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Abstract 

Although automated planning and scheduling systems based 
on optimization models are increasingly being adopted into 
socially responsible tasks, the derived plan is often counter-
intuitive under complicated considerations. Users will claim 
the right to know the reason for “Why did the optimal plan 
include something or not include something else (that I would 
have chosen)?” Explanations of constraints and parameters 
that cause the unexpected plan derivation can play an im-
portant role in building trust between users and the schedul-
ing system. However, existing approaches require an as-
sumption of a specific problem setting, and have not ad-
dressed quantitative analysis for multiple types of factors. In 
this paper, we propose a general explanation framework to 
quantitatively evaluate the effect of constraints and parame-
ters on the plan derivation by applying the concept of Shapley 
values, which satisfy the desirable axioms for explanations. 
The coalitional game based on optimization models is formu-
lated to calculate the contributions of these factors to the ful-
fillment of values or conditions in which users are interested. 
Through numerical experiments of the typical personnel as-
signment problem, we show that our framework can identify 
the major causes efficiently under various parameter settings 
and provide directly understandable explanations compared 
to the basic contrastive explanations. 

 Introduction 

Automated planning and scheduling based on mathematical 

optimization provide a solution to optimize a set of objec-

tives that satisfy several constraints. As the performance of 

optimization algorithms becomes more advanced, these sys-

tems are applied to real-world decision-making tasks with 

significant social responsibility. For example, the optimiza-

tion of personnel assignments is vital to not only the im-

provement of employee working conditions but also the suc-

cess of high-risk tasks represented by medical care (Legrain, 

Bouarab, and Lahrichi 2015). Scheduling failures on a Mars 

rover mission might result in massive time and financial 

losses (Agrawal, Yelamanchili, and Chien 2020). 

 However, the solutions derived by optimization tech-

niques are often counterintuitive because of the complicated 

considerations. In the context of personnel assignment, em-

ployees will claim the right to know the reason, “Why am I 

assigned to job 1 while I am more suited for job 2?” Even if 

the objective function was optimized, the lack of employees’ 

agreement would be sufficient to prevent a plan from being 

executed. 

The person in charge of ordering the transfer based on the 

derived plan has to explain the reason for the assignment to 

job 1. In this paper, we focus on the user query of “Why did 

the optimal plan include something or not include something 

else (that I would have chosen)?” which is considered as one 

of the most fundamental questions in the field of scheduling 
(Fox, Long, and Magazzeni 2017). However, even theoreti-

cally well-understood algorithms represented by linear pro-

gramming can still yield decisions that are hard to build 

trust; they only present the derived plan and do not explain 

why it was selected as the optimal solution. 

 To address the issue of trustworthiness, the eXplainable 

AI Planning (XAIP) community has proposed numerous ex-

planation algorithms and successful interfaces (Chakraborti, 

Sreedharan, and Kambhampati 2020). Although it is too 

complex to clarify what an explanation should actually con-

tain, revealing constraints and parameters that directly cause 

the unexpected plan derivation can play a key role in getting 

a deeper understanding of the problem setting. The resulting 

plan varies greatly depending on the presence or absence of 

constraints and the value of input parameters, e.g., coeffi-

cients and weights for decision variables (Gupta, Genc, and 

O'Sullivan 2022). 

 Several studies have discussed basic architectures to ex-

tract those factors of optimization models that affect deriva-

tion of the solution. (Pozanco et al. 2022; Burt, Klimova, 

and Primas 2018). However, existing approaches require an 

assumption of a specific problem setting, and methods to 

quantitatively evaluate multiple factor types have not been 

well explored. 

 On the other hand, XAI techniques for machine learning 

models have been developed rapidly after the launch of the 

DARPA project (Gunning and Aha 2019). In particular, the 

concept of the Shapley value, which additively distributes 

allocation credits to players in coalitional games, is com-

monly-used for quantifying the contribution of features to 



 

 

the prediction derived by the model (Lundberg and Lee 

2017). For optimization problems, Shapley values are also 

utilized to calculate resource contributions for optimizing a 

network configuration (Iturralde et al. 2011) and as an alter-

native to Sobol's sensitivity analysis index (Song, Nelson, 

and Staum 2016). Although the Shapley value is a model-

agnostic and general explanation tool, no method has been 

proposed that applies this value to explain the reason for a 

plan derivation. 

In this paper, we propose an explanation framework to 

quantitatively evaluate the effect of constraints and parame-

ters on the plan derivation by Shapley values. We define a 

coalitional game based on optimization models in accord-

ance with the types of input factor candidates and user ques-

tions. Shapley values of these factors are calculated as the 

contributions to the fulfillment of values or conditions in 

which users are interested. This framework enables users to 

analyze the impactful constraints and parameters along with 

the magnitude of their contributions, and simplifies the un-

derstanding process of the reason why the counterintuitive 

plan was selected, which is often performed manually with 

considerable effort and time. 

 Since the computation of Shapley values does not depend 

on a specific class of tasks and algorithms, our method can 

be adopted a wide range of optimization models and user 

queries. To illustrate the explanation process, we applied our 

framework to the typical optimization problem: personnel 

assignments using linear programming. The result shows 

that this study can provide an explanation tool to extract the 

important factors under various parameter settings and fa-

cilitate the implementation of the plan in high-responsibility 

decisions. 

 In summary our contributions are as follows: 

• Propose the general and quantitative explanation method 
for answering “Why did the optimal plan include some-
thing or not include something else (that I would have 
chosen)?” by calculating the contributions of constraints 
and parameters calculated as Shapley values. 

• Provide the framework for formulating a coalitional game 
based on mathematical optimization models to calculate 
Shapley values of input factors. 

• Implement a case study through numerical experiments of 
typical personnel assignment problems. We discuss how 
to interpret the obtained contributions as the impact on the 
plan derivation. 

The rest of this paper is organized as follows. We first de-

scribe typical explanation methods in the field of XAIP and 

clarify our focus. We then formalize the general mathemat-

ical optimization problem and introduce the definition of the 

Shapley value that satisfies the desirable axioms for expla-

nations. After that, the procedure for the calculation of Shap-

ley values to the optimization task is described. Then, we 

empirically show that our proposed method can extract fac-

tors to the plan derivation efficiently for typical personnel 

assignment problems through numerical experiments. Fi-

nally, we draw our main conclusions and outline future work. 

Related Works 

Explanations are vital to building trust between AI for auto-

mated planning and humans. Fox, Long, and Magazzeni 

(2017) established the concept of XAIP, and showed im-

portant questions from users that XAIP should address. 

Since the required explanations depend on the question 

types (Soni, Sreedharan, and Kambhampati, 2021), various 

types of explanations have been discussed.  

 To answer the users query of “Why did the optimal plan 

include something or not include something else (that I 

would have chosen)?,” a basic approach would be contras-

tive explanation to demonstrate a flaw in a plan that adopts 

the alternative proposed by users compared with the optimal 

plan (Cashmore et al. 2019). However, since the explanation 

cannot explicitly provide impactful constraints and parame-

ters, the process of understanding can take a considerable 

amount of time, especially for non-experts. 

 Counterfactual explanations derive the change to the 

problem setting that would have resulted in the alternative 

plan indicated by users. Several studies have discussed how 

to generate appropriate counterfactuals efficiently. General-

ized inverse combinatorial optimization was proposed to 

minimize objective function deterioration of counterfactuals 

(Korikov Shleyfman, and Beck 2021). Gupta, Genc, and 

O'Sullivan (2022) presented an explanation that provides 

applicable changes of the existing constraints with the cost 

function of counterfactuals to recover feasibility in staffing 

problems. 

 In the field of robotics, Brandão, Coles, and Magazzeni 

(2021) formulated an efficient inverse problem that changes 

the route plan derived by a robot to the one by a human with 

small calculation cost. Gragera, García, and Fernández 

(2022) discussed an explanation scheme when a plan cannot 

be executed due to a lack of appropriate actions in the Mars 

rover 's load hauler. It compiles the unresolvable task into a 

new extended planning task and suggests a repair action to 

the operator. 

 An interface to show the explanation results is also an im-

portant research target of XAIP. For example, Crosscheck 

proposes an interface to find the reason for schedule failures 

in the Mars rover's motion using binary search trees and re-

cursive programming (Agrawal, Yelamanchili, and Chien 

2020). A negotiation tree is an interactive framework that 

repeatedly creates counterfactual plans until humans are sat-

isfied (Zahedi, Sengupta, and Kambhampati 2020). 

 In (Pozanco et al. 2022), the EXPRES framework was 

proposed, which explains why a preference of seat alloca-

tion given by users was unsatisfied in an optimal schedule. 



 

 

The authors defined two kinds of functions to identify in-

volved assignments and satisfied preferences of other agents. 

However, the framework requires a completely ordered list 

of preferences that does not hold in all scheduling problem. 

Burt, Klimova, and Primas (2018) presented an algorithm 

that imitates a sensitivity analysis to evaluate the feasibility 

of solutions for various constraint sets to explain why opti-

mal solutions cannot be obtained by mixed integer program-

ming. Although it provides a basic architecture to extract the 

impactful constraint, there is no specific method for quanti-

fying the effect to the plan derivation. 

 As indices of quantitative evaluation in mathematical op-

timization, a global sensitivity analysis has been applied to 

decompose the model output variance caused by the uncer-

tainty in the contribution of inputs (Hall and Posner 2004). 

The experimental design is a methodology to observe the 

effect of input factors with a small number of experiments 

by an orthogonal table (Hedayat, Sloane, and Stufken 1999). 

However, assumptions of these approaches may not hold if 

there are strong interaction effects between input factors.  

The Shapley value has been applied in the field of sensi-

tivity analysis because of its ability to output contributions 

that incorporate interaction effects (Benoumechiara and Co-

saque 2019). It is also used to calculate the contribution of 

features in a machine learning model as a standard index that 

satisfies the axioms for explanation (Lundberg and Lee 

2017). In this paper, we discuss a domain-agnostic explana-

tion method to quantitatively evaluate multiple constraints 

and parameters by applying the Shapley value. 

Background 

Explanation Task for Mathematical Optimization 

We first formalize a scheduling problem that is the subject 

of explanation. Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁} be a set of decision 

variables, 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑀}  be a set of constraints, 𝑂 =
{𝑜1, 𝑜2, … , 𝑜𝐿}  be a set of objective functions, and 𝑃 =
{𝑃𝐶 , 𝑃𝑂} be a set of parameters such as coefficients, con-

stants, and weights. 𝑃𝐶  represents the parameters for con-

straints 𝐶 and 𝑃𝑂  is that for objectives 𝑂. With the afore-

mentioned set of variables, the typical optimization problem, 

e.g., linear programming, can be defined as follows: 

max{ 𝑷𝒙
𝑂𝒙 | 𝑷𝒙

𝐶𝒙 ≤ 𝑷𝑐𝑜𝑛𝑠𝑡
𝐶 , 𝒙 ≥ 0},                 (1) 

where 𝒙 ∈ ℝ𝑁 is a vector for decision variables, 𝑷𝒙
𝑂 ∈ ℝ𝐿×𝑁 

and 𝑷𝒙
𝐶 ∈ ℝ𝑀×𝑁  represent a coefficient matrix, and 

𝑷𝑐𝑜𝑛𝑠𝑡
𝐶 ∈ ℝ𝑀 is a vector of constants for constraints 𝐶. 

 Optimization model 𝑓 makes 𝑋 optimal for 𝑂 under the 

given 𝐶 and 𝑃. Let 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 〈𝑋∗, 𝑂∗, 𝐶∗〉 be a tuple of a 

plan derived by model 𝑓, where 𝑋∗ is a set of optimized de-

cision variables, 𝑂∗ is a set of derived objective values, and 

𝐶∗ = {𝑐1
∗, 𝑐2

∗, … , 𝑐𝑀
∗ } is a set of binary variables that repre-

sents whether 𝑐 ∈ 𝐶 is satisfied. 

In some cases, the variables of 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 are often coun-

terintuitive under complicated problem setting. Providing 

explanation to answer user questions such as “Why is the 

value of 𝑥1 zero?” and “Why is there no optimal plan that 

satisfies constraint 𝑐1?” is vital to building trust between hu-

mans and the scheduling system, especially for socially 

high-responsible tasks in the real world.  

 In this paper, we aim to answer the question, “Why did 

the optimal plan include something or not include something 

else (that I would have chosen)?” There are numerous ap-

proaches to explain the output of models; in particular, it is 

important to understand which 𝑐 ∈ 𝐶 and 𝑝 ∈ 𝑃 caused the 

counterintuitive plan derivation by the model 𝑓. Related to 

these factors, users are interested in whether constraint 𝑐  
should be included in the problem setting or whether a spe-

cific value of 𝑝 is suitable for deriving a desired plan. 

Thus, we rephrase the question to “What impacts do 𝑐 and 

𝑝 have on determining the 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛?” To the best of our 

knowledge, it is still challenging to quantitatively evaluate 

the effect of those factors by existing approaches in the field 

of XAIP, e.g., contrastive explanation and other basic archi-

tectures (Cashmore et al. 2019; Burt, Klimova, and Primas 

2018). In the field of machine learning, one of the standard 

explanation methods is to calculate the contribution of the 

input features to the model’s prediction by the Shapley value 

(Chen et al. 2022). In this paper, we propose the introduction 

of the Shapley value to achieve a general explanation frame-

work for 𝑐  and 𝑝. We assume 𝑐  and 𝑝 as input factors of 

model 𝑓, and the values of the variables in 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 as a 

model output, in order to define a coalitional game based on 

mathematical optimization models. 

Shapley Value 

The Shapley value is a concept designed to achieve the fair-

est allocation of gained profits between several players in 

coalitional games (Shapley 1953). Let 𝐷 = {1, 2, … , 𝑑} be a 

set of players, 𝑆 be a subset of 𝐷, and 𝑣(𝑆) is a profit made 

by 𝑆. The relative importance of player 𝑖 is calculated by av-

eraging the difference of 𝑣(𝑆) over all possible 𝑆. Subse-

quently, the Shapley value 𝜙𝑖, which assigns credit to each 

player 𝑖, is derived as follows: 

𝜙𝑖 = ∑
|𝑆|! (|𝐷| − |𝑆| − 1)!

|𝐷|!
(𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆))

𝑆⊆𝐷∖{𝑖}

.   (2) 

The Shapley value satisfies the properties of the following 

axioms:  

• Efficiency: The sum of individual contributions should 
equal the total profit achieved through the cooperation of 
all the players. 



 

 

• Monotonicity: If a player always contributes more to one 
game than another, they should receive a higher level of 
credit. 

• Symmetry: If a player always contributes as much as an-
other player, they should have an equal level of credit. 

• Dummy: If a player does not contribute to gain profit, it 
should have zero credit. 

These four axioms have been considered as desirable prop-

erties for fair reward distribution in the game theory (Shap-

ley 1953). In the field of machine learning, these simple and 

intuitive axioms are widely recognized as a necessary qual-

ity for feature importance metrics (Fryer, Strumke, and Nguyen, 

2021). Therefore, we adopt the Shapley value as the contri-

bution of the input factors to the optimization model. 

Explanation Approach by Shapley Values 

Coalitional Game Based on Optimization Models 

In this section, we introduce how to calculate the Shapley 

value of input factors. First, we must define a coalitional 

game that consists of players 𝐷 and profit 𝑣(𝑆) on the basis 

of the optimization model 𝑓. 

 In accordance with the users’ interest, we define player 

𝑖 ∈ 𝐷 of the constraint 𝑐 and the parameter 𝑝 as follows: 

• The constraint 𝑐: let 𝑩𝐶 = {𝐵𝑐1 , 𝐵𝑐2 , … , 𝐵𝑐𝑀} be binary 
variables that represents the inclusion of 𝑐 in the problem 
setting (1: including the constraint in the problem, and 0: 
excluding the constraint) as player 𝑖. 

• The parameter 𝑝: the specific value of 𝑝 itself is suitable 
for player 𝑖. 

Also, instead of considering each 𝑐 and 𝑝 as an independent 

player, it is possible to group them together as one player. 

For example, a player vector of coefficient parameters for 

𝑐1 is as follow: 

𝑝𝑙𝑎𝑦𝑒𝑟 𝑖 = (𝑃𝑥1
𝑐1 , 𝑃𝑥2

𝑐1 , … , 𝑃𝑥𝑁
𝑐1).                  (3) 

 The profit 𝑣(𝑆) should be defined as a numeric or bool-

ean value by the users’ question. The original question, “The 

optimal plan includes something or does not include some-

thing else,” can be represented by the variables of 

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 〈𝑋∗, 𝑂∗, 𝐶∗〉. Thus, we propose the following 

formulations for each case where the question is about a 

continuous value or conditional expression: 

• For questions regarding the continuous value, such as 
“Why is 𝑋∗ or 𝑂∗ the specific value as shown in the opti-
mal plan?,” the obtained value in 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 for the inter-
ested variable itself is suitable for the profit 𝑣(𝑆). 

• For questions regarding the conditional expression, such 
as “Why is 𝑥1 (not) selected in 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛?,” “Why is con-
straint 𝑐1 (not) satisfied in 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛?,” and “Why is there 
no 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛,” we can define 𝑣(𝑆) = 1 if the condition is 
satisfied in 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 obtained by a player set of 𝑆, and 
𝑣(𝑆) = 0 if it is not. 

Procedure of Proposed Explanation Approach 

In accordance with the definition of coalitional games for 

the explanation task of an optimization problem, we propose 

the contribution calculation process as shown in Algorithm 

1. First, this algorithm takes 𝐷, 𝑅, 𝑃𝑟𝑜𝑏𝑙𝑒𝑚, and 𝑓 as input. 

𝐷 consists of player 𝑖, which is a vector or variable of 𝐵𝑐  or 

𝑝. 𝑅 is background data: to determine the effect of input fac-

tors based on the definition of Shapley values as (2), we ob-

serve the change in the scheduling solution due to the pres-

ence or absence of the factor. We simulate “absence” of 

player 𝑖 by replacing the factor in the original problem set-

ting with the reference values it takes in the background data. 

This value should be carefully determined depending on the 

problem setting and users’ interest. We show the typical 

guidelines for each player types, 𝐵𝑐  and 𝑝, as follows: 

• 𝐵𝑐: The binary variable 𝐵𝑐  is introduced to evaluate how 
much the constraint affects the solution relative to “no 
constraint”. When the original problem setting defines 
𝐵𝑐 = 1, i.e., the constraint exists, its absence can be di-
rectly expressed as the opposite, 𝐵𝑐 = 0, to indicate that 
the constraint does not exist. 

• 𝑝: The reference value for representing the absence of pa-
rameter 𝑝 depends heavily on users’ interest. For example, 
the average, minimum, or maximum value of parameter 
𝑝 in a certain set of 𝑂, 𝑋, or 𝐶 would be typical baseline. 
If there are a certain value defined by users, it should be 
used. 

𝑃𝑟𝑜𝑏𝑙𝑒𝑚 is a tuple of variables in the original problem set-

ting to derive the optimal 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 by model 𝑓. Note that 

there is no limitation of the optimization model 𝑓. 

Algorithm 1: Shapley values for an optimization model 

Input:  
 𝐷: List of input factor candidates 𝐶 and 𝑃 
 𝑅: List of background data for input factor candidates 
 𝑃𝑟𝑜𝑏𝑙𝑒𝑚 = 〈𝑋, 𝐶, 𝑂, 𝑃〉: Tuple of variables in the  

original problem setting. 
 𝑓: An optimization model 
Output: List of Shapley values 𝝓 for all 𝑖 ∈ 𝐷 
1:   𝝓 ← EmptyList() 
2: 𝑺 ← GenerateBinaryPermutations(𝐷) 
3:   perturbations ← EmptyList() 
4: for each 𝑆 ∈ 𝑺 do 
5:  𝑆𝑒𝑡𝑢𝑝 ← GenerateSetup(𝑃𝑟𝑜𝑏𝑙𝑒𝑚, 𝑆, 𝐷, 𝑅) 
6:        𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑓(𝑆𝑒𝑡𝑢𝑝) 
7:  𝑣 ← ComputeProfit(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 
8:  perturbations.add((𝑆, 𝑣)) 
9: end for 
10: for each 𝑖 ∈ 𝐷 do 
11:  𝜙𝑖 ← ComputeShapley(𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛𝑠, 𝑖) 
12:  𝝓.add(𝜙𝑖) 
13: end for 
14: return 𝝓 



 

 

 Then, the vector 𝑺 of player subsets 𝑆 is generated as bi-

nary permutations of size 𝐷 (GenerateBinaryPermutations). 

For each subset 𝑆, 𝑃𝑟𝑜𝑏𝑙𝑒𝑚 is updated as 𝑆𝑒𝑡𝑢𝑝 by adopt-

ing the value of players in 𝐷 (GenerateSetup). When the 𝑖-
th element of 𝑆 indicates the presence of player 𝑖 (𝑠𝑖 = 1), 
the original value of player 𝑖  in 𝑃𝑟𝑜𝑏𝑙𝑒𝑚  is utilized, and 

should 𝑠𝑖 = 0, the background data 𝑅 of player 𝑖 is applied 

to simulate the absence. If player 𝑖 represents the group of 

𝐵𝑐  or 𝑝,  all values in the player are changed simultaneously. 

 Next, under the generated 𝑆𝑒𝑡𝑢𝑝, the optimal 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 is 

derived by model 𝑓. The profit 𝑣 for subset 𝑆 is calculated 

in accordance with the user’s question (ComputeProfit). If 

multiple 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛s under the same subset 𝑆 is obtained, the 

average of profits is utilized as 𝑣 . The pair of 𝑣  and 𝑆 is 

added to perturbations. After all profits for subset 𝑆 are de-

rived, we can calculate the Shapley value 𝜙𝑖  for every 

player 𝑖 defined as (2) (ComputeShapley). 

 Figure 1 shows the example calculation flow of our 

framework. We assume that the user’s question is “Why is 

the value of  𝑥1 = 1?” Let us assume there are three kinds 

of input factor candidates: 𝐵𝑐1 , 𝐵𝑐2 , and𝑷𝑥1 . This means 

that the user is interested in the effects of whether the inclu-

sion of 𝑐1 or 𝑐2 and the value of 𝑷𝑥1on the result of 𝑥1 in the 

optimal solution. The background data 𝑅 is defined as the 

removal of the constraints (𝐵𝑐1 = 0 and 𝐵𝑐2 = 0) and vec-

tor for  𝑷𝑥1prepared by the user (0, 0). First, the permuta-

tions of 23  player subsets 𝑺 is generated for input candi-

dates. Next, for each subset, the new problem settings 𝑆𝑒𝑡𝑢𝑝 

are generated by combining 𝐷 and 𝑅, and 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 is cal-

culated via model 𝑓. After that, we obtain the profit 𝑣 = 1 

when 𝑥1 = 1 in 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, and vice versa. Finally, the Shap-

ley value for each input factor can be obtained from pertur-

bations (𝑆, 𝑣). 

 The contributions mean the impact on the value of 𝑥1 . 

Note that the sum of contributions is equal to the difference 

between profit in the original 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 and the background 

data. In Fig.1, 𝐵𝑐1  and 𝐵𝑐2  have positive values, and there-

fore the inclusion of these constraints keeps 𝑥1 = 1. In con-

trast,   𝑃𝑥has a negative value, which indicates that setting 

the parameters as (10, 15) prevents 𝑥1 from being 1. 

Analysis of Obtained Contributions 

The contributions of several types of input factors can be 

quantitatively evaluated. Contributions 𝝓 are expressed in 

the form of an additive decomposition over profit 𝑣. For a 

profit of continuous value, the contribution corresponds to a 

direct increase or decrease in that value. For conditional ex-

pression, it can be interpreted as the probability of condition 

fulfillment. The extraction of high impact 𝑐  and 𝑝 on the 

derivation of optimal plan will be helpful for efficient un-

derstanding of the problem setting. For example, when 𝑐1 

has a large positive contribution, we can answer the users 

question as “Because there is constraint 𝑐1.” This achieves 

simple and uniform comparison of input factors under com-

plicated considerations in optimization models. 

 Quantification also helps users finding a desired plan ef-

ficiently. If users want to change the specific value in 

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, removing a factor that has a significant positive 

contribution to the fulfillment of the variable will make it 

possible to obtain the desired solution. 

  Note that the computing cost of the Shapley value is 

𝒪(2𝑑): it requires a high calculation cost depending on the 

number of input candidates. Therefore, it is helpful to reduce 

the number of input candidates in advance on the basis of 

 

Figure 1: Calculation flow example of Shapley values. 
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the user’s interest or prior knowledge. Grouping the candi-

dates into one player is also effective and can make interpre-

tation of the contribution easy in some cases. Furthermore, 

we can apply existing efficient calculation approaches like 

Monte Carlo sampling (Song, Nelson, and Staum 2016). In 

addition, Cohort Shapley (Mase, Owen, and Seiler 2019) 

and Causal Shapley values (Heskes et al. 2020) may be use-

ful to reflect dependencies among constraints or parameters. 

 This explanation is applicable to a variety of continuous 

value/conditional questions and is independent of the type 

of optimization model. From next section, we show a typical 

combinatorial optimization problem, the personnel assign-

ment, as an example of formulation and explanation process. 

Numerical Experiment of Allocation Problem 

Experimental Setting 

The assignment problem determines which elements of set 

𝐴 should be assigned to the elements of set 𝐵. In this paper, 

we focus on the typical problem of assigning personnel to 

appropriate jobs. We aim to verify that the proposed method 

can generate different explanations for two parameter set-

tings. Let 𝑊 = 〈𝑤1, 𝑤2, … , 𝑤6〉 be a set of six employees 

and 𝐽 = 〈𝑗1, 𝑗2, 𝑗3〉 be a set of three jobs. We define the fol-

lowing optimization problem to maximize the skill match as 

mixed integer linear programming (MILP): 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑶: ∑∑∑ 𝑝𝑤𝑛
𝑜𝑙 ∙ (𝑝𝑗𝑚

𝑜𝑙 )
𝑇

∙

3

𝑚=1

6

𝑛=1

𝑥𝑤𝑛
𝑗𝑚

3

𝑙=1

                (4) 

𝑠. 𝑡.      𝑐1:  𝑥𝑤𝑛
𝑗1 + 𝑥𝑤𝑛

𝑗2 + 𝑥𝑤𝑛
𝑗3 = 1  𝑓𝑜𝑟 (𝑤1, 𝑤2, … , 𝑤6) (5) 

𝑐2:  𝑥𝑤1
𝑗𝑚 + 𝑥𝑤2

𝑗𝑚 +⋯+ 𝑥𝑤6
𝑗𝑚 ≤ 2  𝑓𝑜𝑟 (𝑗1, 𝑗2, 𝑗3)   (6) 

𝑐3 :  

{
 

 𝑥𝑤1
𝑗1 + 𝑥𝑤2

𝑗1 = 1

𝑥𝑤3
𝑗2 + 𝑥𝑤4

𝑗2 = 1

 𝑥𝑤5
𝑗3 + 𝑥𝑤6

𝑗3 = 1.

                                              (7) 

The following vector of binary decision variables 𝒙 rep-

resents the assignment of each employee:  

𝒙𝑤𝑛 = (𝑥𝑤𝑛
𝑗1 , 𝑥𝑤𝑛

𝑗2 , 𝑥𝑤𝑛
𝑗3 )  𝑓𝑜𝑟 (𝑤1, 𝑤2, … , 𝑤6).         (8) 

Employee 𝑤 is assigned to only one job 𝑗 where 𝑥𝑤𝑛
𝑗𝑚 = 1 as 

the constraint 𝑐1. the capacity of each job is only two em-

ployees as the constraint 𝑐2. Each job also has a specified 

assignment constraint 𝑐3. As the objective function 𝑶, we 

assume there are three skills (𝑜1, 𝑜2, 𝑜3) and aim to maxim-

ize the sum of products of skill sets for each employee 𝑷𝑊 =
(𝑝𝑊

𝑜1 , 𝑝𝑊
𝑜2 , 𝑝𝑊

𝑜3  ) and job𝑷𝐽 = (𝑝𝐽
𝑜1 , 𝑝𝐽

𝑜2 , 𝑝𝐽
𝑜3  ). Table 1 shows 

the required skills of each job, and Table 2 shows the skill 

values in the two parameter settings.  

 In this experiment, the optimization problem was solved 

using the Python library, pulp (Mitchell, O'Sullivan, and 

Dunning 2011). Figures 2 and 3 show the optimal placement 

plan in each problem setting, respectively. The black 

squares indicate that corresponding employees assigned to 

their jobs (𝑥𝑤
𝑗
= 1) and the values of objective function (4) 

for each employee and job. Note that each placement is com-

mon in the two settings. 

 

Table 1: Required skills of each job. 

      

(a) Problem 1                 (b)   Problem 2 

Table 2: Skill sets of each employee. 

 

Figure 2: Derived optimal plan in Problem 1. 

 

Figure 3: Derived optimal plan in Problem 2. 
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 Here, we focus on employee 𝑤1 as an explanation target. 

Although this employee has a high 𝑜2  skill values and is 

suitable for job 𝑗2, the optimal solutions under both settings 

placed 𝑤1 at 𝑗1. Thus, we try to answer the question of the 

conditional expression, “Why was 𝑤1 placed in 𝑗1?” As in-

put factor candidates 𝐷, we selected a total of 12 factors: 

three binary variables 𝐵𝑗
𝑐2  for (𝑗1, 𝑗2, 𝑗3) on the maximum 

number of employees, three specified assignment con-

straints 𝐵𝑗
𝑐3  for (𝑗1, 𝑗2, 𝑗3), and six grouped skill sets for each 

employee 𝑷𝑤 = (𝑝𝑤
𝑜1 , 𝑝𝑤

𝑜2 , 𝑝𝑤
𝑜3  )  for (𝑤1, 𝑤2, … , 𝑤6) . For 

the background data, each constraint condition is set to OFF 

(𝐵𝑗
𝑐 = 0), and the average values of each employee skill 

sets are adopted for 𝑷𝑤 as shown in Table 3. Profit 𝑣(𝑆) is 

represented by the value of 𝑥𝑤1
𝑗1 in derived 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛. 

In addition, a basic contrastive explanation is presented as 

a conventional method to evaluate the efficiency of extract-

ing major causes. A suboptimal plan with 𝑤1 in 𝑗1 is gener-

ated by adding the constraint 𝑥𝑤1
𝑗1 = 1 into pulp model. 

Experimental Result 

First, we discuss the results of the obtained contributions. 

Table 4 shows the contributions of input factors calculated 

as the Shapley value for each problem setting. In Problem 1, 

the top three positive contributions are 𝐵𝑗1
𝑐3 , 𝑃𝑤2 , and 𝐵𝑗2

𝑐2 : 

the specified assignment constraint 𝑐3  for  𝑗1 , the skills of 

𝑤2 , and the capacity constraint 𝑐2  of  𝑗2 . This means that 

these factors strongly force 𝑤1 to be placed in 𝑗1. In contrast, 

the contribution of 𝑤1 skills is negative: this value indicates 

that the skill is not suitable for 𝑗1, and 𝑤1 would have pre-

ferred to move to a different job from the viewpoint of the 

skill set. However, the sum of positive contributions ex-

ceeded 𝑤1 skills, and therefore, 𝑤1 had to remain in 𝑗1.  

 Furthermore, we can interpret the contributions with the 

meaning of these factors in the problem setting as the answer 

to the question “Why was 𝑤1 placed in 𝑗1?”.  

• The skills of 𝑤1  were suited for job 𝑗2; however, there 
was no slot available for 𝑤1 because of the capacity con-
straint 𝑐2 in 𝑗2.  

• The constraint 𝑐3  for  𝑗1  required that 𝑤1  or 𝑤2  must be 
in 𝑗1. Compared with the contributions of 𝑤2 skills, it is 
better to assign 𝑤1 rather than 𝑤2 to 𝑗1. 

Although there are multiple types of input factors, we can 

extract the major factors by the contributions. The further 

analysis is possible by asking additional questions and cal-

culating the contribution, e.g., “Why was 𝑤4  and 𝑤6 as-

signed to 𝑗2?” Users can reveal the contributing factors on 

the basis of the quantitative indicators, not human intuition. 

Table 4 (b) shows the contributions in Problem 2. There 

are three factors with high contributions, 𝐵𝑗1
𝑐3 , 𝐵𝑗2

𝑐2 , and  𝑃𝑤6: 

the specified assignment constraint 𝑐3  for  𝑗1 , the capacity 

constraint 𝑐2 of  𝑗2, and the skills of 𝑤6. In contrast to Prob-

lem 1, the contribution of 𝑤2  skills is relatively low. The 

contribution of 𝑤1 skills is also negative; however, the value 

is too low. Then, we can interpret the contributions as fol-

lows:  

• There was no slot available for 𝑤1 in 𝑗2 because of the ca-
pacity constraint 𝑐2 in 𝑗2. 

• Since the skill of 𝑤6  has a high contribution and 𝑤6  is 
suitable for job 𝑗2, there were conflicts between 𝑤1 and 
𝑤6, and the plan that assigned 𝑤6 in 𝑗2 rather than 𝑤1 was 
appropriate from the viewpoint of their skill sets. 

• The constraint 𝑐3 for  𝑗1 required that 𝑤1 should be in 𝑗1. 
Compared to the contributions of 𝑤2 skills, it is better to 
assign 𝑤1, however, this effect is lower than Problem 1. 

In accordance with the Shapley value, we can extract the 

important factors under various parameters settings. 

 

 

(a) Problem 1  

 

(b) Problem 2 

Table 3: Background data of employee’s skill sets. 

              

(a) Problem 1                              (b)   Problem 2 

Table 4: Shapley values for each input factor. 
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 A contribution analysis is also useful to change the prob-

lem setting to move 𝑤1 from 𝑗1. Figure 4 shows the optimi-

zation result under Problem 1 without constraint 𝑐3 for  𝑗1. 

We could confirm that 𝑤1 is assigned to 𝑗2 by removing the 

constraint that has the strongest contribution to keep 𝑤1 in 

𝑗1. If all contributions are low and the desired result cannot 

be obtained by moving any factors, it suggests that none of 

the candidate parameters influenced the assignment in 

which users are interested.  

In our experiments, it took about 3 minutes on average to 

generate the explanation on Intel Core i7-1065G7 CPU 

@1.30GHz with 16GB RAM. Despite the numerous combi-

nations of factors (212), the calculation time of the optimi-

zation task was minimal, and therefore, the exact Shapley 

values could be computed quickly. 

 To compare the derived explanations, Figure 5 shows a 

contrastive suboptimal solution with the constraint that 𝑤1 

must be assigned to 𝑗1 in Problem 1. Blue squares indicate 

that the values of objective function (4) are lower than those 

of the optimal solution, and orange square shows higher 

value. From Fig. 5, although the match of the 𝑤1 assignment 

is better, the values of 𝑤2, 𝑤3, and 𝑤6 became worse. Then, 

it is not possible to tell which of the values of 𝑤2, 𝑤3, and 

𝑤6  had a strong effect on the 𝑤1  assignment only by the 

comparison of derived plans. Fig. 6 shows the optimal solu-

tion with the background data of 𝑤6  skills, however, 𝑤1 

could not be transferred to 𝑗1. Compared with Table 4 (a), 

the contribution of 𝑤6  skills is a positive low value, and 

therefore only removing the effect of 𝑤6 skills is insufficient 

for 𝑤1 . In addition, the explanation of constraints is not 

shown in the suboptimal solution. Thus, it is difficult to 

evaluate the impact of multiple factor types on 𝑤1. In the 

proposed method, the Shapley value distributes the contri-

butions appropriately, and we can discuss the impact of con-

straints and parameters under a unified framework. 

Conclusion and Future Work 

In this paper, to derive reasons for counterintuitive cases in 

optimization problems, we proposed a general explanation 

framework that quantitatively evaluates the contribution of 

constraints and parameters to the plan derivation. The wide 

range of question patterns and optimization models can be 

applied to our framework. We formulated a coalitional game 

based on the optimization model to calculate the Shapley 

value. To show an example of explanation process, we ex-

perimented with typical personnel assignment problem. The 

results show that our framework could extract highly con-

tributing factors under various parameter settings, and pro-

vide directly understandable explanations compared with 

the traditional contrastive explanation approach. 

 In the future, we should collect objective data such as user 

opinions on the usefulness of these explanations. There is a 

gap between the obtained contributions and easy interpreta-

tion for users. We should develop an explanation method 

combined with domain knowledge such as a causal model. 

From the viewpoint of feasibility, the bottleneck is the com-

putational cost of the Shapley value. In the experiment, the 

number of permutations of factor candidates was 212. How-

ever, in large-scale problems, an approximation of the cal-

culation process is required. It is important to assess whether 

a reasonable contribution can be obtained under approxi-

mated conditions. Furthermore, by applying this framework 

to various real-world problems, we contribute to expanding 

the application range of planning optimization and building 

trust between humans and systems. 

 

 

Figure 4: Derived plan constraint 𝑐3 for  𝑗1. 

 

Figure 5: Suboptimal plan in Problem 1. 

 

Figure 6: Derived plan with background data of 𝑤6. 
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