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Abstract

Air pollution is a leading cause of death globally, especially in south-east Asia. Brick1

production contributes significantly to air pollution. However, unlike other sources such2

as power plants, brick production is unregulated and thus hard to monitor. Traditional3

survey-based methods for kiln identification are time and resource-intensive. Similarly, it4

is time-consuming for air quality experts to annotate satellite imagery manually. Recently,5

computer vision machine learning models have helped reduce labeling costs, but they need6

sufficiently large labeled imagery. In this paper, we propose scalable methods using active7

learning to accurately detect brick kilns with minimal manual labeling effort. Through this8

work, we have identified more than 700 new brick kilns across the Indo-Gangetic region:9

a highly populous and polluted region spanning 0.4 million square kilometers in India. In10

addition, we have deployed our model as a web application for automatically identifying11

brick kilns given a specific area by the user.12

Keywords: Active Learning, Satellite Imagery, Sustainable Development, Air Pollution13
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Figure 1: Screenshots from our web application that help detect brick kilns (a) Selecting the
coordinates of the bounding box (red rectangle) (b) Markers in the bounding box where the
model predicts the existence of a brick kiln (c) Statistics of number of brick kilns detected,
their coordinates and model’s predicted probabilities (d) Grad-CAM (Selvaraju et al., 2019)
visual showing where our model focuses on predicted brick kiln image (Best viewed in color)

1. Introduction14

Air pollution kills seven million people worldwide, and 22% of casualties are only from15

India (UNEP, 2019). Annual average PM2.5 (Particulate matter of size ≤ 2.5 µm) of16

India was 24 µg/m3 in 2020, which is significantly higher than the annual WHO limit17

of 5 µg/m3 (Guttikunda and Nishadh, 2022). Air quality researchers use physics-based18

simulators such as CAMx1 to model the air quality (Guttikunda et al., 2019) using an19

inventory of major sources.20

1. https://www.camx.com/
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Brick kilns are one such major source of pollution. They contribute up to 91% of air21

pollution in South Asia (WorldBank, 2020). Also, in South Asia, 144,000 units of brick22

kilns produce 0.94M tonnes of PM, 3.9M tonnes of CO, and 127M tonnes of CO2 annually23

employing 15M workers (Rajarathnam et al., 2014).24

Monitoring these small, unregulated kilns using traditional survey methods is labor and25

resource-intensive and lacks scalability for maintaining a dynamic inventory. Air quality26

experts who run physical models such as CAMx leverage satellite imagery to detect these27

kilns using manual annotation. Scaling this for a country like India would require manual la-28

beling of millions of images, requiring years of time due to the sparsity of brick kilns. Recent29

studies (Lee et al., 2021) have leveraged popular pretained CNN models like VGG16 (Huang30

et al., 2018) and ResNet (He et al., 2015) for transfer learning-based identification of brick31

kilns with imagery from a private satellite. However, such methods require extensive human32

annotation and expertise to curate a vast dataset.33

Our paper proposes scalable methods for identifying brick kilns using publically avail-34

able satellite imagery. We propose to leverage active learning (Settles, 2009) to strate-35

gically curate a dataset for any new region. We also leverage pretrained CNN models like36

VGG16 (Huang et al., 2018) and ResNet (He et al., 2015) and fine tune them on our dataset.37

We utilize Monte Carlo (MC) Dropout (Gal and Ghahramani, 2016) to obtain uncertainty.38

We show that using our methods, we need to annotate only a small number of images to39

obtain brick kiln locations in a new region. On performing active learning on the Indian40

dataset, we concluded that we needed 70% fewer samples than random to achieve a similar41

F1 score. We also find that we could reach 97% of optimal F1 score with active learning,42

whereas random could reach only 90% with the same number of samples labeled.43

Finally, we have developed a web application 2 offering users an accessible and interactive44

interface for brick kiln detection in a given region of interest. Figure 1 shows our web45

application which takes in bounding boxes of the area of interest and detects the kilns46

present in the region while also showing Grad-CAM (Selvaraju et al., 2019) visuals to47

highlight the focus area of the model. Our work is fully reproducible, and we intend to48

release the scripts and data upon acceptance.49

2. Dataset50

We use two different datasets for this work: dataset released by (Lee et al., 2021) from51

Bangladesh as shown in Figure 2a; and our own curated dataset from Delhi, India shown52

in Figure 2b. With the help of researchers from (Guttikunda et al., 2019), we curated a53

first of its kind dataset consisting of 762 brick kiln images across Delhi, India shown in54

Figure 2c. These images are of size 256 × 256, taken using Google Static Maps API at55

zoom level 17 with a 1-meter-to-pixel ratio to match the configuration of the Bangladesh56

(Lee et al., 2021) dataset. We have specifically curated the images Delhi, India since it is a57

highly populous region characterised with alarming levels of air pollution. Additionally, this58

region is located in the highly fertile Indo-Gangetic plain which it a hotspot for production59

of bricks. The dataset also contains 2000 non-brick kiln images from structures visually60

similar to brick kilns to make the dataset more challenging and our model robust. These61

2. https://brick-kilns-detector.streamlit.app/
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include farms, barren land, and thermal power plants taken from the same region. A team62

of three annotators manually verified all images independently to exclude brick kiln images.63

The Cohen-Kappa score (McHugh, 2012) of the annotators is 99.33%.

(a) (b) (c)

Brick Kilns
Uttar Pradesh
Haryana
Delhi

Figure 2: Satellite images of brick kilns from (a) Bangladesh and (b) India. Image (c)
presents brick kilns in the Delhi, India dataset curated with the help of an air quality
expert. All the kilns lie on the outskirts of Delhi.

64

3. Approach65

Air quality experts perform manual annotation on satellite imagery to identify brick kilns.66

However, due to the sparsity of brick kilns it is challenging to scale these methods for a67

large area. Recently, computer vision machine learning models have helped reduce the68

labeling costs. However, they still need sufficiently large labelled data. Our approach69

aims to leverage active learning to strategically curate a dataset for any new region with70

substantially lower number of annotations.71

3.1 Modeling72

We use a variety of pre-trained Convolutional Neural Network (CNN) models, which include73

VGG16 (Huang et al., 2018), ResNet50 (He et al., 2015), DenseNet121 (Huang et al., 2018)74

and EfficientNet-B0 (Tan and Le, 2020), with pre-trained ImageNet weights.75

1. Zero-Shot learning: We finetune the pretrained models on the Bangladesh dataset (Lee76

et al., 2021) and evaluate its performace on the Indian dataset.77

2. Fine Tuned on Target Region: We finetune the pretrained models on Indian dataset78

and evaluate the model performance on Indian dataset.79

3.2 Obtaining model uncertainty80

We use MC Dropout (Gal and Ghahramani, 2016), the state-of-the-art and computationally81

effective method, to obtain predictive uncertainties. Essentially, it does multiple forward82

passes (get MC samples) through the model while keeping the dropout layer active with83

different random seeds. We then obtain mean and standard deviation across these MC84

samples to get a predictive distribution. Refer to appendix A.1.1 for more details.85
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3.3 Active Learning86

Active learning is a strategy to intelligently query samples that improve the model the most.87

We use an acquisition function to choose which samples to label for improving the model.88

We now discuss the baselines and acquisition strategies used in our experiments from (Gal89

et al., 2017) 3. We also propose a new acquisition strategy to combat the class imbalance90

problem.91

1. Entropy: Entropy (Shannon, 1948) is a measure of model’s uncertainty. It might be92

useful to label the points where the predictive entropy is the highest. Entropy is defined93

as:94

H[y | x,Dtrain] = −
∑
c

p(y = c | x,Dtrain) log p(y = c | x,Dtrain) (1)

where p(y = c | x,Dtrain) is predicted probability for class c.95

2. BALD: Bayesian Active Learning by Disagreement (Gal et al., 2017) is a method to96

maximise the information gained about the model parameters, i.e. maximise the mutual97

information between predictions and model posterior.It is mathematically defined as:98

I[y,θ | x,Dtrain] = H[y | x,Dtrain]− Ep(θ|Dtrain)[H[y | x,θ]]

with θ the model parameters and H[y | x,θ] is the entropy of y given model weights θ.99

3. Subset Scoring: We propose a new acquisition function to explicitly select the subset100

of images classified as brick kilns in each iteration. The intuition is to select the points101

that are predicted as positive, but the model is not confident about them. Including102

such points may boost model’s performance for the positive class especially in case of103

class imbalance. The function is defined as follows:104

S[y | x,Dtrain] = I(ŷ = c) · α[y | x,Dtrain] (2)

where α can be one of the acquisition functions discussed earlier.105

4. Random: This acquisition function is equivalent to choosing an image uniformly at106

random from the pool dataset. Prior literatures (Gal et al., 2017; Settles, 2009) on107

active learning consider random sampling as the baseline.108

5. Total baseline: We consider this an oracle baseline, where we train the model on the109

entire labeled dataset except a hold-out test dataset and evaluate the performance on110

the test dataset.111

4. Evaluation112

We first describe the three main experiments:113

1. First, we evaluate the performance of zero shot learning where we fine tune the pre-114

trained model on the Bangladesh dataset and test on the Indian dataset.115

3. (Gal et al., 2017) suggests numerous acquisition strategies like maximising the variation ratios and
maximising the mean of standard deviation. However, for a binary classification task all the strategies
behave similar to BALD
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2. Second, we evaluate the performance of pretrained models fine-tuned on the Indian116

dataset. This is the same as the total baseline mentioned in Section 3.3 for the Active117

Learning experiment.118

3. Third, we perform active learning using different acquisition functions and evaluate119

the need for labelled data.120

4.1 Experimental setup121

We first discuss the experimental settings common across the three experiments. We divide122

the Indian dataset into a (80%, 20%) stratified split such that the train set and test set123

have an equal proportion of brick kilns i.e., 610 and 152 brick kiln images in train and124

test set, respectively. This 20% split is used as a test set across all our experiments. For125

the first experiment (zero-shot performance), we fine-tune (till convergence) on the entire126

Bangladesh dataset containing 2804 images and test on the 576 Indian test images. For the127

second experiment, we fine-tune (till convergence) on the 80% train Indian dataset(2209128

images). For the third experiment, we further split this 80% train set into a stratified 1:99129

ratio set which we use for training (22 images) and as pool set (2187 images) respectively130

for this experiment. We initially fine-tune the pre-trained model on the 22 images. Then,131

in the active learning loop, we add a single image per active learning iteration and fine-tune132

for 5 epochs. To compare the performances of our models, we use standard metrics used in133

prior literature: accuracy, precision, recall, and F1 score.134

4.2 Results and Discussion135

Models Zero Shot Learning Fine tuned on Indian dataset (Total Baseline)

Precision Recall F1 Score Precision Recall F1 Score

VGG16 0.92 0.45 0.60 1.00 0.94 0.97
ResNet50 0.96 0.68 0.80 1.00 0.95 0.97
DenseNet121 0.93 0.71 0.81 0.99 0.95 0.97
EfficientNetB0 1.00 0.66 0.79 0.98 0.96 0.97

Table 2: Performance metrics for different models on the Indian dataset in Zero-shot setting
where models are trained only on the Augmented Bangladesh dataset v/s models fine-tuned
on the Indian dataset. It is evident from the results that models fine-tuned on the Indian
dataset have higher metric values.

4.2.1 Zero Shot Learning v/s Fine tuned on Indian dataset136

We show the result for zero-shot learning in Table 2. Different models are able to achieve137

an F1 score close to 0.8. This shows that we can extend the Bangladesh model to any138

country for which the model is not explicitly trained and reduce the manual efforts. On139

the contrary, most models have low recall due to a lack of adaptability for a new region.140

The models that are fine-tuned on the Indian dataset in contrast achieve higher metrics141

overall. Based on the performance of the metric scores obtained above, we select ResNet142

for performing active learning.143
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4.2.2 Active Learning144

To compare the performance achieved in active learning across different acquisition strate-145

gies, we compare the metric scores after each iteration. We had seen previously from Table146

2 ResNet50 achieves 0.97 F1 score, which is an upper bound for the active learning exper-147

iments, as these models have been trained on the entire train + pool dataset. Figure 3a148

shows that active learning-based acquisition functions perform favourably with respect to149

the random baseline. Our proposed Subset Entropy baseline gives the best performance150

when only a small number of images have been labelled. Table 3b shows that we can get151

within 5% of the best achievable performance using a significantly lower number of images152

for different acquisition functions when compared against the random baseline.153

0 25 50 75 100 125 150 175 200

Number of labelled images

0.5

0.6

0.7

0.8

0.9

F1

Acquisition function
BALD
Entropy
subset entropy
Random (µ± σ)

Total Baseline
Zero-shot baseline

(a)

% BALD Entropy Subset
Entropy

Subset
BALD

Random

25% 7 4 4 6 17
20% 13 5 5 11 32
15% 26 11 11 24 49
10% 35 17 13 32 78
5% 65 33 33 61 200

(b)

Figure 3: (a) F1 score v/s number of labeled images for different querying strategies. Our
proposed acquisition ‘subset entropy’ performs the best in the initial iterations of active
learning and is always better than state-of-the-art BALD acquisition. (b) The table presents
the number of images needed to label to attain F1 scores within 5%, 10%, 15%, 20%, 25%
of the total baseline.

5. Limitations and Future Work154

• In our current work, we only looked at the binary classification task. Drawing inspiration155

from (Lee et al., 2021), we plan to additionally localize the kilns in the image and extend156

our active learning pipeline towards multiple objectives: localization and classification.157

• Our current work treated the classification problem as a binary classification task. In the158

future, we plan to study this formulation as a one-class task. Correspondingly, we also159

plan to look at specialized losses such as the focal losses (Lin et al., 2017).160

6. Conclusion161

Our goal was to develop a scalable method to detect brick kilns. We conclude from our162

results that satellite data can be used to detect brick kilns accurately. Further, we conclude163

that we can develop accurate models by actively annotating images from the target region.164

We believe that our work will likely benefit key stakeholders such as scientists building165

emission inventories and policy makers looking at regulating and monitoring brick kilns by166

automating the current manual process of mapping brick kilns.167
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Appendix A.222

A.1 Background223

We now discuss background work across: obtaining uncertainty from neural networks, active224

learning, and different acquisition strategies.225

A.1.1 Uncertainty in Neural Networks226

Neural networks have been shown to be overconfident, i.e. they can assign a high probability227

to a wrong label (Wilson and Izmailov, 2020). Bayesian neural networks (BNNs) (Wilson228

and Izmailov, 2020; MacKay, 1992) can provide better uncertainty estimates by accounting229

for uncertainty in the model parameters. BNNs introduce a prior p(θ) on model parameters230

θ. After observing the data (D), we can get the conditional distribution (posterior) over231

the parameters (p(θ|D)). The conventional way of predicting from BNNs is to use MCMC232

(Markov Chain Monte Carlo) (Andrieu et al., 2003) methods which are slow (Blundell et al.,233

2015). Monte Carlo dropout (MC dropout) (Gal and Ghahramani, 2016) has emerged as234

an efficient modern technique for estimating uncertainty within neural networks. In the235

MC dropout method, we run multiple forward passes over the input by randomly dropping236

the weights or applying dropout (Srivastava et al., 2014). The authors provide theoretical237

guarantees for MC dropout as an approximate Bayesian method.238

A.1.2 Active Learning239

The efficacy of deep learning models relies on the availability of labeled training data,240

which often demands extensive manual annotation efforts. This challenge has prompted241

the exploration of active learning (Settles, 2009) techniques as a strategic approach to242

minimize annotation costs while retaining model performance. Active learning is a strategy243

to intelligently query samples that improve the model the most. We use an acquisition244

function to choose the samples and pass them to a human annotator or any source that can245

label them. Following is the algorithm of active learning:246

1. We train our model on the initial dataset Dtrain.247

2. We evaluate the acquisition function on the unlabeled data points Dpool (pool data)248

and label the points which optimize the acquisition function.249

3. We add the newly labeled points into the initial dataset and retrain/fine-tune the250

model.251

4. We continue the steps 2 and 3 for K iterations, or till we get sufficiently better per-252

formance on validation data.253

Now we discuss the acquisition functions used in our work:254

entropy: entropy (Shannon, 1948) is a measure of model’s uncertainty. It might be useful255

to label the points where the model is most uncertain. entropy is defined as:256

H[y | x,Dtrain] = −
∑
c

p(y = c | x,Dtrain) log p(y = c | x,Dtrain)

where p(y = c | x,Dtrain) is predicted probability for class c.257
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BALD: BALD or Bayesian Active Learning by Disagreement (Gal et al., 2017) is a method258

to choose points where the model is overall uncertain while computing the entropy over mean259

predictions of MC dropout samples, but each MC dropout prediction is highly confident260

about the class prediction. It is mathematically defined as:261

I[y,θ | x,Dtrain] = H[y | x,Dtrain]− Ep(θ|Dtrain)[H[y | x,θ]]

with θ the model parameters and H[y | x,θ] is the entropy of y given model weights θ.262

A.2 Model evaluation263

Training and Testing on Bangladesh Dataset We create stratified splits of the dataset and264

have 1748 images as the training set, 438 images as the validation set, and 618 images as265

the test set. We use early stopping, based on validation loss, to avoid overfitting the model.266

We fix the learning rate for each model to 2× 10−5. Table A indicate the metrics for each267

model.268

Model Precision Recall F1 Score

VGG16 0.816 0.794 0.805
ResNet50 0.880 0.808 0.842
DenseNet121 0.864 0.780 0.820
EfficientNetB0 0.865 0.795 0.829

Table A: Performance metrics for different models using augmented Bangladesh dataset for
training and testing. We use the same train-test split provided in the paper (Lee et al.,
2021). We find that ResNet50, DenseNet121, and EfficientNetB0 models have comparable
performance.

Table B and Table C are extended version of Table A and Table 2. These tables include269

results for the augmented and non-augmented versions of training data. We observe that270

the augmented version is most of the time better than the non-augmented version in terms271

of scoring metrics.272

Model Accuracy Precision Recall F1 Score

VGG16 0.948 0.753 0.835 0.792
VGG16-A 0.955 0.816 0.794 0.805
ResNet50 0.956 0.883 0.726 0.797
ResNet50-A 0.964 0.880 0.808 0.842
DenseNet121 0.948 0.830 0.698 0.761
DenseNet121-A 0.959 0.864 0.780 0.820
EfficientNetB0 0.943 0.788 0.712 0.748
EfficientNetB0-A 0.961 0.865 0.795 0.829

Table B: Performance metrics for different vanilla and augmented models using Bangladesh
dataset for training and testing.
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Model Accuracy Precision Recall F1 Score

VGG16 0.893 0.805 0.810 0.807
VGG16-A 0.837 0.920 0.451 0.605
ResNet50 0.863 0.943 0.536 0.683
ResNet50-A 0.906 0.963 0.682 0.801
DenseNet121 0.840 0.985 0.431 0.600
DenseNet121-A 0.907 0.939 0.712 0.810
EfficientNetB0 0.870 0.966 0.549 0.700
EfficientNetB0-A 0.905 1.000 0.660 0.795

Table C: Performance metrics for different vanilla and augmented models using Bangladesh
for training and Indian dataset for testing

A.3 Expanding the brick kiln dataset spatially273

We map brick kilns across the Indo-Gangetic (IG) plain, which covers 14 Indian states along274

the river Ganges. A significant portion of the Indian population resides in the IG plain.275

The IG plain is also likely to house a large number of brick kilns due to the availability of276

favorable soil conditions.277

The IG plain covers approximately 0.4 million sq. km, equivalent to 6.4 million images at278

the current resolution. In an ideal scenario, we would perform a forward pass of our model279

on all these images to obtain their labels. However, owing to the limited API calls to access280

these satellite images, we planned to use 82,000 images instead. randomly sampling the281

IG plain for selecting 82,000 images may be inefficient as it misses two important domain282

insights: i) there is spatial locality to brick kilns, i.e., we usually have a cluster of brick kilns;283

ii) the brick kiln sites are more likely to be present close to the river banks. Thus, to create284

this IG plain dataset of 82,000 images, we first manually identified 189 brick kiln sites. We285

then looked into neighboring images and expanded our dataset to include 82,000 images.286

We then ran the forward pass on these 82,000 images. Our model classified 1847 of them as287

brick kilns. We looked into all these images and identified new 704 images containing brick288

kilns. These are shown in Figure A. For the non-classified images, we randomly sampled289

1000 images, and after manual inspection, we found 996 of them to be correctly classified.290

Thus through our approach we were able to reduce the annotation291

A.4 Deployment292

We deploy a web application on Streamlit, as depicted in Figure 1, offering users an acces-293

sible and interactive interface for brick kiln detection in a given area of interest. Once the294

bounding box is defined, our model identifies brick kilns within this area and provides the295

coordinates of the brick kilns. Grad-CAM (Selvaraju et al., 2019) visuals accompany these296

on the original brick kiln image to highlight the areas where the model focuses.297
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Brick Kilns
India

Figure A: We initially manually located approximately 189 brick kilns in the Indo-Gangetic
plain. Subsequently, our model automatically detected an additional 704 new brick kilns in
the vicinity of the manually identified ones, as illustrated in the figure
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