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Abstract

Fine-tuning Large Language Models(LLMs) on multi-turn reasoning datasets
requires N (number of turns) separate forward passes per conversation due to
reasoning token visibility constraints, as reasoning tokens for a turn are discarded
in subsequent turns. We propose duplicating response tokens along with a custom
attention mask to enable single-pass processing of entire conversations. We prove
our method produces identical losses to the N-pass approach while reducing time
complexity from O(N?) to O(NN?) and maintaining the same memory complexity
for a transformer based model. Our approach achieves significant training speedup
while preserving accuracy. Our implementation is available onlin

1 Introduction

Recent progress in LLMs has sparked a shift from models that directly generate final responses
to those that perform explicit intermediate reasoning before generating responses (referred to as
reasoning models). Open-source reasoning models, such as DeepSeek-R1 [6], demonstrate high
performance on several benchmarks. However, these existing reasoning models were trained primarily
on single-turn reasoning data.

While numerous studies have investigated fine-tuning LLMs for multi-turn dialogues to improve co-
herence, context awareness, tool-calling [[17,[13]], these approaches assume non-reasoning dialogues.

Training LLMs for multi-turn reasoning conversations presents novel challenges in managing token
visibility. Following industry-standard practices for multi-turn conversations [10}1]], reasoning models
generate internal reasoning tokens, produce a response, and then discard the reasoning tokens from
the context in subsequent turns. This creates two fundamental constraints that cannot be addressed
with standard multi-turn optimization techniques: (1) Visibility Constraints: Reasoning tokens must
be visible during generation but hidden from subsequent conversation turns, requiring conditional
visibility that static attention masks cannot satisfy. (2) Position ID Discrepancy: Response tokens
follow reasoning tokens during generation but directly follow human messages in a later context,
creating positional misalignment.

While prior works have explored masking techniques and position ID assignments to control infor-
mation flow and enable selective attention within sequences for various pre-training objectives or
efficiency gains [[16, 5} [12]], none address the specific challenges of multi-turn reasoning conversations
where reasoning tokens must be conditionally visible across turns.
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This paper addresses these challenges with two primary contributions. (1) We present a theoretical
framework featuring a block-sparse visibility mask and strategic position ID assignment scheme
that enables processing an entire multi-turn reasoning conversation in a single forward pass while
maintaining training correctness (Theorem [2.3). (2) Due to the absence of a publicly available
multi-turn reasoning dataset (to the best of our knowledge), we create and release a novel dataset,
MathChat,y,.Reasoning, in which each assistant message is augmented with synthetically generated
reasoning. (3) We provide comprehensive empirical validation for the proposed framework on Qwen3
models [18]].

Notation. We use D to denote a multi-turn reasoning dataset where each conversation ¢ € D
consists of [V turns. Each turn 7; contains a sequence of alternating human and assistant messages:

M; . . ) .
T; = (hij,a;, )jz‘1 where M is the number of message pairs in turn ¢. Thus, a complete conversation

is ¢ = (T;)I¥ . Each assistant message a;,; comprises thinking tokens ¢; ; and response tokens 7; ;.
We denote T; «; = (hj g, ai,k)fc;ll as turn history before jth set of messages and H; = (Ok)z;ll
as the conversation history before turn i, where O = (hk, s de)jlvi’“l represents the observable

content of turn k (excluding thinking tokens). We denote O; «; = (h; i, 73, k)i;ll as observable turn
history before jth set of messages. For token sequence x, s, and e, represent starting and ending
position IDs. The notation x — .A(-) indicates sequences that x attends to, and £(-) denotes language
modeling loss (detailed in Appendix [A.T)).

2 Single Pass Fine-tuning on Multi-Turn Reasoning

In this section, we highlight the challenges associated with fine-tuning language models on multi-turn
reasoning datasets. We present an optimized approach to process an entire conversation in a single
forward pass. In multi-turn reasoning data, response tokens r; ; must attend to reasoning tokens

t; ; during the generation of assistant message az .j» as well as to thinking tokens from all previous

assistant messages within the same turn (¢; 5 )7,_ Slmllarly, human messages h; ;11 within the same
turn following the generation of a; ; must attend to reasomng tokens t; ; and thlnklng tokens from

all previous assistant messages within that turn (¢; ;);,_;. However, these reasoning tokens must
remain invisible from the context during generation of subsequent turns 77~ ;. Within the same turn
(I = 1), assistant messages and human messages that follow assistant messages can access thinking
tokens from all previous messages in that turn. Consequently, it is not possible to construct a single
static attention mask that satisfies both conditions in a conversation within a single forward pass—a
capability that is typically feasible with non-reasoning datasets.

2.1 N-Pass Approach

A straightforward solution is to perform a separate forward pass for every turn (H;,T;) of a given
conversation c. While functionally correct, this approach is computationally inefficient: a conversation
with NV assistant turns results in [V separate training examples. Consequently, the effective size of
the dataset increases from |D| to |D| x N, inflating training time proportionally. Fig. la) shows
causal attention mask at the time of generation of ith turn response tokens, and Fig. lb) shows causal
attention mask for 4th turn response tokens when they are part of context during j > 4 turns.

2.2 1-Pass Approach

The primary challenge in applying a single forward pass during training due to discrepancy in the
attention behavior of r; ; and h; ;11 can be illustrated as follow

re i = A(H<i, Ti,<j, hij,tij) generation
X A(H<i, Oi,<j, hij) context
A(H<i, Ti<j+1) generation
hijir —
A(H<i, O <jy1) context
We can resolve this issue through the following steps:

2For ease of understanding, we omit the detail that each token within a token sequence also attends to all its
preceding tokens, which must be encoded in the attention mask.
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Figure 1: Causal Attention Masks for N-Pass Approach []represents non-zero attention. (a) Attention
Mask for generation of response tokens. (b) Attention Mask when response tokens are in context.

Duplicating response tokens of each assistant message and subsequent human message. We
duplicate the response tokens for each assistant message and subsequent human message so that one

sequence (rout) and (hflj‘ﬁrl) is used during generation and attends to preceding thinking tokens of

turn i. In contrast, the other sequence (ri™) and (h! i%5+1) is used only as context and does not attend
to thinking tokens.

Custom Attention Mask. Duplication of response tokens makes it possible to have a single
attention mask that satisfies visibility constraints. We define a custom masking strategy for each type
of token sequence, ensuring that each token only attends to the appropriate subsequence:

ti; — A <Z,Tmfj, h"“t)
"“t — .A(?-[’ENT"?77 hlmjt,t )
h;n;il — A(HZ;, O<]+1)
o AHE, OF ., hi%)
(

1,<J"
in mn wm
hilj _>AH<N z<]+1)

Assigning Consistent Position IDs. After duplication of response tokens, we need to assign
consistent position IDs to tokens to maintain the correct relative positions—as if multiple forward
passes were performed for each turn in the conversation. If they are assigned sequentially, or the
duplicated assistant response tokens share the same position IDs, it will lead to incorrect relative
positions. We need a strategic way of assigning position IDs. The following assignment of the first
position ID for each token sequence ensures the relative positions are correct and equivalent to N-Pass
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Label Mask. Duplication of the response tokens also raises the question of which tokens should

be included in the loss calculation. The following label mask outlines the inclusion criteria for each

token type:

hi 0
h{4t 0
t; 1
i 0
rot 1
Fig. [2] shows custom attention mask for ith turn in the 1-Pass Approach. It combines masks for

generation and context from the N-Pass Approach into a single mask with position IDs and a label
mask consistent with N-Pass Approach.

We have demonstrated the ability to do 1-Pass approach for a specific type of conversation structure,
but it can be done for any prefix compatible compatible defined below:

Definition 2.1 (Causally Consistent Conversation). A conversation c is causally consistent if, for every
assisatnt token a generation step, given the subsequence of preceding tokens S, = (s1, $2, - - -, Sk)
that a attends to, then the attention set of each token s; € S, must be exactly {sj €8S,:j<i}at
this generation step of ¢.

Theorem 2.2. Given a causally consistent conversation, one can always construct an attention mask
that enables single forward pass of all tokens through the language model while preserving all causal
attention constraints.

Proof. Let c be a causally consistent conversation. We construct a token sequence 1" (allowing
duplicates when needed) and an attention mask M such that a single forward pass over 7" with mask
M respects all causal constraints.

Initialization. Set T’ < ) and let M be an empty square matrix.

Iterative construction. Process assistant tokens a in their generation order in c. For each such a, let
Sq = (81, -- -, Sk) be the ordered list of tokens a must attend to at its generation step.

» For every s; € S,, check if an instance of s; already exists in 7" whose attention pattern
equals exactly {s; € S, : j < i} at this generation step. If yes, reuse that instance;
otherwise create a new instance of s; and append it to 7.

* For each newly created instance, extend M with a new row and column, and set its attention
to exactly the tokens corresponding to {s; € S, : j < i}.

* Append a to T, extend M by one row and column, and set the attention row of a to the
(possibly duplicated) instances of tokens in S,.

Properties. By causally consistent definition, every token appearing in .S, itself only attends to
earlier elements of S,. Hence each instance we place into 7" can be given a fixed attention pattern
matching that step, and M can encode those visibilities. Because a’s row in M points exactly to the
instances of S,, a observes the same context as in the original generation step. Since we process

3Position IDs are assigned sequentially based on the order of tokens within each sequence.



tokens in their causal order and only add backward-looking (causal) edges, a single forward pass over
T with M is valid.

Therefore there exists a sequence 7' and mask M enabling a single forward pass that preserves all
causal constraints. O

Theorem 2.3. Consider a language model with output distributions determined solely by attention
patterns, positional encodings, and input representation. For any causally consistent conversation c
as input to the model, the sum of the N-Pass language modeling losses is equivalent to the 1-Pass
loss:

EI—Pass (C) _ EN-Pass (C)

Proof. We establish the equivalence by demonstrating that both approaches yield identical probability
distributions over sequences, which directly implies equal language modeling losses. The proof
proceeds in three parts: we show that (1) positional encodings can be made equivalent, (2) attention
patterns are identical, and (3) the resulting loss functions are mathematically equivalent.

Part I: Position Encoding Equivalence. In the N-Pass approach, for each turn, tokens receive
sequential position IDs based on their order in the current context.

In the 1-Pass approach with token duplication (from Theorem [2.2):

* When we create a new instance of a token due to different attention requirements, we can
assign it contiguous position ID following its preceding tokens because of causally consistent
nature of the conversation.

* For the tokens which are not duplicated they by default follow the attention requirements
and can be assigned sequential position ID due to same reason.

* For each assistant token a with attention sequence S, at the time of generation, the absolute
and relative positions of tokens in S, are preserved.

Since the model’s output depends only on positions within the attention window, and these positions
are identical in both approaches for each token’s generation, the positional encoding contribution to
the model output is equivalent.

Part I1: Attention Pattern Preservation. From the construction in Theorem 2.2}

* For each assistant token a in conversation c, let S, be the sequence of tokens it attends to at
the time of generation.

* In the N-Pass approach, token a attends exactly to the tokens in S, with their causal attention
patterns.

* In the 1-Pass approach, our mask construction ensures:

— We duplicate any token s; € S, if its required attention pattern differs from existing
instances.

— Each duplicated instance maintains the exact attention pattern required by causal
consistency.

— Token a attends to the appropriate instances that match the attention patterns in .S, .

Therefore, the attention patterns observed by each assistant token a are identical in both approaches.

Part I1I: Loss Function Equivalence. The language modeling loss for the N-Pass approach is:

LNFass (o) = — Z log Py (a | S,) M

acassistant tokens

where Py(a | S,) is the probability of token @ given its context S, with the attention patterns and
positional encodings as specified in the N-Pass approach. For the 1-Pass approach:

* A label mask ensures only assistant tokens contribute to the loss.
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Figure 2: Custom Attention Mask for 1-Pass Approach. [] represents non-zero attention.

¢ From Parts I and II, each assistant token a sees identical:

— Attention patterns to tokens in S,.
— Positional encodings.
— Input representations (through appropriate token instance selection)

Since the model’s output distribution depends solely on these three factors (by hypothesis), we have:
Pel—Pass (a | Sa) — Pé\l—Pass (a | Sa)

Therefore, the 1-Pass loss is:

L)y =~ > logPy(al Sa)
a€assistant tokens (2)
— EN—Pa.vs( C)
This completes the proof of loss equivalence. O

2.3 Complexity Analysis

We compare the computational complexity of our 1-Pass method against N-Pass approach for
transformer-based models with hidden dimension d [[15]. Table [I|summarizes the time and memory
complexities for a conversation ¢, where ¢ denotes its characteristic turn length.

N-Pass 1-Pass
T(c) O(Ngézd) (0] N2€2d)
M(c) O(NQZQ) (0] N2£2)
Table 1: Time and Memory Complexity for N-Pass and 1-Pass Approach.

The 1-Pass approach yields an asymptotic time complexity improvement of one order in N, offering
significant speedups at scale. While it introduces a higher constant memory overhead due to token



replication, both methods share the same asymptotic memory complexity. Full derivations are
provided in Appendix [B]

2.4 Efficient Mask Generation

While our custom attention mask (illustrated in Figure [2) enables single-pass training, generating it
involves computing complex visibility patterns across token types and conversation turns. At scale,
this computation could become non-trivial, particularly for longer conversations or larger batch sizes.
To ensure this remains efficient, we develop an optimized mask generation algorithm that performs all
operations on GPU using vectorized tensor operations. Additionally, we simplify the boolean logic
for visibility constraints using Karnaugh map reduction, minimizing the number of logical operations
required. We provide the complete algorithm in Appendix [C.I] for practitioners seeking to implement
our method efficiently.

3 Experiments

We evaluate our single-pass fine-tuning on Qwen3 models (4B, 8B, 32B) with QLoRA [3]]. All
experiments were run on a 8§ x H100 instance (CUDA 12.8, PyTorch 2.7.0), with our method imple-
mented in LLaMA-Factory [19] and benchmarked against multi-pass baselines. See Appendix [C.2]
for experimental setup.

Qwen3’s Persistent Reasoning. Qwen3 is a reasoning model. When used in Non-Thinking mode,
it still appends an empty reasoning block (<think></think>) to each response. As a result, a reasoning
segment—albeit empty—remains in every output. This implies that any fine-tuning scenario aiming
for contamination-free training (including those that use purely non-reasoning data) must employ our
1-Pass approach with token duplication to properly isolate and manage these empty reasoning tokens.
This ensures that no unintended reasoning fragments leak into subsequent turns.

3.1 Dataset Creation

To enable supervised training with explicit step-by-step reasoning, we construct and release
MathChatsyncReasoninﬂ along with its generation script. The dataset is obtained by augmenting the
original MathChat,yy,. corpus [9] with a synthetically-generated rationale for every assistant turn. The
procedure comprises three stages.

10° 5 B Before sampling
mm After sampling

£

10° 4

# Conversations (log scale)

7 8 9 10 1 12 13
Conversation depth (# turns)

Figure 3: Dataset depth distribution: before vs. after sampling.

1. Source corpus. MathChat,y, is a synthetic, dialogue-based mathematics tutoring dataset con-
taining 144,978 conversations with alternating human and assistant messages but no reasoning
traces.

*https://huggingface.co/datasets/devrev-research/MathChatSync-reasoning
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Figure 4: Training-time experiments

2. Depth-balanced sampling. Conversation depth in MathChatgy, is highly skewed toward six-
turn dialogues (69 % of all conversations; see Figure[3). To mitigate this bias, we first down-sample
depth-6 dialogues from 100,443 to 30,000 instances. From the resulting pool we draw a stratified
sample of 8,000 conversations.

* For each depth d, we calculate the proportion of the pool that depth represents.

* We allocate to that depth the corresponding proportion of the 8,000-conversation budget,
rounding up to the nearest whole conversation.

e If the resulting number is below 200, we raise it to (i) 200 or (ii) the total number of
conversations available at that depth, whichever is smaller. This guarantees broad coverage
across conversation depths.

The final split contains 8,797 assistant turns. Figure [3compares the depth distribution before and
after sampling.

3. Reasoning augmentation. For every assistant turn we generate an intermediate reasoning string
using gpt-4.1-mini. The model is provided with (i) the dialogue history up to the current human
utterance and (ii) the assistant’s reply, and is instructed to output only the hidden rationale that could
have produced that reply. These rationales are concatenated to the original conversations to form
MathChat,y,.Reasoning. All experiments in this paper use this dataset.



3.2 Experimental Setup

We use FlashAttention2 (FA2) [2] and FlexAttention [4] backends. Our 1-Pass method requires a
custom attention mask, thus using FlexAttention, as FA2 lacks support for passing custom attention
mask; FA2’s speed motivates reporting baselines on both for fair comparison. We compare our 1-Pass
method (with response token duplication) against a standard N-Pass baseline (requiring N forward
passes). Both are evaluated with and without sequence packini] [7]. When packing is enabled, we
use llama-factory’s neat_packing implementation: FA2 baselines rely on position IDs to separate
packed sequences [8]], while our 1-pass method combines the contamination-free packing mask with
our custom attention mask via logical AND.

3.3 Results:

Training Speedup. Figure [da]shows training speedups. Our 1-Pass method with packing (Flex-Pack-
1-Pass) is 1.05 %, 1.21x, and 1.22 x faster than FA2-N-Pass baseline with packing (FA2-Pack-N-Pass)
on 4B, 8B, and 32B models, respectively. Despite FlexAttention’s inherent slowness versus FA2,
our method’s single-pass efficiency compensates. Compared to N-Pass FlexAttention with packing
(Flex-Pack-N-Pass), our Flex-Pack-1-Pass yields 1.44x,1.54x,and 1.46x speedups for 4B, 8B,
and 32B models, respectively. Without packing, our 1-pass method (Flex-1-Pass) lags FA2-N-Pass
baseline for 8B and 32B models. We hypothesize that this is because response-token duplication
widens the length disparity between conversations, making the method more sensitive to the absence
of packing than the N-Pass baseline. Across all experiments, the 1-Pass variants consume roughly
33% more GPU memory than their N-Pass counterparts.

K-Pass Trade-offs. The 1-Pass and N-Pass approaches represent two extremes: processing the entire
conversation in a single pass or in as many passes as there are turns. We therefore also investigate
intermediate settings, processing each conversation in K passes. Concretely, we split every dialogue
into K contiguous chunks and apply our single-pass mask only to the current chunk, duplicating
response tokens and computing loss exclusively for that portion (see Appendix [C.3.1] for full details).
Figure [dbreveals a speed-memory trade-off for K€1,2,4,6,N. Our 1-Pass method maximizes speed
with ~33% more memory (vs. N-Pass). K=2 offers a balance (1.30x—1.37x speedups, ~20% extra
memory). Gains diminish for K > 4 because, beyond K = 4, the extra time incurred by the longer
sequences created through token duplication outweighs the savings from processing a few turns
together.

Conversation Scalability. The dataset contains conversations with depths from 1 to 16 turns. To
analyse the effect of depth, we partition it into three groups: G1 (1-5 turns), G2 (67 turns), and
G3 (8-16 turnsﬂ Figure {c| shows our Flex-Pack-1-Pass speedups (vs. FA2-Pack-N-Pass) grow
with conversation depth (0.93x,1.19x, 1.23x for G1, G2, G3 respectively). A similar trend appears
when comparing our method without packing (Flex-1-Pass) to the FA2-N-Pass baseline: speedups of
0.69x, 1.05x, and 1.56x for G1, G2, and G3, respectively. This supports the theoretical complexity
reduction from O (N 3) to O (N 2) , as efficiency gains become more pronounced with depth.

These results confirm single-pass training yields significant computational savings, aligning with
theoretical advantages, making multi-turn reasoning fine-tuning practical at scale. Please refer
Appendix [C.3|for comprehensive results of the experiments conducted.

4 Conclusion

We presented an optimized 1-Pass training method for multi-turn reasoning that reduces time com-
plexity from O(N?) to O(N?) via strategic token duplication and custom attention mask. Our
theoretical analysis confirms loss equivalence with the N-Pass method, enabling efficient training
for longer conversations. As multi-turn reasoning becomes central to complex Al tasks, our method
offers a scalable and broadly applicable solution. Future work includes exploring adaptive strategies
to balance memory-efficiency trade-offs. Additionally, we aim to benchmark performance on latest
back-ends such as FlashAttention3 [[14] and port our masking logic to these faster implementations.

SWe set the cutoff length to the maximum number of tokens in any datapoint in the dataset for all our
experiments.

SThis uneven distribution originates from the underlying MathChaty,. dataset, which is heavily skewed
toward 5-7 turn conversations, a bias that propagates to our reasoning corpus.
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A Background

A.1 Language Modeling Loss

For a token sequence (H;, h;, a;), the language modeling loss [11] for assistant message a; can be
expressed as:

L(H<i,hiya;) = —log(Pe(ai|(H<i, hi)) 3

where language model is parameterized by ©.

B Complexity Analysis

B.1 Input Length
B.1.1 N-Pass Approach

In the N-Pass approach, each turn ¢ is processed in a separate forward pass. The input to the model at
turn ¢ is:

H<i7 hi7 tia Ti
because human and assistant response tokens from previous turns remain in the conversation history,
while earlier reasoning tokens are discarded.

Let Ly._p.ss denote the maximum input length possible for the N-Pass approach for a conversation c.

It can be defined by:
N

Lvrass = 3 (1l 4 Iral) + maz iy 8, 4)
i=1
which is sum of all the human messages and response tokens for entire conversation and maximum
length of thinking tokens across turns. To simplify further, assume:

hal, [tl, [ri € O0).

where ¢ denote the characteristic turn component length, defined as ¢ =
Pos(|hil, |til, [rs| : @ € [1, N], ¢ € D), where Pys is the 95th percentile operator. Then:

Li-pass € O((2N + 1)) = O(NY). )
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B.1.2 1-Pass Approach

Our 1-Pass approach processes the entire conversation c in a single forward pass. The input length
L1_pgss can be calculated as:

N
LI-Pass = Z(‘hz| + |t’b| + 2‘T1D € O<4N€) = O(NK) (6)

i=1
B.2 Time Complexity Analysis

For a transformer with hidden dimension d and context length n, each layer requires O(n?d) opera-
tions when n > d [[15].

N-Pass Approach: Under the N-Pass approach, each of the IV turns requires a forward pass, each
operating on O(Ly.p.ss) = O(N?) tokens. Thus, for conversation c:

Tiv-rass(¢) € O(N x (N€)*d) = O(N>¢*d). (7)
1-Pass Approach: In the 1-Pass approach, all the conversation tokens are given as input at once,
thus operating on L;_p, tokens yielding a cost of:

T)-pass(¢) € O((4N0)*d) = O(N?*d). ®)

This represents a factor of N improvement in asymptotic complexity, with substantial gains for large
N.

B.3 Memory Complexity Analysis

A transformer layer with input context length n has memory complexity O(n?) assuming n > d.

N-Pass Approach: Peak Memory requirement for N-Pass approach is at Ly.p, input. Thus for
conversation c:
My.rass(¢) € O((2N + 1)2?) = O(N?¢?). )
1-Pass Approach: Memory requirement for 1-Pass approach can be given by:
M.pass(c) € O((4N)*€?) = O(N?¢?). (10)

Though 1-Pass incurs a higher constant factor due to response token replication, both approaches
exhibit identical asymptotic memory complexity.

C Experiments

C.1 Efficient mask generation

We present an efficient algorithm for generating the custom attention mask required by our 1-Pass
training method. The algorithm leverages vectorized GPU operations to compute visibility patterns
without explicit loops.

Implementation Notes:
o All operations are performed on GPU using PyTorch’s vectorized tensor operations

e Role IDs: 0 = padding, 1 = human, 2 = thinking, 3 = response (first copy), 4 = response (second
copy)

o The boolean expression in Step 3 is optimized using Karnaugh map reduction to minimize logical
operations

e The algorithm avoids explicit loops by leveraging broadcasting and logical operations

e For CPU tensors, we temporarily move computation to GPU before returning results to the original
device

12



Algorithm 1 Efficient Custom Attention Mask Generation

Require: Role IDs tensor R € {0, 1,2, 3, 4}5*L where B is batch size, L is sequence length
Ensure: 4D attention mask M € REx1xLxL

: // Step 1: Compute turn IDs via cumulative sum

Ripire < roll(R, shift = 1,dim = 1)

Rigpie[:, 0] <= 0

turn_increment «— (R # 0) A (R =1) A (Rgpire # 1)

T «+ cumsum(turn_increment, dim = 1)

T[R = 0] « 0 {Zero out padding positions}

PRI AR

// Step 2: Create base causal non-padding mask
i+« [0,1,...,L—1]

0

10: non_pad + (R # 0)
11: Mypye < (i[:, None] > i[None, :]) A non_pad][:, :, None| A non_pad[:, None, :]
12:

—_
(9%}

: 1/ Step 3: Apply role-specific visibility constraints (K-map optimized)
: turn_equal < (T[:,:,None] = T[:, None, :])

: R; + R[;,:,None|; R; <~ RJ[:,None, ]

¢ Miinat ¢ Mpage A [(Rj =1)V (R; =4 A turn_equal)

—_ = =
AN L B~

17: V(R; =3AR; #4) vV (R; = 3 A ~turn_equal)
18: V(R; =2 A turn_equal A R; # 3)]

19:

20: // Step 4: Convert to 4D attention weights

21: M + where(Myq.unsqueeze(1), 0, —o0)

22: return M

C.2 Experimental Setup

All training runs are initiated using llamafactory-cli in SFT mode. We apply QLoRA with 4-bit NF4
quantization, using a LoRA rank of 32 and a scaling factor of & = 64. Training is performed for
three epochs with bfloat16 (bf16) precision.

We enable the Liger kernel for improved efficiency. Each GPU processes a batch size of 2, with
gradient accumulation over 4 steps. This setup yields an effective batch size of 64 across the §-GPU
node.

C.3 Comprehensive Results

We report the complete numerical results that support the figures in Section [3]in Tables and
We report two metrics for every configuration:

* Throughput (“samples per sec.”’) — the average number of full conversations processed per
second.

* Peak GPU memory — the peak memory recorded during training.

C.3.1 Implementing K-Pass Processing

To obtain the results in Table [3| we extend our Optimised 1-Pass scheme to an intermediate K -Pass
schedule. Assume a conversation contains N assistant turns (hq,t1,71), ..., (hn,tN,TN)-

(a) Chunking the dialog. We partition the conversation into K contiguous chunks, each containing
[ N/K| turns (the last chunk may be shorter).

(b) Selective token duplication. Within the current chunk we apply the same response-token
duplication as in Section rit rot. All earlier chunks act purely as context and therefore retain
their original, non-duplicated responses This progressively lowers the number of duplicated
tokens as K increases, which is the main source of the memory savings reported in Table [3]
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Model Size Run Setting Samples per sec. | Peak Memory(GB) | Relative Speedup | Relative Peak Memory
4B FA2-N-Pass(Baseline) 1.985 9 1.0 1.00
FA2-Pack-N-Pass 6.241 9 3.1 1.00
Flex Atten-N-Pass 1.286 9 0.6 1.00
Flex Atten+Packing-N-Pass 4.550 9 23 1.00
Flex-1-Pass 2.107 12 1.1 1.33
Flex-Pack-1-Pass 6.552 12 33 1.33
8B FA2-N-Pass(Baseline) 2.307 14 1.0 1.00
FA2-Pack-N-Pass 4.522 14 2.0 1.00
Flex-N-Pass 1.365 14 0.6 1.00
Flex-Packing-N-Pass 3.561 14 1.5 1.00
Flex-1-Pass 1.736 18.8 0.8 1.34
Flex-Pack-1-Pass 5.484 18.8 24 1.34
32B FA2-N-Pass(Baseline) 0.601 34 1.0 1.00
FA2-Pack-N-Pass 1.299 34 22 1.00
Flex-N-Pass 0.465 34 0.8 1.00
Flex-Packing-N-Pass 1.078 34 1.8 1.00
Flex-1-Pass 0.521 44 0.9 1.29
Flex-Pack-1-Pass 1.578 44 2.6 1.29

Table 2: Throughput and peak memory across execution strategies. FA2 = FlashAttention 2;
Flex = FlexAttention. Pack denotes dynamic sequence-packing; “1-Pass” is our proposed approach.
Relative columns are computed with respect to the corresponding FA2—-N-Pass baseline.

Model Size K Samples per sec. | Peak Memory(GB) | Relative Speedup | Relative Peak Memory
4B N-Pass(baseline) 4.55 9 1.00 1.00
6-Pass 3.89 10.8 0.85 1.20
4-Pass 4.76 11.5 1.05 1.28
2-Pass 591 11.8 1.30 1.31
1-Pass 6.55 12 1.44 1.33
8B N-Pass(baseline) 3.56 14 1.00 1.00
6-Pass 3.13 16 0.88 1.14
4-Pass 3.87 16.4 1.09 1.17
2-Pass 4.87 17 1.37 1.21
1-Pass 5.48 18.8 1.54 1.34
32B N-Pass(baseline) 1.08 34 1.00 1.00
6-Pass 0.88 39 0.82 1.15
4-Pass 1.08 40 1.00 1.18
2-Pass 1.37 41 1.27 1.21
1-Pass 1.58 44 1.46 1.29

Table 3: Speed—memory trade-off as a function of K. Each dialogue is split into K equal-length
chunks that are processed sequentially in a single forward/backward pass. K = N corresponds to
the per-turn baseline, while K =1 is our single-pass method. All experiments use the Flex Attention
backend with sequence packing (Flex-Pack), the configuration that achieved the best overall speed in
our primary evaluation.

(c) Attention and position IDs. The custom attention mask and position-ID assignment described
in Section [2.2) are applied only to the duplicated tokens of the active chunk. Context tokens keep

the standard causal mask.

(d) Loss computation. The label mask is set to 1 for ¢; and 7" inside the active chunk and 0
elsewhere, so each pass trains only on the new turns while reusing earlier content as fixed

context.

Conceptually, the K-Pass schedule interpolates between the extremes:
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Run Setting Samples per sec. | Peak Memory(GB) | Relative Speedup | Relative Peak Memory
Group 1 | FA2-N-Pass(Baseline) 2.54 14 1.00 1
FA2-Pack-N-Pass 6.93 14 2.73 1
Flex-N-Pass 2.32 14 0.91 1
Flex-Packing-N-Pass 4.94 14 1.94 1
Flex-1-Pass 1.74 18.8 0.69 1.34
Flex-Pack-1-Pass 6.43 18.8 2.53 1.34
Group 2 | FA2-N-Pass(Baseline) 1.02 14 1 1
FA2-Pack-N-Pass 2.39 14 2.34 1
Flex-N-Pass 0.87 14 0.86 1
Flex-Packing-N-Pass 2.10 14 2.06 1
Flex-1-Pass 1.07 18.8 1.05 1.34
Flex-Pack-1-Pass 2.86 18.8 2.80 1.34
Group 3 | FA2-N-Pass(Baseline) 1.06 14 1 1
FA2-Pack-N-Pass 2.28 14 2.15 1
Flex-N-Pass 0.65 14 0.61 1
Flex-Packing-N-Pass 1.75 14 1.65 1
Flex-1-Pass 1.66 18.8 1.56 1.34
Flex-Pack-1-Pass 2.81 18.8 2.65 1.34

Table 4: Impact of conversation depth (Qwen-3 8B). Group 1 (1-5 turns), Group 2 (6-7 turns),
and Group 3 (8-16 turns). Our 1-Pass approach gains more speed as depth increases, in line with the

theoretical O(N?) vs. O(N?3) complexity gap.

e K = N reproduces the per-turn baseline (no response duplication, minimal memory,

maximal passes);

e K = 1is our 1-Pass method (maximum duplication, single pass, fastest).
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