimization. Existing methods for position optimization rely on
model outputs and limited applicability to diverse scenarios.
Additionally,color optimization does not adapt to the specific
scene characteristics,leading to insufficient overall applicability
and practicality. To explore the potential security risks of visual-
infrared multi-modal systems,this study proposes a position-
color joint optimization method based on the global search
mechanism for generating cross-modal adversarial patches. This
method designs a single patch to achieve simultaneous attacks
on both visible and infrared modalities. A fitness function
constructed from model outputs is used to iteratively optimize
the patch’s position and color. During the optimization process,
the patch’s position and color are finely adjusted to enhance
the attack’s effectiveness. Meanwhile,via fine-grained learning
of color features,the adversarial patch achieves adaptive color
alignment with the current scene context,thus achieving a balance
between attack performance and stealth. Experimental results
fully validate the effectiveness of multi-modal adversarial patch
attacks,providing new insights and methods for the security
evaluation of visual-infrared systems.

Index Terms—Adversarial Patch; Cross-Modal Attack; Joint
Optimization

I. INTRODUCTION

EEP NEURAL NETWORKS(DNNS) , have become

a core driving force in the field of computer vision
due to their powerful feature learning and complex function
approximation capabilities. They have achieved significant
breakthroughs in various complex dense prediction tasks.For
example, in high-density crowd counting scenarios, based on
the DNNs model can precisely distinguish overlapping human
regions through multi-layer feature extraction; in semantic
segmentation tasks, they can quickly identify and segment
different target objects; and in image fusion tasks, DNNs can
adaptively retain critical information from multiple modalities.
However, as DNNs demonstrate their strong functionality, con-
cerns regarding their security and robustness have gradually
emerged [1] [2].Adversarial attacks as a core method for
revealing the vulnerabilities of DNNs can induce the model
to output erroneous results that completely deviate from the
true labels by adding imperceptible perturbations to the input
data, which are difficult for the human eye to detect. Among
them, adversarial patches as an intuitive and highly aggressive
form of attack.In-depth research on adversarial patch not only
reveals the inherent flaws of DNNs in the feature learning
process but also provides important support for enhancing the
model’s robustness in complex scenarios.

Single-modal attack methods have been widely stud-
ied,achieving effective attacks on visible images through
strategies like adding globally applicable patches, noise injec-
tion, and local patch masking.However, due to the significant
differences in feature space and semantic representation be-
tween multi-modal data, achieving effective attacks across all
modalities in a multi-modal system is a challenging task.In the
field of visual-infrared adversarial attacks, patch deployment in
space and optimization of color parameters are the core factors
affecting the attack effectiveness.Some studies have focused
on optimizing the position and content of patches, but they
reveal several limitations.In terms of position optimization,
most existing methods heavily rely on model detection when
determining the position of adversarial patches, which makes
the algorithm severely dependent on the model structure and
training data distribution. In complex and variable application
scenarios, such as different lighting conditions, viewpoint
changes, or background interference, the algorithm struggles
to precisely locate effective attack positions, leading to a
significant decrease in attack success rate,as shown in Figure
1(a).Moreover, existing patch location optimization algorithms
are deeply coupled with specific tasks, making them inflexible
and difficult to transfer to other scenarios [3]. Therefore, this
study proposes a global optimal search for patch locations in
high-dimensional solution spaces by simulating the population
evolution process.This approach effectively alleviates the de-
pendence on specific models and is applicable to various task
scenarios.

Regarding content optimization, existing methods often
rely on iterative optimization strategies based on generative
adversarial networks (GANs). However, when handling high-
resolution cross-modal images, these methods suffer from
exponential increases in computational cost due to the need
to process vast amounts of pixel information and complex
modality differences,resulting in slow model convergence and
excessive resource consumption.Methods for optimizing ad-
versarial patch content mainly include texture optimization
[4] [3] and color optimization [5]. Compared with texture
optimization, color optimization has lower computational com-
plexity since it does not involve the spatial structure or
fine texture details of the image, thereby avoiding the need
for complex processing in high-dimensional feature spaces.
Moreover, color optimization exhibits stronger adaptability
in cross-modal applications.When there are significant differ-
ences in color mapping between visible and infrared images,
texture optimization is difficult to achieve effective cross-
modal application and consistency maintenance due to the
imaging differences between the modalities. Therefore, color
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Fig. 1. Comparison between traditional patch attacks and the patch attack method proposed in this paper. ConvPatch” represents traditional patch attacks,
while “EnPatch” represents the patch attack method proposed in this paper. The blue circular section indicates the iterative process using the global search

mechanism

optimization is generally more efficient and practical than
texture optimization in multi-modal adversarial attacks. How-
ever, current cross-modal color mapping mechanisms remain
underdeveloped.Adversarial patches struggle to balance attack
effectiveness and visual concealment under different imaging
conditions across modalities. As shown in Figure 1(b), In the
visual-infrared scenarios, patches generated to achieve high
attack success rates may exhibit obvious visual characteristics
in the infrared modality, making them easily detectable by
both manual and automated methods, thereby reducing the
effectiveness and practicality of the attack. This study uses
the directly adopts global search for optimization, which is
faster and more suitable for high-resolution images due to its
few parameters and simple structure. Moreover, through mask
dot multiplication, grayscale reduction and black background
superimposition to better match the grayscale characteristics of
infrared images, significantly enhances the stealth performance
of adversarial patches in dual-modal imaging systems.

In general, this paper proposes an innovative cross-modal
adversarial patch attack method. By simultaneously optimizing
the patch’s position and color across both modalities, we
achieve a coordinated improvement in both attack success rate
and concealment, providing a new technical approach for the
security evaluation of multi-modal deep learning systems.

The contributions of this paper are as follows:

1) We propose a cross-modal joint optimization method
based on the global search mechanism. By iterating
through the population and utilizing a global search
mechanism, we simultaneously optimize the position and
color of the visible and infrared patches, effectively
enhancing the attack performance and offering a new
optimization approach for cross-modal attacks.

2) By optimizing the patch color to adapt to the scene’s fea-
tures, we enhance the attack effectiveness while reducing
visual prominence, thereby improving the overall attack
effectiveness. This achieves a coordinated improvement
in attack effectiveness and concealment in cross-modal
scenarios, offering a new research direction for solving t
the traditional challenge of balancing aggressiveness and
concealment in adversarial patches.

3) We conducted extensive performance evaluations of our
proposed method across multiple cross-modal visual-

infrared dense prediction tasks, including crowd counting,
semantic segmentation, and image fusion. Experimen-
tal results demonstrate that our cross-modal adversarial
patches exhibit excellent performance and strong gener-
alization capabilities across different tasks and models.

II. RELATED WORK
A. Adversarial Attack

Adversarial attacks occur after model training, primarily
during the model inference phase. The attacker does not mod-
ify the model’s parameters. Instead, they target a pre-trained
model, keeping the model parameters fixed, and deceive the
model by manipulating the input data.The goal is to identify
the sensitive direction in the input data and fine-tune it along
this direction, causing the model to make incorrect predictions
[6]. Since Szegedy et al. [7] first revealed the vulnerability
of deep neural networks to adversarial samples, extensive
research has been conducted in the academic community
regarding adversarial attack methods.Based on the attacker’s
level of knowledge about the target model, adversarial attacks
are categorized into two main types: white-box attacks and
black-box attacks. In white-box attacks [8], attackers can
fully access the model’s architecture, parameters, and gradient
information, enabling accurate targeted attacks. In contrast,
for black-box attacks, attackers have no knowledge of the
model’s internal structure and parameters; instead, they typi-
cally rely on query optimization and transferability to generate
adversarial examples [9].Based on the range of perturbations,
existing attack methods can be divided into two categories:
global perturbation attacks and local perturbation attacks.In
the field of global perturbation attacks, methods like L-
BFGS (Limited-memory Broyden-Fletcher-Goldfarb-Shanno)
[10] iteratively optimize the objective function to generate
adversarial samples; FGSM (Fast Gradient Sign Method) [11]
constructs adversarial perturbations by utilizing the gradient
information of the model’s loss function; and MI-FGSM (Mo-
mentum Iterative Fast Gradient Sign Method) [12] introduces
a momentum mechanism to further enhance the attack effect.
On the other hand, local perturbation attacks are typically
represented by adversarial patches, where perturbations are
applied to specific regions of the input data to complete the
attack. This method effectively avoids the excessive impact of
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global perturbations on data quality and has shown significant
application value in tasks like crowd counting, where data
integrity is crucial.

B. Adversarial Patch Attacks

Adversarial patches are a specific form of adversarial attack,
where the core principle is to design a pattern of fixed size,
shape, and content, and place it at a specific location within
an image or data to mislead deep learning models into making
incorrect judgments [13]. This attack method exhibits strong
transferability and practicality, as the attacker only needs to
generate the adversarial patch once and can apply it across
different models and scenes. Brown et al. [13] proposed an
adversarial patch that effectively attacks single-modal image
recognition systems by carefully designing the color, texture,
and geometric structure of the pattern. When the patch is added
to the image, even if other parts of the target object remain
unchanged, the model will misclassify the target.Research on
cross-modal adversarial patch attacks remains relatively scarce
in dense prediction practical tasks.The Momentum Adversarial
Patch Attack (APAM) [14] and the Perception-Adversarial
Patch (PAP) generation framework [15] implement global per-
turbations on visible images by limiting the ratio of disturbed
pixels to the entire image. Two attack methods have been
proposed [16]:the first involves adding imperceptible noise to
the input image to induce the fusion model to output a specific
result, and the second entails training a general local patch that
is controlled in shape and position through masking to cover
part of the image, and causing the fusion model to output
meaningless.Both approaches are designed to achieve attacks
targeting visible images.The perception-aware fusion frame-
work (PAIF) [17] uses the Projected Gradient Descent(PGD)
algorithm to apply global perturbations to visible and infrared
features before fusion,but the generated perturbations also
exhibit global characteristics. [4] applies projection gradient
descent (PGD) attacks to generate adversarial samples for at-
tacking visual-infrared modalities. However, this method relies
on model’s gradient information to generate perturbations and
is only applicable for white-box attacks. Due to significant
differences in data structures, feature representations and noise
distributions across modalities, directly applying single-modal
adversarial patches is unlikely to achieve optimal attack re-
sults. At present, there is still a significant gap in the research
of adversarial patches in cross-modal dense prediction tasks.
In view of this, this paper focuses on the visual-infrared cross-
modal task and aims to design adversarial patches that can act
on both modalities simultaneously, thereby filling the research
gap in this field.

C. Position and Content Optimization of Patches

Given the significant impact that the position and content
of patches have on the effectiveness of attacks, several studies
have focused on analyzing their roles in adversarial attacks.
[5] optimize patch positions by key facial regions via object
detectors and uses gradient optimization algorithms combined
with multi-objective loss functions to optimize patch con-
tent. However, its positions are limited by detected features

,and content generation is computationally cumbersome and
constrained by scene conditions. [18] proposes generating
multiple adversarial examples to jointly optimize positions,
and uses structural loss to optimize content. Nevertheless,
it involves high computational complexity and requires gra-
dient information from white-box models. [19] generates
constrained and transformed dynamic positions and textures
through a generator-decoder architecture, achieving end-to-
end optimization through weighted fusion. Yet, this method
relies on generator iteration,converges slowly when processing
high-resolution cross-modal images.Moreover, patch texture
adaptation is insufficient, making it difficult to balance stealth.
[3] proposes the Spatial Mutable Adversarial Patch (SMAP)
method, which identifies key patch positions that most signif-
icantly impact target identity via gradient search, and realizes
iterative texture optimization using a texture gradient loss
function. However, its mask generation relies on gradient
search of key facial regions and dynamic updates through
affine transformation.This method requiring re-design of re-
gion localization and mask update mechanisms for different
task scenarios. Additionally, the high computational com-
plexity of patch texture optimization renders it incompatible
with multi-modal scenarios. Therefore, we propose optimiz-
ing patch position and color through a population iteration
approach based on global search. This approach eliminates
reliance on complex generators or pre-trained models, avoids
slow convergence issues when processing high-resolution im-
ages, and overcomes the constraints of detection models and
key regions, and significantly enhances flexibility. During
the color optimization process, the efficient characteristic of
population iteration enables rapid balancing of stealth and
aggressiveness with limited computational resources. This
achieves more efficient and flexible adversarial patch optimiza-
tion applicable across diverse task scenarios.

III. METHODOLOGY

A. Overview of the proposed method

The cross-modal adversarial patch proposed in this paper,
based on the global search mechanism for joint position and
color optimization, is divided into three stages. (1) generating
diverse adversarial patches, (2) selecting patches through the
global search mechanism, (3) evaluating patches across dif-
ferent tasks. Specifically, crossover and mutation operations
are performed on the initial patches to generate a diverse set
of candidate patches. A fitness function is then designed for
visual-infrared cross-modal tasks, integrating multiple evalua-
tion metrics such as image similarity and model outputs. This
fitness function is used to identify adversarial patches with
high attack success rates and strong imperceptibility. After
multiple iterations, the globally optimal adversarial patch is
obtained, enabling efficient and robust cross-modal adversarial
attacks on dense prediction tasks.The experimental section
takes dense prediction tasks including crowd counting, seman-
tic segmentation, and image fusion as examples.For clarity,
the overall framework is illustrated in Figure 2 and the patch
generation procedure is detailed in Algorithm 1.



JOURNAL OF KTEX CLASS FILES, VOL. XX, NO. XX, 2025

Population Iteration - o
Parent Evolution T
i R'G'B
Initial (X Y.R) Mutation ( )
(R.G.B) -
R G B) —» Crossover N I]
Boundary Comparison
Constraint and
N Selection

Comparison and Selection l

Comparison and Selection

.9
Patch

b
Injection Evaluate

Adversarial
Images

Clean
Images

Dense Prediction Tasks Evaluation

Color
Optimizer

J= M-E +(1-X)-S
——
Attack Effect

Effect Balance -g

Stealth

Stealth
Semantic
Segmentation

Crowd
Counting

Images
Fusion

Adversarial Images

Fig. 2. Framework of cross-modal adversarial patches with position—color joint optimization. The initial population consists of a set of circles which are
processed through mutation, crossover and boundary handling to generate a sub-population with diverse positions and colors. A fitness function is then applied
for cross-modal evaluation to compare the parent and offspring populations and select the better individuals,ultimately deployed for dense prediction tasks.

Algorithm 1 Generate Adversarial Patch

Require: Clean visible image X,;s.clean infrared image
X,is.the fitness function J(-),the max number of iterations
T

Ensure: visible adversarial example X 24" and infrared adver-

sarial example Xfrfl}’ ;

Initialize Population S(0)

for k =0 to T-1 do

Sort S(k) in descending order according to J(S(k))

if So(K') makes the attack successful then

stop = k; break;

end if

Generate S(k + 1) based on crossover and mutation.

Limit boundaries of S(k + 1) according to (14)

fori=1to Qdo

Evaluate S;(K') and S;(K + 1) according to (18)

S;(k + 1) < the better one in S;(K) and S;(K + 1)

end for

: end for

Sort S(stop) in descending order according to J(S(k + 1))

: Choose Sy(stop) as the final individual from S(stop)

: Generate unified patch M with Sy(stop) by integrating

position (x,y) and color (R,G,B)

Obtain adversarial examples with M according to (1) (2)

adv adv
return X0 X

R e A A >

_ e e e e
AN A v =

_ =
® 3

B. Problem Formulation

In dense prediction tasks, unified cross-modal adversarial
attacks take clean visible and infrared images as input, and by

constructing different objective functions, generate perturbed
visible and infrared images. The perturbed visible and infrared
images with adversarial patches can be obtained by Equations
1 and 2.

Xod = X oM+ X, o1 —M) (1)

v — X O M4+ X, ©(1— M) 2)

where, X,;s X,y denotes the original visible and infrared
image;M € {0, 1}hxwrepresents the mask matrix that de-
termines the position of the patch within the image, where
M;; = 1 indicates the patch region M;; = 0 indicates the
original image region. X;Z-S X;n # denotes the overlaid image
of the patch region in the visible and infrared modality, which
specifies the patch color. I represents an all-ones matrix with
the same dimension as M ,and ® denotes the Hadamard
product.

(DIn the crowd counting task, the objective of the adver-
sarial attack is to prevent the model from accurately esti-
mating the number of people in the perturbed visible and
infrared images. The deviation between the model-predicted
count and the ground-truth count is used as the evaluation
metric for attack effectiveness, while the Structural Similarity
Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR) [20]
are employed to measure attack imperceptibility. The attack
objective is formulated as Equations 3,4,5,6 and 7.

|Count(X 3 . o) — TrueCount| > threcount  (3)

SSIM(XgiU7 Xvis) > thressim (4)
SSIM( gl%vv Xinf) > thressim (5)
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PSNR(X% X yis) > threpsny (6)

PSNR(XW, Xing) > threpsnr (7

where Count(-) denotes the crowd counting function, SSIM-
represents the function for computing the SSIM metric,
PSNR(:) denotes the function for computing the PSNR
metric, TrueCount is the ground-truth number of people, and
thre is a predefined threshold.

(2)In the semantic segmentation task, the objective of the
adversarial attack is to prevent the model from accurately
segmenting the semantic categories of the perturbed visible
and infrared images. The attack effectiveness is evaluated
in terms of the model’s classification accuracy, while SSIM
and PSNR are also employed to assess the imperceptibility
of the perturbations. The attack objectives are formulated in
Equations 4,5,6,7 and 8.

Tou(X

vis+inf>

TrueMask) > threseq (8)

where mloU() denotes the metric for computing the mean
Intersection over Union (mloU), and TrueMask represents the
ground-truth semantic segmentation mask.

(3)In the image fusion task, the objective of the adversarial
attack is to cause the fusion model to generate low-quality
fused images containing incorrect information.The effective-
ness of the attack is evaluated using the fusion quality metric
Qabf. Since image similarity is inherently a criterion for
assessing the quality of fused images, the imperceptibility of
the attack is not further considered in this task. The attack
objectives are defined in Equations 9,10,11,12 and 13.

Qabf (X ing) < thresus ©)
SSIM (X2 X yis) < thressim (10)
SSIM (X4, Xing) < thressim (11)
PSNR(X5Y X yis) < threpsns (12)
PSNR(XW, Xing) < threpsnr (13)

where Qabf(-) denotes the function used to compute the Qabf
metric.

C. Patch Position Optimization Module

Patch position utilizes the same center coordinates (X, y)
in both visible and infrared images, and the patch size is
controlled by the radius parameter 7. In practical applications,
detailed model information is usually unavailable, making it
difficult to optimize patch center coordinates using gradient-
based optimization algorithms. Considering this practical sce-
nario, we obtain prediction results via a visual-infrared model
to realize black-box attacks based on output feedback [31].
In summary, this paper selects the Differential Evolution (DE)
algorithm for optimization. As an efficient global optimization
algorithm, it simulates mutation, crossover, and selection op-
erations in the population evolution process. Compared with
traditional evolutionary algorithms such as Genetic Algorithm
(GA) and Particle Swarm Optimization (PSO), DE exhibits

significant advantages in both convergence speed and opti-
mization accuracy [21], enabling it to efficiently and accurately
complete the optimization task of adversarial patches. It can
dynamically adjust the search step size and direction based on
the fitness function, with low spatial complexity—making it
more suitable for high-resolution visual-infrared image opti-
mization [22].

In the context of position optimization,the fitness function
evaluates the quality of candidate patch position and iteratively
updates the population. New individuals are generated via mu-
tation, individual features are combined through crossover, and
superior individuals are preserved through selection, gradually
approaching the optimal position to achieve efficient position
optimization. The position optimization region is defined by
Equation 14, where width and height denote the width and
height of the image respectively. To prevent the patch from
being placed entirely outside the image and becoming invalid,
a margin of 20 pixels is reserved along the boundary, thereby
constraining the movement range of the patch center. Specifi-
cally, In the K+1 generation of DE,for each individual V,,, in
the K generation, three distinct individuals Vi1, Vin2, Vi3 are
randomly selected, and the mutation vector V,,,,,; is generated
using Equation 15. The scaling factor F controls the influence
of the differential pair V,,,2, Vi3 on the mutation vector V..
The mutation vector V,,,,; is then combined with the original
individual V;;, via binomial crossover 16 to generate a trial vec-
tor Viia1.Crossover probability(C'R € [0, 1])is used to control
the frequency of crossover occurrence; denotes a randomly
selected dimension index;J.qng € {1,2..., D} represents the
currently traversed parameter dimension; and D stands for the
parameter dimension of the optimization problem (coordinates
x,y, and radius r).This mechanism ensures that the trial vector
Viriar retains part of the original individual’s characteristics
while introducing new features from mutation, which facili-
tates a more effective exploration of the solution space. Finally,
the fitness values derived from the function based on Vi.;q
and V,,, are calculated to evaluate the attack effectiveness. As
shown in Fig 3, which illustrates the variation trajectory and
distribution of patch coordinates with the number of iterations,
it can be observed that the overall population individuals
gradually gather in densely populated areas,ultimately yielding
the optimal patch position. Since this process relies solely
on the model’s prediction results, it enables black-box attacks
based on model output feedback.

X e [20, width — 20], Y € [20, height — 20} (14)
Vmut = le +F- (Vm2 - VmS) (15)

< C_
Visat = {V‘,}wt rand(0,1) < CR/j = jrand (16)

D. Patch Color Optimization Module

During the parameter optimization of patch position, color is
further integrated into the joint optimization process to achieve
the joint optimization of position and color. Specifically, on
the basis of the original position representation, we introduce
color parameters to describe the color attributes of the patch.
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Fig. 3. Variation trajectory of patch positions with iteration number. Here, yellow markers represent the center coordinates of patches corresponding to all
population individuals in the current iteration, while red markers denote the center coordinates of the patch with the optimal fitness in this iteration.

The color space is defined as (R, G, B), which is based on
the principle of trichromatic mixing: all colors are represented
by combining different intensities of the three primary colors
(red, green, and blue). The intensity of each primary color
is quantized into integers ranging from O to 255 (where 0
indicates no light and 255 indicates maximum brightness).In
this study, the “color” parameter is presented in the form of a
color list, where each color is represented by a [R,G,B] triplet.
To achieve a multi-color effect within a single patch, after
localizing all pixels in the circular region, the color values in
the color list are sequentially assigned to each pixel using the
modulo operation (Equation 17).

color_index = j%num_colors (17)

where, color_index denotes the index of the color list (deter-
mining the color value of a single pixel), j represents the index
of the currently iterated pixel, and num_colors is the length of
the color list. This ensures that when the color list is exhausted
during traversal, it is automatically reused cyclically, thereby
forming a pixel order-based multi-color cyclic distribution
within a single patch region.

Considering the differences in the perceptual characteristics
of networks toward visible and infrared images, and the need
to balance the high perturbation requirement and the low
saliency requirement, a ‘one-parameter dual-use’ difference
design method that leverages the channel differences between
visible and infrared modalities is adopted. In the visible
modality, the color mask is multiplied by the 3-channel visible
image, preserving the original color dynamic range while
generating a high-brightness color region, which significantly
disrupts the model’s perception of texture and color. In the
infrared modality, the color mask is multiplied by the single-
channel grayscale image, and then grayscale compression is
applied to darken the patch as a whole. This allows it to
naturally integrate with the grayscale characteristics of infrared
images, reducing visual abruptness to the human eye. As
shown in Figure 4, this design enhances the attack intensity
against visual-infrared networks and achieves a balance be-
tween attack effectiveness and stealth. Finally, color param-
eters are directly incorporated into the initialization process
of population individuals. Similar to position parameter opti-
mization, [R,G,B] values are iteratively updated through global
search, ensuring that the generated patch achieves an optimal
configuration in both position and color—thereby enhancing
the stealth and effectiveness of the attack.

Infrared
Images

Visible
Images

Color=10

Color=1

Fig. 4. Visualization of training curves about the design dynamic weighting
factor in the multi-task loss function.

E. Iterative Evaluation

In cross-modal attacks, to balance the attack effectiveness
across visual-infrared modalities while simultaneously ensur-
ing both attack effectiveness and stealth, this study proposes
an iterative evaluation method. By designing a reasonable
fitness function, this method guides the adversarial patch to
iteratively improve its attack effectiveness, while ensuring
that the attack stealth meets the requirements of practical
applications. Specifically, we define the fitness function as
Equation 18.

J=a- E(ng:i&-inf) +(1-a)- S(ngsﬂ-inf) (18)
Eeount = |count(Xg{i’;inf) — count(Xyis-tint)| (19)
Egeq = 100 — (IoU (X2, ¢) x 100) (20)
Scount/Sseg = (psnrvis +p5nrinf) x 1 1)
+ (88iMyis + $8iMint) X 20
Efys = L_int en(Xyis, Xint, Fusion‘jf;’+inf) x 20
+ L_Grad(Xyis, Xint, Fusionﬁg;ﬁrinf) x 20 (22)

+ (1 = SSTM (X yis, Xing, Fusion2,; ¢)) x 10

v

where,(the weighted adjustment parameter for attack effective-
ness) can be flexibly adjusted according to the requirements
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of actual attack-defense scenarios. When it is necessary to
enhance attack effectiveness, increasing the value of can shift
the optimization direction toward improving attack intensity;
if the focus is on attack stealth, decreasing the value of will
increase the regulatory weight of 1-0 (the stealth weighted fac-
tor), thereby precisely controlling the optimization direction of
the iterative process to achieve improved stealth.E represents
attack effectiveness, which has different definitions in different
task scenarios. For instance, in the crowd counting task, it
refers to the people count error (as shown in Equation 19); in
the semantic segmentation task, it refers to the Intersection
over Union (IoU) (as shown in Equation 20); and in the
image fusion task, it uses gradient loss (L_Grad), intensity loss
(L_inten), and Structural Similarity Index Measure (SSIM) (as
shown in Equation 22), where denotes the fused image of
the attacked visual-infrared image.In the crowd counting and
semantic segmentation tasks,S(stealth) is evaluated using the
Structural Similarity Index Measure (SSIM) and Peak Signal-
to-Noise Ratio (PSNR) (as shown in Equations 22). It should
be specifically noted that in the image fusion task, since SSIM
itself is an important indicator for evaluating fusion effective-
ness, no additional stealth metrics are considered temporarily
in this task scenario.Through the design of the aforementioned
fitness function, the progress of cross-modal patch attacks
can be effectively quantified.This not only provides a clear
optimization direction for the iterative evolution of adversarial
patches across different task scenarios but also drives their
iterative updates toward the goal of maximizing the fitness
function.

IV. EXPERIMENTS
A. Experimental settings

1) Datasets: We conduct experiments on the publicly avail-
able RGBT-CC [23]datasets,MF datasets [24], and Roadscene
datasets [25]. These datasets cover visible and infrared images,
and include scenarios related to crowd counting, semantic
segmentation, and image fusion, ensuring the diversity and
representativeness of the data. Details are as follows:

Crowd Counting: The RGBT-CC dataset consists of 1,030
images in the training set,200 images in the validation set, and
800 images in the test .This ensures sufficient data for model
training while reserving independent samples for validation
and final performance evaluation.

Semantic Segmentation: The MF Datasets consist of urban
street scenes captured by the InfRecR500 camera. It includes
1,569 pairs of visual-infrared images, with each image having
a resolution of 480 pixels. Among these, there are 820 pairs of
daytime images and 749 pairs of nighttime images, covering
8 manually annotated categories and 1 background category.
The datasets is divided into three parts: a training set (784
image pairs), a validation set (393 image pairs), and a test set
(392 image pairs).

Images Fusion: The Roadscene Datasets contains 221 pairs
of aligned visual-infrared images. These images cover diverse
and representative scenarios such as roads, vehicles, and
pedestrians, and are extracted from FLIR videos as highly
representative scenes.

We randomly selected 100 images from the test set of each
dataset in one go to serve as the final samples for attack
, ensuring the consistency and comparability of the attack
process.

2) Target Model: To rigorously evaluate the effectiveness
of our proposed method, we select several mainstream models
from respective fields as target models. For the crowd counting
task, the BL+IADM [23], CAGNet [26], and CFAFNet [27]
models are adopted; for the semantic segmentation task, the
Openress [28], FEANet [29], and SGFNet [30] models are
used; and for the image fusion task, the Res2Fusion [31], UN-
Fusion [32], and MaeFuse [33] models are chosen as research
objects. These models all demonstrate advanced performance
in their fields, and each model uses officially trained weights
as initial weights, ensuring the reliability and consistency of
experimental benchmarks.

3) Evaluation Metrics:

Crowd Counting: Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE) [34] are used as evaluation
metrics. Where, MAE calculates the average of the absolute
values of the differences between predicted values and ground
truth values, representing the average deviation degree between
them,the formulas for calculation are as shown in Equation
23;RMSE amplifies the impact of large errors through squared
operation,the formulas for calculation are as shown in Equa-
tion 24.The larger the values of MAE and RMSE, the stronger
the destructive effect of the attack on the model’s prediction

accuracy.
n

1
AE:7 17%‘
M ”;:1 lyi— 0] (23)
1 & 9
MSE = | = i— 0 24
RMSE = | 3 (i) 4

where n is the number of samples,y; and ¢; are the ground
truth value and the estimated value of the ¢-th image, respec-
tively.

Semantic Segmentation: Mean Intersection over Union
(mlIoU) and recall are used as evaluation metrics; the for-
mulas for calculation are as shown in Equation 25 and
26. Where,mloU measures the overlap between segmentation
results and ground truth labels.under adversarial attacks, the
smaller its value, the better the attack effect; recall reflects the
ability to detect target regions, and a decrease indicates the
attack interferes with model recognition. The combination of
the two comprehensively evaluates the damage of the attack to
model performance from the perspectives of regional overlap
and target detection capability.

1 n n
mlou=——3 (Pi/(Y_(pij + Pji) = Pi)  (25)
i=0 =0
1 <& "
recall = o ZZ:% (Pii/;)pij) (26)

where n denotes the number of manually annotated object
categories, and P;; is the number of pixels belonging to
category ¢ that are predicted as category j.
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Image Fusion: To quantitatively evaluate the effect, we
select five metrics: Qabf [35], Structural Similarity Index
Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR), Visual
Information Fidelity (VIFF) [36], and Correlation Coefficient
(CC) [37]. Among these, Qabf measures the amount of feature
information and edge information transmitted from the source
images to the fused image;PSNR reveals the degree of dis-
tortion during the fusion process from the pixel level; SSIM
reflects image distortion from three dimensions: brightness,
contrast, and structure; VIFF quantifies the retention degree
of visual information in the image after fusion; CC is used to
measure the degree of linear correlation between the original
image and the fused image. When the fused image after attack
has lower values of Qabf, SSIM, PSNR, VIFF, and CC, it
indicates better attack performance.

4) Implementation: During the iteration process, except
for experiments involving the effects of the fitness function,
the fitness function in all other experiments only considered
attack effectiveness (0=1), and no optimization adjustments
were made for stealth. This setup was intended to achieve the
optimal attack effectiveness.

Patch Sizes: To investigate the impact of patch size on
attack performance, we adjusted the initial circular radius
r to control the patch size, setting it to 20, 40, and 80,
respectively. The quantitative results are shown in Table I,
where it can be observed that the MAE and RMSE go up
as the patch size increases. However, the “occlusion rate” of
the patch in the entire image also rises accordingly. As shown
in Figure 5, the patch covers more unoccupied areas, and a
higher occlusion rate significantly reduces the patch’s stealth.
Considering the balance between attack efficiency and stealth,
we finally selected a radius of r=40. The MAE significantly
increases from 13.9240 (for clean images) to 26.1511, and the
RMSE rises from 24.4166 to 34.8056. This ensures high attack
effectiveness while effectively controlling the occlusion rate,
achieving a favorable compromise between the two objectives.
Since the image in both semantic segmentation and crowd
counting tasks is 480 pixels, this study uniformly adopts
patches of this size specification. For the image fusion task,
since its images undergo preprocessing operations (including
black border removal, thermal noise elimination, and crop-
ping), the patch radius is determined to be 30 pixels based on
a target occlusion rate of 1.63%.

Epochs: The epochs represent the maximum number of evo-
lution iterations for a single image. A larger number of epochs
leads to more thorough iterations and better attack effective-
ness, but the time efficiency decreases rapidly. Therefore, the
number of epochs was first set to 200 and added an early
stopping mechanism(automatically halting optimization for an
image when its mean fitness value remains unchanged for
10 consecutive generations). Experimental results show that
12% of images trigger early stopping in the crowd counting
task, 60% in the semantic segmentation task, and 21% in the
image fusion task. Considering both attack performance and
computational efficiency, the number of epochs is set to 200.

Color Number: To investigate the impact of the number of
colors on attack performance, we conducted experiments with
1, 2, 5, and 10 colors, as shown in Figure 6. Table ILIILIV

Clean Images Adversarial Images

Visible |
Images

Infrared
Images

PSNR=23.8213
SSIM=0.9747

ET=30.06

Fig. 5. Visualization of patch radius parameters.

Infrared
Images

Visible
Images

Color=10

Color=1 Color=2 Color=35

Fig. 6. Visualization of the Number of Colors Parameter.

experimental data indicate the following: For the crowd count-
ing task, the MAE,RMSE,SSIM on visible images, and PSNR
and SSIM on infrared images reached optimal values when
10 colors were used; For the semantic segmentation task, the
recall and the PSNR on visual-infrared images reached the
optimal level under the 10-color setting. For the image fusion
task, the PSNR,VIFF, and CC reached optimal values when
2 colors were used, while the Qabf achieved the second-best
performance. Thus, the number of colors was determined to
be 10 for the crowd counting and semantic segmentation tasks,
and 2 for the image fusion task.

B. Ablation Experiments

1) Ablation Experiment on Patch Position: One of the core
innovations of this study is the proposal of a patch position
optimization strategy for visual-infrared images. To verify
the effectiveness of this strategy,we conducted comparative
experiments between a random position strategy and an itera-
tive optimization position strategy based on a global search
mechanism.For the crowd counting task (Figure 7(a)),both
MAE and RMSE increased; for the semantic segmentation
task (Figure 7(b)), both the mloU and recall decreased; and for
the image fusion experiment (Figure 7(c)), metrics including
Qabf,PSNR,SSIM,VIFF and CC all decreased. These results
clearly indicate that the patch position optimization strategy
proposed in this study can generate adversarial patches with
stronger attack capability.

2) Ablation Experiment on Patch Color: Another important
contribution of this study is the proposal of a joint optimization
strategy that combines patch color optimization and position
optimization.To verify the effectiveness of this joint optimiza-
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TABLE I
VISUALIZATION OF PATCH RADIUS PARAMETERS.
MAET RMSET PSNR_RGBT  SSIM_RGBT PSNR_TTT  SSIM_TT
clean  13.9240 244166
R=20 20.6466 29.6377 29.7634 0.0922 31.1696 0.9901
R=40 26.1511 34.3056 232178 0.0832 25.7501 0.9805
R=80 345207 44.3972 17.4165 0.9518 20.255 0.9475
TABLE I

EXPERIMENTAL RESULTS OF THE NUMBER OF COLOR PARAMETER ON THE CROWD COUNTING.

MAE?T RMSET PSNR_RGB 1 SSIM_RGB 1 PSNR_T{ SSIM_T7T
clean 13.924 24.4166
Color=1 26.1511 34.8056 23.2178 0.9832 25.7501 0.9805
Color=2 25.6024  33.5994 23.8335 0.9816 25.8799 0.9797
Color=5 29.0375 369115 24.4387 0.9836 27.13367 0.9848
Color=10  39.5359  44.1738 25.6450 0.9832 28.2151 0.9850
TABLE III
EXPERIMENTAL RESULTS OF THE NUMBER OF COLOR PARAMETER ON THE SEMANTIC SEGMENTATION.
mloU | recalll PSNR_RGB{T SSIM_RGBT PSNR_TT SSIM_T7T
clean 24.41 31.63
Color=1 6.65 9.96 19.1507 0.8645 29.8579 0.9833
Color=2 6.71 9.94 19.3025 0.8625 30.3935 0.9829
Color=5 6.69 9.92 19.7081 0.8614 30.8039 0.9835
Color=10 6.69 9.90 20.0540 0.8612 31.8827 0.9834
Ablation Experiences On Crowd Counting Ablation Experiments On Semantic Segmantion Ablation Experiments On Images Fusion
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Fig. 7. Line chart showing ablation experiment results for crowd counting, semantic segmentation, and image fusion. This chart details the attack effectiveness
of adversarial patches across crowd counting, semantic segmentation, and image fusion tasks. Here, “clean” denotes the clean image, “random” indicates
patches with randomly selected positions and colors, ‘position’ refers to patches where only the position is optimized while the color remains unchanged, and
“position-color” denotes patches where both position and color are optimized simultaneously.

TABLE IV
EXPERIMENTAL RESULTS OF THE NUMBER OF COLOR PARAMETER ON THE
IMAGE FUSION.

Qabf]  PSNR]  SSIM]  VIFE] _ CCJ
clean 04434 158424 06784 06132 0.6249
Color=1 04305 150364 0.6662 05912 03618
Color=2 04300 14.9952 0.6659 05912 0.5600
Color=5 04393 152879 0.6613  0.6005 0.5847
Color=10 04393 152015 06615 0.6002  0.5843

tion strategy, we conducted comparative experiments between
two strategies: one that only uses a global search mechanism
for position optimization, and the other that adopts a global

search mechanism for position-color joint optimization.For
the crowd counting task (Figure 8(a)),The MAE and RMSE
showed significant increases (MAE increased by nearly 100%
compared to the position-only strategy),the PSNR and SSIM
only exhibited slight decreases This phenomenon aligns with
the expectations: although the color optimization strategy
enhances attack stealth , there is an inherent trade-off between
attack stealth and effectiveness. When the attack effectiveness
significantly improves, the slight decreases in PSNR and SSIM
indirectly verify the effectiveness of the proposed stealth
enhancement method; for the semantic segmentation task
(Figure 8(b)), both mIoU and recall decrease while PSNR and
SSIM values improve; and for the image fusion experiment
(Figure 8(c)), metrics including Qabf,PSNR,SSIM,VIFF and
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TABLE V
ABLATION EXPERIMENTS ON CROSS-MODAL ATTACKS FOR CROWD COUNTING, SEMANTIC SEGMENTATION, AND IMAGE FUSION TASKS

Modal Crowd Counting Semantic Segmentation Image Fusion
mae? rmse? mloUJ recall] Qabf] PSNR] SSIM|  VIFF| CCl
RGB 21.6902  30.7622 6.97 9.96 0.4347  15.0853  0.6672  0.5956  0.5668
T 343262 42.2757 7.56 10.75 0.4347  15.1014  0.6710  0.5963  0.5695
RGBT | 39.5359  44.1738 6.69 9.90 0.4305 15.0364 0.6662 0.5912  0.5618

CC all decreased. These results clearly indicate that the patch
position-color joint optimization strategy not only generates
adversarial patches with stronger attack capability, but also
effectively improves attack stealth by optimizing patch color.

3) Ablation Experiment on Cross-Modality Attacks: To
verify the applicability of the proposed method in cross-modal
attack scenarios, We conducted comparative experiments in-
volving three strategies: attacks targeting only the infrared
modality, attacks targeting only the visible light modality, and
attacks targeting both modalities simultaneously. As shown in
the experimental results in Table V: For the crowd counting
task, the MAE and RMSE of attacks targeting only visible light
images or only infrared images were significantly lower than
those of attacks targeting both modalities; for the semantic
segmentation task, the mloU and recall of attacks targeting
only visible light images or only infrared images were higher
than those of attacks targeting both modalities; for the image
fusion task, metrics including Qabf, PSNR,SSIM, VIFF, and
CC of attacks targeting only visible light images or only
infrared images were higher than those of attacks targeting
both modalities.These results clearly indicate that compared
with single-modality attacks, attacking both visual-infrared
modalities simultaneously can generate stronger attack capa-
bility.

4) Effects of Fitness Function: To investigate the impact
of the fitness function on attack performance, we conducted
comparative experiments between two strategies: one that con-
siders only attack effectiveness as a single evaluation metric
(0=1), and another that considers both attack effectiveness and
stealth (0=0.6).In the crowd counting and semantic segmen-
tation tasks, as shown in Figures 8(a) and 8(c), when=1, both
the fitness value of the optimal individual and the attack ef-
fectiveness showed significant improvements during iteration.
Since stealth was not optimized during iteration, it decreased
accordingly. As shown in Figures 8, when d=1 and 0=0.6,
both the fitness value and attack effectiveness of individual
images increased significantly; Table VI experimental results
indicate that when 0=0.6, the overall image SSIM and PSNR
(metrics reflecting stealth) improved significantly. These results
fully demonstrate that the fitness function can flexibly adjust
the attack effectiveness and stealth of adversarial patches
according to actual needs, achieving an effective balance
between the two.

C. Attack Performance Against Different Models

Considering the performance differences among different
model, we verified the effectiveness of our method across
multiple mainstream model systems:selecting BL+IADM,
CAGNet, and CFAFNet for people counting; employing

openrss, FEANet, and SGFNet for semantic segmentation;
and utilizing Res2Fusion, UNFusion, and Maefuse for image
fusion.For the crowd counting task, as shown in Figure 9 for
the semantic segmentation task, after each model was attacked
by the optimized patches, the mloU and recall decreased
significantly, while the PSNR also increased compared with
images with randomly added patches,as shown in Figure 10;
for the image fusion task, after each model was attacked
by the optimized patches, metrics including Qabf, PSNR,
SSIM,VIFF, and CC all decreased,as shown in Figure 11.This
result indicates that the proposed method not only achieves
effective adversarial attacks but also exhibits favorable attack
stealth characteristics.

V. CONCLUSIONS

This study proposes a cross-modal joint optimization frame-
work based on a global search mechanism, which can simul-
taneously optimize visual-infrared adversarial patches in both
position and color dimensions. Through the population itera-
tive mechanism, the optimal position and color combination
of the patch can be quickly searched in the high-dimensional
solution space.Meanwhile, it achieves visual differentiation for
identical color parameters across visual-infrared modalities.
This design reduces visual saliency while precisely disrupting
visible texture and color features and effectively interfering
with infrared information,thus achieving the effect of cross-
modal collaborative attack.Experimental validation was con-
ducted on three dense prediction tasks:crowd counting, seman-
tic segmentation, and image fusion. The generated cross-modal
adversarial patches significantly degrade task performance
across multiple network architectures while maintaining low
saliency, demonstrating excellent generalization ability and a
balance between attack effectiveness and stealth. This work
provides a new research paradigm for cross-modal adversarial
attacks.It should be noted that our method still has certain
limitations in the physical world. Future research will focus on
investigating the impact of physical factors such as perspective
differences and patch materials on the performance of cross-
modal adversarial patches, exploring their attack effectiveness
in real-world scenarios, and systematically enhancing the
security and robustness of multi-modal systems in practical
applications.
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