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Abstract. Adversarial example (AE) is an attack method for machine
learning, which is crafted by adding imperceptible perturbation to the
data inducing misclassification. In the current paper, we investigated the
upper bound of the probability of successful AEs based on the Gaussian
Process (GP) classification, a probabilistic inference model. We proved
a new upper bound of the probability of a successful AE attack that
depends on AE’s perturbation norm, the kernel function used in GP,
and the distance of the closest pair with different labels in the training
dataset. Surprisingly, the upper bound is determined regardless of the
distribution of the sample dataset. We showed that our theoretical result
was confirmed through the experiment using ImageNet. In addition, we
showed that changing the parameters of the kernel function induces a
change of the upper bound of the probability of successful AEs.
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1 Introduction

1.1 Adversarial Example

Today, machine learning is widely used in various fields, and concerns about
its security have emerged. An adversarial example (AE) is widely investigated
among such attack methods [12]. AE is a sample that is slightly different from a
natural sample that is misclassified by a machine learning classifier [12]. AE is
often crafted against neural networks by adding a small perturbation (adversarial
perturbation) to the original input, and various methods are proposed to make
an adversarial perturbation [6,12].

Since AE is considered an attack method against machine learning, various
defense methods against AE have been investigated, including the detection
method [9] and adversarial training [3]. However, Carlini & Wagner [5] reviewed
ten detection methods and stated that no defense method could survive a white-
box AE attack, an attack using the knowledge of the victim’s architecture.
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Therefore, both the defense methods and their theoretical basis should be required
for the defense against AE.

In the current study, we investigated the theoretical basis of AE using the
Gaussian Process (GP), a stochastic process whose output is multivariate normally
distributed. GP can be used for a probabilistic model for classification and
regression [16], and previous research shows that GP is equivalent to some types
of classifier such as linear regression and a relevance vector machine, and especially,
GP is equivalent to a certain type of neural networks [22]. More specifically, the
activation function in neural networks corresponds to the kernel function in the
NN [22].

1.2 Related Researches

Until now, some studies have been conducted that aim to establish the theoretical
basis of AE. Shafahi, Huang, Studer, Feizi & Goldstein [18] have suggested that
AE is inevitable under a certain condition on the distribution of the training
data, using the geometrical method. Blaas et al. [2] have shown the algorithmic
method to calculate the upper and lower bound of the value of GP classification
in an arbitrary set. Cardelli, Kwiatkowska, Laurenti & Patane [4] have shown the
upper bound of the probability of robustness of the GP output in an arbitrary
set. Wang, Jha & Chandhuri [21] have shown the method of creating a robust
dataset when using a k-nearest neighborhood classifier. Fawzi, Fawzi & Fawzi [8]
have shown the fundamental upper bound on the robustness of the classification,
which some studies are based on. Mahloujifar, Diochnos & Mahmoody [15] have
applied their results to broader types of data distributions, and Zhang, Chen,
Gu & Evans [23] have shown the intrinsic robustness bounds for classifiers with
a conditional generative model. More specifically, Gilmer et al. [11] have shown a
fundamental bound relating to the classification error rate in the field of neural
networks; Bhagoji, Cullina & Mittal [1] have shown lower bounds of adversarial
classification loss using optimal transport theory.

Some studies suggest certified defense methods. Randomized smoothing [7] is
a method for composing "smoothed" classifiers that are derived from arbitrary
classifiers. The prediction of an arbitrary input by smoothed classifiers has a
safety radius, within which the classification results of the neighborhood inputs
are the same as the central input.

Our approach is different from the related studies in the following viewpoints.
First, our approach focuses on the training data for the classifier and is easier
to use practically. For example, the other studies focus on the geometry of the
classifier [18] or the upper bound for which some cumbersome calculation with
all training data is necessary [2,4]. Using our approach, we can analyze how the
robustness will change when the distribution of training data of the classifier
changes, for example, when some training data are removed from the dataset or
moved within the input space. Cohen, Rosenfeld & Kolter’s randomized classifier
[7] needs Monte Carlo samplings to calculate the variance used in the calculation
of the safety radius. However, our approach can provide the predictive variance



using GP. Thus, our approach can be used with Cohen, Rosenfeld & Kolter’s
randomized smoothing.

Second, our approach can be applied to a wide range of classifiers thanks to
GP. For example, Wang, Jha & Chandhuri ’s approach [21] also focuses on how
robustness changes when the distribution of training data of the classifier changes,
but their approach is based on the nearest-neighbor method. Our approach is
based on GP, which can be applied to broader inference models. Smith, Grosse,
Backes & Alvarez [19] have shown adversarial vulnerability bounds for binary GP
classification. However, Smith, Grosse, Backes & Alvarez’s proof is based on the
Gaussian kernel, while the result of our research is based on the characteristics
of the kernel functions, which includes the Gaussian kernel as a special case.
Therefore, the current study has a broader application than [19].

1.3 Contributions

Our research has the following contributions.

– Our research shows that the success probability of an AE attack against
a certain dataset in the GP classification with a certain kernel function is
upper-bounded by the function of the distance of the nearest points that
have different labels.

– We confirmed our theoretical result through the experiment using ImageNet
with various kernel parameters in GP classification. The experimental result
is well-suited to the theoretical result.

– We showed that changing the parameters of the kernel function causes the
change of the theoretical upper bound, and thus our result gives the theoretical
basis for the enhancement method of robustness.

2 Theoretical Results

2.1 Problem Formulation and Assumption

Let D be a dataset with N samples that has data points xi and labels of object
classes yi. The data point xi is a D-dimensional vector, and the label yi is binary.
Namely,

D = {{x1, y1}, {x2, y2}, ..., {xN , yN}}, xi ∈ RD, yi ∈ {+1,−1}. (1)

Let

D+ = {{xi, yi} ∈ D | yi = +1},
D− = {{xi, yi} ∈ D | yi = −1}

(2)

for further simplicity.
We consider the binary classification of the dataset, using GP regression with

a certain kernel function k(x, x′) [16]. We define a GP regressor R(x) : RD →
N (y;µR, σ2

R). R(x) gives the output as a Gaussian distribution N (y;µR, σ2
R).



Then we define a probabilistic GP classifier C(·) : RD → {+1,−1}, which is
constructed as below:

C(x) :=

{
+1 if p ∼ N (x) ≥ 0

−1 otherwise
(3)

where p is a value sampled from the distribution N (x). Intuitively, C(x) is a
probabilistic binary classifier whose output is +1 when a sample from the output
distribution of R(x) is not negative.

Let the maximum value of the kernel function between two input points of D
with different labels be s. We write the definition of s as follows, without loss of
generality:

The value of the kernel function between 2 points x+ ∈ D+, x− ∈ D− is
described as s, where x− ∈ D− gives the maximum value of k(x+, x−) when x+

is fixed. s can be written as a function of x+, that is

s = max
x−∈D−

k(x+, x−).

Put x∗ ∈ RD such that k(x+, x∗) = r, where r is a constant.
In this paper, we introduce the following assumption.

Assumption 1 (ϵ-proximity). Let µR be the predictive mean of x∗ by GP
regression trained with D, and µR2 be the corresponding value by GP regression
trained with {{x+,+1}, {x−,−1}}. Then, for all x∗ ∈ RD such that k(x+, x∗) = r,

|µR − µR2| ≤ ϵ and µR > 0 (4)

holds with some ϵ ≥ 0.

Intuitively, the former part of Assumption 1 suggests that the predictive mean
of the GP regressor with all training data is close to that with only two training
data, implying that the effect of training data other than x+, x− is small.

2.2 Maximum Success Probability of AE

Theorem 1. Consider R(x) with kernel function k(x, x′) trained with D. Let x+

be arbitrarily chosen from D+ and x− be the data point of D−, such that k(x+, x−)
is the greatest value when x+ is fixed and x− is taken from D−. Then, for any x∗ ∈
RD such that k(x+, x∗) = r and k(x+, x∗) > k(x−, x∗)+ϵ(k(x+, x+)−k(x+, x−)),
the upper bound of the probability that C(x∗) = −1 is upper-bounded with Maximum
Success Probability (MSP) function ϕ as

Pr(C(x∗) = −1) < Φ
(
−µ

σ

)
<

1

2
exp

(
− µ2

2σ2

)
= ϕ(r|D), (5)

where the notations below are used.

Φ(x) =
1√
2π

∫ x

−∞
exp

(
−u2

2

)
du, (6)



µ =
k(x+, x∗max)− k(x−, x∗max)

k(x+, x+)− k(x+, x−)
− ϵ, (7)

σ2 =k(x+, x+)−
k(x+, x+)(k(x+, x∗max)

2
+ k(x−, x∗max)

2
)

k(x+, x+)
2 − k(x+, x−)

2 +

2k(x+, x−)k(x+, x∗max)k(x−, x∗max)

k(x+, x+)
2 − k(x+, x−)

2 ,

(8)

x∗max = arg max
x∗

[k(x−, x∗)]. (9)

The above bound holds for any translation-invariant kernel function k(x, x′),
that is, a kernel function that satisfies k(x, x) is constant for all x ∈ RD.

The schematic diagram is shown in Fig. 1.

O

D+ D−

x+

x−

x∗

s

r

Fig. 1: Illustration of the conditions in Theorem 1 assuming the input space as R2. x+

and x− are input data points from D+ and D− respectively. Note that r = k(x+, x∗)
and s = k(x+, x−).

Proof sketch. First, we prove that the prediction variance increases if the
training point increases in GP regression (Lemma 1). In the next, we prove that
Erf(0;µ, σ) =

∫ 0

−∞ N (x;µ, σ2)dx increases monotonically with respect to σ2 if
µ > 0 (Lemma 2). Then we prove that the probability that x∗ is classified as −1
increases monotonically with respect to k(x∗, x−) (Lemma 3), and the theorem
is proved.

2.3 Remarks on Theorem 1

– x+ and x− indicate the closest points of the two classes from the training
dataset in the classification task since the kernel function can be regarded
as the function whose output is the similarity between the data points.
Practically, x∗ can be regarded as an AE whose original data point is x+



and the adversarial perturbation is r. AE is formalized as a sample whose
distance from the original data points is a small value (or more specifically, a
small adversarial perturbation norm) r [6].

– This theorem indicates that when an AE is crafted using an original input
point in GP with adversarial perturbation r, the probability that the AE is
classified as a different class has a non-trivial upper bound, and that bound is
determined as the function of the kernel function used in the GP regression,
the distance between the original data point and the nearest data point from
the different class. The distance is measured using the kernel function.

– When the AE is classified as a different class, it can be regarded as a successful
attack. Thus, the theorem indicates that the probability of a successful attack
using AE is upper-bounded.

– We use GP regression for the classification task. The method using a regressor
for classification instead of a classifier was also used in [14] and produced a
good result.

– Intuitively, the probability of successful adversarial examples should be upper-
bounded by the distance from the nearest sample to the decision boundary.
However, in general, the decision boundary cannot be easily calculated.
Instead of considering the decision boundary, we proved that finding the
closest points from different classes is sufficient to investigate the robustness
of GP.

2.4 Maximum Success Probability of AE within All Data in the
Training Set

In this section, we prove the maximum success probability of AE in all data in
the training set.

The problem formulation is the same as Theorem 1. Let S = {s11, s12, · · · smn}
where sij = k(xi, xj), xi ∈ D+ and xj ∈ D−. Set s as the maximum of the set S,
and put x+ ∈ D+, x− ∈ D− such that k(x+, x−) = s. Set r ∈ R such that for all
x ∈ D+ and x∗ ∈ RD such that k(x, x∗) = r and k(x, x∗) > k(x−, x∗) holds.

Theorem 2. Given x+ and x− as above, and given x◦ arbitrarily from D+,
set x+∗, x◦∗ ∈ RD such that k(x+, x+∗) = r and k(x◦, x◦∗) = r. Then, for any
r > k(x−, x+∗), x◦ ∈ D+, and x◦∗ ∈ RD, Pr(C(x◦∗) = −1) is upper-bounded by
the upper bound of Pr(C(x+∗) = −1), when MSP function ϕ(r|D) in Theorem 1
increases monotonically with respect to k(x+, x−). That is, Pr(C(x◦∗) = −1) ≤
ϕ(r|D) holds.

The schematic diagram is shown in Fig. 2.

Proof. Where r is fixed, ϕ(r|D) can be regarded as a function of k(x+, x−)
provided that the kernel function is translation invariant. Therefore, when ϕ(r|D)
in Theorem 1 increases monotonically with respect to k(x+, x−), the greater
value ϕ(r|D) is given by bigger s. From the condition, the value of the kernel
function whose inputs are x+ and x− is the greatest among the values of the
kernel function with the pairwise chosen points from D+ and D−. Thus, the
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s = max (S)

Fig. 2: Illustration of the conditions in Theorem 2 assuming the input space as R2. Blue
and orange circles suggest the distributions of the input data points of D+ and D−
respectively. x+ and x− are the nearest input data points from D+ and D− respectively.
Note that s is the value of the kernel function whose inputs are the nearest points from
the dataset, that is, s = k(x+, x−).

upper bound of Pr(C(x+∗) = −1) is greater than the upper bound with any
x◦ ∈ D+ and the correspondent point in D− used.

2.5 Remarks on Theorem 2

– Theorem 2 indicates that the AE crafted with the original data point more
successfully when the original data point is closer to the image from another
class if the kernel function meets the condition that ϕ(r|D) is monotonically
increasing as a function of k(x+, x−).

– If the kernel function has the condition ϕ(r|D) increases monotonically as a
function of k(x+, x−), it suggests that one of the points of the closest pair is
the original data point from which the AE is crafted most successfully in GP
classification with that kernel function.

3 Experimental Results

For justification of Assumption 1 and confirmation of whether the theorem
holds for GP classification with a standard dataset, we conducted the following
experiment.

3.1 Devices

The experiments were conducted on Ubuntu 20.04.3 LSB machine, Intel(R)
Xeon(R) Gold 6140 CPU @ 2.30GHz (72 cores, 144 threads). We used Python
3.8.10, numpy 1.23.5, and scipy 1.10.1 for the calculation.

3.2 Materials

We used ImageNet as a dataset. ImageNet is used under the license written on
this page https://www.image-net.org/download.php. The ImageNet data used
are downloaded from https://www.kaggle.com/datasets/liusha249/imagenet10.

https://www.image-net.org/download.php
https://www.kaggle.com/datasets/liusha249/imagenet10


3.3 Procedure

We used the image of 10 classes from ImageNet, labeled as 0, 1, . . . , 9 respectively.
We chose samples from ImageNet, whose labels are either a or b (a and b are
taken from the labels {0, 1, . . . , 9} pairwisely, which results in 90 combinations).
We used 500 samples for each label. The data used in the experiment were those
with 3 colors, and randomly cropped to 224 × 224 pixels to adjust the image
size with different aspect ratios. Therefore, the input dimension of the data was
150528. We trained the GP regressor [16] using these samples as training data
with the Gaussian kernel. The Gaussian kernel used in the experiment is as
follows:

k(x, x′) = θ1 exp

(
−||x− x′||2

θ2

)
(10)

In the experiment, the adversarial perturbation was fixed to 10, and the parame-
ters of the kernel function changed. That is, the parameters θ1 = 0.1, 0.5, 1 and
θ2 = 10, 50 were used. The randomly cropped area of each image is the same to
compare the results across the conditions.

We decided on the adversarial perturbation size considering the distance
between a point and the closest point of the other class (see Figure 5). Most
points are not classified as the other class even when the adversarial perturbation
of size 10 is added to the points.

We gave the objective variable -1 to the points with label a, and 1 to the
points with label b.

We crafted AE as the point with the following conditions:

– Each AE is crafted by adding perturbation to the original sample of label b,
resulting in crafting 500 AEs.

– The perturbation is given by moving the original sample by a certain distance
(l2 norm) towards the nearest point whose label is a.

A sample of adversarial examples crafted in this experiment is shown in Fig. 3.

(a) Original (b) AE

Fig. 3: A sample of adversarial examples of norm=10 crafted in the current experiment.
The adversarial perturbation is directed to the nearest point in the other class.



Next, we calculated the predicted mean µR and variance σ2
R using the GP

regressor, and the probability that the regression result is negative (i.e. the
classification result is labeled b) given by∫ 0

∞
N

(
x;µR, σ2

R
)
dx. (11)

This is the empirical probability of the classification of an AE as the other
class than the original class in the GP classifier.

Finally, we calculated the theoretical probability of classification of an AE as
the other class than the original class, using Φ (−µ/σ) in Theorem 1 with ϵ = 0.

These theoretical and empirical probabilities were calculated for all the 500
points that had the label b in each condition. In each condition, the mean and
maximum of the theoretical and empirical probabilities were calculated and their
mean across the conditions was calculated.

3.4 Result

Fig. 4 shows the sample of the theoretical upper bound and the empirical value
in the condition a = 0 and b = 7. The horizontal axis indicates the distance
between a point and the nearest point from the other class, and the vertical
axis indicates the theoretical upper bound calculated with Theorem 1 and the
empirical value calculated with Eq. (11). The result is shown in Table 1, which
indicates the proportion of the points that follow the theorem, and the maximum
theoretical value within the a and b combination (the values shown in Table 1
are the means across the 90 combinations a and b).

The analysis of the distance between the points and their nearest points that
have different labels is shown in Table 2. The mean of the distance is 89.72,
and if the points are restricted to those that do not follow the theorem (that is,
their theoretical values are not larger than the empirical values), the distance is
smaller. The overall histogram of the distance between a point and the nearest
point with a different label is shown in Figure 5.

An extreme example is shown in (c) of Figure 4. In this condition of kernel
parameters, the empirical probability is high and in that condition the theoretical
upper bound is tight.

The upper bound does not always hold because in this experiment, the upper
bound is calculated with Theorem 1 with ϵ = 0, while in the real data, ϵ could
be positive. However, the fact that the theorem holds with high probability even
if ϵ is 0 suggests that we can empirically say that Assumption 1 is satisfied in
practice.

Theoretically, when the bandwidth of the Gaussian distribution in the kernel
function is small, the empirical decision boundary is not affected by the distant
points and is determined mainly by the closest points. In that condition, the
theoretical upper bound (calculated by two nearest points) is closer to the
empirical probability.



(a) a=0 and b=7,
norm=10,
θ1 = 0.1 and θ2 = 10

(b) a=0 and b=7,
norm=10,
θ1 = 0.5 and θ2 = 10

(c) a=0 and b=7,
norm=10,
θ1 = 1 and θ2 = 10

(d) a=0 and b=7,
norm=10,
θ1 = 0.1 and θ2 = 50

(e) a=0 and b=7,
norm=10,
θ1 = 0.5 and θ2 = 50

(f) a=0 and b=7,
norm=10,
θ1 = 1 and θ2 = 50

Fig. 4: The samples from the result of the experiment. The horizontal axis shows the
distance between a certain point and the closest point whose label is different from that
point. The vertical axis shows the empirical and theoretical probability that the point
is classified as a different label from the closest point. Note that the theoretical upper
bound changes according to the kernel parameter θ1 and θ2.

Fig. 5: The histogram of the distance between a point and the nearest point with a
different label. The data pool is merged across the pairwise condition, so the number of
the data is 45000(= 500 ∗ 90).



Table 1: The proportion of points where the theoretical value is larger than the empirical
value and the mean (± standard deviation) of the theoretical upper bound of the closest
pair in each condition. The change of kernel parameters θ1, θ2 cause the change of the
theoretical upper bound.

θ1 0.1 0.1 0.5 0.5 1 1
θ2 10 50 10 50 10 50

The proportion of points
that follow the theorem 0.9996 0.9999 0.9991 0.9998 0.9898 0.9997

The mean of the 0.2095 0.1216 0.3512 0.2616 0.3928 0.3216
max theoretical value ± 0.1538 ± 0.1927 ± 0.0809 ±0.1291 ±0.0585 ±0.0981

Table 2: The first row suggests the mean (± standard deviation) of the distance between
the points which doesn’t follow the theorem and their nearest points from the other
class. The second row suggests the mean of the distance between the points and their
nearest points and their nearest points from the other class.

θ1 0.1 0.1 0.5 0.5 1 1
θ2 10 50 10 50 10 50

The mean distance between the points 23.59 18.55 31.13 24.58 50.84 30.13
which don’t follow the theorem ± 5.342 ±4.031 ± 8.524 ±13.25 ± 10.99 ±14.98

The mean of the distance
of all points 89.72

4 Discussion

4.1 The Interpretation of the Theorems

Our theorems show the fundamental limitation of the AE in GP; the success
probability of AE crafted by any method cannot exceed the value of MSP
function ϕ in Theorem 1, and the vulnerability of a training dataset to the AE is
determined by the closest pair of the data points whose labels are different.

The theorems can be applied to other inference models because GP includes
some inference models. In particular, the theoretical bound can be computed for
neural networks. Since neural networks with an infinite number of units in the
hidden layer and Bayesian neural networks are regarded GP [10,22], our results
apply to neural networks, resulting in the fundamental limitation of AE in neural
networks, as in previous research [2,8,18]. Compared with previous research, our
result adds the viewpoint of the distance between the samples.

4.2 The Choice of Kernel Functions

Since the predictive mean can be written as the sum of the terms of the kernel
functions whose inputs are each training point and test point (Representer
Theorem in GP [17]), changing the parameter of the kernel functions changes
the shape of the decision boundary.



The result of the experiments in Section 3 suggests that the upper bound
of the probability changes according to the choice of the kernel functions. This
suggests that changing the activation function of a neural network can improve the
robustness of that neural network. The change according to the kernel parameter
of the Gaussian kernel (Eq. (10)) shown in the experiment in Section 3 can be
interpreted as below:

– When θ1 changes, the value of the Gaussian kernel is multiplied by θ1. With
regard to µ and σ in Theorem 1, when θ1 becomes larger, µ will remain
unchanged and σ will be larger. Considering that the MSP function (Eq. (5))
is based on the CDF of Gaussian distribution and the CDF of Gaussian
distribution increases monotonically with respect to σ when µ > 0, the value
of Eq. (5) is greater when θ1 is greater.

– When θ2 changes, the Gaussian distribution bandwidth in the Gaussian kernel
will change. Considering the form of the exponential function, if θ2 is larger,
the absolute value of the derivative of the Gaussian kernel with respect to
∥x− x′∥2 at the same point is smaller. This suggests that if θ2 is greater, the
decay of the value of the Gaussian kernel with respect to ∥x− x′∥2 is slower,
and the effect on the value of the Gaussian kernel by the distance of two
points would be greater in the interval focused in the experiment.

Since ϕ(r|D) is not easily differentiable with respect to k(x1, x2), the discrete
calculation is required to confirm whether the kernel function satisfied the
constraint in Section 2.5 and to determine the kernel function to improve the
robustness. However, it is reasonable that if k(x1, x2) is small (that is, x1 and x2

is too far away), x∗, the point near x1, cannot be classified as the same class as
x2.

Previous research showed that the activation functions in neural networks are
equivalent to the kernel functions in GP[14,22]. Therefore, the theoretical result
of this paper suggests the theoretical basis for the enhancement method that
changes the activation function in neural networks. Previous studies suggest that
changing the activation function in neural networks can enhance the robustness
against AEs [12,13,20]. Our result shows that the change of the kernel function
induces the change of the theoretical upper bound of the successful AEs, and
considering that the activation function in neural networks is the counterpart of
the kernel function in GP, our result suggests that the robustness enhancement
method by changing the activation functions in neural networks has the same
basis as our result.

4.3 Open Problems

This paper has the following open problems: Further investigation should solve
these problems.

– Theorem 1 is proved under the assumption that the effect of input points other
than x1, x2 on the predictive mean is less than ϵ. When using the Gaussian
kernel, this condition is reasonable because the value of the Gaussian kernel



decreases rapidly according to the distance of the input points, and it is
confirmed in the experiment that even if ϵ is set to 0, over 98% of the points
follow the theorem. The theorem under the condition of using another kernel
function should be investigated further.

– An experiment with neural networks should be conducted to confirm that
one can design a more robust activation function using Theorem 1.

4.4 Limitations

The research has the following limitations.

– The problem formulation of the research is binary classification, not multi-
class classification.

– Finding the nearest point can be time-consuming if the number of input points
increases. An efficient algorithm, such as a divide-and-conquer algorithm,
should be investigated for the search for the nearest point.

– ϵ in Assumption 1 depends on the distribution of the training data, the
evaluation of the size of ϵ is yet to be investigated (but as we wrote above,
the fact that the theorem holds with high probability even if is 0 suggests
that we can safely use the upper bound without Assumption 1 in practical
use).

4.5 Conclusion

In this paper, we showed that in the GP classification, the probability of a
successful attack of AE has an upper bound. The experiment showed that the
parameter of kernel functions can change the theoretical upper bound of the
probability of a successful attack of AE, suggesting that the choice of kernel
functions affects the robustness against AE in the GP classification.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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A Proofs for Section 2 (Theoretical Results)

A.1 Proof of Theorem 1

In the proof, we set the notations below.
We construct a GP regressor R(x) with the kernel function k(x, x′). In GP regressor,

the mean µR and the variance σ2
R of the new data point x∗ can be calculated as

µR = k(x∗)
TK−1y (12)

σ2
R = k(x∗, x∗)− k(x∗)

TK−1k(x∗) (13)

where
k(x∗) = (k(x+, x∗), · · · , k(xn, x∗))

T , (14)

K =

k(x+, x+) · · · k(x+, xn)
· · · · · · · · ·

k(xn, x+) · · · k(xn, xn)

 , (15)

y = (y1, · · · , yn) . (16)

In the next we construct GP classifier C(x) whose prediction is y∗ = +1 if a sample
from R(x) is greater than 0, and the prediction is y∗ = −1 otherwise.

For further calculation, set the below notations

θ1 = k(x∗, x∗), θr1 = k(x+, x∗),

θr2 = k(x−, x∗), θs = k(x+, x−).
(17)

The following lemma is a simpler version of the statement Exercise 4 of Chapter 2
from [RW06]. The proof is in the supplemental material.

Lemma 1. Let Varn(x∗) be the predictive variance of a GP regression at x∗ given a
training dataset of size n, and Varn−1(x∗) be the correspondent variance given only the
first n− 1 points of the training dataset. Then, Varn(x∗) < Varn−1(x∗) holds.

Proof. Let

Kn =

k(x+, x+) · · · k(x+, xn)
...

. . .
...

k(x+, xn) · · · k(xn, xn)

 , (18)

k∗n = (k(x+, x∗), · · · , k(xn, x∗))
T (19)

Var(x∗n−1) = k(x∗, x∗)− k∗n−1
TK−1

n−1k∗n−1, (20)

Var(x∗n) = k(x∗, x∗)− k∗n
TK−1

n k∗n (21)

Kn can be written as

Kn =

(
Kn−1 B
BT k(xn, xn)

)
, (22)

where B = (k(x+, xn), · · · , k(xn−1, xn))
T .

Therefore, K−1
n can be decomposed as

K−1
n =

(
Ã B̃

B̃T D̃

)
, (23)



where 
Ã = K−1

n−1 +K−1
n−1BMBTK−1

n−1

B̃ = −K−1
n−1BM

D̃ = M
M = (k(xn, xn)−BTK−1

n−1B)−1

(24)

Now

k∗n
TK−1

n k∗n = k∗n−1
T Ãk∗n−1 + 2k(xn, x∗)B̃

T k∗n−1 + k(xn, x∗)
2D̃. (25)

Decomposing A results in

Var(x∗n) =k(x∗, x∗)− (k∗n−1
TK−1

n−1k∗n−1+

k∗n−1
TK−1

n−1BMBTK−1
n−1k∗n−1+

2k(xn, x∗)B̃
T k∗n−1 + k(xn, x∗)

2D̃)

Var(x∗n) =Var(x∗n−1)− (k∗n−1
TK−1

n−1BMBTK−1
n−1k∗n−1+

2k(xn, x∗)B̃
T k∗n−1 + k(xn, x∗)

2D̃).

(26)

Now, proving the Lemma is equivalent to prove

k∗n−1
TK−1

n−1BMBTK−1
n−1k∗n−1 + 2k(xn, x∗)B̃

T k∗n−1 + k(xn, x∗)
2D̃ > 0. (27)

We now prove Equation 27. It can be decomposed as:

M
(
k∗n−1

TK−1
n−1BBTK−1

n−1k∗n−1 − 2k(xn, x∗)B
TK−1

n−1k∗n−1 + k(xn, x∗)
2
)

(28)

(∵ M is 1× 1 matrix, therefore M can be regarded as a scalar.)
Now BTK−1

n−1k∗n−1 is a scalar. Then, consider (BTK−1
n−1k∗n−1 − k(xn, x∗))

2.

(BTK−1
n−1k∗n−1 − k(xn, x∗))

2 =

k∗n−1
TK−1

n−1BBTK−1
n−1k∗n−1 − 2k(xn, x∗)B

TK−1
n−1k∗n−1 + k(xn, x∗)

2
(29)

Now consider M = (k(xn, xn)−BTK−1
n−1B)−1. This means the predictive variance

by GP regression of xn with a dataset which includes x+, x−, · · · , xn−1. Therefore,
M > 0.

Plugging M > 0 and (BTK−1
n−1k∗n−1 − k(xn, x∗))

2 > 0 into Equation 28,

(k∗n−1
TK−1

n−1BMBTK−1
n−1k∗n−1 + 2k(xn, x∗)B̃

T k∗n−1 + k(xn, x∗)
2D̃) > 0 (30)

holds. Hence the lemma was proved.

Thus, if the two points (x+, x−) in the training dataset of GP regression are fixed,
the maximum predictive variance is the variance calculated with the two points as the
training dataset only.

Next, we calculate the predicted mean under the condition that only x+ and x−
are used as the training dataset. We write the predictive mean as µR2.

Then k(x∗) and y are written as k(x∗) = (θr1, θr2)
T , y = (+1,−1). Using these,

the predicted mean is calculated below, plugging them into Eq. (12).

µR2 = k(x∗)
TK−1y =

θr1 − θr2
θ1 − θs

(31)



The category boundary is regarded as the point where the predicted mean is 0,
therefore on the category boundary θr1−θr2

θ1−θs
= 0 holds.

Therefore, category boundary is located where θr1 = θr2.

This implies that the set of the points which satisfies k(x+, x∗) = k(x−, x∗) is the
category boundary, and Eq. (31) implies that where k(x+, x∗) > k(x−, x∗) the mean is
positive.

Similarly, the prediction variance with only x+, x− as the training dataset is de-
scribed as follows, plugging the values into Eq. (13):

σ2
R2 = θ1 −

1

θ1
2 − θs

2 (θ1(θr1
2 + θr2

2)− 2θsθr1θr2) (32)

Considering Lemma 1, Eq. (32) gives the maximum predictive variance of GP
regression with the training dataset including x+, x−.

The probability of C(x∗) = −1 is the probability that the value of a sample from
the output distribution is lower than 0. Therefore, it can be calculated as follows, using
the cumulative distribution function of Gaussian distribution

Erf(0;µ, σ) =

∫ 0

−∞
N (x;µ, σ2)dx (33)

where

N (x;µ, σ2) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
. (34)

Lemma 2. Erf(0;µ, σ) is monotonically increasing with respect to σ2, under the con-
dition µ > 0.

Proof. Let

Erf(0;µ, σ) =

∫ 0

−∞
N (x;µ, σ2)dx (35)

and put

g(σ) =
∂

∂σ2

∫ 0

−∞
N (x;µ, σ2)dx. (36)

Equation (36) can be rewritten as:

g(σ) =

∫ 0

−∞

∂

∂σ2

1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
dx (37)

and calculating partial differentiation,

g(σ) =

1

2
(2π)−

1
2 σ−3

∫ 0

−∞
exp

(
− (x− µ)2

2σ2

)(
(x− µ)2

σ2
− 1

)
dx.

(38)

Then we show that g(σ) > 0 under the condition µ > 0.



calculating integral when µ = 0 Let µ = 0.
Then g(σ) can be written as

g(σ) =
1

2
(2π)−

1
2 σ−3

∫ 0

−∞
exp

(
− x2

2σ2

)(
x2

σ2
− 1

)
dx (39)

Calculating the integral above, using these integral(Gaussian Integral)∫ 0

−∞
exp

(
−ax2) =

1

2

√
π

a
,∫ 0

−∞
x2 exp

(
−ax2) =

1

4a

√
π

a
.

(40)

Now ∫ 0

−∞
exp

(
− (x− µ)2

2σ2

)(
(x− µ)2

σ2
− 1

)
dx (41)

can be written as below, under condition µ = 0.

1

σ2

∫ 0

−∞
x2 exp

(
− x2

2σ2

)
−

∫ 0

−∞
exp

(
− x2

2σ2

)
dx (42)

Then the Gaussian integral is applied, and the integral is written as below:

1

σ2

∫ 0

−∞
x2 exp

(
− x2

2σ2

)
−

∫ 0

−∞
exp

(
− x2

2σ2

)
dx

=
1

σ2
· 1
4
· 2σ2√π

√
2σ2 − 1

2

√
2σ2

√
π

= 0

(43)

calculating integral when µ > 0 Let µ > 0 and σ > 0.
Equation (38) can be written as below, using integration by substitution y = x− µ.∫ −µ

−∞
exp

(
− y2

2σ2

)(
y2

σ2
− 1

)
dx

dy
dy (44)

dx
dy

= 1, and this is calculated as∫ −µ

−∞
exp

(
− y2

2σ2

)(
y2

σ2
− 1

)
dy

=

∫ −µ

−∞

y2

σ2
exp

(
− y2

2σ2

)
dy −

∫ −µ

−∞
exp

(
− y2

2σ2

)
dy

=

∫ 0

−∞

y2

σ2
exp

(
− y2

2σ2

)
dy −

∫ 0

−∞
exp

(
− y2

2σ2

)
dy

−
(∫ 0

−µ

y2

σ2
exp

(
− y2

2σ2

)
dy −

∫ 0

−µ

exp

(
− y2

2σ2

)
dy

)
=

∫ 0

−µ

exp

(
− y2

2σ2

)
dy −

∫ 0

−µ

y2

σ2
exp

(
− y2

2σ2

)
dy

(45)

This is calculated by two conditions: a) µ < σ and b) µ > σ.



a) µ < σ Equation (45) can be written as:∫ 0

−µ

(
1− y2

σ2

)
exp

(
− y2

2σ2

)
dy. (46)

In the interval −µ < y < 0,
(
1− y2

σ2

)
> 0 therefore the integrand > 0 all over the

integral interval. Therefore the value of Eq. (46) is bigger than 0 regardless of σ.

b) µ > σ From the Eq. (43)∫ 0

−∞
exp

(
− y2

2σ2

)(
1− y2

σ2

)
dy = 0, (47)

Therefore∫ −µ

−∞
exp

(
− y2

2σ2

)(
1− y2

σ2

)
dy +

∫ 0

−µ

exp

(
− y2

2σ2

)(
1− y2

σ2

)
dy = 0. (48)

in the interval y < −µ(< −σ), the integrand is negative, thus∫ −µ

−∞
exp

(
− y2

2σ2

)(
1− y2

σ2

)
dy < 0. (49)

Equation (49) can be written as∫ −µ

−∞
exp

(
− y2

2σ2

)(
1− y2

σ2

)
dy = −

∫ 0

−µ

exp

(
− y2

2σ2

)(
1− y2

σ2

)
dy, (50)

thus ∫ 0

−µ

exp

(
− y2

2σ2

)(
1− y2

σ2

)
dy > 0 (51)

holds.
Therefore, g(σ) > 0 regardless of σ if µ > 0, then Erf(0;µ, σ) is monotonically

increasing with respect to σ2.

Lemma 2 suggests that, the maximum σ2 gives the maximum value of Erf(0;µ, σ).
Lemma 1 suggests that the maximum value of the σ2 is given by Eq. (32), thus the
maximum value of the Erf(0;µ, σ) can be calculated, when fixing x∗.

When x∗ satisfies the condition θr1 = r, then θ1, θs, θr1 are constants. Thus
Erf(0;µ, σ) can be regarded as the function of θr2.

Lemma 3. Erf(0;µ, σ) is monotonically increasing with respect to θr2.

Proof. Set Φ(x) as the cumulative distribution function of N (x; 0, 1).

Φ(x) =
1√
2π

∫ x

−∞
exp

(
−u2

2

)
du (52)

Then Erf(0;µ, σ) can be written as

Erf(0;µ, σ) = Φ
(
−µ

σ

)
(53)



Φ(x) is the cumulative distribution function of the Gaussian distribution, thus it is
monotonically increasing with respect to x. Now

µ =
θr1 − θr2
θ1 − θs

(54)

From the condition, θr1 > θr2, therefore µ is positive. σ is positive by definition,
thus −µ

σ
is negative.

Set

g(θr2) =
µ2

σ2
=

(θr1 − θr2)
2

(θ1 − θs)2
· 1

σ2
(55)

When g(θr2) is decreasing with respect to θr2, then µ
σ

is decreasing with respect to
θr2 thus Φ

(
−µ

σ

)
is increasing with respect to θr2.

Below we show that g(θr2) is decreasing with respect to θr2.
the differentiation of g(θr2) can be decomposed as

∂

∂θr2
g(θr2) = − 2(θr1 − θr2) {θ1(θ1 + θs)− θr1(θr1 + θr2)}

{−θ1θ2r2 + 2θsθr1θr2 + θ1(θ21 − θ2s − θ2r1)}
2 . (56)

The inequality below holds for any kernel functions because the determinant of the
gram matrix is positive:

k(x+, x+)k(x−, x−) > k(x+, x−)
2 (57)

Now k(x+, x+) = k(x−, x−) by the condition, thus k(x+, x+) > k(x+, x−) ⇐⇒ θ1 > θs
holds.

From the condition of the theorem, θr1 − θr2 > 0 holds.
Thus,

θ1(θ1 + θs) > θs(θs + θs) = 2θ2s (58)

and
θr1(θr1 + θr2) < θr1(θr1 + θr1) = 2θ2r1 (59)

From the condition of the theorem,

θr1 = r < θs (60)

holds, therefore
θ1(θ1 + θs) > 2θ2s > 2θ2r1 > θr1(θr1 + θr2) (61)

and
θ1(θ1 + θs)− θr1(θr1 + θr2) > 0 (62)

holds.
Plugging Eq. (60) and Eq. (62) into Eq. (56), the partial differentiation is negative,

thus Erf(0;µ, σ) is monotonically increasing with respect to θr2.

From the discussions above, x∗max = arg max
x∗

[k(x−, x∗)] gives the maximum value

of Erf(0;µ, σ).
Moreover, Erf(0;µ, σ) = Φ

(
−µ

σ

)
is monotonically decreasing with respect to µ, thus

for any ϵ > 0,Erf(0;µ, σ) < Erf(0;µ− ϵ, σ) holds.
Now we prove Theorem 1. From the discussions above, the probability is upper-

bounded as

Pr(C(x∗) = −1) <

∫ 0

−∞
N

(
x;µ− ϵ, σ2) dx. (63)



Plugging the inequality below [SHS+19] into Eq. (63), that is, applying

∀α < 0; Φ(α) ≤ 1

2
exp

(
−α2/2

)
(64)

to the RHS of Eq. (63), the below inequality

Pr(C(x∗) = −1) < ϕ(r|D) =
1

2
exp

(
− µ2

2σ2

)
(65)

holds.
ϕ(x∗|D) is a maximum success probability (MSP) function where

µ =
θr1 − θr2
θ1 − θs

− ϵ,

σ2 = θ1 −
(θ1(θr1

2 + θr2
2)− 2θsθr1θr2)

θ1
2 − θs

2 ,

θ1 = k(x+, x+), θr1 = k(x+, x∗max),

θr2 = k(x−, x∗max), θs = k(x+, x−),

x∗max = arg max
x∗

[k(x−, x∗)].

(66)
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