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Abstract
Recent advances in deep learning have enabled the1

generation of realistic data by training generative2

models on large datasets of text, images, and audio.3

While these models have demonstrated exceptional4

performance in generating novel and plausible data,5

it remains an open question whether they can ef-6

fectively accelerate scientific discovery through the7

data generation and drive significant advancements8

across various scientific fields. In particular, the9

discovery of new inorganic materials poses a crit-10

ical challenge, both scientifically and for indus-11

trial applications. However, unlike textual or image12

data, materials, or more specifically crystal struc-13

tures, consist of multiple types of variables - in-14

cluding lattice vectors, atom positions, and atomic15

species. This complexity in data give rise to a va-16

riety of approaches for representing and generating17

such data. Consequently, the design choices of gen-18

erative models for crystal structures remain an open19

question. In this study, we explore a new type of20

diffusion model for the generative inverse design21

of crystal structures, with a backbone based on a22

Transformer architecture. We demonstrate that our23

models are superior to previous methods in their24

versatility for generating crystal structures with de-25

sired properties. Furthermore, our empirical results26

suggest that the optimal conditioning methods vary27

depending on the dataset.28

1 Introduction29

The advancements in artificial intelligence, particularly in30

the domains of large language models and generative AI31

for image and audio synthesis, are having a significant im-32

pact on our social lives [OpenAI, 2023; Rombach et al.,33

2022]. Such advancements in AI are also expected to accel-34

erate research and development in materials science, which35

could potentially drive scientific discoveries and accelerate36

the development of materials. The discovery of novel ma-37

terials, for example catalysis, battery materials, and super-38

conducting materials, holds the potential to enable inno-39

vation in a wide range of industries [Toyao et al., 2020;40

Chen et al., 2020a].41

Traditionally, the exploration of materials has required re- 42

peated try-and-error, consuming enormous amounts of time 43

and effort. If novel and promising materials could be dis- 44

covered in-silico, i.e., on computers, the exploration process 45

could be further accelerated. Based on this concept, high- 46

throughput virtual screenings using density functional the- 47

ory (DFT) simulations or machine learning-based predictive 48

models have been employed [Noh et al., 2020]. However, 49

such screening-based approaches have required enumerating 50

and comprehensively simulating a vast number of candidate 51

materials. If it were possible to selectively enumerate promis- 52

ing materials or directly generate materials with desired prop- 53

erties, the process of materials research and development 54

would be significantly streamlined. To address these chal- 55

lenges, the inverse design of materials using deep generative 56

models has emerged as a potential approach. 57

Materials, or more specifically crystal structures, con- 58

sist of multiple types of variables including lattice vectors, 59

atomic coordinates, and atomic species. There are several 60

ways to represent crystal structures in a computational frame- 61

work, and several approaches can be employed to generate 62

them. Moreover, the inverse design requires generating crys- 63

tal structures with desired properties rather than just generat- 64

ing them in a random manner, where several strategies can be 65

employed to achieve this [Noh et al., 2019; Xie et al., 2021; 66

Yang et al., 2023; Zeni et al., 2023]. In other words, there are 67

various design choices for constructing the generative models 68

for the inverse design of crystal structures. 69

Diffusion models are a type of generative model that have 70

exhibited distinguished performance, particularly in the do- 71

main of image generation [Ho et al., 2020; Song and Ermon, 72

2019]. They have also demonstrated its versatility and effec- 73

tiveness in generating audio waveforms [Chen et al., 2020b; 74

Kong et al., 2021], molecular and protein design [Hooge- 75

boom et al., 2022; Watson et al., 2023], as well as crystal 76

structure generation [Yang et al., 2023; Jiao et al., 2023; 77

Zeni et al., 2023]. In diffusion models, data is generated 78

by progressively denoising an initial random input. For im- 79

age generation tasks, variants of U-Net [Ronneberger et al., 80

2015] based on convolutional neural networks (CNNs) has 81

been used as the backbone for the denoising process. Re- 82

cently, diffusion models replacing the U-Net with a Vision 83

Transformers (ViTs) [Dosovitskiy et al., 2021] have also been 84

proposed, with the aim of improving scalability and enhanc- 85



ing the quality of generated data [Peebles and Xie, 2022;86

Hatamizadeh et al., 2023]. This suggests that the examina-87

tion of the backbone model in diffusion models can have a88

significant impact on the overall model performance.89

In this study, we explore a new type of diffusion model90

for crystal structure generation, where the backbone is for-91

mulated based on a Transformer [Vaswani et al., 2017] archi-92

tecture. Furthermore, we explore suitable conditioning meth-93

ods for the high-precision inverse design of crystal structures,94

and provide solid baselines for future research on generative95

crystal structure design techniques. Ultimately, we demon-96

strate that our proposed model is capable of performing in-97

verse design with accuracy equal to or exceeding that of prior98

methods.99

2 Preliminary100

Crystal structure is characterized by the periodic arrange-101

ment of atoms in three-dimensional space. The crystal struc-102

ture M can be defined using a repeating unit called unit103

cell. When a unit cell contains N atoms, the crystal struc-104

ture M can be represented as M = (L,X,A), where105

L = [l1, l2, l3] ∈ R3×3 is the lattice matrix containing the106

lattice vectors of the unit cell, X = [x1, ...,xN ] ∈ R3×N107

is the atomic coordinates in the Cartesian coordinate system,108

and A = [a1, ...aN ] ∈ ZN is the corresponding atomic109

species. fi = L−1xi ∈ [0, 1)3×1 is called the fractional110

coordinate, which is advantageous for representing atomic111

positions in crystal structures considering their periodic na-112

ture. Therefore, the crystal structure can also be represented113

as M = (L,F ,A), where F = [f1, ...,fN ] ∈ [0, 1)3×N114

denotes the fractional coordinate matrix. A conceptual dia-115

gram of a crystal structure represented in two dimensions for116

simplicity is shown in Figure 1117

Figure 1: A conceptual diagram of a crystal structure represented in
2D for intuitive understanding. The red arrows represent the lattice
vectors of the unit cell, while colored dots represent atoms, with the
colors corresponding to different atomic species. The gray region
highlights the area of the unit cell.

3 Related Work118

3.1 Diffusion Models for Structured Data119

Diffusion models are a class of generative models originally120

proposed for image generation, with two main formulation121

based on Denoising Diffusion Probabilistic Models (DDPMs)122

[Ho et al., 2020] and Noise Conditional Score Networks123

(NCSCs) [Song and Ermon, 2019], where data is generated 124

from the noise with the same dimension. Diffusion models 125

have also been applied to other structured data, such as text 126

[Hoogeboom et al., 2021], point cloud [Luo and Hu, 2021] 127

and graphs [Vignac et al., 2023]. 128

When applying to crystal structure generation, it is nec- 129

essary to jointly model continuous variables, such as lattice 130

vectors and atomic coordinates, alongside discrete variables, 131

like atom types. Furthermore, to take into account the trans- 132

lational, rotational, and periodic invariance of crystal struc- 133

tures, it is necessary to consider the rotational equivariance 134

of lattice vectors and the periodic invariance of fractional co- 135

ordinates [Jiao et al., 2023], which requires careful design of 136

the denoising model architecture. 137

3.2 Transformers for Recognition and Generation 138

Transformer is a neural network architecture that was origi- 139

nally proposed for natural language processing (NLP) tasks 140

[Vaswani et al., 2017]. The self-attention mechanism in 141

Transformers effectively captures long-range dependencies 142

and efficiently encodes input sequences, leading to its suc- 143

cess across various domains beyond NLP. 144

One prominent example of their application is in the field 145

of computer vision. Vision Transformers (ViTs), which in- 146

corporate attention mechanisms to capture dependencies be- 147

tween image patches, have demonstrated superior perfor- 148

mance compared to CNN-based models in image recognition 149

tasks [Dosovitskiy et al., 2021]. Due to this advantage, ViTs 150

have recently been increasingly employed as backbone mod- 151

els for diffusion models in image generation tasks [Peebles 152

and Xie, 2022; Gao et al., 2023; Hatamizadeh et al., 2023]. 153

Furthermore, the application of Transformer-based mod- 154

els have advanced in domains related to materials science. 155

For instance, self-attention mechanisms have been utilized to 156

model the complex relationship between atoms within ma- 157

terials. This approach has enabled the effective represen- 158

tation learning of the 3D structures of molecules [Ying et 159

al., 2021] and materials [Yan et al., 2022; Yan et al., 2024; 160

Taniai et al., 2024], facilitating the accurate prediction of ma- 161

terials properties. Our study aims to leverage the power of 162

self-attention mechanisms to model inter-atomic interactions, 163

which is then used as the backbone of a diffusion model for 164

crystal structure generation. 165

3.3 Generative Models for Crystal Generation 166

Generative models for crystal structures are essentially mod- 167

els designed to create representations of crystal structures 168

M = (L,F ,A). In general, these models can be designed 169

based on two aspects: how crystal structures are represented 170

in a computational framework and how those representations 171

are generated. Typical invertible crystal structure represen- 172

tations include 2D arrays containing crystallographic infor- 173

mation on M [Ren et al., 2022], voxel images [Hoffmann et 174

al., 2019; Court et al., 2020; Noh et al., 2019], and graphs 175

[Xie et al., 2021; Luo et al., 2023; Zeni et al., 2023]. Regard- 176

ing the generation methods, generative frameworks originally 177

developed for image generation, such as Variational Autoen- 178

coders (VAEs) [Hoffmann et al., 2019; Court et al., 2020; 179

Ren et al., 2022; Xie et al., 2021; Luo et al., 2023; Noh et al., 180



2019], Generative Adversarial Networks [Nouira et al., 2018;181

Zhao et al., 2021], and diffusion models [Xie et al., 2021;182

Luo et al., 2023; Zeni et al., 2023; Yang et al., 2023;183

Jiao et al., 2023], have been widely adopted.184

Many previous studies have focused on generating crys-185

tal structures for a limited range of crystal systems, such as186

cubic crystals, or for systems with a limited number of ele-187

ments, such as binary or ternary compounds. However, re-188

cently, versatile generative models capable of generating di-189

verse and plausible crystal structures across various crystal190

systems and elemental compositions have been developed.191

[Xie et al., 2021; Luo et al., 2023; AI4Science et al., 2023;192

Yang et al., 2023; Jiao et al., 2023]. Xie et al. proposed193

CDVAE, a model that combines VAE and diffusion mod-194

els, where crystal structures are represented as graphs. They195

demonstrated that the model is capable of generating diverse196

and reasonable crystal structures by learning the Cartesian co-197

ordinate scores using a graph neural network (GNN) as the198

backbone. Zeni et al. proposed a diffusion model that jointly199

generates L, X , and A, which uses graphs as a representa-200

tion of crystal structures, and the backbone model is based201

on a GNN [Zeni et al., 2023]. A diffusion generative model202

by Yang et al. uses a well designed representation called Uni-203

Mat, and its backbone is based on a U-Net [Yang et al., 2023].204

In our diffusion model, atoms are treated as a point cloud in205

fractional space, and the backbone model is formulated based206

on a Transformer.207

4 Methodology208

In this section, we introduce our proposed model for the gen-209

erative inverse design of crystal structures. We first introduce210

the joint diffusion framework in Sec. 4.1. In Sec. 4.2, an211

overview of the base architecture of the transformer model is212

provided, and in Sec. 4.3, two approaches of conditional gen-213

eration for the generative inverse design of crystal structures214

are described.215

4.1 Joint Diffusion Framework216

As a general concept, a diffusion model defines two Markov217

processes: a fixed forward diffusion process that gradually218

adds noise to the original data M0 = (L0,F0,A0) over T219

steps, from t = 1 to t = T , and a learned generative process220

that removes the noise from the prior MT = (LT ,FT ,AT ).221

Diffusion on Lattices222

For lattice vectors with continuous variables, the forward dif-223

fusion process can be defined as follows [Jiao et al., 2023],224

according to DDPM [Ho et al., 2020]:225

q(Lt|Lt−1) = N (Lt;
√

1− βtLt−1, βtI). (1)

Here, βt ∈ [0, 1] is the predefined noise schedule, and I is the226

identity matrix. By applying the Markov property, Lt can be227

directly derived from M0 as:228

q(Lt|M0) = N (Lt;
√
αtL0, (1− αt)I), (2)

where αt =
∏t

s=1 αs and αt = 1−βt. By the reparametriza-229

tion trick, Lt can be written as Lt =
√
αtL0 +

√
1− αtϵL,230

where ϵL ∼ N (0, I).231

In the backward process, the lattice vectors are repre- 232

sented using a Gaussian distribution N (Lt−1|µθ(Mt),ΣtI), 233

where µθ(Mt) = 1√
αt
(Lt − βt√

1−αt
ϵ̂L(Mt, t)) and Σt = 234

βt
1−αt−1

1−αt
. The neural network is trained to predict ϵ̂L, given 235

Mt and t, with the loss function 236

LL = EϵL∼N (0,I),t∼U(1,T )[||ϵL − ϵ̂L(Mt, t)||22]. (3)

Diffusion on Coordinates 237

While fractional coordinates F ∈ [0, 1)3×N are conve- 238

nient for handling periodicity, applying DDPM with Gaus- 239

sian functions is not appropriate. Therefore, score-matching 240

based models [Song and Ermon, 2019; Song et al., 2019; 241

Song and Ermon, 2020] have been adopted together with 242

wrapped normal (WN) distribution [Jiao et al., 2023; Zeni 243

et al., 2023]. In this case, we assume that Ft follows the 244

perturbed distribution with a predefined noise schedule σt as 245

follows: 246

q(Ft|F0) = Nw(Ft;F0, σ
2
t I), (4)

where Nw denotes a WN distribution, and σt is defined using 247

a hyper parameter σT as σ0 = 0 and σt = σ1(
σT

σ1
)

t−1
T−1 for 248

t > 0. 249

In the backward process, the output of neural network ϵ̂F 250

estimates the score of perturbed data distribution, where the 251

neural network is trained with the objective: 252

LF = EFt∼q(Ft|F0),t∼U(1,T )[λt||∇Ft
log q(Ft|F0)− ϵ̂F (Mt, t)||22]. (5)

Here, λt = E−1
Ft

[||∇Ft log q(Ft|F0)||22] is approximated via 253

Monte Carlo Sampling, and the data is generated by the an- 254

cestral predictor with the Langevin corrector, as detailed in 255

[Jiao et al., 2023]. 256

Diffusion on Species 257

There are several possible approaches to modelling the dif- 258

fusion of atomic species; however, in this study, we con- 259

sider them as categorical data and apply discrete denoising 260

diffusion probabilistic models (D3PMs) [Austin et al., 2023; 261

Hoogeboom et al., 2021], as employed in the previous works 262

[Guan et al., 2023; Peng et al., 2023; Zeni et al., 2023]. 263

In D3PM, the forward diffusion process is formulated us- 264

ing categorical distribution with probability vector p as: 265

q(ai,t|ai,t−1) = Cat(ai,t;p = ai,t−1Qt), (6)

where ai,t ∈ {0, 1}K is the one-hot row-vector representa- 266

tion of atomic species ai at timestep t, Qt is the transition 267

matrix, and K is the number of classes. The Markov prop- 268

erty allows for directly computing ai,t from ai,0 as follows: 269

q(ai,t|ai,0) = Cat(ai,t;p = ai,0Qi,t), (7)

with Qt = Q1Q2...Qt. In this study, we define transition 270

matrix as Qt = (1−βt)I+βt/K11
⊤ so that atomic species 271

follow a uniform distribution at t = T , which was selected 272

based on experiments. 273

The backward process is modeled using categorical distri- 274

bution Cat(ai,t−1;p =
ai,tQ

⊤
t ⊙âi,0Qt−1

âi,0Qta
⊤
i,t

), wherein âi,0 = 275

âi,0(Mt, t) is predicted by the neural network, which is 276

trained with the loss function: 277

La = Eai,t∼q(ai,t|ai,0),t∼U(1,T )[q(ai,t−1|Mt,M0)||pθ(ai,t−1|Mt)]. (8)



Figure 2: (a) Overview of the base model architecture. (b) Overview of the conditional model with condition-dependent initialization method.
(c) Overview of the conditional model with condition-dependent self-attention method. The models of crystal structures in this figure were
visualized using VESTA [Momma and Izumi, 2008].

4.2 Backbone Denoising Model278

The overview of the base model architecture is shown in Fig-279

ure 2 (a). Under the joint diffusion processes defined in Sec.280

4.1, we construct a model that receives Mt = (Lt,Ft,At)281

as input and outputs ϵ̂L, ϵ̂F , and Â0. In the following, we282

describe several key components of the model.283

Input Embedding284

As shown in Figure 2, initial input embedding in a unit285

cell, z0 = (z0
1 , ...,z

0
N ), which is fed into the self-attention286

block, is generated based on time-dependent atomic species287

At = (a1,t, ...,aN,t). We generate d-dimensional species288

embedding zai = MLP(ai,t) ∈ Rd and set z0
i = zai , where289

MLP denotes a simple multi-layer perceptron.290

Self-Attention Block291

The Self-Attention block, which serves as a core component292

of the proposed model, receives zl = (zl
0, ...,z

l
N ), Lt, and293

Ft as inputs, and outputs an updated zl+1 = (zl+1
0 , ...,zl+1

N ),294

where d denotes block index l = 0, ..., D − 1. Following the295

original Transformer [Vaswani et al., 2017], zl is updated as296

follows:297

ẑ = LN(MHA(zl,Lt,Ft) + zl), (9)
298

zl+1 = LN(MLP(ẑ) + ẑ), (10)

where MHA and LN denote multi-head attention layer and299

layer normalization [Ba et al., 2016], respectively.300

In this work, the attention mechanism in the MHA layer301

relies on self-attention with relative position representations302

[Shaw et al., 2018] to better incorporate relative positional303

relationships between atoms. Specifically, input sequences304

z = (z0, ...,zN ) are transformed to z′ = (z′
0, ...,z

′
N ) ac-305

cording to the following equation:306

z′
i =

1

Zi

N∑
j=1

exp(q⊤
i kj/

√
d+ αij)(vj + βij). (11)

Here, Zi =
∑N

j=1 exp(q
⊤
i kj/

√
d + αij), and ki = ziW

K , 307

qi = ziW
Q, vi = ziW

V , where WQ, WK , W V are pa- 308

rameter matrices for query, key, and value, respectively. 309

The terms αij ∈ R and βij ∈ Rd serve as biases to in- 310

corporate the relative positional relationship between atoms i 311

and j. In this study, we consider generating these terms from 312

Ft and Lt. Specifically, to incorporate information about the 313

relative positions of atom i and j in fractional space, a Fourier 314

transformation ψFT(fj −fi), which is first proposed in [Jiao 315

et al., 2023] for creating periodic-invariant message in GNN, 316

is utilized alongside Lt to get αij and βij as follows: 317

αij = MLP(ψFT(fj − fi),L
⊤
t Lt), (12)

318

βij = MLP(ψFT(fj − fi),L
⊤
t Lt). (13)

Here, the ψFT is defined as: 319

ψFT(f)[n, k] =

{
sin (2πmfn) if k = 2m

cos (2πmfn) if k = 2m+ 1,
(14)

where n is an index that runs over the dimension of 3D coor- 320

dinates, and k is an index that runs over the dimensions of the 321

embedding vector. In plactice, ψFT(fj − fi) and L⊤
t Lt are 322

flattened and concatenated before being fed into MLP. 323

Transformer Decoder 324

After updating through the D-layer self-attention block, the 325

transformer decoder receives zD = (zD
0 , ...,z

D
N ) and Lt, 326

and then predicts ϵ̂L, ϵ̂F , and Â0. ϵ̂F and Â0 are obtained 327

straightforwardly from zD through the equations ϵ̂fi = 328

MLP(zD
i ) and âi,0 = MLP(zD

i ). ϵ̂L is obtained by the lin- 329

ear transformation of Lt as ϵ̂L = Ltφ(
1
N

∑N
i=1 z

D
i ), where 330

φ denote an MLP that outputs a 3 × 3 matrix. We note that 331

this procedure follows the steps performed in the read-out of 332

GNN [Jiao et al., 2023], and enables prediction of ϵ̂L that is 333

equivariant to the rotation of Lt. 334



Method Perov-5 Carbon-24 MP-20
SR5 SR10 SR15 SR5 SR10 SR15 SR5 SR10 SR15

CDVAE [Xie et al., 2021] 0.52 0.65 0.79 0.00 0.06 0.06 0.78 0.86 0.90
SyMat [Luo et al., 2023] 0.73 0.80 0.87 0.06 0.13 0.13 0.92 0.97 0.97

MODEL-CDI 0.93 0.97 0.98 0.43 0.56 0.57 0.91 0.93 0.95
MODEL-CDS 0.97 0.99 1.00 0.56 0.64 0.64 0.63 0.75 0.84

Table 1: Property optimization performance, where SR stands for success rate. The highest SR and the second highest SR achieved among
the four models are emphasized with bold and underline, respectively. Performance of CDVAE and SyMat were obtained from the original
literatures.

4.3 Conditioning Methods335

In this study, we perform conditional generation, using phys-336

ical property values as condition, for the generative inverse337

design of crystal structures. We provide the model with the338

time step t and property values as conditions, where time step339

t is transformed into a feature vector zt using sinusoidal posi-340

tional encoding [Vaswani et al., 2017; Ho et al., 2020], while341

property values are mapped to a vector zprop via linear pro-342

jection. The condition embedding is constructed from zt and343

zprop as follows:344

zc = MLP(zt ⊕ zprop), (15)

where ⊕ denotes the concatenation of two vectors. As de-345

scribed below, we investigate two conditional generation ap-346

proaches based on how zc is fed into the model.347

Condition Dependent Initialization (CDI)348

The first approach is to make the input embedding condition-349

dependent, as shown in Figure 2 (b). In this case, input em-350

bedding is set using not only the species embedding zai
but351

also the condition embedding zc as follows:352

z0
i = MLP(zai

⊕ zc). (16)

The model conditioned with condition-dependent initializa-353

tion is referred to as MODEL-CDI.354

Condition Dependent Self-attention (CDS)355

Figure 2 (c) shows the second approach, where zc is fed into356

every self-attention block. Similar to the Time-dependent357

Self-attention mechanism proposed in DiffiT [Hatamizadeh358

et al., 2023], the attention block takes zc as an additional in-359

put, and the query, key, value are made condition-dependent360

as follows:361

qi = ziW
Q + zcW

Qc, (17)
362

ki = ziW
K + zcW

Kc, (18)
363

vi = ziW
V + zcW

V c, (19)
where WQc, WKc, W V c are the conditional projection ma-364

trices for query, key, and value, respectively. The model365

conditioned with this condition-dependent self-attention is re-366

ferred to as MODEL-CDS.367

5 Experiments368

In this section, we evaluate the performance of our proposed369

models on the task of property optimization. Through the370

comparison with existing methods, we show that our pro-371

posed models are effective for generative inverse design of372

crystal structures.373

5.1 Experimental Setup 374

Task definition 375

Property optimization is a task that aims to generate crystal 376

structures that possess desired physical properties when target 377

property values are provided. 378

Datasets 379

To evaluate the performance of proposed models across di- 380

verse materials systems, we conduct the assessments on three 381

datasets with different compositions and crystal systems, fol- 382

lowing Xie et al. [Xie et al., 2021]. Perov-5 [Castelli 383

et al., 2012a; Castelli et al., 2012b] is a dataset of crystal 384

structures derived from cubic perovskite, containing 18,928 385

crystal structures and their corresponding property values. 386

Carbon-24 [Pickard, 2020] contains 10,153 structures con- 387

sisting solely of carbon atoms, with each structure including 388

between 6 and 24 atoms. MP-20 [Jain et al., 2013] is a col- 389

lection of stable crystal structures from the Materials Project 390

database, each containing 20 atoms or fewer. MP-20 includes 391

a total of 45,231 structures and and is the most diverse dataset 392

in terms of both composition and crystal systems. Following 393

[Xie et al., 2021], each dataset was split into a ratio of 6:2:2 394

for training, validation, and testing, respectively. 395

Metrics 396

In the task of property optimization, we measure the ability 397

of generative models to generate crystal structures with low 398

formation energies, in other words, to generate stable crystal 399

structures. In this research, we perform conditional genera- 400

tion of crystal structures by providing the minimum values of 401

the physical properties in the training dataset as conditional 402

values, and calculate the success rate (SR). The success rate 403

is calculated as the proportion of generated crystal structures 404

whose physical property values fall within the top 5% (SR5), 405

10% (SR10), and 15% (SR15) of the target values. The prop- 406

erty values were calculated using pre-trained GNN model by 407

Xie et al. [Xie et al., 2021]. 408

Baselines 409

We compare our models with two existing methods: CD- 410

VAE [Xie et al., 2021] and SyMat [Luo et al., 2023], both 411

of which are crystal structure generation models that com- 412

bine VAE and score-based diffusion models, and they can be 413

applied to the property optimization. Other diffusion models, 414

such as MatterGen [Zeni et al., 2023] and UniMat [Yang et 415

al., 2023], were not compared because source codes are not 416

open at present and were not assessed on the same metrics. 417



5.2 Results418

The performance of property optimization is reported in Ta-419

ble 1. For both Perov-5 and Carbon-24, our proposed mod-420

els (MODEL-CDI and MODEL-CDS) demonstrated superior421

performance compared to the previous methods (CDVAE and422

SyMat). Notably, for Perov-5, MODEL-CDS yielded SRs of423

nearly 1.0, while for Carbon-24, the SR5, which was close424

to 0.0 with previous methods, increased to above 0.5. On425

the other hand, for MP-20, using MODEL-CDI achieved SRs426

as high as that of SyMat, while MODEL-CDS resulted in a427

slightly lower SRs. The fact that the proposed models demon-428

strated overall good performance suggests that Transformers429

can also be applied as the backbone in diffusion models for430

crystal structure generation. In addition, as shown in Table431

1, MODEL-CDI demonstrated SRs close to the best across432

all datasets. This indicates that MODEL-CDI is a versatile433

model capable of being applied to the task of generating crys-434

tal structures with desired properties across a wide variety of435

datasets.436

It is interesting to note that when comparing the perfor-437

mance of MODEL-CDI and MODEL-CDS, MODEL-CDS438

demonstrated higher performance on Perov-5 and Carbon-439

24, while MODEL-CDI exhibited better performance on MP-440

20. From the perspective of the crystal structure distribution,441

crystal structures in Perov-5 has a high degree of freedom442

in composition, while that in Carbon-24 has a high degree443

of freedom in crystal systems. MP-20, on the other hand,444

has high degrees of freedom in both composition and crystal445

systems. Therefore, it is conceivable that the factors deter-446

mining the property values, particularly the formation energy447

in this case, vary depending on the dataset. The difference448

in performance between MODEL-CDI and MODEL-CDS in449

this study is considered to reflect this differences of charac-450

teristics of datasets, indicating that the optimal conditioning451

method varies depending on the dataset. The optimal method452

for conditional generation may also vary depending on the453

model architecture and the target properties. Therefore, ex-454

ploring suitable conditional generation techniques is expected455

to be a valuable direction for future research.456

6 Conclusion and Future Work457

In this work, we explored a new diffusion model for genera-458

tive inverse design of crystal structures, where the backbone459

is formulated based on a Transformer architecture. We ex-460

plored two conditioning methods for generating crystal struc-461

tures with target physical properties. Our models generally462

demonstrated comparable or superior performance compared463

to previous methods. Furthermore, it was found that the op-464

timal conditioning method varies depending on the dataset,465

suggesting that the exploration of conditioning techniques de-466

pending on the dataset and property would be important for467

high-precision inverse design.468

As future work, evaluation using DFT calculations will be469

necessary for more rigorous assessments. Additionally, Ad-470

ditionally, the novelty and diversity of the inversely designed471

crystal structures will also become important metrics in the472

discovery of new materials.473
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