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Abstract

Despite the remarkable success of Large Language Models (LLMs), they still
exhibit a limited capability to align their outputs to the user instructions. In
this work, we introduce a simple and effective method, which we name GUIDE,
that mechanistically increases attention scores in instruction tokens. To support
this operation, we present Influence, a novel metric that highlights how the
user’s instructions propagate through the transformer layers and impact the LLM
output. Our results show that GUIDE improves the accuracy of following certain
instructions from 29.4% to 60.4%, outperforming natural prompting alternatives.1

1 Introduction

Large Language Models (LLMs) are currently the state-of-the-art for Natural Language Processing
(NLP) tasks. Despite this success, pretrained LLMs sometimes struggle to accurately interpret diverse
users’ instructions and may generate outputs that do not align with human expectations. Additionally,
LLMs may produce biased or hallucinated facts, which can limit their practical usefulness. Since
ensuring that LLMs consistently adhere to given instructions is paramount, researchers have designed
methodologies to align the outputs of LLMs with human preferences.

Model fine-tuning usually aligns the output of the LLMs with human intents using Reinforcement
Learning with Human Feedback (RLHF) [15], Reinforcement Learning with AI Feedback
(RLAIF) [13] or Direct Preference Optimization (DPO) [16]. However, these methods have three
significant constraints: they require specialized datasets, often with human annotations, thus reducing
efficiency; they involve substantial computational complexity and cost due to the need for additional
training; and they demand specialized expertise, as successfully implementing the process can be
challenging. Given these constraints, this type of fine-tuning is typically reserved for general-purpose
alignment, ensuring that models are Helpful, Harmless, and Honest [19] and are not suited to address
end users’ specific needs. Supervised fine-tuning (SFT) with techniques such as low-rank adapters
(LoRA [8]) offers a more accessible way to customize a model for individual user requirements.
However, these techniques still face the same three limitations, albeit to a lesser extent. Consequently,
SFT is typically utilized only for very targeted use cases if used at all.

Utilizing LLMs for automated prompt engineering has demonstrated remarkable performance. Black-
Box Prompt Optimization (BPO) is a sophisticated framework that automatically refines human-
written prompts, often unstructured or ambiguous [5]. Similarly, the PE2 framework [24] enhances
prompt performance by refining human-written prompts through a comprehensive search process.
Although PE2 avoids additional model training, it increases complexity, latency, and cost, limiting its
scalability. Both BPO and PE2 are generally designed for broad enhancements in prompt writing.
They are not tailored to meet individual users’ specific intentions or needs.

1Our experiments are available on https://github.com/netop-team/pay_attention_experiment.
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Figure 1: GUIDE uses tags (such as <!-> <-!>) to know where to focus. It then enhances the
importance of highlighted tokens by biasing the attention scores toward them, as shown by the
attention matrices above, where each entry represents the impact of a past token (x-axis) on the
ongoing token (y-axis).

Due to its low cost and large accessibility, prompt engineering is extensively used to align the output
of the LLMs with user preferences. This is clearly demonstrated by popular LLM frameworks like
the system in [23], which empowers LM agents to tackle software engineering tasks. This system
emphasizes crucial instructions through uppercase text and exclamation marks, like "PLEASE DO
NOT DO THAT!" or "THE EDIT COMMAND REQUIRES PROPER INDENTATION." Similarly,
the AI Scientist [14], a leading system for automated scientific discovery, uses strong directives such
as "ABSOLUTELY DO NOT ADD IT AGAIN!!!" to steer the model’s behavior. These examples,
drawn from highly influential frameworks widely used, underscore the pressing need for end-users
to signal what matters most to them in order to guide LLMs toward better alignment with their
goals. Currently, users rely on prompt engineering and forceful language to achieve this alignment.
However, this approach does not consistently deliver positive results as shown in [17].

In this work, we introduce GUIDE (Guided Understanding with Instruction-Driven Enhancements),
a novel and systematic approach that allows users to emphasize critical instructions in their prompts.
GUIDE enables users to influence the attention given to specific tokens by simply enclosing important
text within tags like <!-> <-!> (as shown in the top of Figure 1). These special tags directs
the LLM’s focus, which is done by adding a bias to the attention scores toward the tokens they
enclose. Our implementation is open-source and designed for seamless integration. Our experiments
demonstrate that GUIDE significantly increases the likelihood of the model following key instructions
and retrieving crucial information designated by the user, outperforming natural prompting techniques.

2 GUIDE: Guided Understanding with Instruction-Driven Enhancements

In this section, we present GUIDE, a novel and systematic approach that enables users to highlight
critical instructions within the text input provided to an LLM. To understand how GUIDE operates, it
is essential first to revisit the core mechanism of self-attention, which drives the functioning of LLMs.

Each token k in the input text is initially represented by an embedding, denoted as E
(0)
k , which

undergoes progressive refinement through stacked layers of attention. By the time it reaches the final
layer, L, this embedding E

(L)
k is expected to encapsulate all the semantic information required to

predict the next token, k + 1.

The process operates as follows: at each attention layer ℓ, the embedding of a token k is enhanced
with the semantic information of past tokens (i = 1, 2, . . . , k − 1) and itself. This enrichment occurs

2



through a residual connection, where the embedding E
(ℓ)
k is updated with the output of the attention

layer, which consists of a weighted average of the values V
(ℓ)

i of the past tokens. The vectors V ,
known as values, are derived from a simple linear transformation of the embeddings E

(ℓ)
i , for i ≤ k,

and are responsible for carrying the semantic information from the past tokens.

The extent to which previous tokens influence the semantic update of the token k is determined
by attention logits, denoted as w

(ℓ)
k,i. The logits are then passed through a softmax function, which

normalizes them to sum to one. The resulting normalized weights are known as attention scores
(A(ℓ)) and quantify the degree of influence each past token has on the current token’s semantic
representation at a given layer. Denoting U

(ℓ+1)
k := Attention(ℓ+1)(E(ℓ)

k ) , the operations at layer ℓ
can be summarized as follows2:

E
(ℓ+1)
k = E

(ℓ)
k + U

(ℓ+1)
k = E

(ℓ)
k +

k∑
i=1

A(ℓ+1)
k,i V

(ℓ)
i . (1)

The attention logits, and hence the attention scores, are automatically computed by the model. We
argue that the end user should be able to influence the level of attention each token receives by
explicitly signaling which instructions or pieces of information are critical. By doing so, the user can
effectively guide the model to better align with their intention. We propose to achieve this by simply
adding a bias, denoted by ∆, to the attention logits of the important tokens, i.e., w̄

(ℓ)
k,i = w

(ℓ)
k,i + ∆,

for all tokens i indicated by the user. While this approach is direct, it proves to be highly effective, as
demonstrated in the experimental results section.

The addition of ∆ increases the attention the model pays to the tokens of interest, amplifying their
influence on the generated output. However, because attention scores must sum to one, this adjustment
reduces the attention given to other tokens. If ∆ is set too high, the model might overly focus on the
highlighted tokens, which could disrupt the generation process. Therefore, it is crucial to select an
appropriate ∆ that balances these effects.

Our experiments suggest that for the Mistral and Gemma-2 models, a ∆ of 2 works well for
emphasizing instructions, while a ∆ of 1 is effective for highlighting specific information within the
text. Besides, using ∆ values greater than 5 often led to nonsensical outputs (see App. C.1 and E).

Although these default values improve performance, the optimal choice of ∆ depends on various
factors, including the model, the nature of the task, etc. The most precise way to determine an
appropriate ∆ is through hyperparameter tuning on a validation set.

In this work, we also introduce a heuristic approach for calibrating ∆ with just a couple of forward
passes. The idea is to match the influence increase from ∆ to a "natural" level that could be achieved
through conventional prompting, such as using uppercase. This calibration requires a metric that
evaluates the importance of the selected tokens and tracks how this impact propagates both vertically
across the stacked layers and horizontally across successive tokens.

To maintain simplicity and minimize computational cost, we avoid using gradient-based metrics to
evaluate the impact of a subset of tokens on the overall sequence (for example, see [3],[4], and [18]).
Instead, a more appropriate option appears to be the Attention Rollout method proposed in [1]. This
metric can be easily computed during the forward pass, aligning well with our needs.

The Attention Rollout approach is based on a natural interpretation of attention scores. It postulates
that the influence of a past token i on the update of the current token k is quantified by the attention
score A(ℓ)

k,i. The method addresses the residual connection by assuming that in the updated embedding

E
(ℓ+1)
k , both the previous embedding E

(ℓ)
k and the update vector U

(ℓ+1)
k contribute equally, each

having an impact of 1
2 . The vertical and horizontal flow of the impact RU (E(l)

k ) of a given token (or
subsequence of tokens) of interest U on an embedding E

(l)
k is hence characterized by the following

recurrence:

RU (E(ℓ)
k ) = 1

2

[
RU (E(ℓ−1)

k ) + RU (U (ℓ)
k )

]
= 1

2

[
RU (E(ℓ−1)

k ) +
k∑

i=1
A(ℓ)

k,i · RU (E(ℓ−1)
i )

]
2For simplicity, we have excluded the normalization and feedforward layers from this explanation.
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We argue that Attention Rollout inaccurately represents the flow of attention, particularly when
handling the residual connection. The norm of the past embedding E

(ℓ)
k is typically about 100 times

larger than that of the update vector U
(ℓ+1)
k (see Appendix A). By assuming equal contributions from

these two vectors, Attention Rollout significantly overestimates the importance of past tokens. This
error compounds as the context length increases, leading to an inflated impact estimate that increases
with the context and hence negatively correlates with the model’s likelihood of following the token of
interest, such as adhering to a specific instruction (see Appendix C.4).

To address this issue, we introduce Influence, a new metric designed to quantify the impact flow
of a token or a set of tokens of interest U . This metric corrects Attention Rollout by weighting the
contributions according to the norm of the vectors:

IU (E(ℓ+1)
k ) =

(
∥E

(ℓ)
k ∥ · IU (E(ℓ)

k ) + ∥U
(ℓ+1)
k ∥ · IU (U (ℓ+1)

k )
)

∥E
(ℓ)
k ∥ + ∥U

(ℓ+1)
k ∥

See Appendix B for detailed derivations. Although not flawless, our experiments demonstrate that
Influence correlates positively with the likelihood of a set of tokens impacting the model’s output,
such as following an instruction (e.g., summarizing in French) or retrieving specific information (e.g.,
finding a needle in a haystack). Thus, Influence offers a tool of independent value that can be used,
for example, to compare and predict the impact of different natural prompting techniques.

3 Experiments and analysis

To evaluate the capability of GUIDE to support LLMs in producing outputs aligned with user’s query,
we perform experiments related to text translation and summarization. We obtain similar conclusions
for JSON generation and "a needle in a haystack" tasks (see Appendix C).

In these experiments, we have used text from OpenWebText [6], chosen for its variety in context
lengths. We have divided the dataset into groups based on context length, containing texts from a
500-token window, such as (0, 500], (500, 1000], and so on. From each group, we have randomly
selected 20 texts and generated 10 summaries for each text using multinomial sampling [22].

We conducted experiments using Mistral 7B Instruct[9] with GUIDE, biasing attention scores towards
the instruction Summarize in French. Fig. 2(a) shows the observed probability that the LLM
summary is in French when using GUIDE and compares the results achieved with the baseline
model, with both uppercase and normal prompts, as well as the performance observed when including
‘Important:’ before the prompt instruction.

Our findings show that GUIDE leads to an improvement from 29.4% to 60.4% with respect to the
raw model, and that the best result is achieved with ∆ = 2.

As baselines, we compare the performance of GUIDE to prompt engineering and Supervised Fine-
Tuning (SFT) using LORA (the hyperparameters can be found in Appendix D). Figure 2(a) show that
using uppercase or adding ‘Important’ on the instruction does not provides notable improvements,
consistently underperforming GUIDE, while Figure 2(b) shows that GUIDE outperforms SFT until
1M training tokens. These results confirms that our method is an effective solution for aligning LLMs
to instruction following that does not require additional training.
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Figure 2: Summarization results: (a) GUIDE outperforms prompt engineering techniques like using
uppercase text, and (b) GUIDE demonstrates greater accuracy than SFT up to 1 million training
tokens.

4 Conclusion

Although LLMs achieve state-of-the-art performance in most NLP tasks, they often fail to align
to user instructions. To deal with this problem, we have presented GUIDE, a simple and effective
approach for instruction alignment that does not require neither prompt optimization nor model
fine-tuning. Our paper has demonstrated the benefits of GUIDE, in particular with respect to baseline
prompt engineering, and introduced Influence, a novel metric for Transformer explainability, which
provides new insights on the relations between sequences of tokens in the user’s query and how they
relate to the LLM output.
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A Motivation behind Influence

In this section, we illustrate the motivation behind influence. As described in Section 2, we argue
that Attention Rollout does not properly represent the impact of the attention flow to the transformer
output because it does not take into account the difference of norms between residual connections
and the outputs of attention.

Indeed, as described in the left-side of Fig. 3, ∥E(ℓ)∥ and ∥Attention(ℓ+1)(E(ℓ))∥ differs by a factor
of approximately 100.

To stress the benefits of Influence with respect to attention rollout, we show in the right-side of
Figure 3 the behaviour of these metrics (in log scale) as a function of the context length in two
generic layers of a transformer, considering different types of user’ queries. The right side of Figure
3 shows the attention rollout increases with the context length while influence is characterized by
the opposite behaviour. These results highlight that, in contrast to attention rollout, influence can
efficiently explain the decreasing capability of a transformer to align to the instruction when context
length grows.
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Figure 3: Left : Distribution of ratio between norms of token embeddings before and after attention;
Right: Attention rollout and Influence trends in log scale over context length.

B Influence

In this section, we formally define Influence and explain how it propagates through the transformer.

B.1 Principles

Let us denote by Ū = (x1, . . . , xn) the overall sequence of tokens associated with the user’s query
and with U = (xi, . . . , xj) the tokens related to the instruction that the user desires to highlight.
Based on this analysis, we introduce Influence (IU : RdH → R+) (where d is the attention head
dimension and H is the number of attention heads), a transformer interpretability metric designed to
quantify how sequences of tokens in the user’s query impact each other and relate to the LLM output,
designed based on the following principles:

Initialization: We initialize the Influence value as 1 for tokens within the instruction U , and as 0
elsewhere. Let E0

k ∈ RdH be the embedding of token xk. Then, the Influence initialization can be
formally defined as:

IU (E0
k) = 1{xk∈U}. (2)

Propagation Rules: Given m embedding vectors E1, . . . , Em ∈ RdH , the joint Influence of the
instruction tokens IU : RdH × · · · × RdH → R+ is calculated as the average of each individual
Influence, weighted by the norms of each embedding, as follows:
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IU (E1, E2, . . . , Em) =
∑m

i=1 IU (Ei)∥Ei∥∑m
i=1 ∥Ei∥

. (3)

Additionally, we maintain the invariance of Influence to function composition, i.e.,

IU (f(E)) = IU (E). (4)

Then, the Influence of the instruction tokens at the ℓth layer of the transformer can be computed as
follows:

IU (E(ℓ)
k ) =

IU (E(ℓ−1)
k )

1 + r
(ℓ−1)
k

r
(ℓ−1)
k +

∑k
i=1 A(ℓ)

k,iIU (E(ℓ−1)
i )

1 + r
(ℓ−1)
k

, (5)

where r
(ℓ−1)
k := ∥E

(ℓ−1)
k

∥
∥Attention(ℓ)(E(ℓ−1))k∥ .

B.2 Detailed derivations

Let us denote by d the transformer head dimension, with H the number of attention heads, and with
n the context length. Following the propagation of a transformer layer [21], the embedding on layer
ℓ, denoted by E(ℓ), is computed as follows:

E(ℓ) = Linear
(

Norm
(

E(ℓ−1) + Attention(ℓ)(E(ℓ−1))
))

, (6)

Attention(ℓ)(E) = A(ℓ) · V (ℓ)(E), (7)

where, E(ℓ−1) ∈ RdH×s is the embedding on layer ℓ − 1, A(ℓ) is the attention matrix on layer ℓ,
V (ℓ) : RdH → Rdh is a linear function that maps the token embeddings to the values vector, Norm is
a normalization function, and Linear is a conventional multilayer perceptron (MLP) function. Then,
we can compute the Influence of token k, E(ℓ)

k , as follows:

IU (E(ℓ)
k ) = IU

(
MLP

(
Norm(E(ℓ−1) + Attention(ℓ)(E(ℓ−1)))k

))
= IU

(
(E(ℓ−1) + Attention(ℓ)(E(ℓ−1)))k

)
=

IU (E(ℓ−1)
k ) · ∥E

(ℓ−1)
k ∥ + IU (Attention(ℓ)(E(ℓ−1))k) · ∥Attention(ℓ)(E(ℓ−1))k∥

∥E
(ℓ−1)
k ∥ + ∥Attention(ℓ)(E(ℓ−1))k∥

=
IU (E(ℓ−1)

k ) r
(ℓ−1)
k + IU (Attention(ℓ)(E(ℓ−1))k)

1 + r
(ℓ−1)
k

,

(8)

where r
(ℓ−1)
k := ∥E

(ℓ−1)
k

∥
∥Attention(ℓ)(E(ℓ−1))k∥ .

Influence is computed recursively over layers, i.e., when we compute the Influence on layer ℓ, we
have already computed the Influence on layers 1, . . . , ℓ − 1. This means that IU (E(ℓ−1)

k ) is already
computed, while we still need to compute IU (Attention(ℓ)(E(ℓ−1))k). Developing equation 7:

Attention(ℓ)(E(ℓ−1))k =
s∑

i=1
A(ℓ)

k,iE
(ℓ−1)
i ,

IU (Attention(ℓ)(E(ℓ−1))k) =
∑k

i=1 A(ℓ)
k,i∥E

(ℓ−1)
i ∥ IU (E(ℓ−1)

i )∑k
i=1 A(ℓ)

k,i∥E
(ℓ−1)
i ∥

.
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Then, if we approximate the norm of the embeddings ∥E
(ℓ−1)
i ∥ with a constant, we obtain a simplified

expression

IU (Attention(ℓ)(E(ℓ−1))k) =
k∑

i=1
A(ℓ)

k,iIU (E(ℓ−1)
i ).

With this approximation, equation 8 becomes equal to:

IU (E(ℓ)
k ) =

IU (E(ℓ−1)
k )

1 + r
(ℓ−1)
k

r
(ℓ−1)
k +

∑s
i=1 A(ℓ)

k,i IU (E(ℓ−1)
i )

1 + r
(ℓ−1)
k

. (9)

C Additional experiments

C.1 Evaluating the quality of generated summaries

In addition to verifying that the LLM summary is in French in Section 3, we have also evaluated the
quality of the outputs using BERTScore [25], calculated in comparison to target summaries generated
by a Llama 3 70B model [2].

To highlight the pertinence of BERTScore, in evaluating the quality of the summaries, we show in
Fig. 4 the distribution of the observed BERTScore conditioned to the generated text being in French
or not. We observe that the distribution for texts generated in French is shifted to the right compared
to those not in French, indicating that BERTScore is a suitable metric for assessing the quality of
generated texts.

To measure the impact of GUIDE on the quality of the LLM outputs, we have evaluated the winning
rate by comparing the quality of the texts generated with and without GUIDE in terms of BERTScore.
Specifically, for each pair of texts generated in French (ti,∆, ti,raw) by GUIDE and the unmodified
(raw) model, we have determined which text had a higher BERTScore. Table 1 shows that for a small
enough choice of ∆, the quality of the output is not highly affected, with winning rates of 50.5% for
∆ = 0.5 and ∆ = 1 and 49% for ∆ = 2. These results indicate that GUIDE maintains the model’s
capability to generate semantically correct text. However, as mentioned in Sec. 2, larger values of ∆,
e.g., ∆ = 5, results in poor outputs (see also Appendix E).

0.00 0.25 0.50 0.75
bert-scores

0

2

4

6

D
en

si
ty

in French

False

True

Figure 4: Distribution of Bert scores
conditioned to the generated text being
in French or not.

Table 1: Winning rate of text generated in French
for GUIDE versus the baseline model (Mistral 7B).

∆ Winning Rate

0.5 50.5%
1 50.5%
2 49%
5 38.5%

C.2 Summarization in French with another model

We have conducted the summarization study presented in Section 3 also using the Gemma 2 - 2B
Instruct model [20]. Our results indicate that, even with smaller models, GUIDE can still improve the
accuracy of generating text in French, increasing it from 43.3% to 59.8% without a significant loss in
quality (see Figure 5 and Table 2). Similar to our findings with the Mistral model, using uppercase
letters does not lead to a significant improvement in performance.

Additionally, our results show that setting ∆ = 5 reduces the accuracy to zero.
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Figure 5: Probability of outputting a summary in French - Gemma 2 - 2B

Table 2: Winning rate of text generated in French for GUIDE versus the baseline model (Gemma 2-
2B).

∆ Winning Rate

0.5 53.5%
1 46.7%
2 45.1%

C.3 Further experiments showcasing the benefits of GUIDE

C.3.1 A needle in a haystack

To evaluate the impact of our approach on the model ability to retain information, we have conducted
the Needle in a Haystack test using using Mistral 7B Instruct[9]. This test involves embedding
specific information at a particular location within a text and then asking a question related to that
information at the end of the text. Our hypothesis is that by adding extra attention to this text, the
model’s outputs would improve, as the final representation should be more closely aligned with the
information tokens.

We have followed the methodology outlined by [10]. Specifically, we have inserted specific
information, referred to as the "needle" at variable positions within a given text. After this insertion,
we have asked a question to the LLM related to the inserted information (see the complete prompt on
C.5).

To conduct this experiment, we have sampled 200 texts from the OpenWebText [6] dataset, selecting
25 texts for each context window of size 500, ranging from 0 to 4000 tokens. For each text, the needle
was inserted at 10 different quantiles (10%, 20%, ..., 100%). We placed the needle immediately after
a period (‘.’) to maintain the semantic integrity of the text.

Figure 6 shows the probability of outputting the correct phrase over the context length and the
position of the needle, respectively. The Mistral model demonstrates stable performance across
varying context lengths and needle positions within this window.

As expected, the addition of ∆ to the needle tokens consistently enhances performance from 89.0%
to 95.9%, with optimal values of ∆ around 1. We can also note that, on average, the LLM is more
effective at retrieving information when it is located at the beginning or the end of the text. This is in
accordance with previous results [11, 10].
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Figure 6: Heatmap of scores in a needle in haystack test.

C.3.2 JSON generation

To assess the efficiency of GUIDE in generating outputs in a specified format, we have conducted
experiments focused on JSON generation. For our inputs, we have used texts from books written
between 1510 and 1699, sourced from the BL Books dataset [12]. We have prompted the model to
extract and generate key information about each book in a predetermined JSON format, as detailed in
C.5.

We have randomly selected 300 books from the BL Books dataset and divided each text into context
length windows of 500 tokens, ranging from 0 to 4000 tokens. These text segments were then
incorporated into our template, where the Mistral model was expected to generate a JSON output that
precisely followed the specified format.

We have inputted special attention into the tokens of Your response should follow exactly
this template and we have then evaluated the Jaccard index between the keys of the generated
JSON and the schema.

We observed that the optimal value for ∆ is approximately 3, resulting in an average score
improvement of 30% compared to the raw model (Figure 7).

We also note that in almost every generation the scores were 0 or 100%. This indicates that most of
the time, the generated output was either a perfect match to the requested schema or not in JSON
format at all.
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Figure 7: Jaccard Index vs Context length for the JSON generation experiment

C.4 Influence as a predictor of instruction following

For each of the experiments in Section C, we have evaluated the relationship between the Influence
metric and the probability of obtaining correct outputs. To achieve this, we have calculated both
the ROC AUC score and the correlation between the importance of instruction tokens and the last
token in the sequence. Then, we have compared these results through non-gradient metrics, such as
Attention Rollout and raw attention scores. Our hypothesis is that Influence has a strong positive
correlation with the probability of correct outputs.

Given that the ROC AUC is a classification metric, it was necessary to binarize our scores. In the
French summarization experiment, we have done this by assigning a score of 1 to texts in French and
0 to those in other languages. In the "needle in a haystack" experiment, a score of 1 was given to
prompts that successfully identified the needle information, while those that did not were assigned
a 0. Similarly, for the JSON generation experiment, outputs that adhered to the JSON format were
assigned a 1, and those that did not were assigned a 0.

Table 3 shows the correlation and ROC AUC of each metric to correct output. We note that, attention
rollout shows a negative correlation and an AUC below 0.5 in two out of three experiments. This
observation supports our initial hypothesis that attention rollout may not accurately reflect the model
focus. Also, as expected, we also see that raw attention has a random behavior in two of three setups,
with ROC AUC scores around 0.5.

The stronger positive correlation and ROC AUC between Influence and the likelihood of following
instructions supports our hypothesis that our metric better quantifies the attention flow in a
Transformer than other existing non-gradient metrics.

Table 3: AUC and correlation between the different metrics and the probability that the LLM generates
a correct output.

Metric ROC AUC Correlation
Influence 0.74 0.72

Summarizing in french Attention rollout 0.24 -0.35
Raw attention 0.58 0.13

Influence 0.62 0.12
A needle in a haystack Attention rollout 0.55 0.10

Raw attention 0.48 -0.03

Influence 0.63 0.23
JSON generation Attention rollout 0.31 -0.29

Raw attention 0.64 0.23
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C.5 Prompts used in experiments

Summarization in French

Summarize in French

{context}

A needle in a haystack

<question>
Your objective is to answer the following question based on the context:

{question}

Don’t give information outside the document or repeat our findings
</question>

{context with needle}

<question>
Your objective is to answer the following question based on the context:

{question}

Don’t give information outside the document or repeat our findings
</question>

JSON generation

You are an assistant designed to provide information in JSON format.
I will give you a story, and you need to extract and return specific details from the story.
Do not output anything else than the JSON.
Your response should follow exactly this template:

<schema>
{

"title": "title of the story (string)",
"genre": string,
"characters":

[
{

"name": string,
"description": string. If not available set it to none

}
] (one dict per character),

"author": "the author of the story. If not available, set it to None",
"summary": "a brief summary of the story. Do not write more than 50 words",
"date": "when the story was released (string)",
"scenery": "where the story takes place (string)",

}

</schema>

{content}
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D Supervised Finetuning hyperparameters

In our supervised fine-tuning experiments, we leveraged LoRa techniques [7], setting the sequence
length to 8192 using sample packing and block-attention to prevent cross-sample contamination. We
configured the LoRa rank to 64 and set the alpha parameter to 16. For regularization, we applied a
dropout rate of 0.05. To maximize the adapter’s expressiveness, our LoRa implementation targeted all
modules. The batch size was set to 128k tokens, with a maximum learning rate of 1e-4, following a
cosine scheduler with a 10-step warm-up. Training was conducted for 2 epochs, tracking the number
of tokens processed at each step.

E Examples of poor generation of text

This Appendix provides examples of the model failing to follow user instructions.

E.1 Raw generation (without GUIDE)

A common error occurs when the model simply repeats the given prompt. This example has been
obtained using multinomial sampling at generation time and without GUIDE (∆ = 0).

Prompt

Summarize in French:
The red Ford Expedition mounted the sidewalk along DeKalb Avenue in Fort Greene,
Brooklyn, on Saturday afternoon not once, but twice.
The first time, it narrowly missed two people at the southwest corner of Clermont Avenue,
crashing into a parked car, jumping the curb and hitting another vehicle, the police said.
But the second time, pedestrians along the busy Brooklyn thoroughfare were not so lucky:
The S.U.V. struck and killed a 9-year-old boy, Lucian Merryweather, who was with his mother
on the northeast corner. His 5-year-old brother and a woman who had been in the crosswalk
were hurt.
At first glance, the crash seemed likely to attract attention but unlikely to result in criminal
charges. The driver, Anthony Byrd, 59, of Clinton Hill, remained at the scene and was not
intoxicated, the police said.

Output

The red Ford Expedition mounted the sidewalk along DeKalb Avenue in Fort Greene,
Brooklyn, on Saturday afternoon twice. The first time it narrowly missed two people and
crashed into a parked car, jumping the curb and hitting another vehicle. However, during
the second time, pedestrians were not so lucky as the S.U.V. struck and killed a 9-year-old
boy, Lucian Merryweather, who was with his mother on the northeast corner. His 5-year-old
brother and a woman who had been in the crosswalk were hurt. Initially, the crash appeared
to be unlikely to attract attention and result in criminal charges, as the driver, Anthony Byrd,
59, of Clinton Hill, remained at the scene and was not intoxicated, the police said.

The LLM sometimes generates a very limited number of tokens that, although present in the prompt,
are nonsensical when presented alone (and do not fulfil the user task). In this instance, we employ
multinomial sampling to generate the text (without GUIDE).
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Prompt

Summarize in French:
Vine
Oh, those crazy Sacramento Kings.
On Saturday, head coach George Karl raised some eyebrows by saying guard Seth Curry
would only last in the NBA for "a couple years," per Blake Ellington of Sactown Royalty.
According to Ellington, Curry posted (and deleted) this tweet:
Look familiar?
A day later, the 25-year-old started and knocked down four of seven shots from the field en
route to a 14-point performance in a 133-111 win over the Dallas Mavericks. During Curry’s
postgame interview, DeMarcus Cousins—rocking a sweet towel around his head—chimed in.
"You gon’ be in the league a long time, boy," the big fella said emphatically. "Remember that.
A long time."
Maybe it’s a coincidence, and the All-Star was simply supporting a teammate who’s been
struggling.
But Cousins and Karl’s relationship has been volatile ever since the 64-year-old took the
Kings job in 2014-15.
Snake emoji, indeed.
Update
Regardless of the reason for Cousins’ support, big brother Stephen Curry approved, reacting
to the incident with a 100-laden tweet:
[Vine]

Output

Tweet: Look familiar?

E.2 Generation with GUIDE using unreasonably large ∆

We have noted that ∆ > 5 very often produces incorrect/nonsensical output. In the following example,
we have set ∆ = 9 and performed greedy decoding.

Prompt

<!!-> Summarize in French <-!!>
Paris is the capital and largest city of France. With an official estimated population of
2,102,650 residents in January 2023 in an area of more than 105 km2 Paris is the fourth-
largest city in the European Union and the 30th most densely populated city in the world
in 2022. Since the 17th century, Paris has been one of the world’s major centres of finance,
diplomacy, commerce, culture, fashion, and gastronomy. For its leading role in the arts and
sciences, as well as its early and extensive system of street lighting, in the 19th century, it
became known as the City of Light

Output

1. 19th century, 19th century, 19th century, 19th century, 19th century, 19th century, 19th
century, 19th century, 19th century, 19th century, 19th century, 19th century, 19th century,
19th century, 19th century, 19th century,
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