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Abstract
Offline reinforcement learning suffers from the
out-of-distribution issue and extrapolation error.
Most policy constraint methods regularize the den-
sity of the trained policy towards the behavior pol-
icy, which is too restrictive in most cases. We pro-
pose Supported Trust Region optimization (STR)
which performs trust region policy optimization
with the policy constrained within the support of
the behavior policy, enjoying the less restrictive
support constraint. We show that, when assum-
ing no approximation and sampling error, STR
guarantees strict policy improvement until conver-
gence to the optimal support-constrained policy in
the dataset. Further with both errors incorporated,
STR still guarantees safe policy improvement for
each step. Empirical results validate the theory
of STR and demonstrate its state-of-the-art per-
formance on MuJoCo locomotion domains and
much more challenging AntMaze domains.

1. Introduction
Offline Reinforcement Learning (RL) aims to learn a pol-
icy from a fixed dataset without further interactions. It can
utilize existing large-scale datasets to learn safely and ef-
ficiently (Gulcehre et al., 2020; Fu et al., 2020). However,
this also carries with it a major challenge: the evaluation
of out-of-distribution (OOD) actions causes extrapolation
error (Fujimoto et al., 2019) and overestimation.

Policy constraint methods try to address this by constraining
the learned policy to be close to the behavior policy (Wu
et al., 2019; Kumar et al., 2019; Wang et al., 2020; Fu-
jimoto & Gu, 2021). Among them, Weighted Behavior
Cloning (WBC) performs behavior cloning on the dataset,
but assigns different weights to different data points to dis-
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till a better policy (Chen et al., 2020; 2021). A common
practice is to set the weight as the exponentiated advantage
function, leading to Exponentiated Advantage-Weighted Be-
havior Cloning (EAWBC) (Wang et al., 2018; Peng et al.,
2019; Nair et al., 2020; Wang et al., 2020; Siegel et al.,
2020). Mathematically, EAWBC is equivalent to a policy
improvement step in RL with a KL constraint towards an
implicit baseline policy from which the imitated actions
are sampled (i.e. behavior policy). As a result, the policy
of existing EAWBC methods is implicitly constrained by
a density constraint, which is typically too restrictive to
achieve good performance both theoretically and empiri-
cally (Kumar et al., 2019). As a simple example, when the
dataset contains a small proportion of the optimal behavior,
density constraint will lead to a sub-optimal policy.

On the other hand, from the perspective of optimization pro-
cess, it is desirable that an RL algorithm can have the safe
policy improvement guarantee, i.e., have a worst-case perfor-
mance degradation bound for each policy update step. Ben-
efit from this property, online trust region methods (Schul-
man et al., 2015; 2017) have shown supreme performance
on both discrete and continuous tasks (Duan et al., 2016).
However, in the offline setting with approximation and sam-
pling error, few existing offline RL algorithms can ensure
safe policy improvement for each step.

In this paper, we aim to address the above issues by propos-
ing Supported Trust Region optimization (STR) based on
EAWBC. STR performs trust region policy optimization
with the policy constrained within the support of the be-
havior policy β. This less restrictive support constraint
allows to seek the best behavior in the dataset and is usu-
ally sufficient to mitigate the extrapolation error. We start
from an observation that the analytical policy update form
of EAWBC is an equal-support update, which means the
updated policy has the same support as the baseline policy.
Based on it, STR utilizes importance sampling on the dataset
to mimic sampling from the current policy, which makes
the implicit baseline policy in EAWBC become the projec-
tion of the current policy on β. In this way, by initializing
with an estimated behavior policy and adopting a relatively
strong policy constraint, the policy of STR is able to deviate
from β step by step with trust region updates, while still
satisfying the support constraint to mitigate extrapolation
error. In this process, STR gradually “sharpens” the action
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Figure 1. Experimental Verification of Theories. Both policy evaluation and policy improvement are trained to convergence at each
iteration, and all algorithms adopt the same hyperparameter that controls the constraint strength. STR based on supported trust region
update enjoys safe policy improvement for each iteration, and with a less restrictive support constraint, the final performance is better. By
contrast, both one-step and multi-step EAWBC methods (AWR and AWAC) implicitly satisfying a density constraint to the behavior
policy have sub-optimal performance. In halfcheetah-random, AWR and AWAC can hardly make a visible improvement over the behavior
policy. Also, AWAC cannot guarantee safe policy improvement (most stark in walker2d-medium-replay and hopper-medium-expert).

distribution of β, giving higher weights to better actions,
until it converges to the optimal action in the support of β,
while prior EAWBC methods can only get a sub-optimal
policy due to the implicit density constraint.

Theoretically, STR enjoys stronger guarantees. Under the
same assumptions as prior EAWBC works (exact tabular
Q) (Nair et al., 2020; Wang et al., 2020), STR guarantees
strict policy improvement until convergence to the opti-
mal support-constrained policy, exceeding the prior non-
decreasing results that also have no performance guarantee
at convergence. With Q-function approximation and sam-
pling error, prior EAWBC works lose guarantees, while
STR still ensures safe policy improvement for each step.

Empirically, we test STR on D4RL benchmark (Fu et al.,
2020), including Gym-MuJoCo locomotion domains and
much more challenging AntMaze domains. STR consis-
tently outperforms state-of-the-art baselines and outper-
forms prior EAWBC methods by a large margin. We also
conduct a validation experiment and confirm the theoretical
superiority of STR, including the less restrictive support
constraint and safe policy improvement (Figure 1). Besides,
compared with prior EAWBC methods, STR maintains good
performance over a wide range of the hyperparameter that
controls the policy constraint strength.

2. Preliminaries
RL. In RL, the environment is typically assumed to be a
Markov Decision Process (MDP)M = (S,A,P, R, γ, d0),
with state space S, action space A, transition dynamics P :
S ×A → ∆(S), reward function R : S ×A → [0, Rmax],
discount factor γ ∈ [0, 1), and initial state distribution
d0 (Sutton & Barto, 2018). An agent interacts with the MDP
according to a policy π : S → ∆(A). The goal of the agent
is to find a policy that maximizes the expected discounted re-
turn: η(π) = Eτ∼π[

∑∞
t=0 γ

trt], with rt = R(st, at). Here
τ denotes a trajectory (s0, a0, r0, s1, . . .) and τ ∼ π is short-

hand for indicating the distribution of τ depends on π: s0 ∼
d0, at ∼ π(·|st), st ∼ P(·|st, at). For any policy π, we de-
fine the value function as V π(s) = Eπ[

∑∞
t=0 γ

trt|s0 = s]
and the state-action value function (Q-value function) as
Qπ(s, a) = Eπ[

∑∞
t=0 γ

trt|s0 = s, a0 = a]. By the bound-
edness of rewards, we have 0 ≤ Qπ, V π ≤ Rmax

1−γ =:

Vmax. The advantage function is Aπ(s, a) = Qπ(s, a) −
V π(s). For a policy π, the Bellman operator T π is defined
as (T πf) (s, a) := R(s, a) + γEs′∼P(·|s,a) [f (s′, π(s′))],
where f(s′, π(s′)) := Ea′∼π(·|s′)f(s

′, a′). In addition,
we use dπt to denote the state occupancy of the policy π
at time step t: dπt (s) := Eπ [I [st = s]], and use dπ to
denote the normalized and discounted state occupancy:
dπ(s) = (1 − γ)

∑∞
t=0 γ

tdπt (s). We also define the
state-action occupancy with ρπt (s, a) = dπt (s)π(a|s) and
ρπ(s, a) = dπ(s)π(a|s).

Offline RL. In offline RL, the agent is provided with a
fixed dataset D collected by some behavior policy β. We
defineMD as the empirical MDP induced by the dataset
D that uses the empirical transition model based on data
counts. Ordinary approximate dynamic programming meth-
ods evaluate policy π by minimizing temporal difference
error (Haarnoja et al., 2018), according to the following loss

LQ(θ) = E(s,a,s′)∼D[(Qθ(s, a)−R(s, a)

− γEa′∼πϕ(·|s′)Qθ′(s′, a′))2],
(1)

where πϕ is a policy parameterized by ϕ, Qθ(s, a) is a Q
function parameterized by θ, and Qθ′(s, a) is a target net-
work whose parameters are updated via Polyak averaging.

Besides policy evaluation, a typical policy iteration also
includes policy improvement. In continuous action space, a
stochastic policy can be updated by reparameterization:

ϕ← argmaxϕ Es∼D,ϵ∼N (0,1) [Qθ (s, fϕ (ϵ; s))] (2)

In offline RL, OOD actions a′ can produce erroneous values
for Qθ′(s′, a′) and lead to an inaccurate estimation of Q-
values. Then in policy improvement, where the policy is
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optimized to maximize the estimated Qθ, the policy will
prefer OOD actions whose values have been overestimated,
resulting in poor performance. To address this issue, WBC
methods avoid explicitly maximizing Q, but imitate the
actions with high Q-values from D to improve π.

3. A Unified Framework for EAWBC Works
In this section, we propose a unified framework for all prior
EAWBC methods and point out their limitations. Later in
Section 4, we will present our proposed algorithm based
on this framework. All derivations of this section could be
found in Appendix C.

The unified framework follows a policy iteration paradigm.
At the ith iteration, after evaluating some policy πpe to get an
advantage estimate Âπpe , it solves the following constrained
optimization problem to update the policy, where πbase is
some baseline policy:

πi+1 = argmax
π

E
a∼π

[Âπpe(s, a)]

s.t. DKL(π∥πbase)[s] ≤ ϵ,
∑

a π(a|s) = 1, ∀s
(3)

The optimization problem above has a closed-form solution:

πi+1(a|s) =πbase(a|s)f(s, a;πpe)

where f(s, a;πpe) :=
1

Z(s) exp
(

Âπpe (s,a)
λ∗(s)

) (4)

Here Z(s) =
∑

a πbase(a|s) exp
(

Âπpe (s,a)
λ∗(s)

)
is the per-state

normalizing factor, and λ∗(s) is the solution of the following
convex dual problem:

min
λ≥0

ϵλ+ λ log
[∑

a πbase(a|s) exp
(

Âπpe (s,a)
λ

)]
(5)

In practice, the non-parametric solution in Eq.(4) can be
projected onto the parametric policy class by minimizing
the KL divergence:

argmin
ϕ

E
s∼D

[DKL(πi+1(·|s)∥πϕ(·|s))] (6)

By the relationship between πi+1 and πbase in Eq.(4), Eq.(6)
is equivalent to maximizing the following unified EAWBC
objective:

JU (ϕ) = E
s∼D,a∼πbase

[f(s, a;πpe) log(πϕ(a|s))] (7)

All prior EAWBC methods except ABM (Siegel et al., 2020)
adopt the behavior policy β as πbase so that they can sample
state-action pairs directly from D to optimize JU (ϕ). Their
main difference is what policy is selected as the evaluation
policy πpe. Typically, AWR (Peng et al., 2019) and MAR-
WIL (Wang et al., 2018) use β as πpe, while AWAC (Nair

et al., 2020) and CRR (Wang et al., 2020) use the current
policy πi as πpe. Therefore, AWR and MARWIL can be clas-
sified as one-step methods that simply perform one step of
policy improvement using an on-policy estimate Qβ (Brand-
fonbrener et al., 2021), while AWAC and CRR belong to
multi-step methods that repeatedly evaluate off-policy Qπ .

However, due to the correspondence between the con-
strained optimization problem (Eq.(3)) and the WBC prob-
lem (Eq.(7)), when choosing β as πbase, the maximization of
JU (ϕ) implicitly regularizes π’s density towards β. Density
constraint is overly restrictive in many cases (Kumar et al.,
2019). With a small or moderate ϵ, due to this implicit KL
constraint, the learned policy may be highly sub-optimal.
The following lemma confirms this statement.

Lemma 3.1. If DKL(π(·|s)∥β(·|s)) ≤ ϵ,∀s is guaranteed,
then the performance η has the following bound

η(π) ≤ η(β) + Vmax√
2(1−γ)

√
ϵ (8)

To be less pessimistic, ϵ needs to be large and λ∗(s) in
Eq.(4) will be close to 0. Then when Âπpe is estimated
poorly, this will lead to a large and catastrophic policy up-
date (Duan et al., 2016). We point out this trade-off between
optimality and stability is the main reason that prior methods
output a sub-optimal policy in practice. Our experiments in
Section 5.3 support this claim.

To relax this implicit density constraint a bit, ABM (Siegel
et al., 2020) first learns a policy πabm at iteration i by
maximizing JU (ϕ) with πbase = β, πpe = πi. Then it ob-
tains the next iterate πi+1 by maximizing JU (ϕ) again with
πbase = πabm, πpe = πi. In this way, ABM intuitively re-
laxes one density constraint to two coupled ones. However,
it is still a density constraint method in essence, and the
second optimization needs to imitate the actions from πabm

rather than the dataset, which will bring extrapolation error
as we find empirically in Section 5.

From a theoretical perspective, the guarantees of prior
EAWBC works are not strong. It is proved in Wang et al.
(2020) that when assuming exact tabular Q estimation,
the multi-step methods (CRR and AWAC) lead to a non-
decreasing Q. However even with this strong assumption,
these works cannot prove strict monotonicity and have no
performance guarantee at convergence. On the other hand,
when considering sampling error and Q-function approxi-
mation, we always get an approximated and inaccurate Q,
which is the main reason why offline RL algorithms suffer
from extrapolation error and overestimation. However, no
prior EAWBC works analyze this important setting. We
find that with an approximate Q, only one-step EAWBC
methods (AWR, MARWIL) can ensure safe policy improve-
ment for that only one step, and those multi-step methods
fail to guarantee similar results. We summarize in Table 1
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Table 1. Performance improvement guarantees of EAWBC methods in offline RL.

Method πpe πbase Step Performance Guarantees

w/o sampling and Q approx. error w/ sampling and Q approx. error

AWR
β β One-step Strictly increasing for one-step

w/o final performance guarantee Safe improvement for one-stepMARWIL

AWAC
πi β Multi-step Non-decreasing for each step

w/o final performance guarantee No guaranteeCRR

ABM πi ∝ β exp(Âπi) Multi-step No guarantee No guarantee

STR (ours) πi Projsupp(β)(πi) Multi-step Strictly increasing for each step
to support-constrained optimal Safe improvement for each step

the theories of EAWBC methods including our proposed
STR to present a clear comparison. For a more detailed
discussion of related works, please see Appendix A.

4. Supported Trust Region Optimization for
Offline RL with Safe Policy Improvement

In this paper, we will relax the implicit density constraint
of EAWBC methods to a support constraint, and propose
a stable Supported Trust Region algorithm - STR. Benefit
from the less restrictive support constraint, STR enjoys
much stronger guarantees than prior EAWBC methods. In
addition, STR imitates the samples totally from the dataset,
thus avoiding the extrapolation error issue of ABM.

Definition 4.1 (Support-constrained policy). The support-
constrained policy class Π is defined as

Π = {π | π(a|s) = 0 whenever β(a|s) = 0} (9)

The support constraint set Π actually includes the KL den-
sity constraint set Πd = {π | DKL(π∥β)[s] ≤ ϵ} of prior
EAWBC works, which means the support constraint is less
restrictive. It allows to seek the best behavior in the dataset
and is usually sufficient to mitigate the extrapolation error.
Following prior works (Kumar et al., 2019), we also define
the optimal support-constrained policy π∗

Π.

Definition 4.2 (Optimal support-constrained policy). The
optimal support-constrained policy π∗

Π is defined as:

π∗
Π(·|s) := argmax

π∈Π
Q∗

Π(s, π(s)) (10)

where Q∗
Π satisfies the support-constrained Bellman opti-

mality equation:

Q∗
Π(s, a) = R(s, a) + γ E

s′∼P (·|s,a)

[
max
π∈Π

Q∗
Π(s

′, π(s′))

]

Our key observation is that the closed-form policy update of
EAWBC (Eq.(4)) is an equal-support update, which means

supp(πi+1) = supp(πbase)
1. Considering this, if we initial-

ize π1 as β and choose the current policy πi to be πbase, by
a recursive argument, πi is still within the support of β, but
the density value of πi can deviate much from β, even with
a small constraint constant ϵ. It allows πi to seek the best
behavior in the dataset with small update steps. Therefore,
we consider to optimize the following EAWBC objective at
iteration i, with πbase = πi, πpe = πi.

J(ϕ) = E
s∼D,a∼πi

[f(s, a;πi) log(πϕ(a|s))] (11)

However, in practice, various errors may make πi deviate
from β’s support. Even worse, this deviation will accumu-
late with iterations, eventually leading to large extrapolation
error. To address this issue, rather than πbase = πi, we
expect the baseline policy πbase to be the projection of πi

on β. We find that Importance Sampling (IS) can satisfy
this requirement exactly. Instead of sampling from πi to
optimize J(ϕ), STR adopts IS to sample from β and weight
the objective by an IS ratio πi(a|s)/β(a|s).

JIS(ϕ) = E
s,a∼D

[
πi(a|s)
β(a|s) f(s, a;πi) log(πϕ(a|s))

]
(12)

This IS operation is crucial to reduce extrapolation error, be-
cause it implicitly only weighted-imitates the in-β-support
actions of πi. We give a more detailed explanation here. IS
computes Eq[p(x)f(x)/q(x)] to estimate Epf(x). When
supp(p) ⊆ supp(q) holds, IS is unbiased. However when
the support condition does not hold, IS actually computes∫
supp(q)

p(x)f(x)dx. For the EAWBC objective, πi is p

and β is q. Maximizing the IS objective JIS(ϕ) in Eq.(12)
is equivalent to maximizing

J̃(ϕ) = E
s∼D,a∼π̃i

[f(s, a;πi) log(πϕ(a|s))] (13)

where π̃i := Projsupp(β)(πi) is obtained by projecting πi

onto β’s support:

π̃i(a|s) =
I[β(a|s) > 0]πi(a|s)∑
a I[β(a|s) > 0]πi(a|s)

1It follows directly as f(s, a;πpe) > 0. We use the exact
definition of support (= 0).
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Algorithm 1 STR (Tabular)

Input: Offline dataset D, behavior policy β, constant ϵ.
Initialize policy π1 with β.
for i = 1, 2, . . . , N do

Policy evaluation:
compute Q̂πi in empirical MDPMD

Compute Âπi :
Âπi(s, a) = Q̂πi(s, a)− Ea∼πi

[Q̂πi(s, a)].
Policy improvement:

πi+1(a|s) = 1
Z(s)πi(a|s) exp

(
Âπi (s,a)
λ∗(s)

)
.

end for

Therefore, if the support constraint is violated at some itera-
tion i due to various errors: supp(πi) ̸⊆ supp(β), JIS(ϕ)
will only weighted-imitate the in-β-support actions of πi

and automatically pull πi+1 back into β’s support, thus
mitigating the extrapolation error in practice.

4.1. Theory of STR with a tabular Q

Algorithm 1 instantiates a version of STR in the tabular
setting, which is very concise and can clearly show the
theoretical advantages of STR.

The following proposition characterizes the equal-support
property of STR formally and shows that the π-induced
state (state-action) distribution also has the same property.

Proposition 4.3. For πi in Algorithm 1, supp(πi) =
supp(β),∀i. It further implies supp(dπi) = supp(dβ) and
supp(ρπi) = supp(ρβ).2

All proofs of Section 4 could be found in Appendix B.
Remark 4.4. Algorithm 1 assumes direct access to β. Al-
though we can only obtain an estimated β̂ = n(s, a)/n(s)
in practice where n is the number of data points inD, it satis-
fies supp(β̂) ⊆ supp(β), and all theoretical results of STR
will still hold, except that the optimal β-support-constrained
policy becomes β̂-support-constrained one. Further, when
assuming no sampling error |D| =∞, β̂ and β are the same.

Based on Proposition 4.3, we show that without approxima-
tion and sampling error (tabular Q and infinite D), policy
evaluation of STR under the empirical MDPMD gives the
exact Q function under the true MDP.

Proposition 4.5. In tabular MDP, if the offline dataset D is
generated by a behavior policy β and |D| =∞, then we can
have an exact evaluation of Qπi for all πi in Algorithm 1.

With an exact tabular Q, we show that Algorithm 1 guar-
antees strict policy improvement for each iteration until
it converges to the optimal support-constrained policy π∗

Π.

2Here supp(ρπi) = supp(ρβ) is similar to the definition of
batch-constrained policies in Fujimoto et al. (2019).

With the same assumption as CRR (Wang et al., 2020), it
is much stronger than the prior non-decreasing results that
also have no performance guarantee at convergence.

Theorem 4.6 (Strict policy improvement for each step).
If we have the exact tabular estimation of Q, then πi in
Algorithm 1 guarantees monotonic improvement:

Qπi+1(s, a) ≥ Qπi(s, a) ∀s, a. (14)

and the improvement is strict in at least one (s, a) pair until
the optimal support-constrained policy π∗

Π is found.

4.2. Theory of STR with an approximate Q

In this section, we relax the assumption in Section 4.1
that prior EAWBC works also make, by incorporating
Q-function approximation and sampling error. Specifi-
cally, we model the Q function by a value function class
F ⊆ (S ×A → [0, Vmax]) and remove the assumption on
|D|. With function approximation, we optimize one single
objective by weighting each state with dπi(s):

max
π

α E
s∼dπi

a∼π

[Âπi(s, a)]− Vmax E
s∼dπi

[DKL(π∥πi)] (15)

For ease of presentation, we use a penalty form rather than
a constraint form here. Note that all prior EAWBC works
use the penalty form in practice.

The optimization problem above also has a closed form
solution, which is irrelevant to dπi(s) and is the same as
Eq.(4) except for a fixed Lagrange multiplier:

πi+1(a|s) = 1
Z(s)πi(a|s) exp(αÂ

πi (s,a)
Vmax

)

where Z(s) =
∑

a πi(a|s) exp(αÂ
πi (s,a)
Vmax

)
(16)

Eq.(16) is still an equal-support update and the property in
Proposition 4.3 still holds3. Now we make two standard
assumptions in the offline setting (Chen & Jiang, 2019).

Assumption 4.7 (Approximate Completeness). For any πi

in STR, the following bound holds:

max
f∈F

min
g∈F
∥g − T πif∥22,ρβ ≤ ϵcomplete (17)

Here ∥ · ∥2,ρβ :=
√
Eρβ [(·)2] is the ρβ-weighted 2-norm 4.

Assumption 4.8 (Concentrability). For the policy πi in
STR, there exists a constant C such that,

∀t, s, a :
ρπi
t (s, a)

ρβ(s, a)
≤ C (18)

3The proof follows directly as that of Proposition 4.3.
4We will use the notation ∥f∥2,D for an empirical distribution

of the dataset D,where ∥f∥2,D =
√

1
|D|

∑
(s,a,s′)∈D f(s, a, s′)2.
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By the equal-support property of STR: supp(ρπi) =
supp(ρβ), this concentrability assumption is very likely
to hold under any dataset distribution ρβ .
Theorem 4.9 (FQE error bound). Under Assumption 4.7
and Assumption 4.8, with probability at least 1− δ, after K
iterations of Fitted Q Evaluation (FQE), which initializes
f0 ∈ F arbitrarily, and iterates K times:

fk ← argminf∈F ∥f(s, a)− r − γfk−1(s
′, π(s′))∥2,D

the following bound holds:

∥Qπ − fK∥1,ρπ ≤ 1− γK

1− γ

√
Cϵgb + γKVmax (19)

where ϵgb :=
44Vmax

2 log(|F|K/δ)

|D| + 20ϵcomplete

The first term in Eq.(19) is the sampling and approximation
error term, which goes to 0 with more data and a smaller
inherent Bellman error ϵcomplete. The second term is the
optimization error term that goes to 0 with more iterations.

Then we formally present the “trust region” property of STR.
Although we do not constrain DKL(π∥πi) explicitly, πi+1

and πi in STR are close to each other.
Proposition 4.10 (Trust Region). For any πi+1, πi satisfy-
ing Eq.(16), the following policy difference bound holds:

DTV(πi+1∥πi)[s] ≤ α,∀s
DKL(πi∥πi+1)[s] ≤ α,∀s

DKL(πi+1∥πi)[s] ≤ α(eα − e−α)/2,∀s

Finally, we show that with a moderate α, STR is guaranteed
to be safe and avoid performance collapse.
Theorem 4.11 (Safe policy improvement for each step).
Under Assumption 4.7 and Assumption 4.8, for πi+1, πi sat-
isfying Eq.(16), with ϵπi+1 := maxs |Ea∼πi+1

[Aπi(s, a)]|,
the following performance difference bound holds:

η(πi+1)− η(πi) ≥ Vmax

(1−γ)αEs∼dπi [DKL(πi+1∥πi)]

− 2α
1−γ

(
γϵπi+1

1−γ + 1−γK

1−γ

√
Cϵgb + γKVmax

)
4.3. The Practical Implementation of STR

We design the practical algorithm to be as simple as possible
to avoid some complex modules confusing our algorithm’s
impact on the final performance.

Policy Improvement. Instead of training each iteration to
convergence in both the evaluation and improvement stages,
practical offline RL algorithms usually take one gradient
step. Therefore, we maximize the following objective for
policy improvement:

Jπ(ϕ) = E
(s,a)∼D

[
π̄ϕ(a|s)
β(a|s) exp(Aθ(s,a)

λ ) log(πϕ(a|s))
]
(20)

Algorithm 2 STR (Practical)

Input: Offline dataset D, constant λ > 0.
Initialize behavior policy βω, policy network πϕ, Q-
network Qθ, and target Q-network Qθ′

// Behavior Policy Pre-training
for each gradient step do

Update ω by maximizing Jβ(ω) in Eq.(22)
end for
// Policy Training
Initialize policy πϕ with βω

for each gradient step do
Update θ by minimizing LQ(θ) in Eq.(1)
Update ϕ by maximizing Jπ(ϕ) in Eq.(20)
Update target network: θ′ ← (1− τ)θ′ + τθ

end for

where π̄ϕ means the detach of gradient, and

Aθ(s, a) := Qθ(s, a)− Eâ∼πϕ
[Qθ(s, â)] (21)

We represent the policy with a Gaussian distribution. In
Eq.(21), we find that replacing the expectation with the pol-
icy’s mean already obtains good performance. Also, it sim-
plifies the training process without learning a V -function.

Besides, as all prior EAWBC works, we omit the partition
function Z(s) in Eq.(20), because it only affects the relative
weight of different states in the training objective, not differ-
ent actions. It is theoretically unimportant and empirically
hard to estimate. We give a detailed and specific explanation
for STR in Appendix D.1.

Density Estimator. We learn a Gaussian density estimator
βω for the behavior policy by maximizing

Jβ(ω) = Es,a∼D log βω(a|s), (22)

where ω is the parameter of the estimated behavior policy.

Policy Initialization. Theoretically, STR needs to initial-
ize the actor with the behavior policy. In our implementation,
we set the network structure of the actor and βω to be the
same, and initialize the actor with βω directly.

Importance Sampling. To reduce the high variance of
importance sampling (Precup et al., 2001), STR adopts Self-
Normalized Importance Sampling (SNIS) in practice, which
normalizes the IS ratio across the batch.

Overall Algorithm. Putting everything together, we
present a practical version of STR in Algorithm 2.

5. Experiments
We test the effectiveness of STR (Algorithm 2) in terms of
performance, safe policy improvement, and hyperparameter
robustness using the D4RL benchmark (Fu et al., 2020).
More experimental details are provided in Appendix D.
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Table 2. Averaged normalized scores on MuJoCo locomotion and AntMaze tasks over five seeds.
Dataset (v2) BC OneStep TD3+BC CQL IQL AWAC CRR ABM MPO STR
halfcheetah-med 42.0 50.4 48.3 47.0 47.4 47.9 47.1 50.9 39.7 51.8±0.3
hopper-med 56.2 87.5 59.3 53.0 66.2 59.8 38.1 39.4 0.7 101.3±0.4
walker2d-med 71.0 84.8 83.7 73.3 78.3 83.1 59.7 17.2 -0.2 85.9±1.1
halfcheetah-med-replay 36.4 42.7 44.6 45.5 44.2 44.8 44.4 43.4 51.6 47.5±0.2
hopper-med-replay 21.8 98.5 60.9 88.7 94.7 69.8 25.5 74.7 48.2 100.0±1.2
walker2d-med-replay 24.9 61.7 81.8 81.8 73.8 78.1 27.0 86.9 3.8 85.7±2.2
halfcheetah-med-exp 59.6 75.1 90.7 75.6 86.7 64.9 85.2 70.2 13.2 94.9±1.6
hopper-med-exp 51.7 108.6 98.0 105.6 91.5 100.1 53.0 1.4 0.7 111.9±0.6
walker2d-med-exp 101.2 111.3 110.1 107.9 109.6 110.0 91.3 0.1 -0.3 110.2±0.1
halfcheetah-exp 92.9 88.2 96.7 96.3 95.0 81.7 93.5 17.6 -3.8 95.2±0.3
hopper-exp 110.9 106.9 107.8 96.5 109.4 109.5 108.7 2.4 0.7 111.2±0.3
walker2d-exp 107.7 110.7 110.2 108.5 109.9 110.1 108.9 64.9 -0.3 110.1±0.1
halfcheetah-rand 2.6 2.3 11.0 17.5 13.1 6.1 13.6 2.3 27.4 20.6±1.1
hopper-rand 4.1 5.6 8.5 7.9 7.9 9.2 16.1 15.2 31.7 31.3±0.3
walker2d-rand 1.2 6.9 1.6 5.1 5.4 0.2 4.9 2.6 1.6 4.7±3.8
locomotion total 784.2 1041.2 1013.2 1010.2 1033.1 975.6 817 489.1 214.6 1162.2
antmaze-umaze 66.8 54.0 73.0 82.6 89.6 80.0 43.8 87.0 0.0 93.6±4.0
antmaze-umaze-diverse 56.8 57.8 47.0 10.2 65.6 52.0 42.8 25.4 0.0 77.4±7.2
antmaze-med-play 0.0 0.0 0.0 59.0 76.4 0.0 0.4 0.0 0.0 82.6±5.4
antmaze-med-diverse 0.0 0.6 0.2 46.6 72.8 0.2 0.5 0.2 0.0 87.0±4.2
antmaze-large-play 0.0 0.0 0.0 16.4 42.0 0.0 0.0 0.0 0.0 42.8±8.7
antmaze-large-diverse 0.0 0.2 0.0 3.2 46.0 0.0 0.0 0.0 0.0 46.8±7.6
antmaze total 123.6 112.6 120.2 218 392.4 132.2 87.6 112.6 0.0 430.2

5.1. Comparisons on D4RL Benchmarks

We evaluate STR on D4RL in comparison to prior methods.

Tasks. We conduct experiments in Gym-MuJoCo locomo-
tion domains and more challenging AntMaze domains. The
latter consist of sparse-reward tasks and require “stitching”
fragments of suboptimal trajectories traveling undirectedly
to find a path from the start to the goal of the maze.

Baselines. Our offline RL baselines include Behavior
Cloning (BC), OneStep RL (Brandfonbrener et al., 2021),
TD3+BC (Fujimoto & Gu, 2021), CQL (Kumar et al., 2020),
IQL (Kostrikov et al., 2022), AWAC (Nair et al., 2020),
CRR (Wang et al., 2020), ABM (Siegel et al., 2020), and
MPO (Abdolmaleki et al., 2018).

Comparison with Baselines. Results are shown in Ta-
ble 2. For learning curves, please refer to Appendix D.6.
We find that STR substantially outperforms state-of-the-art
methods. It is worth noting that STR outperforms prior
EAWBC methods by a large margin, which further demon-
strates the advantages of the supported trust region update
proposed by STR. Moreover, since ABM and MPO imitate
the actions sampled from a learned policy rather than the
dataset, they suffer from extrapolation error and fail in most
tasks that have a narrow data coverage.

Runtime. We test the runtime of STR on halfcheetah-
medium-replay on a GeForce RTX 3090. The results of
STR and other baselines are shown in Figure 3 (Right). The
runtime of STR is comparable to other baselines. Note that
it only takes two minutes for the pre-training part.

5.2. Experimental Verification of the Theories

In this section, we demonstrate the safe policy improvement
property of STR from experiments. For this, each policy
iteration is trained to convergence in both evaluation and
improvement parts. Also, we adopt a relatively large tem-
perature λ in Eq.(20) that corresponds to a strong constraint.

The results are shown in Figure 1, which well support the
theory. The performance of AWR and AWAC is limited
by the implicit density constraint toward the sub-optimal
behavior policy (Lemma 3.1). By contrast, with a less re-
strictive support constraint, STR is able to deviate more
from the behavior policy to achieve better performance. In
halfcheetah-random, due to the highly sub-optimal behavior
policy, AWAC and AWR can hardly make a visible improve-
ment, while STR obtains better performance. Furthermore,
STR has an approximately monotonic performance improve-
ment process in all domains, which demonstrates the safe
policy improvement property of STR (Theorem 4.11). In
contrast, AWAC has severe performance drops at some iter-
ations (most stark in walker2d-medium-replay and hopper-
medium-expert).

5.3. Empirical Study on the Constraint Strength

We investigate the effect of constraint strength on STR and
AWAC (best performance among prior EAWBC methods
in Table 2). For this, we vary the temperature λ in Eq.(20)
which is positively correlated with the constraint strength.
The results are presented in Figure 2. Note as the abscissa
1/λ increases, the constraint becomes looser.
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Figure 2. Performance of STR (support constraint) and AWAC (density constraint) with different constraint strength. As the abscissa 1/λ
increases, the constraint becomes looser. STR is more robust to λ. The plots show the average and standard deviation over 5 seeds.
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As expected, when the constraint is relatively strong, due to
the superiority of the support constraint, the performance
of STR is better than that of AWAC, and both algorithms
are relatively stable (with small standard deviations). As the
constraint gets slightly weaker, the performance of both al-
gorithms improves. However, when the constraint becomes
too loose, in hopper-medium both STR and AWAC suffer
from overestimation and are unstable (with large standard
deviations), while in hopper-medium-replay and walker2d-
medium-replay, STR is more stable than AWAC. In general,
STR not only maintains good performance over a wide
range of λ, but is also better than AWAC for every λ.

5.4. Ablation Study

We perform an ablation study over the components in our
method, including the behavior density estimator, policy
initialization, and importance sampling techniques. The
results are shown in Figure 3.

Behavior Density Estimator. Following previous
works (Fujimoto et al., 2019; Wu et al., 2022), we consider
to replace the Gaussian density estimator βω with condi-
tional variational auto-encoder (Sohn et al., 2015). We refer
to this variant as STR-VAE. Overall, the performance of
STR-VAE and STR is almost the same, except that STR-
VAE obtains worse results on hopper-random.

Policy Initialization. Consistent with the theory of STR,
we initialize the policy with the pre-trained βω. Here we

evaluate an STR variant with random policy initialization,
termed STR-RInit. STR-RInit achieves similar performance
in most tasks except hopper-expert and hopper-medium-
expert. The reason is that, in practice, the IS operation in
STR will implicitly pull πϕ back into β’s support, no matter
how πϕ is initialized. Therefore, an inaccurate βω initializa-
tion or even random initialization could also achieve good
results in most cases. However in hopper-expert, the data
coverage is narrow and overestimation is more likely to hap-
pen. We find the random initialization will lead to severe
overestimation of Q in hopper-expert.

Importance Sampling. STR adopts SNIS to reduce
the variance of IS. Here we test an STR variant with vanilla
importance sampling, termed STR-IS. As shown in Figure 3,
the performance of STR-IS is slightly worse than STR due
to higher variance, but the difference is not large.

6. Conclusion
We propose STR, an offline RL algorithm with supported
trust region policy optimization based on EAWBC. STR re-
laxes the density constraint of prior EAWBC works to a sup-
port constraint and enjoys stronger theoretical guarantees,
including strict policy improvement until convergence to
the optimal support-constrained policy with an exact Q and
safe policy improvement with an approximate Q. Empirical
evaluations confirm the theoretical results and demonstrate
STR’s SoTA performance on offline RL benchmarks.
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A. Related Works
Offline RL. In offline RL, a fixed dataset is provided and no further interactions are allowed. As a result, ordinary off-policy
RL algorithms suffer from extrapolation error due to OOD actions (Fujimoto et al., 2019) and have poor performance.
Among various solutions, value penalty methods attempt to penalize the Q-values of OOD actions (Kumar et al., 2020; An
et al., 2021; Lyu et al., 2022), while policy constraint methods force the trained policy to be close to the behavior policy
by KL divergence (Wu et al., 2019), or by direct behavior cloning (Fujimoto & Gu, 2021). Recently, instead of density
policy constraint which is too restrictive in many cases, some works consider the less restrictive support constraint to keep
the learned policy within the support of behavior policy by Maximum Mean Discrepancy (MMD) (Kumar et al., 2019)
or explicit density estimation (Wu et al., 2022), but their performance still leaves considerable room for improvement.
Another branch of algorithms chooses to perform in-sample learning, by formulating the Bellman target without querying
the values of actions not contained in the dataset. Among them, OneStep RL (Brandfonbrener et al., 2021) evaluates the
behavior policy by SARSA and only performs one-step of constrained policy improvement without off-policy evaluation.
IQL (Kostrikov et al., 2022) modifies the SARSA update by expectile regression to approximate an upper expectile of the
value distribution, and enables multi-step dynamic programming.

Weighted Behavior Cloning. Among policy constraint methods, Weighted Behavior Cloning (WBC) reduces the RL
problem to a supervised learning problem (Emmons et al., 2021). They modify an imitation learning algorithm either by
filtering or weighting the actions in dataset to distill a better policy. For the filtering version, BAIL (Chen et al., 2020)
proposes upper-envelope to select good state-action pairs for later imitation learning. 10%BC only uses the top 10% of
transitions ordered by episode return to perform behavior cloning (Chen et al., 2021). However, they are intuitive methods
and do not have theoretical guarantees of policy improvement. For the weighted version, prior works typically adopt
Exponentiated Advantage-Weighted Behavior Cloning (EAWBC), with the weights being determined by the exponentiated
advantage estimates. Examples of EAWBC methods include MARWIL (Wang et al., 2018), AWR (Peng et al., 2019),
AWAC (Nair et al., 2020), CRR (Wang et al., 2020) and ABM (Siegel et al., 2020). We have summarized their essential
similarities and differences in Section 3. At the implementation level, MARWIL and AWR are similar one-step methods and
only differ in advantage estimation: with a learned value function V β , MARWIL uses the single-path advantage estimate
while AWR uses TD(λ) to approximate the episode return. CRR and AWAC are concurrent multi-step methods and the
difference is that CRR uses distributional Q-function (Barth-Maron et al., 2018).

To some extent, our algorithm STR shares some similarities with an online algorithm MPO (Abdolmaleki et al., 2018),
which starts from an inference perspective and essentially weighted-clones the actions from the current policy for policy
improvement. In the offline setting, MPO does not satisfy the support constraint and suffers from large extrapolation error,
as we find empirically in Section 5. Also, MPO has no theoretical analysis for the offline setting and its implementation is
very complicated. On the other hand, STR initializes the policy with the behavior policy and utilizes importance sampling
on the dataset to mimic actions from the current policy. It enforces the policy of STR within the support of the behavior
policy, thus mitigating the extrapolation error and offering excellent empirical performance.

Trust Region and Safe Policy Improvement. In online RL, trust region methods, with two typical embodiments of Trust
Region Policy Optimisation (TRPO) (Schulman et al., 2015) and Proximal Policy Optimisation (PPO) (Schulman et al.,
2017), have shown impressive performance on both discrete and continuous tasks (Duan et al., 2016). They optimize the
policy within a trusted neighborhood of the current policy, which empirically avoids taking aggressive updates towards risky
directions, and theoretically guarantees safe policy improvement at each step (Schulman et al., 2015; Achiam et al., 2017).
However in offline RL, there are few studies about trust region optimization. Besides, with approximation and sampling
error, few offline RL algorithms can ensure safe policy improvement for each step. Recently, there are several offline RL
works (Liu et al., 2020; Xie et al., 2021; Cheng et al., 2022) that guarantee safe policy improvement over the behavior policy.
In contrast, we consider safe policy improvement with respect to the current policy, at each policy update step.

B. Proofs
We start out with the performance difference lemma (Kakade & Langford, 2002) that shows that the difference in policy
performance η(π′)− η(π) can be decomposed as an expectation of advantages.

Lemma B.1. Given two policies π′, π,

η(π′)− η(π) =
1

1− γ

∑
s

dπ′(s)
∑
a

[π′(a|s)Aπ(s, a)] (23)
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Proof. Please see the proof of Lemma 6.1 in Kakade & Langford (2002).

The complex dependency of dπ′(s) on π′ makes Equation (23) difficult to optimize directly. It is proved in Achiam et al.
(2017) that the performance difference satisfies the following inequality.

Lemma B.2. ∀π′, π, with ϵπ
′
:= maxs |Ea∼π′ [Aπ(s, a)]|, the following bound holds:

η (π′)− η(π) ≥ 1

1− γ
E

s∼dπ

a∼π′

[
Aπ(s, a)− 2γϵπ

′

1− γ
DTV(π

′∥π)[s]

]
. (24)

Proof. Please see the proof of Corollary 1 in Achiam et al. (2017).

The bound Eq.(24) should be compared with Eq.(23). The term Es∼dπa∼π′ [Aπ(s, a) in Eq.(24) is an approximation to
η(π′) − η(π), using the state distribution dπ instead of dπ

′
, which is known equal to η(π′) − η(π) to first order in the

parameters of π′ on a neighborhood around π (Kakade & Langford, 2002).

Lemma B.3 (Lemma 3.1). If DKL(π(·|s)∥β(·|s)) ≤ ϵ,∀s is guaranteed, then the performance η has the following bound

η(π) ≤ η(β) +
Vmax√
2(1− γ)

√
ϵ (25)

Proof. By Lemma B.1, we have

|η(β)− η(π)| = 1

1− γ

∣∣∣∣∣∑
s

dβ(s)
∑
a

[(β(a|s)− π(a|s))Qπ(s, a)]

∣∣∣∣∣
≤ 1

1− γ

∑
s

dβ(s)
∑
a

[|β(a|s)− π(a|s)| |Qπ(s, a)]|

≤ Vmax

1− γ

∑
s

dβ(s)
∑
a

[|β(a|s)− π(a|s)|

=
Vmax

1− γ

∑
s

dβ(s)DTV(π∥β)[s]

≤ Vmax√
2(1− γ)

∑
s

dβ(s)
√

DKL(π∥β)[s] (Pinsker’s inequality)

≤ Vmax√
2(1− γ)

√
ϵ

(26)

Proposition B.4 (Proposition 4.3). For πi in Algorithm 1, supp(πi(·|s)) = supp(β(·|s)),∀i. When assuming the MDP has
a fixed initial state distribution d0, it implies supp(dπi(·)) = supp(dβ(·)) and supp(ρπi(·, ·)) = supp(ρβ(·, ·))

Proof. As 1
Z(s) exp

(
Âπi (s,a)
λ∗(s)

)
> 0, it holds that supp(πi+1(·|s)) = supp(πi(·|s)), ∀s. By a recursive argument,

supp(πi(·|s)) = supp(β(·|s)),∀i. Here we use the exact definition of support (= 0), rather than > some threshold.
As the distribution of dπ(s) is induced by the transition dynamics and the policy. With supp(πi(·|s)) = supp(β(·|s))
and the same P , it follows directly supp(dπi(·)) = supp(dβ(·)). As ρπ(s, a) = dπ(s)π(a|s), it also holds that
supp(ρπi(·, ·)) = supp(ρβ(·, ·)).

Proposition B.5 (Proposition 4.5). In tabular MDP, if the offline datasetD is generated by a behavior policy β and |D| =∞,
then we can have an exact evaluation of Qπi for all πi in Algorithm 1.

12
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Proof. We construct the empirical MDP MD in tabular setting following Fujimoto et al. (2019). Specifically, MD
is defined by the same action and state space as M, with an additional terminal state sinit. MD has transition proba-
bilities PD(s

′|s, a) = N(s,a,s′)∑
s̃ N(s,a,s̃) , where N(s, a, s′) is the number of times the tuple (s, a, s′) is observed in D . If∑

s̃ N(s, a, s̃) = 0, then PD(sinit|s, a) = 1, where r(sinit, s, a) is to the initialized value of Q(s, a).

Following Proposition B.4, any (s, a) such that ρπi(s, a) > 0 must satisfy ρβ(s, a) > 0. With the no sampling error
assumption: |D| = ∞, those (s, a) also satisfy PD(s

′|s, a) = P(s′|s, a) for all s′ ∈ S. Then following Lemma 1 in
Fujimoto et al. (2019), we can conclude the proof.

Theorem B.6 (Strict policy improvement for each step, Theorem 4.6). If we have the exact tabular estimation of Q, then πi

in Algorithm 1 guarantees monotonic improvement:

Qπi+1(s, a) ≥ Qπi(s, a) ∀s, a. (27)

and the improvement is strict in at least one (s, a) pair until the optimal support-constrained policy π∗
Π is found:

πi = π∗
Π (28)

Proof. When assuming exact evaluation of Qπi which holds if |D| = ∞ by Proposition B.5, πi+1 in Algorithm 1 is the
optimal solution of the following constrained optimization problem:

πi+1 = argmax
π

E
a∼π

[Qπi(s, a)]

s.t.DKL(π∥πi) ≤ ϵ∑
a

π(a|s) = 1,∀s
(29)

we know that DKL(πi∥πi) = 0 < ϵ ∀s is an strictly feasible solution to the optimization problem above. Therefore,
Ea∼πi+1

[Qπi(s, a)] ≥ Ea∼πi
[Qπi(s, a)] ∀s. It implies

Qπi(s, a)

=E

r(st, at) + γ
∑

st+1,at+1

P (st+1|st, at)πi(at+1|st+1)Q
πi(st+1, at+1)|st = s, at = a


≤E

r(st, at) + γ
∑

st+1,at+1

P (st+1|st, at)πi+1(at+1|st+1)Q
πi(st+1, at+1)|st = s, at = a


. . .

≤Eπi+1

[ ∞∑
k=0

γkr(st+k, at+k)|st = s, at = a

]
=Qπi+1(s, a)

Therefore, Qπi+1(s, a) ≥ Qπi(s, a) ∀s, a.

Then if in some iteration i, the optimization problem in Eq.(29) do not improve the objective function at any s,
i.e. Ea∼πi+1

[Qπi(s, a)] = Ea∼πi
[Qπi(s, a)] ∀s, it means that πi is a minimizer of of the convex optimization prob-

lem in Eq.(29). Note that πi is a interior point of the feasible set. Consider another convex optimization problem whose
feasible region contains the original one in Eq.(29):

πi+1 = argmax
π

E
a∼π

[Qπi(s, a)]

s.t.DKL(π∥πi) <∞∑
a

π(a|s) = 1,∀s
(30)

13
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Here DKL(π∥πi) =
∑

a π(a|s) log
π(a|s)
πi(a|s) < ∞ is actually equivalent to supp(π(·|s)) ⊆ supp(πi(·|s)) = supp(β(·|s)),

and thus the feasible region of Eq.(30) is actually the support constrained policy set Π (Definition 4.1). Note that the problem
in Eq.(29) and the problem in Eq.(30) share the same convex objective function and the convex feasible set of the former
is contained by the one of the latter. Here we know πi is a interior minimizer of the former convex optimization problem.
It implies that πi is also a local minimizer of the latter convex optimization problem, which further implies πi is a global
minimizer of the latter convex optimization problem by convexity. Therefore,

πi = argmax
π∈Π

E
a∼π

[Qπi(s, a)] (31)

By Bellman Equation of πi, we have

Qπi(s, a) = r(s, a) + γ E
s′∼P (·|s,a)

E
a′∼πi(·|s′)

[Qπi(s′, a′)] (32)

= r(s, a) + γ E
s′∼P (·|s,a)

max
π∈Π

E
a′∼π(·|s′)

[Qπi(s′, a′)] (33)

It is actually the support-constrained Bellman optimality equation in Definition 4.2. So we have, Qπi(s, a) =
Q∗

Π(s, a), ∀(s, a). Further, by the equivalence of Eq.(31) and the definition of the optimal support-constrained pol-
icy π∗

Π in Eq.(10), we know πi = π∗
Π. To conclude, if in some iteration i the optimization problem in Eq.(29) do not

make improvement at any (s, a), it implies Qπi+1(s, a) = Qπi(s, a) ∀s, a. Then our analysis shows πi equals the optimal
support-constrained policy π∗

Π.

From now on, we relax the assumption and incorporate approximation error and sampling error. Specifically, instead of
tabular Q, we approximate the Q functions by a value function class F ⊆ (S ×A → [0, Vmax]). At the same time, we do
not make any assumption on |D|.

To prove the FQE error bound of policy evaluation (Theorem 4.9), we first prove a lemma of generalization bound.

Lemma B.7 (generalization bound). Under the approximate completeness assumption (Assumption 4.7), with probability at
least 1− δ, for all k = 1, . . . ,K and ∀π, we have:

∥fk+1 − T πfk∥22,ρβ ≤
22V 2

max log (|F|K/δ)

|D|
+ 20ϵcomplete (34)

Proof. For any fixed fk−1, FQE deals with the following regression problem on dataset

fk ← argmin
f∈F

|D|∑
i=1

(f(si, ai)− ri − γfk−1(s
′
i, π(s

′
i)))

2 (35)

In this regression problem, we have |ri + γfk−1(s
′
i, π(s

′
i))| ≤ 1 + γVmax ≤ 2Vmax. And for our Bayes optimal solution,

we have |T πfk−1(s, a)| = |r(s, a) + γEs′∼P (·|s,a)fk−1(s
′, π(s′i))| ≤ 1+ γVmax ≤ 2Vmax. Also note that Assumption 4.7

implies that minf∈F ∥f − T πfk−1∥22,ρβ ≤ ϵcomplete. Thus, we can apply least squares generalization bound here (Lemma
A.11 in Agarwal et al. (2019)). With probability at least 1− δ, we have

∥fk − T πfk−1∥22,ρβ ≤
22Vmax

2 log(|F|/δ)
|D|

+ 20ϵcomplete

The above inequality holds for the fixed fk−1. Since different π can induce different fk−1, we apply a union bound over all
possible fk−1 ∈ F . Also, we apply a union bound over all k = 1, . . . ,K. Therefore, with probability at least 1− δ, we have

∥fk − T πfk−1∥22,ρβ ≤
44Vmax

2 log(|F|K/δ)

|D|
+ 20ϵcomplete

14
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Theorem B.8 (FQE error bound, Theorem 4.9). Under Assumption 4.7 and Assumption 4.8, with probability at least 1− δ,
after K iterations of FQE, which initializes f0 ∈ F arbitrarily, and iterates K times:

fk ← argmin
f∈F

∥f(s, a)− r − γfk−1(s
′, π(s′))∥2,D

the following bound holds:

∥Qπ − fK∥1,ρπ ≤ 1− γK

1− γ

√
Cϵgb + γKVmax (36)

where ϵgb :=
44Vmax

2 log(|F|K/δ)

|D|
+ 20ϵcomplete (37)

Proof. we first bound ∥fK −Qπ∥2,dπ
t ×π for all time step t.

∥fK −Qπ∥2,dπ
t ×π = ∥fK − T πfK−1 + T πfK−1 −Qπ∥2,dπ

t ×π

≤ ∥fK − T πfK−1∥2,dπ
t ×π︸ ︷︷ ︸

(1)

+ ∥T πfK−1 − T πQπ∥2,dπ
t ×π︸ ︷︷ ︸

(2)

(38)

For term (1): following Assumption 4.8 and Lemma B.7, with probability at least 1− δ, for all k = 1, . . . ,K and ∀π that
satisfies Assumption 4.8, we have

∥fk − T πfk−1∥2,dπ
t ×π ≤

√
C ∥fk − T πfk−1∥2,ρβ (Assumption 4.8)

≤
√
C

√
44Vmax

2 log(|F|K/δ)

|D|
+ 20ϵcomplete (Lemma B.7) (39)

For term (2):

∥T πfK−1 − T πQπ∥2,dπ
t ×π =

√
E(s,a)∼dπ

t ×π

[
((T πfK−1)(s, a)− (T πQπ)(s, a))

2
]

=

√
E(s,a)∼dπ

t ×π

[(
γEs′∼P (·|s,a)Ea′∼π(·|s′) [fK−1(s′, a′)−Qπ(s′, a′)]

)2]
≤ γ

√
E(s,a)∼dπ

t ×π,s′∼P (·|s,a),a′∼π(·|s′)

[
(fK−1(s′, a′)−Qπ(s′, a′))

2
]

(Jensen’s inequality)

= γ

√
E(s′,a′)∼dπ

t+1×π

[
(fK−1(s′, a′)−Qπ(s′, a′))

2
]

= γ ∥fK−1 −Qπ∥2,dπ
t+1×π (40)

Combine term (1) and term (2):

∥fK −Qπ∥2,dπ
t ×π ≤

√
Cϵgb + γ ∥fK−1 −Qπ∥2,dπ

t+1×π (41)

where

ϵgb :=
44Vmax

2 log(|F|K/δ)

|D|
+ 20ϵcomplete (42)

Note that we can apply the same analysis on ∥fK−1 −Qπ∥2,dπ
t+1×π . We recursively repeat the same process K times:

∥fK −Qπ∥2,dπ
t ×π ≤

K−1∑
k=0

γt
√
Cϵgb + γK ∥f0 −Qπ∥2,dπ

t+K×π

≤ 1− γK

1− γ

√
Cϵgb + γKVmax (43)
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Then we derive the bound ∥fK −Qπ∥2,ρπ with distribution ρπ = dπ × π:

∥fK −Qπ∥2,ρπ = ∥fK −Qπ∥2,dπ×π

=

√∑
s

dπ(s)
∑
a

π(a|s)(fK(s, a)−Qπ(s, a))2

=

√√√√∑
s

(1− γ)

∞∑
t=0

γtdπt (s)
∑
a

π(a|s)(fK(s, a)−Qπ(s, a))2

=

√√√√(1− γ)

∞∑
t=0

γt
∑
s

dπt (s)
∑
a

π(a|s)(fK(s, a)−Qπ(s, a))2

=

√√√√(1− γ)

∞∑
t=0

γt∥fK −Qπ∥22,dπ
t ×π

≤

√√√√(1− γ)

∞∑
t=0

γt

(
1− γK

1− γ

√
Cϵgb + γKVmax

)2

=
1− γK

1− γ

√
Cϵgb + γKVmax

Finally we apply the inequality between weighted L1-norm and weighted L2-norm, and conclude the proof:

∥fK −Qπ∥1,ρπ ≤ ∥fK −Qπ∥2,ρπ (Jensen’s inequality)

≤ 1− γK

1− γ

√
Cϵgb + γKVmax

With some derivations, we can translate the Q error bound to the A error bound, which is closer to the performance
difference (Lemma B.1,Lemma B.2). For simplicity of the final results, we assume α ≤ 0.48. A small α leads to a trust
region update. Please note α ≤ 0.48 is not a necessary requirement here, just for simplicity of the results.

Lemma B.9 (Advantage error bound). Under Assumption 4.7, Assumption 4.8 and α ≤ 0.48, with probability at least 1− δ,
for any πi+1, πi satisfying Eq.(16), the following bound holds:∣∣∣Es∼dπi

,a∼πi+1

[
Aπi(s, a)− Âπi(s, a)

]∣∣∣ ≤ 2α

(
1− γK

1− γ

√
Cϵgb + γKVmax

)
(44)

Proof. ∣∣∣Es∼dπi
,a∼πi+1

[
Aπi(s, a)− Âπi(s, a)

]∣∣∣
=
∣∣∣Es∼dπi

,a∼πi+1

[
Qπi(s, a)− Q̂πi(s, a)

]
+ Es∼dπi

,a∼πi

[
Q̂πi(s, a)−Qπi(s, a)

]∣∣∣
=

∣∣∣∣Es∼dπi
,a∼πi

[(
πi+1

πi
− 1

)(
Qπi(s, a)− Q̂πi(s, a)

)]∣∣∣∣
=

∣∣∣∣∣Es∼dπi
,a∼πi

[(
1

Z(s)
exp

(
αÂπi(s, a)

Vmax

)
− 1

)(
Qπi(s, a)− Q̂πi(s, a)

)]∣∣∣∣∣
≤ Es∼dπi

,a∼πi

[∣∣∣∣∣ 1

Z(s)
exp

(
αÂπi(s, a)

Vmax

)
− 1

∣∣∣∣∣ ∣∣∣Qπi(s, a)− Q̂πi(s, a)
∣∣∣] (45)

Now we bound the term
∣∣∣ 1
Z(s) exp

(
αÂπi (s,a)

Vmax

)
− 1
∣∣∣.
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Because ∣∣∣Âπi(s, a)
∣∣∣ = ∣∣∣Q̂πi(s, a)− Ea∼πi

[
Q̂πi(s, a)

]∣∣∣ ≤ |Vmax − 0| = Vmax

Z(s) =
∑
a

πi(a|s) exp(
αÂπi(s, a)

Vmax
) ≤

∑
a

πi(a|s) exp(
αVmax

Vmax
) = exp(α) (46)

On the other hand, by Jensen’s inequality,

Z(s) =
∑
a

πi(a|s) exp(
αÂπi(s, a)

Vmax
) ≥ exp(

α
∑

a πi(a|s)Âπi(s, a)

Vmax
) = 1 (47)

Note that here
∑

a πi(a|s)Âπi(s, a) = 0. It is because we calculate Âπi from Q̂πi directly: Âπi(s, a) := Q̂πi(s, a) −
Ea∼πi

Q̂πi(s, a).

For the numerator, exp(−α) ≤ exp
(

αÂπi (s,a)
Vmax

)
≤ exp(α)

Therefore,

exp(−2α) ≤ 1

Z(s)
exp

(
αÂπi(s, a)

Vmax

)
≤ exp(α)

∣∣∣∣∣ 1

Z(s)
exp

(
αÂπi(s, a)

Vmax

)
− 1

∣∣∣∣∣ ≤ max {1− exp(−2α), exp(α)− 1}

We assume α ∈ [0, 0.48) for small policy update. Then it holds that for α ∈ [0, 0.48), 1− exp(−2α) ≥ exp(α)− 1.

Therefore, ∣∣∣∣∣ 1

Z(s)
exp

(
αÂπi(s, a)

Vmax

)
− 1

∣∣∣∣∣ ≤ 1− exp(−2α) ≤ 2α (48)

So we bound the term
∣∣∣ 1
Z(s) exp

(
Âπi (s,a)

α

)
− 1
∣∣∣ in Eq.(45) with the constant 2α. Now we can conclude the proof by

applying Theorem B.8 directly.

Proposition B.10 (Trust Region, Proposition 4.10). For any πi+1, πi satisfying Eq.(16), the following policy difference
bound holds 5:

DTV(πi+1∥πi)[s] ≤ α,∀s (49)

DKL(πi∥πi+1)[s] ≤ α,∀s (50)

DKL(πi+1∥πi)[s] ≤
α(eα − e−α)

2
,∀s (51)

Proof. For DTV(πi+1∥πi):

DTV(πi+1∥πi)[s] =
1

2

∑
a

|πi+1(a|s)− πi(a|s)|

=
1

2

∑
a

∣∣∣∣πi+1(a|s)
πi(a|s)

− 1

∣∣∣∣πi(a|s)

=
1

2

∑
a

∣∣∣∣∣ 1

Z(s)
exp

(
αÂπi(s, a)

Vmax

)
− 1

∣∣∣∣∣πi(a|s) by Eq.(16)

≤ 1

2

∑
a

2απi(a|s) by Eq.(48)

= α

5we assume α ≤ 0.48, which is not a necessary requirement, just for simplicity of the final results. A small α leads to a trust region
update: the closer α is to 0, the closer πi+1 and πi are to each other.
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For DKL(πi∥πi+1):

DKL(πi∥πi+1)[s] =
∑
a

πi(a|s) log
πi(a|s)

πi+1(a|s)

=
∑
a

πi(a|s) log

[
Z(s) exp

(
−αÂπi(s, a)

Vmax

)]
by Eq.(16)

= logZ(s)−
∑
a

πi(a|s)
αÂπi(s, a)

Vmax

= logZ(s) ≤ α by Eq.(46)

For DKL(πi+1∥πi):

DKL(πi+1∥πi)[s] =
∑
a

πi+1(a|s) log
πi+1(a|s)
πi(a|s)

=
∑
a

πi+1(a|s) log

[
1

Z(s)
exp

(
αÂπi(s, a)

Vmax

)]
by Eq.(16)

=
∑
a

πi+1(a|s)
αÂπi(s, a)

Vmax
− logZ(s)

≤
∑
a

1

Z(s)
πi(a|s) exp(

αÂπi(s, a)

Vmax
)
αÂπi(s, a)

Vmax
− 0 by Eq.(16) and Eq.(47)

≤
∑
a

πi(a|s) exp(
αÂπi(s, a)

Vmax
)
αÂπi(s, a)

Vmax
by Eq.(47) (52)

An obvious upper bound of Eq.(52) is α exp(α) obtained by substituting Âπi(s, a) with Vmax.

To derive a tighter upper bound of Eq.(52), consider the following problem, where N = |A|:

max

N∑
i=1

yixi exp(xi)

s.t.

N∑
i=1

yixi = 0,

N∑
i=1

yi = 1, − α ≤ xi ≤ α

For α ∈ [0, 0.48) and for any fixed y, the optimization problem is convex with respect to x. Therefore, in the optimal
solution, xi can be found at the boundary. So we assume x1 ∼ xk = −α, xk+1 ∼ xN = α. The optimization problem
becomes:

max

k∑
i=1

yi(−α) exp(−α) +
N∑

i=k+1

yiα exp(α)

s.t.

k∑
i=1

yi(−α) +
N∑

i=k+1

yiα = 0,

N∑
i=1

yi = 1

The constraint implies
∑k

i=1 yi =
∑N

i=k+1 yi = 1/2. Then the objective is equal to α(eα−e−α)
2 , which concludes the

proof.

Theorem B.11 (Safe policy improvement for each step, Theorem 4.11). Under Assumption 4.7 and Assumption 4.8, for
πi+1, πi satisfying Eq.(16), with ϵπi+1 := maxs |Ea∼πi+1 [A

πi(s, a)]|, the following performance difference bound holds:

η(πi+1)− η(πi) ≥
Vmax

(1− γ)α
Es∼dπi [DKL(πi+1∥πi)]−

2γϵπi+1

(1− γ)2
α− 2α

1− γ

(
1− γK

1− γ

√
Cϵgb + γKVmax

)
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Proof. We start with Lemma B.2:

η (πi+1)− η(πi) ≥
1

1− γ
E

s∼dπi

a∼πi+1

[
Aπi(s, a)− 2γϵπi+1

1− γ
DTV(πi+1∥πi)[s]

]

≥ 1

1− γ
E

s∼dπi

a∼πi+1

Aπi(s, a)− 2γϵπi+1

(1− γ)2
α by the TV bound in Proposition B.10

≥ 1

1− γ
E

s∼dπi

a∼πi+1

Âπi(s, a)− 2α

1− γ

(
1− γK

1− γ

√
Cϵgb + γKVmax

)
− 2γϵπi+1

(1− γ)2
α by Lemma B.9

Please note that πi+1 is the optimal solution of the optimization problem in Eq.(15):

πi+1 = argmax
π

α E
s∼dπi

a∼π

[Âπi(s, a)]− Vmax E
s∼dπi

[DKL(π∥πi)]

and πi is a feasible solution that makes the objective 0. Therefore,

α E
s∼dπi

a∼πi+1

[Âπi(s, a)]− Vmax E
s∼dπi

[DKL(πi+1∥πi)] ≥ 0

Now we can conclude the proof:

η(πi+1)− η(πi) ≥
Vmax

(1− γ)α
Es∼dπi [DKL(πi+1∥πi)[s]]−

2γϵπi+1

(1− γ)2
α− 2α

1− γ

(
1− γK

1− γ

√
Cϵgb + γKVmax

)

C. Derivations of the EAWBC Framework
At the ith iteration, the unified algorithm solves the following constrained optimization problem to update the policy

πi+1 = argmax
π

E
a∼π

[Âπpe(s, a)]

s.t. DKL(π∥πbase)[s] ≤ ϵ,
∑
a

π(a|s) = 1, ∀s
(53)

The constrained optimization problem in Eq.(53) is convex, and the Lagrangian is:

L(π, λ, ν) = E
a∼π

[
Âπpe(s, a)

]
+ λ[ϵ−DKL(π(·|s))∥πbase(·|s))] + ν

(∑
a

π(a|s)− 1

)
(54)

The KKT condition gives:

∂L
∂π

= Âπpe(s, a) + λ log πbase(a|s)− λ log π(a|s)− λ+ ν = 0 (55)

Solving for π gives the closed form solution π∗:

π∗(a|s) =πbase(a|s) exp(
Âπpe(s, a) + ν − λ

λ
) (56)

By the condition
∑

a π
∗(a|s) = 1, we have∑

a

πbase(a|s) exp(
Âπpe(s, a) + ν − λ

λ
) = 1 (57)

⇒ exp(
λ− ν

λ
) =

∑
a

πbase(a|s) exp(
Âπpe(s, a)

λ
) (58)

⇒ ν = λ− λ log

[∑
a

πbase(a|s) exp(
Âπpe(s, a)

λ
)

]
(59)
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Now consider the dual problem to solve for the Lagrangian multiplier λ∗. By Substitute Eq.(55) into Eq.(54), we have

max
π
L = ϵλ+ λ− ν (60)

Then Substituting ν with Eq.(59), we obtain the dual function:

g(λ) = max
π
L = ϵλ+ λ log

[∑
a

πbase(a|s) exp(
Âπpe(s, a)

λ
)

]
(61)

Therefore, we can obtain λ∗(s) by solving the following convex dual problem:

λ∗(s) = argmin
λ≥0

ϵλ+ λ log

[∑
a

πbase(a|s) exp

(
Âπpe(s, a)

λ

)]
(62)

Now we replace the term exp(ν−λ
λ ) in Eq.(56) with a per-state normalizing factor Z(s) and finally present the analytical

solution of the constrained optimization problem in Eq.(53):

πi+1(a|s) =πbase(a|s)f(s, a;πpe)

where f(s, a;πpe) :=
1

Z(s)
exp

(
Âπpe(s, a)

λ∗(s)

)

Z(s) :=
∑
a

πbase(a|s) exp

(
Âπpe(s, a)

λ∗(s)

) (63)

In practice, the non-parametric solution in Eq.(63) can be projected onto the parametric policy class by minimizing the KL
divergence:

argmin
ϕ

E
s∼D

[DKL(πi+1(·|s)∥πϕ(·|s))] (64)

=argmin
ϕ

E
s∼D,a∼πi+1(·|s)

[
log

(
πi+1(a|s)
πϕ(a|s)

)]
(65)

=argmin
ϕ

E
s∼D,a∼πbase(·|s)

[
f(s, a;πpe) log

(
πi+1(a|s)
πϕ(a|s)

)]
by Eq.(63) (66)

=argmax
ϕ

E
s∼D,a∼πbase(·|s)

[f(s, a;πpe) log (πϕ(a|s))] (67)

D. Experimental Details and Extended Results
D.1. Reasonableness for STR to omit Z(s) in practice

In Eq.(20), as all prior EAWBC works, we omit the normalization factor Z(s), because it only affects the relative weight
of different states in the training objective, not different actions. The EAWBC objective in Eq.(12) is derived from the
minimization of DKL(πi+1(·|s)∥πϕ(·|s)). Since the weight at each state do not have specific meaning, we can minimize this
KL divergence under any distribution whose support is equal to dπi+1(s). And because of the equal-support property of STR
supp(dπi+1(·)) = supp(dβ(·)) by Proposition 4.3, dβ(s) is a qualified distribution, which allows us to sample directly from
D to optimize. Since the density of dβ already differs from dπi+1 , it has no meaning to restore the correct dβ(s) density by
the normalization factor Z(s), which is empirically hard to estimate and will introduce more instability.

D.2. Experimental Details

For the MuJoCo locomotion tasks, we average returns over 10 evaluation trajectories and 5 random seeds, while for the
Ant Maze tasks, we average over 100 evaluation trajectories and 5 random seeds. Following the suggestions of the authors
of the dataset, we subtract 1 from the rewards for the Ant Maze datasets. We choose TD3 (Fujimoto et al., 2018) as our
base algorithm and optimize a deterministic policy. To compute the importance sampling ratio, we need the density of
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Table 3. Hyperparameters of policy training in STR.
Hyperparameter Value

STR

Optimizer Adam (Kingma & Ba, 2014)
Critic learning rate 3× 10−4

Actor learning rate 3× 10−4 with cosine schedule
Batch size 256
Discount factor 0.99
Number of iterations 106

Target update rate τ 0.005
Policy update frequency 2
Number of Critics 4
Temperature λ {0.5, 2} for Gym-MuJoCo

{0.1} for AntMaze
Variance of Gaussian Policy 0.1

Architecture Actor input-256-256-output
Critic input-256-256-1

any action under the deterministic policy. For this, we assume all policies are Gaussian with a fixed variance 0.1. Note
that the only hyperparameter we tuned is the temperature λ. We use λ = 0.1 for Ant Maze tasks and λ = {0.5, 2} for
MuJoCo locomotion tasks (λ = 2 for expert and medium-expert datasets, λ = 0.5 for medium, medium-replay, random
datasets). And following previous work (Brandfonbrener et al., 2021), we clip exponentiated advantages to (−∞, 100]. All
hyperparameters are included in Table 3.

D.3. From Theoretical to Practical

The practical STR algorithm takes larger update steps (smaller λ) than what theory recommends, which is common among
trust region methods. In addition, the behavior density is estimated using a specific model, which will inevitably have errors.
However, compared with other algorithms that require the behavior density, STR is less susceptible to such errors. This
is because STR only needs to query the behavior density of the in-dataset (s, a) pairs, i.e., β̂(a|s) where (s, a) ∼ D, and
therefore does not require much generalization ability of the model, making it relatively easier to estimate accurately.

D.4. KL Divergence between Trained Policy and Behavior Policy.
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Figure 4. Extended Results on hopper-medium-replay-v2. The experimental setup is the same as that in Section 5.2.

In this section, we investigate the KL divergence between the trained policy and the behavior policy under various EAWBC
algorithms. We conduct experiments in the same setup as Section 5.2 (Figure 1) for hopper-medium-replay-v2. Both
policy evaluation and policy improvement are trained to convergence at each iteration, and all algorithms adopt the same
hyperparameter that controls the constraint strength. The results are shown in Figure 4. Compared to STR-SNIS and STR-IS,
AWAC and AWR have substantially smaller KL(π||β) and inferior performance due to their implicit density constraint. On
the other hand, KL(π||β) of STR-IS and STR-SNIS increases significantly with iteration. With a less restrictive support
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constraint, STR is able to deviate more from the behavior policy (larger KL(π||β)) to achieve better performance. Note
that STR-IS and STR-SNIS yield similar results. This is because the normalization factor of SNIS is actually very close
to 1. Therefore, IS plays a critical role in STR by relaxing the density constraint to support constraint while SNIS is a
non-critical component. In addition, compared with IS, the variance reduction effect of SNIS does not implicitly decreases
KL(π||β) (Chatterjee & Diaconis, 2018).

D.5. Experimental Verification of Theories in the Tabular Setting

(a) Toy Maze

0 2 4 6 8 10
Iteration

0.0
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Iteration
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(b) Learning Curves on the Toy Maze

Figure 5. (a) The maze environment with OOD actions. (b) The Episode Return of STR, AWAC and AWR (averaged over 1000 trajectories).
(c) The OOD Ratio of STR, AWAC and AWR. The curves are averaged over 5 seeds, with the shaded area representing the standard
deviation across seeds. SVR guarantees strict policy improvement until convergence to the optimal support-constrained policy.

To verify the theories in Section 4.1, we conduct a 10× 10 maze experiment. As depicted in Figure 5a, the task is to navigate
from bottom-left to top-right, with a wall in the middle. The agent receives a reward of 1 upon reaching the goal. Episodes
are terminated after 25 steps and γ is set to 0.9. We first collect 10, 000 transitions using a random policy. Then we remove
all the transitions containing rightward actions in the lower half of the maze, so that the rightward action in that region is
Out-of-Distribution (OOD). For some policy π, the OOD Ratio indicates the proportion of (s, a) not in the dataset among
all (s, a) pairs satisfying π(a|s) > 0. The results are shown in Figure 5b. The performance of STR increases monotonically
with iteration until it converges to the optimal policy, verifying Theorem 4.6. Furthermore, the policy obtained by STR
is completely within the behavior support (0 OOD Ratio). For AWAC and AWR, due to being implicitly subject to the
more restrictive KL(π||β) density constraint, their policies are also within the support. However, they do not have strictly
increasing performance and have no guarantees at convergence. This is consistent with our theoretical analysis (Table 1).

D.6. Learning Curves of STR on MuJoCo and Antmaze Tasks

Learning curves of STR on MuJoCo locomotion tasks and Antmaze tasks are presented in Figure 6 and Figure 7 respectively.
The curves are averaged over 5 seeds, with the shaded area representing the standard deviation across seeds.
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Figure 6. Learning Curves of STR on MuJoCo Locomotion Tasks.
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Figure 7. Learning Curves of STR on AntMaze Tasks.
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