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Abstract

Conformal prediction methodology has recently been extended to the covariate shift setting,
where the distribution of covariates differs between training and test data. While existing
results ensure that the prediction sets from these methods achieve marginal coverage above a
nominal level, their coverage rate conditional on the training dataset—referred to as training-
conditional coverage—remains unexplored. In this paper, we address this gap by deriving
upper bounds on the tail of the training-conditional coverage distribution, offering probably
approximately correct (PAC) guarantees for these methods. Our results characterize the
reliability of the prediction sets in terms of the severity of distributional changes and the
size of the training dataset.

1 Introduction

Conformal prediction is a framework for constructing distribution-free and model-agnostic pre-
dictive confidence regions under the exchangeability assumption for the training and test sam-
ples (Vovk et al., 2005) (also see Shafer and Vovk (2008); Vovk et al. (2009); Vovk (2012)). Let
((X1, Y1), (X2, Y2), . . . , (Xn, Yn), (Xtest, Ytest)) denote a tuple of exchangeable data points, consisting of a train-
ing sequence of n samples Dn := ((X1, Y1), . . . , (Xn, Yn)) ∈ (X ×Y)n and one test sample (Xtest, Ytest) ∈ X ×Y .
For a fixed error rate level α, the conformal prediction framework, provides a prediction set Ĉα(Xtest) for
Ytest that satisfies

P
(
Ytest ∈ Ĉα(Xtest)

)
≥ 1 − α, (1)

where Ĉα : X → 2Y is a data-dependent map. This type of guarantee is referred to as marginal coverage, as
it is averaged over both the training and test data.

One natural direction to stronger results is to provide a coverage guarantee conditional on the test data point
Xtest, i.e.,

P
(
Ytest ∈ Ĉα(Xtest)|Xtest

)
≥ 1 − α.

However, when Xtest has a continuous distribution, it has been shown in Vovk (2012); Foygel Barber et al.
(2021); Lei and Wasserman (2014) that it is impossible to obtain (non-trivial) distribution-free prediction
regions Ĉα(x) in the finite-sample regime; relaxed versions of this type of guarantee have been extensively
studied (see Jung et al. (2022); Gibbs et al. (2023); Vovk et al. (2003) and references therein). As a different
approach to stronger guarantees, several results (e.g., Vovk (2012); Bian and Barber (2023)) have been
reported on the training-conditional guarantee by conditioning on Dn, which is also more appealing than the
marginal guarantee as can be seen below. Define the following miscoverage rate as a function of the training
data,

Pe(Dn) := P
(
Ytest /∈ Ĉα(Xtest)|Dn

)
.
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Note that the marginal coverage in (1) is equivalent to E[Pe(Dn)] ≤ α. The training-conditional guarantees
concern the concentration of the conditional error rate below the nominal level α and they have the following
form, for some small δ > 0,

P (Pe(Dn) ≥ α) ≤ δ

or its asymptotic variants. Roughly speaking, this guarantee means that the (1 − α)-level coverage lower
bounds hold for a generic dataset.

Recently, Barber et al. (2021) proposed modified versions of jackknife and cross validation (CV), namely
jackknife+ and CV+, which can be used to compute conformal prediction sets. For the K-fold CV+ with ℓ
samples in each fold, the training-conditional coverage bound

P
(
Pe(Dn) ≥ 2α+

√
2 log(K/δ)/ℓ

)
≤ δ (2)

is established in Bian and Barber (2023). Additionally, Liang and Barber (2023) proposed training-conditional
coverage bounds for jackknife+ and full conformal prediction sets under the assumption that the training
algorithm is symmetric and satisfies certain stability conditions (see Section 4 for more details). In this line of
research, samples are assumed to be i.i.d., which is not only exchangeable but also ergodic and admits some
nice concentration properties. However, this assumption can be violated in the application. In particular,
the input data distribution during deployment can differ from the distribution observed during training.
This phenomenon is called distribution shift and it is a crucial problem in trustworthy machine learning
(see Section 2.3). In this regard, split and full conformal prediction methods as the central methods for
distribution-free uncertainty quantification of black-box models have recently been extended to handle a
popular type of distribution shift called covariate shift (Tibshirani et al., 2019). In the covariate shift setting,
the distribution of covariates in the test data differs from the one observed in the training data, but, the
conditional distribution of the response given the features remains the same across the training and test
populations. A similar extension has been made for the jackknife+ method Prinster et al. (2022).

Despite these significant progress on handling distribution shift, they primarily focus on marginal coverage.
Although the weighted conformal prediction methods (proposed in Tibshirani et al. (2019) and Prinster et al.
(2022)) are guaranteed to keep the marginal coverage rate above the nominal level, they often reduce the
concentration of the training-conditional coverage rate P(Ytest ∈ Ĉα(Xtest)|Dn) (i.e., coverage rate conditional
on the training data Dn) around the nominal level 1 − α. In particular, the weighting scheme leads to
heavier tails for the training-conditional coverage rate. This phenomenon is illustrated in Figure 1, where
ordinary and weighted conformal methods with 80% target coverage rate (α = 0.2) are used for constructing
prediction intervals under exchangeability and distribution shift settings, respectively. The distribution shift
is introduced artificially via resampling according to an exponential tilt as in Section 2.3 from Tibshirani et al.
(2019). It can be observed that the tails of the training conditional coverage get heavier when the weighting
scheme is used to handle the distribution shift. In this paper, we explore the quality of the weighted conformal
prediction sets by computing upper bounds on the tails of the training-conditional coverage distribution,
quantifying the relationship between the tail behavior and the extent of distribution change. In other words,
we examine the efficiency of weighted conformal prediction methods for a generic training dataset under
distribution shift.

We present concentration bounds of the training-conditional coverage for weighted jackknife+ (JAW) (Prinster
et al., 2022), full, and split conformal methods. Regarding the training algorithm, no assumption is made
for the split conformal method. However, full conformal and jackknife+ methods are analyzed under the
assumption of uniform stability as explained below. Let µ̂Dn

denote the predictor function estimated using
the training data Dn. A training algorithm is called uniformly stable if,

∥µ̂Dn
− µ̂D′

n
∥∞ ≤ β (3)

with β = O(1/n) for any two datasets (Dn, D′
n) differing in one (training) data sample (Bousquet and

Elisseeff, 2002). This is a stronger notion of algorithmic stability than the (m,n)-stability assumed in Liang
and Barber (2023). Nevertheless, uniform stability is satisfied by a class of regression models known as RKHS
regression (Bousquet and Elisseeff, 2002), i.e., regularized empirical risk minimization over an RKHS (Paulsen
and Raghupathi, 2016; Schölkopf and Smola, 2002). Examples of reproducing kernel Hilbert spaces are certain
Sobolev spaces of smooth functions (Wahba, 1990).
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Figure 1: Histograms of the training-conditional coverage rates are presented for four datasets from the UCI
Machine Learning Repository: Wine Quality (top left), Abalone (top right), Concrete Compressive Strength
(bottom left), and Combined Cycle Power Plant (bottom right). See Appendix E for details of this simulation
study.

2 Background and Related Work

2.1 Full conformal and split conformal

Define the shorthand Dn ∪ (x, y) := ((X1, Y1), (X2, Y2), . . . , (Xn, Yn), (x, y)) and let µ̂(x,y) := T (Dn ∪ (x, y))
denote the regression function obtained by running the training algorithm T on Dn ∪ (x, y). Define the score
function s(x′, y′;µ) := f(µ(x′), y′) via some arbitrary (measurable) cost function f : Y × Y → R and predictor
function µ : X → Y. For instance, s(x′, y′;µ) = |y′ − µ(x′)| when f(y, y′) = |y − y′|. For the data multiset
Dn := {(Xi, Yi) ∈ X × Y : i ∈ [n]} where [n] := {1, 2, ..., n}, define

S(Dn;µ) := {s(x′, y′;µ) : (x′, y′) ∈ Dn}.

Observe that if T is symmetric, i.e., T (D) is invariant under permutations of the elements of D for any data
tuple D, then the elements of S(Dn ∪ (Xtest, Ytest); µ̂(Xtest,Ytest)) are exchangeable. Therefore,

P
(
s(Xtest, Ytest; µ̂(Xtest,Ytest)) ≤ F̂−1

S(Dn∪(Xtest,Ytest);µ̂(Xtest,Ytest))(1 − α)
)

≥ 1 − α,

where F̂−1
S (·) denotes the empirical quantile function of S. Thus,

P
(
Ytest ∈ Ĉfull

α (Xtest)
)

≥ 1 − α,

3



Published in Transactions on Machine Learning Research (01/2026)

where the following confidence region is referred to as full conformal in the literature

Ĉfull
α (x) = {y : s(x, y; µ̂(x,y)) ≤ F̂−1

S(Dn∪(x,y);µ̂(x,y))(1 − α)}

⊆ {y : s(x, y; µ̂(x,y)) ≤ F̂−1
S(Dn;µ̂(x,y))∪{∞}(1 − α)}, (4)

It is well-known that this approach can be computationally intensive when Y = R since to find out
whether y ∈ Ĉfull

α (x) one needs to train the model with the dataset including (x, y). One simple way to
alleviate this issue is to split the data into training and calibration datasets, namely Dn = Dtrain ∪ Dcal.
Without loss of generality (when splitting), we assume Dtrain = ((X1, Y1), . . . , (Xn−m, Yn−m)) and Dcal =
((Xn−m+1, Yn−m+1), . . . , (Xn, Yn)). In the split conformal method, one first finds the regression predictor
µ̂ = T (Dtrain) and treats µ̂ as fixed. Note that the elements of S(Dcal ∪ (Xtest, Ytest); µ̂) are exchangeable.
Hence, we get

P
(
s(Xtest, Ytest; µ̂) ≤ F̂−1

S(Dcal∪(Xtest,Ytest);µ̂)(1 − α)
)

≥ 1 − α.

Hence, we have P(Ytest ∈ Ĉsplit
α (Xtest)) ≥ 1 − α for

Ĉsplit
α (x) =

{
y : s(x, y; µ̂) ≤ F̂−1

S(Dcal;µ̂)∪{∞}(1 − α)
}

(5)

⊇
{
y : s(x, y; µ̂) ≤ F̂−1

S(Dcal∪(x,y);µ̂)(1 − α)
}
.

2.2 Jackknife+

Although the split-conformal approach resolves the computational efficiency problem of the full conformal
method, it is somewhat inefficient in using the data and may not be useful in situations where the number
of samples is limited. A heuristic alternative has long been known in the literature, namely, jackknife or
leave-one-out cross-validation that can provide a compromise between the full conformal and split conformal
methods. In particular,

ĈJ
α(x) = {y : s(x, y; µ̂) ≤ F̂−1

SJ (1 − α)},

where µ̂ = T (Dn), SJ := {s(Xi, Yi; µ̂−i) : 1 ≤ i ≤ n} and µ̂−i :=
T (((X1, Y1), . . . , (Xi−1, Yi−1), (Xi+1, Yi+1), . . . , (Xn, Yn))). Despite its effectiveness, no general finite-
sample guarantees are known for jackknife. Recently, Barber et al. (2021) proposed jackknife+, a modified
version of the jackknife for Y = R and f(y, y′) = |y − y′|, and established (1 − 2α) finite-sample coverage
lower bound for it. Let

S−(x) = {µ̂−i(x) − |Yi − µ̂−i(Xi)| : i ∈ [n]} ∪ {−∞},
S+(x) = {µ̂−i(x) + |Yi − µ̂−i(Xi)| : i ∈ [n]} ∪ {∞}.

The jackknife+ prediction interval is defined as

ĈJ+
α (x) = [F̂−1

S−(x)(α), F̂−1
S+(x)(1 − α)].

In the same paper, an ϵ-inflated version of the jackknife+

ĈJ+,ϵ
α (x) = [F̂−1

S−(x)(α) − ϵ, F̂−1
S+(x)(1 − α) + ϵ]. (6)

is proposed which has 1 −α− 4
√
ν coverage lower bound (instead of 1 − 2α), if the training procedure satisfies

max
i∈[n]

P(|µ̂(Xtest) − µ̂−i(Xtest)| > ϵ) < ν.

Also, the jackknife+ has been generalized to CV+ for K-fold cross-validation, and (1 − 2α−
√

2/n) coverage
lower bound is established.
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2.3 Conformal prediction under distribution shift

Covariate shift concerns the setting when the covariate distribution changes between training and test data,
while the conditionals remain the same. Specifically, we have

Zi := (Xi, Yi)
i.i.d.∼ PX × PY |X =: P training data;

Ztest := (Xtest, Ytest) ∼ QX × PY |X =: Q test data.

This notion has been extensively studied in machine learning (e.g., see Sugiyama et al. (2007); Quinonero-
Candela et al. (2008); Sugiyama and Kawanabe (2012); Wen et al. (2014); Reddi et al. (2015); Chen et al.
(2016) and the references therein).

To handle the covariate shift, a weighted version of conformal prediction was first proposed in the seminal
work by Tibshirani et al. (2019). The key assumption is that the likelihood ratio dQ/dP = dQX/dPX , needs
to be known; we follow the same assumption in this work. This reweighting scheme has been extended to
various settings in conformal prediction Podkopaev and Ramdas (2021); Lei and Candès (2021); Fannjianga
et al.; Guan (2023). The general domain adaption problem has also been an active area from a causal
perspective (e.g., Zhang et al. (2013a); Peters et al. (2016); Gong et al. (2016); Chen and Bühlmann (2021);
Du and Xiang (2023)).

The weighted procedures require computing a weight associated with each sample,

wi =
dQ
dP (Zi)

dQ
dP (Ztest) +

∑
i∈I

dQ
dP (Zi)

, i ∈ I and wtest =
dQ
dP (Ztest)

dQ
dP (Ztest) +

∑
i∈I

dQ
dP (Zi)

where I = [n] for full conformal and jackknife+, and I ⊂ [n] for the split conformal method which corresponds
to the calibration (or hold-out) dataset. In particular, to generalize the full and split conformal methods to
distribution shift setting, according to Tibshirani et al. (2019) one needs to replace the empirical CDF used
in construction of (4) and (5)

F̂S(t) = 1
n+ 1

∑
s∈S

1{s ≤ t}, S = {s(Zi) : i ∈ I} ∪ {∞}

by the weighted version
FQ,|I|(t) = wtest1{t = ∞} +

∑
i∈I

wi1{s(Zi) ≤ t}.

Similarly, to extend the jackknife+ method, Prinster et al. (2022) proposes replacing F̂S− and F̂S+ by their
corresponding weighted versions where wtest is associated to −∞ and ∞, respectively.

3 Conditional Coverage Guarantees

3.1 Split conformal

The training-conditional coverage guarantee for split conformal method under the i.i.d. setting has been studied
in Vovk (2012); Bian and Barber (2023). The proof in this setting relies on the Dvoretzky–Kiefer–Wolfowitz
(DKW) inequality. The following theorem concerns training-conditional coverage guarantee under covariate
shift, where the extension is made by developing a weighted version of the DKW inequality. Let Dn =
(Z1, . . . , Zn) ∈ (X × Y)n denote an n-tuple of data points containing both the training and calibration data
sets. Define the training conditional probability of error as

P split
e (Dn) := P

(
Ytest ̸∈ Ĉsplit

α (Xtest)
∣∣∣Dn

)
. (7)

Theorem 1 Let m < n denote the size of the calibration data set. Assume that Q is absolutely continuous
with respect to P (Q ≪ P ) and dQ/dP ≤ B < ∞. Then,

P

(
P split

e (Dn) > α+
(√

2B log(4/δ) + 2C
)√B

m

)
≤ δ.
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for all δ > 0, where C > 0 is a universal constant. The probability is taken with respect to P since each entry
in Dn follows P .

Corollary 1 Relaxing the assumption dQ/dP ≤ B to ∥dQ/dP∥P,2 :=
∫

(dQ/dP )2 dP ≤ B via Lemma 2, we
get

P
(
P split

e (Dn) > α+ 2B(2C + 1)
δ
√
m

)
≤ δ, 0 < δ ≤ 1. (8)

To assess the robustness of weighted conformal prediction methods, we compute training-conditional error
bounds with a very mild assumption on dQ/dP . The proof of this theorem follows from Lemma 4 and the
proof of Theorem 1.

Theorem 2 Assume that Q is absolutely continuous with respect to P (Q ≪ P ) and that dQ/dP < ∞ Q-a.s.
Fix B, δ > 0 and ϵ ∈ (0, 1/2). It holds that,

P split
e (Dn) < α+ 3δ + 4P

(
dQ

dP
(Ztest) > m

)
+ 2C

√
B

m′ + P
(
dQ

dP
(Ztest) > B

)
,

with probability at least,

1 − 4e−m′δ2/(2B2) − 2e−2m2ϵ

− 2P
(
dQ

dP
(Ztest) > m

)
− 8
mδ2E

((
dQ

dP
(Zcalib)

)2
1
{
dQ

dP
(Zcalib) ≤ m

})
,

where m′ = mP
(

dQ
dP (Zcalib) ≤ B

)
−m1/2+ϵ.

3.2 Full conformal and jackknife+

Let µβ : X → R denote a predictor function parameterized by β ∈ Rp. By a slight abuse of notation, let the
map T : ∪n≥1(X × Y)n → Rp denote a training algorithm for estimating β, hence, β̂n = T (Dn). In this case,
we have µ̂Dn = µβ̂n

.

Assumption 1 (Uniform stability) For all i ∈ [n], we have

sup
z1,...,zn

∥µT (z1,...,zi−1,zi+1...,zn) − µT (z1,...,zi,...,zn)∥∞ ≤ cn

2 .

In the case of the ridge regression Hoerl and Kennard (1970) with Y = [−I, I] and X = {x : ∥x∥2 ≤ b}, this
assumption holds with cn = 16 b2I2/(λn), where λ denotes the regularization parameter. See Bousquet and
Elisseeff (2002) for the general result on the uniform stability of RKHS regression.

Assumption 2 (Bi-Lipschitz continuity) The map β 7→ µβ is bi-Lipschitz with respect to the ∞-norms,
i.e.,

κ1 ∥β − β′∥∞ ≤ ∥µβ − µβ′∥∞ ≤ κ2 ∥β − β′∥∞,

for some constants 0 < κ1 ≤ κ2 < ∞.

Remark 1 It is worth noting that if the parameter space Θ ⊆ Rp is compact, Φ : U → L∞(X ) given
by β 7→ µβ is continuously differentiable for some open U ⊇ Θ, then κ2 < ∞. Moreover, the inverse
function theorem (for Banach spaces), gives the sufficient condition under which the inverse is continuously
differentiable over Φ(U) and hence κ1 > 0.
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In the case of linear regression with X = {x : ∥x∥2 ≤ b}, one can verify that Assumption 2 holds with κ1 = b

and κ2 = √
pb. Let βn = E β̂n, β̂−i = T (Z1, . . . , Zi−1, Zi+1, . . . , Zn) with Zi = (Xi, Yi) and β−i = E β̂−i.

Define

F (n−1)(t) := PZ1∼P

(∣∣∣Y1 − µβ−1
(X1)

∣∣∣ ≤ t
)
,

F
(n−1)
Q (t) := PZ1∼Q

(∣∣∣Y1 − µβ−1
(X1)

∣∣∣ ≤ t
)
.

Assumption 3 (Bounded density) F ′(n) < Ln and F
′(n)
Q < LQ,n where F ′(n) and F

′(n)
Q denote the

derivative of F (n) and F (n)
Q , respectively.

We introduce the following shorthand:

A(n, p, ϵ) := 2κ2 cn−1

(
1
κ1

+

√
n

2κ2
1

log 2p
ϵ

)
.

Theorem 3 (Jackknife+ under exchangeability) Define P J+
e (Dn) := P

(
Ytest ̸∈ ĈJ+

α (Xtest)
∣∣∣Dn

)
. Un-

der Assumptions 1—3, for all ϵ, δ > 0, it holds that

P

(
P J+

e (Dn) > α+
√

log(2/δ)
2n + Ln−1 A(n, p, ϵ)

)
≤ ϵ+ δ.

Now we present our result on jackknife+ under covariate shift when dQ/dP ≤ B.

Theorem 4 (Jackknife+ under covariate shift) Assume that Q is absolutely continuous with respect to
P (Q ≪ P ) and dQ/dP ≤ B. Under Assumptions 1—3, for all ϵ, δ > 0, it holds that

P

(
P J+

e (Dn) > α+
(√

2B log 4/δ + 2C
)√B

n
+ LQ,n−1 A(n, p, ϵ)

)
≤ ϵ+ δ,

where C is a universal constant and A(n, p, ϵ) is the same as in Theorem 3.

Using the same arguments as in the proof of this theorem, one can get a coverage bound for the CV+ as well.
Unlike (2) which is meaningful only if the number of samples in each fold ℓ is large, the bound we present in
the following corollary is suitable for cases where ℓ/n → 0.

Corollary 2 (CV+) Define PCV+
e (Dn) := P

(
Ytest ̸∈ ĈCV+

α (Xtest)
∣∣∣Dn

)
. Under Assumptions 1—3, for all

ϵ, δ > 0, it holds that

P

(
P CV+

e (Dn) > α+
√

log(2/δ)
2n + 2 ℓ Ln−ℓ κ2 cn−ℓ

(
1
κ1

+

√
n

2κ2
1

log 2p
ϵ

))
≤ ϵ+ δ.

The following theorem concerns the training-conditional guarantees for the full conformal prediction. We
again introduce a shorthand:

E(n, p, ϵ) := cn+1 +
√

2n log 2p
ϵ

κ2 cn

κ1
.

Theorem 5 (Full conformal under exchangeability) Define P full
e (Dn) := P

(
Ytest ̸∈ Ĉfull

α (Xtest)
∣∣∣Dn

)
.

Under Assumptions 1—3, for all ϵ, δ > 0, it holds that

P

(
P full

e (Dn) >α+
√

log(2/δ)
2n + Ln E(n, p, ϵ)

)
≤ ϵ+ δ.
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Theorem 6 (Full conformal under covariate shift) Assume that Q is absolutely continuous with respect
to P (Q ≪ P ) and dQ/dP ≤ B. Under Assumptions 1—3, for all ϵ, δ > 0, it holds that

P

(
P full

e (Dn) > α+
(√

2B log(4/δ) + 2C
)√B

n
+ LQ,n E(n, p, ϵ)

)
≤ ϵ+ δ.

where C is a universal constant and E(n, p, ϵ) is the same as in Theorem 5.

We note that similar to Remark 1, one can relax assumption dQ/dP ≤ B to ∥dQ/dP∥P,2 ≤ B and in this
case the bounds for the jackknife+ and full conformal methods hold with the slow rate O(1/(δ

√
n)) instead

of O(log (1/δ)/
√
n).

4 Discussion

We have presented training-conditional coverage guarantees for weighted conformal prediction methods under
covariate shift. The split conformal method has been analyzed for the black-box training algorithm while
the full conformal and jackknife+ have been analyzed under three assumptions. Although Assumptions 1
and 2 have been verified only for the ridge regression in this paper, we conjecture that they are satisfied
by a truncated version of the general RKHS regressions which we leave for future research. Truncated and
sketched versions of the RKHS models have been extensively studied in the previous literature from the
computational efficiency perspective (see Amini (2021); Williams and Seeger (2000); Zhang et al. (2013b);
Alaoui and Mahoney (2015); Cortes et al. (2010) and references therein). The results in this paper quantify
the training sample size (or calibration sample size for split conformal) needed for the coverage under covariate
shift.

Estimation of the likehood ratio. A natural question here is how to include the error arising from
estimating the likelihood ratios in the analysis. Define

ŵi := Vi

V
:=

dQ
dP (Zi)∑

i∈[n]
dQ
dP (Zi)

, w̆i := V̂i

V̂
:=

d̂Q
dP (Zi)∑

i∈[n]
d̂Q
dP (Zi)

and let s(·) denote a fixed score function. In this case, one needs to include the following term to the weighted
DKW inequalities derived in this paper,

sup
t∈R

∣∣∣∣∣∣
∑
i∈[n]

(w̆i − ŵi)1{s(Zi) ≤ t}

∣∣∣∣∣∣ ≤
∑
i∈[n]

|w̆i − ŵi|

=
∑
i∈[n]

∣∣∣∣∣ V̂i

V̂
− Vi

V

∣∣∣∣∣
≤

∑
i∈[n]

(∣∣∣V̂iV − ViV
∣∣∣+
∣∣∣ViV − ViV̂

∣∣∣)
V V̂

=
V
∑

i∈[n]

∣∣∣V̂i − Vi

∣∣∣+
∣∣∣V − V̂

∣∣∣ (∑i∈[n] Vi

)
V V̂

=

∑
i∈[n]

∣∣∣V̂i − Vi

∣∣∣+
∣∣∣V − V̂

∣∣∣
V̂

≤ 2

∑
i∈[n]

∣∣∣V̂i − Vi

∣∣∣
V̂

,

where the concentration properties of this term around zero depends on the estimator of dQ/dP (Zi).

Comparison with the (m,n)-stability. The (m,n)-stability parameters were recently introduced in Liang
and Barber (2023) and used to compute training-conditional coverage bounds for inflated full conformal and
jackknife+ prediction intervals under exchangeability. Unlike uniform stability which is a distribution-free
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property of a training process, (m,n)-stability depends on both the training algorithm and the distributions
of the data as follows

ψout
m,n := E |µ̂Dn(Xtest) − µ̂Dn+m(Xtest)|, (9)

ψin
m,n := E |µ̂Dn(X1) − µ̂Dn+m(X1)|, (10)

with Xtest ⊥⊥ Dn+m, Dn+m = ((X1, Y1), ..., (Xn+m, Yn+m)), and µ̂Dn denotes the predictor function obtained
by training on Dn. Although weaker than uniform stability, these parameters are yet not well-understood in
a practical sense. To elaborate on the difference between this approach and uniform stability, we evaluate
their resulting training-conditional bounds for the ridge regression under exchangeability.

Assume X = {x : ∥x∥ ≤ b} and Y = [−I, I]. As stated in the previous section, this regression model satisfies
cn = 16 b2I2/(λn), κ1 = b and κ2 = √

p b. Hence, we get the following bound for both full conformal and
jackknife+ methods,

P

(
Pe(Dn) > α+O

(
n−1/2(√log(1/δ)+

√
p log(2p/ϵ)

)))
≤ ϵ+ δ.

On the other hand, the following bound is proposed for the γ-inflated jackknife+ in Liang and Barber (2023),

P

(
P J+,γ

e (Dn) > α+ 3

√
log(1/δ)

min(m,n)+2 3

√
ψout

m,n−1

γ

)
≤ 3δ + 3

√
ψout

m,n−1

γ
, (11)

for all m ≥ 1. We get ψout
m,n = O(mcn) since ψout

1,n ≤ cn+1/2 by definition (9) and Assumption 1, and
ψout

m,n ≤
∑n+m−1

k=n ψout
1,k holds according to in Liang and Barber (2023, Lemma 5.2) . Substituting for ψout

m,n−1
in bound (11), we obtain

P

(
P J+,γ

e (Dn) > α+O

(√
log(1/δ)

min(m,n) + 3

√
mcn−1

γ

))
≤ 3δ +O

(
3

√
mcn−1

γ

)
. (12)

Letting m−1/2 = (m/n)1/3 to balance the two terms
√

log(1/δ)
min(m,n) and 3

√
mcn−1/γ, we get m = n2/5. By

plugging m = n2/5 into (12), we have

P

(
P J+,γ

e (Dn) > α+O
(
n−1/5(√log(1/δ) + γ−1/3))) ≤ 3δ +O

(
n−1/5γ−1/3

)
. (13)

This bound, although dimension-free (i.e., does not depend on p), is very slow with respect to the sample
size. In Liang and Barber (2023), the same bound as (11) is established for γ-inflated full conformal method
except with ψin

m−1,n+1 instead of ψout
m,n−1. Hence, the same bound as (13) can be obtained for the γ-inflated

full conformal method via ψin
m,n = O(mcn).

5 Conclusion

In this work, we have studied the training-conditional coverage bounds of full conformal, jackknife+, and CV+
prediction regions from a uniform stability perspective, which is well-understood for convexly regularized
empirical risk minimization over reproducing kernel Hilbert spaces. We have derived new bounds via a
concentration argument for the (estimated) predictor function. In the case of ridge regression, we have
used the uniform stability parameter to derive a bound for (m,n)-stability and compare the resulting
bounds from Liang and Barber (2023) to the bounds established in this paper. We have observed that
our rates are faster in sample size but dependent on the dimension of the problem. Even though our work
is theoretical in nature, it can potentially shed light on understanding a much broader downstream-task
setups in reconstructive self-supervised learning (SSL), where the existing literature focuses on either linear
regression or ridge regression (e.g., Lee et al. (2021); Teng et al. (2022); Du and Xiang (2024)). For split
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conformal, our result allows for flexible downstream setups in SSL well beyond simple regressions, while for
jackknife+ it would be interesting to reveal the interplay between uniform stability and excess risk analysis in
SSL. Another worthwhile direction is from the robustness perspective in conformal prediction and detection
problems, including adversarial and label noise settings (e.g., Gendler et al. (2021); Einbinder et al. (2024);
Zhang et al. (2025)). For instance, one can study the robustness of training conditional guarantees under
adversarial attacks during inference time.
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A Technical Lemmas: Weighted DKW Inequalities

A.1 Background

In this section, we first briefly introduce the notion of bracketing number and four foundamental results,
which we will be applying in our proofs.

Bracketing Numbers. A measure of complexity for a class of functions is the bracketing number. For a
pair of functions f and g, the bracket [f, g] is defined as follows,

[f, g] = {h : f ≤ h ≤ g}.
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A set of brackets [f1, g1], . . . , [fn, gn] is a ϵ-Lq(P ) bracketing of function class F if F ⊆
⋃

1≤i≤n[fi, gi] and
(
∫

|fi − gi|qdP )1/q ≤ ϵ for all i ∈ [n]. The bracketing number N[] (ϵ,F , Lq(P )) is the size of the smallest
ϵ-Lq(P ) bracketing of F .

Theorem 7 (Van Der Vaart and Wellner (1996)(Theorem 2.14.2)) Let F be a class of measurable
functions with a measurable envelope F . Then, for some universal constant C > 0,

E

(
sup
f∈F

∣∣∣∣√n ∫ f d(Pn − P )
∣∣∣∣
)

≤ C∥F∥P,2

∫ 1

0

√
1 + logN[] (ϵ∥F∥P,2,F , L2(P )) dϵ. (14)

Theorem 8 (Lafferty et al. (2008)(Theorem 7.86)) Let F be a class of measurable functions with A =
supf∈F ∥f∥P,1 and B = supf∈F ∥f∥∞. Then, for ϵ < 2A/3,

P

(
sup
f∈F

∣∣∣∣∫ f d(Pn − P )
∣∣∣∣ > ϵ

)
≤ 4N[]

(
ϵ/8,F , L1(P )

)
exp

(
− 96nϵ2

76AB

)
. (15)

Theorem 9 (Durrett (2019) (Theorem 2.2.11)) For each n let Xn,k, 1 ≤ k ≤ n be independent. Let
bn > 0 with bn → ∞, and let Xn,k = Xn,k1{|Xn,k| ≤ bn}. Suppose that, as n → ∞, (i)

∑n
k=1 P(|Xn,k| >

bn) → 0, and (ii) b−2
n

∑n
k=1 EX

2
n,k → 0. If we let Sn = X1,n + . . .+Xn,n and put an =

∑n
k=1 EXn,k, then

(Sn − an)/bn → 0 in probability.

Proof: Fix ε > 0 and let Sn = X1,n + . . .+Xn,n. We note

P
(∣∣∣∣Sn − an

bn

∣∣∣∣ > ε

)
≤ P

(
Sn ̸= Sn

)
+ P

(∣∣∣∣Sn − an

bn

∣∣∣∣ > ε

)
.

We bound the two terms separately. For the first term P(Sn ≠ Sn), observe that the event {Sn ̸= Sn} occurs
if and only if at least one summand is truncated, that is, {Sn ̸= Sn} =

⋃n
k=1

{
|Xn,k| > bn

}
. Hence, by the

union bound and assumption (i), P(Sn ̸= Sn) ≤
∑n

k=1 P
(
|Xn,k| > bn

)
−→ 0 as n → ∞.

For the second term, P
(
|(Sn − an)/bn| > ε

)
, note that an = ESn. By Chebyshev’s inequality,

P
(∣∣∣∣Sn − an

bn

∣∣∣∣ > ε

)
≤ 1
ε2 E

[(
Sn − an

bn

)2]
= 1
ε2b2

n

Var(Sn).

Because the variables Xn,1, . . . , Xn,n are independent and Var(Y ) ≤ EY 2, we have Var(Sn) ≤
∑n

k=1 EX
2
n,k.

Combining these inequalities with by assumption (ii), we have

P
(∣∣∣∣Sn − an

bn

∣∣∣∣ > ε

)
≤ 1
ε2b2

n

n∑
k=1

EX2
n,k −→ 0, as n → ∞. ■

We can now apply this theorem to obtain the following result, also known as the Feller’s weak law of large
numbers without a first moment assumption.

Theorem 10 (Durrett (2019) (Theorem 2.2.12)) Let X1, X2, . . . be i.i.d. with xP(|Xi| > x) → 0 as
x → ∞. Let Sn = X1 + . . .+Xn and let µn = EX11{|X1| ≤ n}. Then Sn/n− µn → 0 in probability.

Proof: We apply Durrett’s Theorem 2.2.11 (i.e., Theorem 9) to the triangular array with entries Xn,k = Xk

for 1 ≤ k ≤ n and the normalizing constants bn = n. It suffices to check the two conditions of that theorem.

(i)
∑n

k=1 P(|Xn,k| > n) = nP(|X1| > n) → 0 by the assumed tail condition xP(|X1| > x) → 0.
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(ii) Let Xn,k = Xk1(|Xk| ≤ n). We need to show n−2∑n
k=1 E(X2

n,k) = n−1 E(X2
n,1) −→ 0. By

Lemma 2.2.13 of Durrett (2019) with Y = |Xn,1| and p = 2,

E(X2
n,1) =

∫ ∞

0
2y P(|Xn,1| > y) dy.

Since |Xn,1| ≤ n, the integrand vanishes for y ≥ n, and for 0 ≤ y ≤ n we have

P(|Xn,1| > y) ≤ P(|X1| > y).

Set g(y) = 2y P(|X1| > y). Hence

E(X2
n,1) ≤

∫ n

0
g(y) dy.

By assumption, we have g(y) → 0, as y → ∞, so does its average. ■

A.2 Weighted DKW Inequalities

With these results in place, we are ready to proceed with our proofs. Let FQ(x) = PZ∼Q(s(Z) ≤ x) where
s(·) denotes some fixed score function. For Zi

i.i.d.∼ P , we define

F̂Q,n(x) :=
∑
i∈[n]

ŵi1{s(Zi) ≤ x}, ŵi =
dQ
dP (Zi)∑

i∈[n]
dQ
dP (Zi)

. (16)

Lemma 1 (Bounded likelihood ratio) Assume that Q is absolutely continuous with respect to P (Q ≪ P )
and dQ/dP ≤ B. Then, for all δ > 0

P

(
sup
x∈R

∣∣∣F̂Q,n(x) − FQ(x)
∣∣∣ > δ + 2C

√
B

n

)
≤ 4e−nδ2/(2B2),

where C > 0 is some universal constant.

Proof: By substituting the formula for ŵi in the definition of F̂Q,n, we get

F̂Q,n =
1
n

∑
i∈[n]

dQ
dP (Zi)1{s(Zi) ≤ x}

1
n

∑
i∈[n]

dQ
dP (Zi)

.

Hence we have

sup
x∈R

|F̂Q,n(x) − FQ(x)| ≤ sup
x∈R

∣∣∣∣∣∣ 1n
∑
i∈[n]

dQ

dP
(Zi)1{s(Zi) ≤ x} − FQ(x)

∣∣∣∣∣∣+∣∣∣∣∣ 1
1
n

∑
i∈[n]

dQ
dP (Zi)

− 1

∣∣∣∣∣ sup
x∈R

∣∣∣∣∣∣ 1n
∑
i∈[n]

dQ

dP
(Zi)1{s(Zi) ≤ x}

∣∣∣∣∣∣
= sup

x∈R

∣∣∣∣∣∣ 1n
∑
i∈[n]

dQ

dP
(Zi)1{s(Zi) ≤ x} − FQ(x)

∣∣∣∣∣∣+

∣∣∣∣∣∣1 − 1
n

∑
i∈[n]

dQ

dP
(Zi)

∣∣∣∣∣∣ . (17)

Regarding the first term, we have,

sup
x∈R

∣∣∣∣∣∣ 1n
∑
i∈[n]

dQ

dP
(Zi)1{s(Zi) ≤ x} − FQ(x)

∣∣∣∣∣∣ = sup
x∈R

∣∣∣∣∫ dQ

dP
(z)1{s(z) ≤ x} d(Pn − P )

∣∣∣∣
14



Published in Transactions on Machine Learning Research (01/2026)

= sup
x∈R

∣∣∣∣∫ fx d(Pn − P )
∣∣∣∣ ,

where fx ∈ L1(X × Y, P ) is defined as fx(z) := dQ
dP (z)1{s(z) ≤ x}, and Pn(A) = 1

n

∑
i∈[n] 1{Zi ∈ A} is the

empirical measure.

We note,
1 ≤ ∥dQ/dP∥2

P,2 =
∫

(dQ/dP )2 dP ≤ ∥dQ/dP∥∞

∫
dQ/dP dP ≤ B.

according to the Holder’s inequality. Hence, ∥dQ/dP∥P,2 ≤
√
B and by Theorem 7 we have

E
(

sup
x∈R

∣∣∣∣∫ fx d(Pn − P )
∣∣∣∣) ≤ C

√
B

n

∫ 1

0

√
1 + logN[] (ϵ∥dQ/dP∥P,2,F , L2(P )) dϵ, (18)

with some universal constant C > 0, and N[]
(
ϵ∥dQ/dP∥P,2,F , L2(P )

)
denotes the bracketting number for

function class F = {fx : x ∈ R}. It remains to compute an upper bound for N[]
(
ϵ,F , L2(P )

)
. Let t0 = −∞

and define,

ti+1 := sup
{
t ∈ R :

∫
f2(z)1{s(z) ∈ (ti, t]} dP < ϵ2

}
, (19)

where f = dQ/dP . We note that there exists ℓ < ∞ such that tℓ = ∞. This is true since tj+1 < ∞ implies∫
f2(z)1{s(z) ∈ (ti, ti+1]} dP ≥ ϵ2, 0 ≤ i ≤ j,

according to (19) and dominated convergence theorem. Hence,

(j + 1)ϵ2 ≤
j∑

i=0

∫
f2(z)1{s(z) ∈ (ti, ti+1]} dP ≤

∫
f2 dP = ∥dQ/dP∥2

P,2, (20)

and therefore j + 1 ≤ (∥dQ/dP∥P,2/ϵ)2. Let k = min{ℓ ∈ Z : tℓ = ∞}. Now define ϵ-brackets as follows

bi = {g(z) : f(z)1{s(z) ≤ ti} ≤ g(z) ≤ f(z)1{s(z) < ti+1}}

where 0 ≤ i ≤ k − 1. Clearly, F ⊂ ∪k
i=0bi with bk = {f}. Brackets b0, . . . , bk−1 have size(∫

f2(z)1{s(z) ∈ (ti, ti+1)} dP
)1/2

≤ ϵ, 0 ≤ i ≤ k − 1,

according to (19) and bracket bk has size 0. Hence, we have k+1 brackets in total with size smaller than ϵ. By
(20), we have k − 1 ≤ (∥dQ/dP∥P,2/ϵ)2 which implies that N[]

(
ϵ,F , L2(P )

)
≤ k + 1 ≤ 2 + (∥dQ/dP∥P,2/ϵ)2.

Plugging this into (20), we get

N[]
(
ϵ∥dQ/dP∥P,2,F , L2(P )

)
≤ 2 + 1

ϵ2
.

Therefore we have,

E
(

sup
x∈R

∣∣∣∣∫ fx d(Pn − P )
∣∣∣∣) ≤ 2C

√
B

n
= C ′

√
B

n
, (21)

which follows from the observation that∫ 1

0

√
1 + log(2 + 1/ϵ2) ≤

(
1 +

∫ 1

0
log(2 + 1/ϵ2)

)1/2

≤
(

1 + 2
∫ 1

0
(ϵ2 − log ϵ)

)1/2

≤ 2.

Now let P (i)
n denote the empirical measure obtained after replacing Zi by some arbitrary Z ′

i. In this case, we
observe that ∣∣∣∣∣ sup

x∈R

∣∣∣∣∫ fx d(Pn − P )
∣∣∣∣− sup

x∈R

∣∣∣∣∫ fx d(P (i)
n − P )

∣∣∣∣
∣∣∣∣∣ ≤ sup

x∈R

∣∣∣∣∫ fx d(Pn − P (i)
n )
∣∣∣∣
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≤ 1
n

sup
x∈R

|fx(Zi) − fx(Z ′
i)| ≤ B

n
.

Therefore, by McDiarmid’s inequality McDiarmid et al. (1989) we get

P

(∣∣∣∣∣ sup
x∈R

∣∣∣∣∫ fx d(Pn − P )
∣∣∣∣− E

(
sup
x∈R

∣∣∣∣∫ fx d(Pn − P )
∣∣∣∣)
∣∣∣∣∣ > δ

)
≤ 2e−2nδ2/B2

.

Combining with (21), we obtain,

P

(
sup
x∈R

∣∣∣∣∫ fx d(Pn − P )
∣∣∣∣ > δ + C ′

√
B

n

)
≤ 2e−2nδ2/B2

.

Back to (17), for the second term, Hoeffding’s inequality implies

P

∣∣∣∣∣∣1 − 1
n

∑
i∈[n]

dQ

dP
(Zi)

∣∣∣∣∣∣ > δ

 ≤ 2e−2nδ2/B2
. (22)

Combining the bounds for the two terms, we obtain,

P

(
sup
x∈R

∣∣∣F̂Q,n(x) − FQ(x)
∣∣∣ > δ + C ′

√
B

n

)
≤ 4e−nδ2/(2B2). ■

The following version relaxes the assumption dQ/dP ≤ B to ∥dQ/dP∥P,2 ≤ K at the cost of slower rates.

Lemma 2 (Alternative version: bounded second moment) Assume Q ≪ P and ∥dQ/dP∥P,2 ≤ K.
Then, for all δ > 0

P

(
sup
x∈R

∣∣∣F̂Q,n(x) − FQ(x)
∣∣∣ > δ

)
≤ 4CK

δ
√
n

+ 4(K2 − 1)
nδ2 .

where C > 0 is some universal constant.

Proof: By the same argument that led to (21) in the proof of Lemma 1, we get

E
(

sup
x∈R

∣∣∣∣∫ fx d(Pn − P )
∣∣∣∣) ≤ 2CK√

n
= C ′K√

n
.

Combining this with Markov’s inequality, we obtain

P

(
sup
x∈R

∣∣∣∣∫ fx d(Pn − P )
∣∣∣∣ > δ

)
≤ C ′K

δ
√
n
. (23)

This bounds the first term of (17). Regarding the second term, Chebyshev’s inequality gives

P

∣∣∣∣∣∣1 − 1
n

∑
i∈[n]

dQ

dP
(Zi)

∣∣∣∣∣∣ > δ

 ≤
Var

(
1
n

∑
i∈[n]

dQ
dP (Zi)

)
δ2 ≤ K2 − 1

nδ2 . (24)

The result follows from combining (23) and (24). ■

In the following, we present yet another version by dropping the dependency on the constant C.

Lemma 3 (Alternative version: bounded likelihood ratio) Assume Q ≪ P and dQ/dP ≤ B. Then,

P
(

sup
x∈R

|F̂Q,n(x) − FQ(x)| > δ

)
≤ (72/δ)e−nδ2/(4B) + 2e−nδ2/(2B2)

for all δ > 0.
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Proof: To prove this lemma, we compute the upper bound for the first term of (17) differently. According to
Theorem 8, we get

P
(

sup
x∈R

∣∣∣∣∫ fx d(Pn − P )
∣∣∣∣ > ϵ

)
≤ 4N[](ϵ/8,F , L1(P )) e−nϵ2/B (25)

for ϵ ≤ 2/3, where N[](ϵ/8,F , L1(P )) denotes the bracketting number for function class F = {fx : x ∈ R}.
Similar to the proof of Lemma 1, it can be shown that N[](ϵ,F , L1(P )) ≤ 2 + 1/ϵ. Therefore,

P
(

sup
x∈R

∣∣∣∣∫ fx d(Pn − P )
∣∣∣∣ > ϵ

)
≤ 8(1 + 4/ϵ) e−nϵ2/B ≤ (36/ϵ)e−nϵ2/B .

Combining with (22) for the second term of (17), we obtain

P
(

sup
x∈R

|F̂Q,n(x) − FQ(x)| > δ

)
≤ (72/δ)e−nδ2/(4B) + 2e−nδ2/(2B2)

≤ (74/δ) exp
(

− nδ2

2(B + 1)2

)
. ■

Lemma 4 (Alternative version: unbounded likelihood ratio) Assume Q ≪ P and that dQ/dP < ∞
Q-a.s. Fix B, δ > 0 and ϵ ∈ (0, 1/2). It holds that,

sup
x∈R

∣∣∣FQ(x) − F̂Q,n(x)
∣∣∣ ≤ 3δ + 4P

(
dQ

dP
(Ztest) > n

)
+ C ′

√
B

n′ + P
(
dQ

dP
(Ztest) > B

)
,

with probability at least,

1 − 4e−n′δ2/(2B2) − 2e−2n2ϵ

− 2P
(
dQ

dP
(Ztest) > n

)
− 8
nδ2E

((
dQ

dP
(Zcalib)

)2
1
{
dQ

dP
(Zcalib) ≤ n

})
,

where n′ = nP
(

dQ
dP (Zcalib) ≤ B

)
− n1/2+ϵ.

Proof: To drop the assumption on dQ/dP , we start by writing X = XB ∪ X c
B, where XB = {x :

dQX/dPX(x) ≤ B}. Define

FQ|XB
:= P

(
s(Ztest) ≤ x

∣∣∣dQ
dP

(Ztest) ≤ B

)
,

F̂Q,n|XB
:=

∑
i∈I

dQ
dP (Zi)1{s(Zi) ≤ x}1

{
dQ
dP (Zi) ≤ B

}
∑

i∈I
dQ
dP (Zi)1

{
dQ
dP (Zi) ≤ B

} ,

where the summations are taken over calibration data points generated from P . We note,

sup
x∈R

∣∣∣FQ(x) − F̂Q,n(x)
∣∣∣ ≤ sup

x∈R

∣∣FQ(x) − FQ|XB
(x)
∣∣+ sup

x∈R

∣∣∣FQ|XB
(x) − F̂Q,n|XB

(x)
∣∣∣

+ sup
x∈R

∣∣∣F̂Q,n|XB
(x) − F̂Q,n(x)

∣∣∣ .
To upper-bound the first term, we observe that∣∣FQ(x) − FQ|XB

(x)
∣∣ =

∣∣∣∣P (s(Ztest) ≤ x) − P
(
s(Ztest) ≤ x

∣∣∣dQ
dP

(Ztest) ≤ B

)∣∣∣∣
=

∣∣∣∣∣P
(
s(Ztest) ≤ x

∣∣∣dQ
dP

(Ztest) ≤ B

)(
P
(
dQ

dP
(Ztest) ≤ B

)
− 1
)

17
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+ P
(
s(Ztest) ≤ x

∣∣∣dQ
dP

(Ztest) > B

)
P
(
dQ

dP
(Ztest) > B

) ∣∣∣∣∣
≤ P

(
dQ

dP
(Ztest) > B

) ∣∣∣∣∣P
(
s(Ztest) ≤ x

∣∣∣dQ
dP

(Ztest) > B

)

− P
(
s(Ztest) ≤ x

∣∣∣dQ
dP

(Ztest) ≤ B

) ∣∣∣∣∣
≤ P

(
dQ

dP
(Ztest) > B

)
.

Regarding the second term, using the same argument as in the proof of Lemma 1, we get

P
(

sup
x∈R

∣∣∣FQ|XB
(x) − F̂Q,n|XB

(x)
∣∣∣ ≤ δ + C ′

√
B/nB

∣∣∣nB

)
≥ 1 − 4e−nBδ2/(2B2),

where nB =
∑

i∈I 1
{

dQ
dP (Zi) ≤ B

}
. Now let n′ = nP

(
dQ
dP (Zcalib) ≤ B

)
− n1/2+ϵ and observe that

P
(

sup
x∈R

∣∣∣FQ|XB
(x) − F̂Q,n|XB

(x)
∣∣∣ ≤ δ + C ′

√
B/n′

)
≥ P

(
sup
x∈R

∣∣∣FQ|XB
(x) − F̂Q,n|XB

(x)
∣∣∣ ≤ δ + C ′

√
B/nB , nB ≥ n′

)
= E

(
P
(

sup
x∈R

∣∣∣FQ|XB
(x) − F̂Q,n|XB

(x)
∣∣∣ ≤ δ + C ′

√
B/nB

∣∣∣nB

)
1{nB ≥ n′}

)
≥ E

((
1 − 4e−nBδ2/(2B2)

)
1{nB ≥ n′}

)
≥
(

1 − 4e−n′δ2/(2B2)
)
P (nB ≥ n′)

(∗)
≥
(

1 − 4e−n′δ2/(2B2)
)(

1 − 2e−2n2ϵ
)

≥ 1 − 4e−n′δ2/(2B2) − 2e−2n2ϵ

,

where (∗) holds according to Hoeffding’s inequality.

For the third term, we note

|F̂Q,n|XB
(x) − F̂Q,n(x)| =

∣∣∣∣W<(x)
W<

− W<(x) +W>(x)
W< +W>

∣∣∣∣
=
∣∣∣∣W<(x)W> −W<W>(x)

W<(W< +W>)

∣∣∣∣
≤ 2 W<W>

W<(W< +W>) = 2 W>

W< +W>
, (26)

where

W<(x) =
∑
i∈I

dQ

dP
(Zi)1{s(Zi) ≤ x}1

{
dQ

dP
(Zi) ≤ B

}
,

W>(x) =
∑
i∈I

dQ

dP
(Zi)1{s(Zi) ≤ x}1

{
dQ

dP
(Zi) > B

}
,

W< =
∑
i∈I

dQ

dP
(Zi)1

{
dQ

dP
(Zi) ≤ B

}
,

W> =
∑
i∈I

dQ

dP
(Zi)1

{
dQ

dP
(Zi) > B

}
,
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and the inequalty 26 follows from the fact that W<(x) ≤ W< and W>(x) ≤ W> for all x ∈ R. Hence,

sup
x∈R

|F̂Q,n|XB
(x) − F̂Q,n(x)| ≤ 2

∑
i∈I

dQ
dP (Zi)1

{
dQ
dP (Zi) > B

}
∑

i∈I
dQ
dP (Zi)

a.s.→ 2P
(
dQ

dP
(Ztest) > B

)
.

We note,∣∣∣∣∣∣
1
n

∑
i∈I

dQ
dP (Zi)1

{
dQ
dP (Zi) > B

}
1
n

∑
i∈I

dQ
dP (Zi)

− P
(
dQ

dP
(Ztest) > B

)∣∣∣∣∣∣ ≤

∣∣∣∣∣ 1n∑
i∈I

dQ

dP
(Zi)1

{
dQ

dP
(Zi) > B

}
− P

(
dQ

dP
(Ztest) > B

)∣∣∣∣∣+∣∣∣∣∣ 1
1
n

∑
i∈I

dQ
dP (Zi)

− 1

∣∣∣∣∣
∣∣∣∣∣ 1n∑

i∈I

dQ

dP
(Zi)1

{
dQ

dP
(Zi) > B

}∣∣∣∣∣ ≤∣∣∣∣∣ 1n∑
i∈I

dQ

dP
(Zi)1

{
dQ

dP
(Zi) > B

}
− P

(
dQ

dP
(Ztest) > B

)∣∣∣∣∣+

∣∣∣∣∣ 1n∑
i∈I

dQ

dP
(Zi) − 1

∣∣∣∣∣ ≤∣∣∣∣∣ 1n∑
i∈I

dQ

dP
(Zi)1

{
dQ

dP
(Zi) > B

}
− P

(
B <

dQ

dP
(Ztest) ≤ n

)∣∣∣∣∣+
P
(
dQ

dP
(Ztest) > B,

dQ

dP
(Ztest) > n

)
+

∣∣∣∣∣ 1n∑
i∈I

dQ

dP
(Zi) − P

(
dQ

dP
(Ztest) ≤ n

)∣∣∣∣∣+ P
(
dQ

dP
(Ztest) > n

)
≤ δ + 2P

(
dQ

dP
(Ztest) > n

)
,

with probability at least

1 − 2P
(
dQ

dP
(Ztest) > n

)
− 8
nδ2E

((
dQ

dP
(Zcalib)

)2
1
{
dQ

dP
(Zcalib) ≤ n

})
, (27)

where in the last step we have used (the proof of) Theorem 9 with ϵ = δ/2 and bn = n twice; once for
the first term with Xn,k = dQ

dP (Zk)1
{

dQ
dP (Zk) > B

}
, k ∈ I, and the other time for the third term with

Xn,k = dQ/dP (Zk), k ∈ I. The requirements of the theorem are satisfied by

xP
(
dQ

dP
(Zcalib) > x

)
≤ E

(
dQ

dP
(Zcalib)1

{
dQ

dP
(Zcalib) > x

})
= P

(
dQ

dP
(Ztest) > x

)
→ 0 (28)

as x → ∞ and then according to Theorem 10 ; also recall that I ⊂ [n] for the split conformal method
corresponds to the calibration dataset. Putting everything together, we have

sup
x∈R

∣∣∣FQ(x) − F̂Q,n(x)
∣∣∣ ≤ 3δ + 4P

(
dQ

dP
(Ztest) > n

)
+ C ′

√
B

n′ + P
(
dQ

dP
(Ztest) > B

)
,

with probability at least,

1 − 4e−n′δ2/(2B2) − 2e−2n2ϵ

− 2P
(
dQ

dP
(Ztest) > n

)
− 8
nδ2E

((
dQ

dP
(Zcalib)

)2
1
{
dQ

dP
(Zcalib) ≤ n

})
.
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B Proof of Theorem 1

Recall from Section 2.3, we have

FQ,|I|(x) = wtest1{t = ∞} +
∑
i∈I

wi1{s(Zi) ≤ x}, wi =
dQ
dP (Zi)

dQ
dP (Ztest) +

∑
i∈I

dQ
dP (Zi)

, (29)

where Zi
i.i.d.∼ P , Ztest ∼ Q, and I denotes the set of indices corresponding to the calibration dataset. We

note

Pe(Dn) = P
(
Ytest ̸∈ Ĉsplit

α (Xtest)
∣∣∣Dn

)
= P

(
s(Xtest, Ytest; µ̂) > F−1

Q,m(1 − α)
∣∣∣Dn

)
≤ P

(
s(Xtest, Ytest; µ̂) > F̂−1

Q,m(1 − α)
∣∣∣Dn

)
= 1 − FQ(F̂−1

Q,m(1 − α)),

where FQ(x) = PZ∼Q(s(Z) ≤ x) and F̂−1
Q,m is defined according to (16) with index set I instead of [n]. Using

the weighted DKW inequality from Lemma 1 we get

FQ(F̂−1
Q,m(1 − α)) ≥ F̂Q,m(F̂−1

Q,m(1 − α)) − δ − C ′
√
B

m
≥ 1 − α− δ − C ′

√
B

m
, whp.

Hence, we have

P

(
Pe(Dn) > α+ δ + C ′

√
B

m

)
≤ 4e−mδ2/(2B2)

for all δ > 0, or equivalently,

P

(
Pe(Dn) > α+

√
2B2

m
log 4

δ
+ C ′

√
B

m

)
= P

(
Pe(Dn) > α+

(√
2B log 4/δ + C ′

)√B

m

)
≤ δ.

This completes the proof of Theorem 1.

B.1 Proof of Remark 1

To see (8), we note that by using Lemma 2 instead of Lemma 1 we get

P (Pe(Dn) > α+ δ) ≤ 6CK
δ
√
m

+ 4(K2 − 1)
mδ2

for all δ > 0. Hence,

P

(
Pe(Dn) > α+ 2

(
2CK +

√
δ(K2 − 1)

δ
√
m

))
≤ δ

for all δ > 0, which implies

P
(
Pe(Dn) > α+ 2K(2C + 1)

δ
√
m

)
≤ δ, 0 < δ ≤ 1.

■.
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C Proof for Jackknife+

Lemma 5 If Assumption 1 and 2 hold, then

P
(∥∥∥β̂n − E β̂n

∥∥∥
∞

≥ ϵ
)

≤ 2p exp
(

−2κ2
1ϵ

2

nc2
n

)
.

Proof: Assumption 1 and 2 imply that

sup
z1,...,zn,z′

i

∥T (z1, . . . , zi . . . , zn) − T (z1, . . . , z
′
i, . . . ,zn)∥∞ ≤ cn

κ1
.

By McDiarmid’s inequality McDiarmid et al. (1989) we get

P
(

∥β̂n − E β̂n∥∞ ≥ ϵ
)

= P
(∥∥T (Z1, . . . , Zn) − E T (Z1, . . . , Zn)

∥∥
∞ ≥ ϵ

)
≤ 2p exp

(
−2κ2

1ϵ
2

nc2
n

)
for independent Zi and all ϵ > 0. ■

Lemma 6 Under Assumptions 1 and 2 we have

P
(

max
i

∥∥∥µβ̂−i
− µβ−1

∥∥∥
∞

≥ ϵ
)

≤ 2p exp
(

−2κ2
1
n

(
ϵ

κ2cn−1
− 1
κ1

)2
)
.

Proof: From Assumption 1 and 2, it follows that

max
i,j

∥β̂−i − β̂−j∥∞ ≤ cn−1

κ1
. (30)

Also, according to (5), we have ∥β̂−1 − β−1∥∞ < ϵ with probability at least 1 − 2p exp(−2κ2
1ϵ

2/(nc2
n−1)). We

note that,

P
(

max
i

∥∥∥µβ̂−i
− µβ−1

∥∥∥
∞

≥ ϵ
) (∗)

≤ P
(
κ2 max

i

∥∥∥β̂−i − β−1

∥∥∥
∞

≥ ϵ
)

(∗∗)
≤ P

(
κ2

(
cn−1

κ1
+
∥∥∥β̂−1 − β−1

∥∥∥
∞

)
≥ ϵ

)
≤ 2p exp

(
−2κ2

1
n

(
ϵ

κ2cn−1
− 1
κ1

)2
)
,

where (*) and (**) hold according to Assumption 2 and (30), respectively. ■

C.1 Proof of Theorem 3

We note,

ĈJ+
α (Xtest) ⊇

{
y ∈ R : 1

n

n∑
i=1

1
{∣∣∣Yi − µβ̂−i

(Xi)
∣∣∣ ≥

∣∣∣y − µβ̂−i
(Xtest)

∣∣∣} > α

}

⊇

{
y ∈ R : 1

n

n∑
i=1

1
{ ∣∣∣Yi − µβ−1

(Xi)
∣∣∣−
∣∣∣µβ̂−i

(Xi) − µβ−1
(Xi)

∣∣∣ ≥

∣∣∣y − µβ−1
(Xtest)

∣∣∣+
∣∣∣µβ̂−i

(Xtest) − µβ−1
(Xtest)

∣∣∣ } > α

}
,
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where the first relation holds according to Bian and Barber (2023). This first step can also be recovered by
letting wi = 1/(n+ 1) and ŵi = 1/n in the first four steps of C.2. Assuming maxi ∥µβ̂−i

− µβ−1
∥∞ < ϵ, we

obtain

ĈJ+
α (Xtest) ⊇

{
y ∈ R : 1

n

n∑
i=1

1
{ ∣∣∣Yi − µβ−1

(Xi)
∣∣∣ ≥

∣∣∣y − µβ−1
(Xtest)

∣∣∣+ 2ϵ
}
> α

}

⊇

{
y ∈ R : 1 − F̂ (n−1)

(∣∣∣y − µβ−1
(Xtest)

∣∣∣+ 2ϵ
)
> α

}
.

Assuming
∥∥∥F̂ (n−1) − F (n−1)

∥∥∥
∞
< δ, we obtain

ĈJ+
α (Xtest) ⊇

{
y ∈ R : 1 − F (n−1)

(∣∣∣y − µβ−1
(Xtest)

∣∣∣+ 2ϵ
)
> α+ δ

}

⊇

{
y ∈ R : 1 − F (n−1)

(∣∣∣y − µβ−1
(Xtest)

∣∣∣) > α+ δ + 2ϵLn−1

}
.

Therefore,

Pe(Dn) = P(Ytest /∈ ĈJ+
α (Xtest)|Dn) ≤ P

(
1 − F (n−1)

(∣∣∣Ytest − µβ−1
(Xtest)

∣∣∣) ≤ α+ δ + 2ϵLn−1

)
= α+ δ + 2ϵLn−1

for Dn ∈ A ∩ B where A :=
{
D : maxi ∥µβ̂−i

− µβ−1
∥∞ < ϵ

}
and B :=

{
D :

∥∥∥F̂ (n−1) − F (n−1)
∥∥∥

∞
< δ
}

.
From Lemma 6, we know

P(Dn /∈ A) ≤ 2p exp
(

−2κ2
1
n

(
ϵ

κ2cn−1
− 1
κ1

)2
)
.

Also, according to Dvoretzky–Kiefer–Wolfowitz inequality Dvoretzky et al. (1956), we have P(Dn /∈ B) ≤
2e−2nδ2 . Thus,

P(Pe(Dn) > α+ δ + ϵ) ≤ P ((A ∩ B)c) ≤ 2e−2nδ2
+ 2p exp

(
−2κ2

1
n

(
ϵ

2Ln−1κ2cn−1
− 1
κ1

)2
)
,

or equivalently,

P

(
Pe(Dn) > α+

√
log(2/δ)

2n + 2Ln−1 κ2 cn−1

(
1
κ1

+

√
n

2κ2
1

log 2p
ϵ

))
≤ ϵ+ δ. ■

C.2 Proof of Theorem 4

We note,

ĈJ+
α (Xtest) =

{
y ∈ R :

n∑
i=1

wi1
{
µβ̂−i

(Xtest) +
∣∣∣Yi − µβ̂−i

(Xi)
∣∣∣ < y

}
< 1 − α

}⋂
{
y ∈ R :

n∑
i=1

wi1
{
µβ̂−i

(Xtest) −
∣∣∣Yi − µβ̂−i

(Xi)
∣∣∣ > y

}
≤ 1 − α

}

⊇

{
y ∈ R :

n∑
i=1

wi1
{∣∣∣Yi − µβ̂−i

(Xi)
∣∣∣ < ∣∣∣y − µβ̂−i

(Xtest)
∣∣∣} < 1 − α

}⋂
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{
y ∈ R :

n∑
i=1

wi1
{∣∣∣µβ̂−i

(Xtest) − y
∣∣∣ > ∣∣∣Yi − µβ̂−i

(Xi)
∣∣∣} < 1 − α

}

=
{
y ∈ R :

n∑
i=1

wi1
{∣∣∣Yi − µβ̂−i

(Xi)
∣∣∣ < ∣∣∣y − µβ̂−i

(Xtest)
∣∣∣} < 1 − α

}

⊇

{
y ∈ R :

n∑
i=1

ŵi1
{∣∣∣Yi − µβ̂−i

(Xi)
∣∣∣ < ∣∣∣y − µβ̂−i

(Xtest)
∣∣∣} < 1 − α

}

=
{
y ∈ R :

n∑
i=1

ŵi1
{∣∣∣Yi − µβ̂−i

(Xi)
∣∣∣ ≥

∣∣∣y − µβ̂−i
(Xtest)

∣∣∣} > α

}

⊇

{
y ∈ R :

n∑
i=1

ŵi1
{ ∣∣∣Yi − µβ−1

(Xi)
∣∣∣−
∣∣∣µβ̂−i

(Xi) − µβ−1
(Xi)

∣∣∣ ≥

∣∣∣y − µβ−1
(Xtest)

∣∣∣+
∣∣∣µβ̂−i

(Xtest) − µβ−1
(Xtest)

∣∣∣ } > α

}
,

where the first and last relations hold by the definition of ĈJ+
α (Xtest) and triangle inequality, respectively.

Assuming maxi ∥µβ̂−i
− µβ−1

∥∞ < ϵ, we obtain

ĈJ+
α (Xtest) ⊇

{
y ∈ R :

n∑
i=1

ŵi1
{ ∣∣∣Yi − µβ−1

(Xi)
∣∣∣ ≥

∣∣∣y − µβ−1
(Xtest)

∣∣∣+ 2ϵ
}
> α

}

⊇

{
y ∈ R :

n∑
i=1

ŵi1
{ ∣∣∣Yi − µβ−1

(Xi)
∣∣∣ ≥

∣∣∣y − µβ−1
(Xtest)

∣∣∣+ 2ϵ
}
> α

}

⊇

{
y ∈ R : 1 − F̂

(n−1)
Q

(∣∣∣y − µβ−1
(Xtest)

∣∣∣+ 2ϵ
)
> α

}
,

where F̂ (n−1)
Q (t) :=

∑n
i=1 ŵi1

{∣∣∣Yi − µβ−1
(Xi)

∣∣∣ ≤ t
}

and, ŵi and wi are defined in (16) and (29), respectively.
Define,

F
(n−1)
Q (t) := PZ1∼Q

(∣∣∣Y1 − µβ−1
(X1)

∣∣∣ ≤ t
)
.

Assuming
∥∥∥F̂ (n−1)

Q − F
(n−1)
Q

∥∥∥
∞
< δ, we obtain

ĈJ+
α (Xtest) ⊇

{
y ∈ R : 1 − F

(n−1)
Q

(∣∣∣y − µβ−1
(Xtest)

∣∣∣+ 2ϵ
)
> α+ δ

}

⊇

{
y ∈ R : 1 − F

(n−1)
Q

(∣∣∣y − µβ−1
(Xtest)

∣∣∣) > α+ δ + 2ϵLQ,n−1

}
.

Therefore,

Pe(Dn) = P(Ytest /∈ ĈJ+
α (Xtest)|Dn) ≤ P

(
1 − F

(n−1)
Q

(∣∣∣Ytest − µβ−1
(Xtest)

∣∣∣) ≤ α+ δ + 2ϵLQ,n−1

)
= α+ δ + 2ϵLQ,n−1

for Dn ∈ A∩B(δ) where A :=
{
D : maxi ∥µβ̂−i

− µβ−1
∥∞ < ϵ

}
and B(δ) :=

{
D :

∥∥∥F̂ (n−1)
Q − F

(n−1)
Q

∥∥∥
∞

≤ δ
}

.
From Lemma 6, we know

P(Dn /∈ A) ≤ 2p exp
(

−2κ2
1
n

(
ϵ

κ2cn−1
− 1
κ1

)2
)
.
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Also, according to weighted DKW inequality from Lemma 1, we have

P

(
Dn /∈ B

(
δ + 2C

√
B

n

))
≤ 4e−nδ2/(2B2).

Thus,

P

(
Pe(Dn) > α+ δ + ϵ+ 2C

√
B

n

)
≤ 4e−nδ2/(2B2)

+ 2p exp
(

−2κ2
1
n

(
ϵ

2LQ,n−1κ2cn−1
− 1
κ1

)2
)
,

or equivalently,

P

(
Pe(Dn) > α+

(√
2B log 4

δ
+ 2C

)√
B

n
+ 2LQ,n−1 κ2 cn−1

(
1
κ1

+

√
n

2κ2
1

log 2p
ϵ

))
≤ ϵ+ δ. ■

D Proof for full conformal

Lemma 7 Under Assumptions 1 and 2, we have

P
(∥∥∥µβ̂n

− µβn

∥∥∥
∞

≥ ϵ
)

≤ 2p exp
(

− 2κ2
1ϵ

2

nκ2
2c

2
n

)
.

Proof: According to Lemma 5, we have ∥β̂n − βn∥∞ < ϵ with probability at least 1 − 2p exp
(

− 2κ2
1ϵ2

nc2
n

)
. It

follows from Assumption 2 that,

P
(∥∥∥µβ̂n

− µβn

∥∥∥
∞

≥ ϵ
)

≤ P
(
κ2

∥∥∥β̂n − βn

∥∥∥
∞

≥ ϵ
)

≤ 2p exp
(

− 2κ2
1ϵ

2

nκ2
2c

2
n

)
. ■

We need the following notation for the proof of Theorem 5:

β̂Xtest,y := T (((X1, Y1), . . . , (Xn, Yn), (Xtest, y))).

D.1 Proof of Theorem 5

We note,

Ĉfull
α (Xtest) ⊇

{
y ∈ R : 1

n

n∑
i=1

1
{∣∣∣Yi − µβ̂Xtest,y

(Xi)
∣∣∣ ≥

∣∣∣y − µβ̂Xtest,y
(Xtest)

∣∣∣} > α

}

⊇

{
y ∈ R : 1

n

n∑
i=1

1
{ ∣∣∣Yi − µβ̂n

(Xi)
∣∣∣−
∣∣∣µβ̂n

(Xi) − µβ̂Xtest,y
(Xi)

∣∣∣ ≥

∣∣∣y − µβ̂n
(Xtest)

∣∣∣+
∣∣∣µβ̂n

(Xtest) − µβ̂Xtest,y
(Xtest)

∣∣∣ } > α

}

⊇

{
y ∈ R : 1

n

n∑
i=1

1
{ ∣∣∣Yi − µβ̂n

(Xi)
∣∣∣ ≥

∣∣∣y − µβ̂n
(Xtest)

∣∣∣+ cn+1

}
> α

}
,
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where the first and last relations hold according to the definition of Ĉfull
α (Xtest) and Assumption 1. Assuming

∥µβ̂n
− µβn

∥∞ < ϵ, we obtain

Ĉfull
α (Xtest) ⊇

{
y ∈ R : 1

n

n∑
i=1

1
{ ∣∣∣Yi − µβn

(Xi)
∣∣∣ ≥

∣∣∣y − µβn
(Xtest)

∣∣∣+ cn+1 + 2ϵ
}
> α

}

⊇

{
y ∈ R : 1 − F̂ (n)

(∣∣∣y − µβn
(Xtest)

∣∣∣+ cn+1 + 2ϵ
)
> α

}
.

Assuming
∥∥∥F̂ (n) − F (n)

∥∥∥
∞
< δ, we obtain

Ĉfull
α (Xtest) ⊇

{
y ∈ R : 1 − F (n)

(∣∣∣y − µβn
(Xtest)

∣∣∣+ cn+1 + 2ϵ
)
> α+ δ

}

⊇

{
y ∈ R : 1 − F (n)

(∣∣∣y − µβn
(Xtest)

∣∣∣) > α+ δ + (2ϵ+ cn+1)Ln

}
.

Therefore,

Pe(Dn) = P(Ytest /∈ Ĉfull
α (Xtest)|Dn)

≤ P
(

1 − F (n)
(∣∣∣Ytest − µβn

(Xtest)
∣∣∣) ≤ α+ δ + (2ϵ+ cn+1)Ln

)
= α+ δ + (2ϵ+ cn+1)Ln

for Dn ∈ A ∩ B where A :=
{
D : ∥µβ̂n

− µβn
∥∞ < ϵ

}
and B :=

{
D :

∥∥∥F̂ (n) − F (n)
∥∥∥

∞
< δ
}

. From Lemma 6,

we know P(Dn /∈ A) ≤ 2p exp
(

− 2κ2
1ϵ2

nκ2
2c2

n

)
. Also, according to Dvoretzky–Kiefer–Wolfowitz inequality, we have

P(Dn /∈ B) ≤ 2e−2nδ2 . Thus,

P(Pe(Dn) > α+ δ + ϵ) ≤ P ((A ∩ B)c) ≤ 2e−2nδ2
+ 2p exp

(
−
(
κ1(ϵ/Ln − cn+1)√

2nκ2cn

)2
)
,

or equivalently,

P

(
Pe(Dn) > α+

√
log(2/δ)

2n + Ln

(
cn+1 +

√
2n log 2p

ϵ

κ2 cn

κ1

))
≤ ϵ+ δ. ■

D.2 Proof of Theorem 6

We note,

Ĉfull
α (Xtest) =

{
y ∈ R :

n∑
i=1

wi1
{∣∣∣Yi − µβ̂Xtest,y

(Xi)
∣∣∣ < ∣∣∣y − µβ̂Xtest,y

(Xtest)
∣∣∣} < 1 − α

}

⊇

{
y ∈ R :

n∑
i=1

ŵi1
{∣∣∣Yi − µβ̂Xtest,y

(Xi)
∣∣∣ < ∣∣∣y − µβ̂Xtest,y

(Xtest)
∣∣∣} < 1 − α

}

=
{
y ∈ R :

n∑
i=1

ŵi1
{∣∣∣Yi − µβ̂Xtest,y

(Xi)
∣∣∣ ≥

∣∣∣y − µβ̂Xtest,y
(Xtest)

∣∣∣} > α

}

⊇

{
y ∈ R :

n∑
i=1

ŵi1
{ ∣∣∣Yi − µβ̂n

(Xi)
∣∣∣−
∣∣∣µβ̂n

(Xi) − µβ̂Xtest,y
(Xi)

∣∣∣ ≥

∣∣∣y − µβ̂n
(Xtest)

∣∣∣+
∣∣∣µβ̂n

(Xtest) − µβ̂Xtest,y
(Xtest)

∣∣∣ } > α

}
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⊇

{
y ∈ R :

n∑
i=1

ŵi1
{ ∣∣∣Yi − µβ̂n

(Xi)
∣∣∣ ≥

∣∣∣y − µβ̂n
(Xtest)

∣∣∣+ cn+1

}
> α

}
,

where the first and last relations hold according to the definition of Ĉfull
α (Xtest) (under covariate shift) and

Assumption 1. Assuming ∥µβ̂n
− µβn

∥∞ < ϵ, we obtain

Ĉfull
α (Xtest) ⊇

{
y ∈ R :

n∑
i=1

ŵi1
{ ∣∣∣Yi − µβn

(Xi)
∣∣∣ ≥

∣∣∣y − µβn
(Xtest)

∣∣∣+ cn+1 + 2ϵ
}
> α

}

⊇

{
y ∈ R : 1 − F̂

(n)
Q

(∣∣∣y − µβn
(Xtest)

∣∣∣+ cn+1 + 2ϵ
)
> α

}
.

Assuming
∥∥∥F̂ (n)

Q − F
(n)
Q

∥∥∥
∞
< δ, we obtain

Ĉfull
α (Xtest) ⊇

{
y ∈ R : 1 − F

(n)
Q

(∣∣∣y − µβn
(Xtest)

∣∣∣+ cn+1 + 2ϵ
)
> α+ δ

}

⊇

{
y ∈ R : 1 − F

(n)
Q

(∣∣∣y − µβn
(Xtest)

∣∣∣) > α+ δ + (2ϵ+ cn+1)LQ,n

}
.

Therefore,

Pe(Dn) = P(Ytest /∈ Ĉfull
α (Xtest)|Dn)

≤ P
(

1 − F
(n)
Q

(∣∣∣Ytest − µβn
(Xtest)

∣∣∣) ≤ α+ δ + (2ϵ+ cn+1)LQ,n

)
= α+ δ + (2ϵ+ cn+1)LQ,n

for Dn ∈ A ∩ B(δ) where A :=
{
D : ∥µβ̂n

− µβn
∥∞ < ϵ

}
and B(δ) :=

{
D :

∥∥∥F̂ (n)
Q − F

(n)
Q

∥∥∥
∞

≤ δ
}

. From

Lemma 6, we know P(Dn /∈ A) ≤ 2p exp
(

− 2κ2
1ϵ2

nκ2
2c2

n

)
. Also, according to weighted DKW inequality from

Lemma 1, we have

P

(
Dn /∈ B

(
δ + 2C

√
B

n

))
≤ 4e−nδ2/(2B2).

Thus,

P

(
Pe(Dn) > α+ δ + 2C

√
B

n
+ ϵ

)
≤ 4e−nδ2/(2B2) + 2p exp

(
−
(
κ1(ϵ/LQ,n − cn+1)√

2nκ2cn

)2
)
,

or equivalently,

P

(
Pe(Dn) > α+

(√
2B log 4/δ + 2C

)√B

n
+ LQ,n

(
cn+1 +

√
2n log 2p

ϵ

κ2 cn

κ1

))
≤ ϵ+ δ.

■

E Experiment Details for Figure 1

The sizes of the training, calibration, and test datasets are 525, 225, and 247, respectively, for the Wine
Quality, Abalone, and Combined Cycle Power Plant datasets. For the Concrete Compressive Strength dataset,
the corresponding sizes are 360, 155, and 169. Distribution shift is introduced following the approach of
Tibshirani et al. (2019), by resampling data points with probabilities proportional to exp(x⊤β), where

βwine quality = [0.5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
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Figure 2: The likelihood ratio is estimated using kernel density estimator with Gaussian kernel.

βabalone = [0, 10, 10, 0, 0, 0, 0, 0],
βCCS = [0.01, 0.01, 0, 0, 0, 0, 0, 0],
βCCPP = [0.2, 0, 0, 0].

As a simple illustration of the role of likelihood ratio estimation, as discussed in Section 4, Figure 2 shows
the impact of likelihood ratio estimation on the distribution of the training-conditional error for the Concrete
Compressive Strength dataset.
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