
StaQ it! Growing neural networks for
Policy Mirror Descent

Anonymous Author(s)
Affiliation
Address
email

Abstract

In Reinforcement Learning (RL), regularization has emerged as a popular tool both1

in theory and practice, typically based either on an entropy bonus or a Kullback-2

Leibler divergence that constrains successive policies. In practice, these approaches3

have been shown to improve exploration, robustness and stability, giving rise to4

popular Deep RL algorithms such as SAC and TRPO. Policy Mirror Descent (PMD)5

is a theoretical framework that solves this general regularized policy optimization6

problem, however the closed-form solution involves the sum of all past Q-functions,7

which is intractable in practice. We propose and analyze PMD-like algorithms8

that only keep the last M Q-functions in memory, and show that for finite and9

large enough M , a convergent algorithm can be derived, introducing no error in10

the policy update, unlike prior deep RL PMD implementations. StaQ, the resulting11

algorithm, enjoys strong theoretical guarantees and is competitive with deep RL12

baselines, while exhibiting less performance oscillation, paving the way for fully13

stable deep RL algorithms and providing a testbed for experimentation with Policy14

Mirror Descent.15

1 Introduction16

Deep RL has seen rapid development in the past decade, achieving super-human results on several17

decision making tasks (Mnih et al., 2015; Silver et al., 2016; Wurman et al., 2022). However, the18

use of neural networks as function approximators exacerbates many challenges of RL, such as the19

difficulties of exploration and brittleness to hyperparameters (Henderson, 2018). Furthermore, the20

empirical behavior often poorly aligns with our theoretical understandings (Ilyas et al., 2020; Kumar21

et al., 2020; van Hasselt et al., 2018). To address these issues, many successful deep RL algorithms22

consider regularized versions of the original objective, typically either by regularizing the Bellman23

operators with an entropy bonus e.g. SAC (Haarnoja et al., 2018) or by introducing a KL constraint24

between successive policies, e.g. TRPO (Schulman et al., 2015).25

Policy Mirror Descent (PMD, Abbasi-Yadkori et al. (2019); Lazic et al. (2021); Zhan et al. (2023))26

applies Mirror Descent (Nemirovsky & Yudin, 1983; Beck & Teboulle, 2003), a first-order convex27

optimization method, to the policy improvement step. In the more general entropy-regularized form of28

PMD, starting with the previous Q-function Qk, the improved policy at each iteration is the solution29

of the following optimization problem30

πk+1(s) = argmax
p∈∆(A)

{
Ea∼p[Q

k(s, a)]− τh(p)− ηDR(p, πk)
}

(1)

for some entropy weight τ ≥ 0 and (inverse) step size η > 0, where h is the negative Shannon31

entropy and DR is the Bregman divergence associated with the convex regularizer R and πk is the32

previous policy. This has received a lot of recent theoretical interest as a unifying framework for33

many regularized policy iteration algorithms (Neu et al., 2017; Geist et al., 2019).34

Submitted to the 18th European Workshop on Reinforcement Learning (EWRL 2025). Do not distribute.

Figure 1: Overview of StaQ, showing the continual training of a Q-function (left), from which we
periodically “stack” frozen weight snapshots to form the policy (right). See Sec. 5 for more details.
At each iteration k, two steps are performed. i) Policy evaluation, where we generate a dataset Dk

of transitions that are gathered by a behavior policy πb
k, typically derived from πk, and then learn

Qπk from Dk. ii) Policy update, performed by “stacking” the NN of Qπk into the current policy. The
policy update is optimization-free and theoretically grounded (Sec. 4), thus only the choice of πb

k and
the policy evaluation algorithm can remain sources of instabilities in this deep RL setting.

When also using the negative entropy as the convex regularizer, the Bregman divergence reduces to35

the KL-divergence between successive policies, the resulting policy that solves Eq. 1 at each iteration36

k is given by a weighted average of past Q-functions37

πk ∝ exp

(
α

k∑
i=0

βiQk−i

)
, (2)

with temperature α := 1/(η + τ) and decay factor β := η/(η + τ) (see Sec. 3 for more details).38

The averaging over previous Q-functions induced by the DKL regularizer is known to average out39

approximation errors over the true Q-functions and has stabilizing properties in practice (Geist et al.,40

2019; Abbasi-Yadkori et al., 2019).41

The sum in Eq. 2 can be computed exactly if the Q-function is a linear function of some fixed42

feature space, as summing Q-functions is equivalent to summing their weights. Beyond that, for43

non-linear function approximators such as neural networks, no closed form update for Eq. 2 exists in44

parameter space, requiring the storage of all past Q-functions, which is intractable. As such, prior45

work considered several type of approximations to the policy update in Eq. 1, such as following the46

natural gradient as in TRPO (Schulman et al., 2015) or performing a few gradient steps over Eq. 1 as47

in MDPO (Tomar et al., 2020). Instead, we consider a PMD-like algorithm that implements a policy48

similar to Eq. 2, but where at most M Q-functions are stored. This corresponds to solving Eq. 149

approximately, replacing πk in the DKL regularization with a slightly altered policy π̃k, for which we50

have deleted the oldest Q-function (Sec. 4). Abbasi-Yadkori et al. (2019) performed an experiment of51

the sort on an RL task, keeping in memory the past 10 Q-functions, and noted increased stability and52

performance over vanilla DQN, but provided no theoretical justification for keeping a finite set of53

Q-functions, which we adress in this paper. Interestingly, we show that for M large enough, replacing54

πk with π̃k will not hinder the asymptotic convergence to π⋆.55

This paper extends prior work on PMD (Abbasi-Yadkori et al., 2019; Lazic et al., 2021; Zhan et al.,56

2023) by proposing a provably converging finite-memory PMD-like algorithm (see Fig. 1), that both57

has strong theoretical guarantees and is fully implementable with promising empirical performance.58

In detail, i) we theoretically study the convergence of PMD-like algorithms that store up to M59

Q-functions, and show that this finite-memory algorithm still converges if M is large enough. ii) We60

show that by batching the Q-functions we can efficiently compute the full stack of Q-functions on61

GPU in parallel. iii) We show on a large set of tasks that StaQ, the resulting Deep RL algorithm, with62

its closed-form entropy regularized policy update, is competitive with deep RL baselines on a wide63

range of MuJoCo (discrete-action setting) and MinAtar environments, while demonstrating stabilized64

learning, bringing us closer to a completely stable deep RL algorithm.65

2 Related Work66

Regularization in RL. Regularization has seen widespread usage in RL. It was used with (nat-67

ural) policy gradient ((N)PG) (Kakade, 2001; Schulman et al., 2015; Yuan et al., 2022), policy68

search (Deisenroth et al., 2013), policy iteration (Abbasi-Yadkori et al., 2019; Zhan et al., 2023) and69

2

value iteration methods (Fox et al., 2016; Vieillard et al., 2020b). Common choices of regularizers70

include minimizing the DKL between the current and previous policy (Azar et al., 2012; Schulman71

et al., 2015) or encouraging high Shannon entropy (Fox et al., 2016; Haarnoja et al., 2018), but other72

regularizers exist (Lee et al., 2019; Alfano et al., 2023). We refer the reader to Neu et al. (2017); Geist73

et al. (2019) for a broader categorization of entropy regularizers and their relation to existing deep74

RL methods. In this paper, we use both a DKL penalization w.r.t. the previous policy and a Shannon75

entropy bonus in a policy iteration context. In Vieillard et al. (2020b), both types of regularizers76

were used but in a value iteration context. Abbasi-Yadkori et al. (2019); Lazic et al. (2021) are policy77

iteration methods but only use DKL penalization.78

Policy Mirror Descent. Policy Mirror Descent is a family of policy optimization algorithms that can79

be all characterized by a similar objective functions, where a new policy is found by solving Eq. 1.80

Prior works on PMD focus mostly on performing a theoretical analysis of convergence speeds or81

sample complexity for different choices of regularizers (Li et al., 2022; Johnson et al., 2023; Alfano82

et al., 2023; Zhan et al., 2023; Lan, 2022; Protopapas & Barakat, 2024). As PMD provides a general83

framework for many regularized RL algorithms, PMD theoretical results can be naturally extended to84

many policy gradient algorithms like Natural PG (Khodadadian et al., 2021) and TRPO (Schulman85

et al., 2015) as shown in Neu et al. (2017); Geist et al. (2019). However, the deep RL algorithms86

from the PMD family generally perform inexact policy updates, adding an additional source of error87

from the theoretical perspective. For example, TRPO and the more recent MDPO (Tomar et al.,88

2020) rely on approximate policy updates using policy gradients. We build on (Abbasi-Yadkori et al.,89

2019; Lazic et al., 2021; Zhan et al., 2023) by proposing a finite-memory variant, proving the new90

convergence results and offering a new deep RL algorithm policy update step that does not introduce91

any additional error, in contrast to prior works.92

Growing neural architectures and ensemble methods in RL. Saving past Q-functions has previ-93

ously been investigated in the context of policy evaluation. In Tosatto et al. (2017), a first Q-function94

is learned, then frozen and a new network is added, learning the residual error. Shi et al. (2019) uses95

past Q-functions to apply Anderson acceleration for a value iteration type of algorithm. Anschel96

et al. (2017) extend DQN by saving the past 10 Q-functions, and using them to compute lower97

variance target values. Instead of past Q-functions, Chen et al. (2021); Lee et al. (2021); Agarwal et al.98

(2020); Lan et al. (2020) use an ensemble of independent Q network functions to stabilize Q-function99

learning in DQN type of algorithms. The aforementioned works are orthogonal to ours, as they are100

concerned with learning one Q, while policy evaluation in StaQ is a secondary choice. Conversely,101

both Girgin & Preux (2008) and Della Vecchia et al. (2022) use a special neural architecture called102

the cascade-correlation network (Fahlman & Lebiere, 1989) to grow neural policies. The former103

work studies such policies in combination with LSPI (Lagoudakis & Parr, 2003), without entropy104

regularization. The latter work is closer to ours, using a DKL-regularizer but without a deletion105

mechanism. As such the policy grows indefinitely, limiting the scaling of the method. Finally,106

Abbasi-Yadkori et al. (2019) save the past 10 Q-functions to compute the policy in Eq. 2 for the107

specific case of β = 1, but do not study the impact of deleting older Q-functions as we do in this108

paper. Growing neural architectures are more common in the neuroevolution community (Stanley &109

Miikkulainen, 2002), and have been used for RL, but are beyond the scope of this paper.110

Parallels with Continual Learning. Continual Learning (CL) moves from the usual i.i.d assumption111

of supervised learning towards a more general assumption that data distributions change through112

time (Parisi et al., 2019; Lesort et al., 2020; De Lange et al., 2021; Wang et al., 2024). This problem is113

closely related to that of incrementally computing πk in Eq. 2, due to the differing data distributions114

that each Q-function is trained on, and our approach of using a growing architecture to implement115

a KL-regularized policy update is inspired by parameter isolation methods in the CL literature,116

which offer some of the best stability-performance trade-offs (see Sec. 6 in De Lange et al. (2021)).117

Parameter isolation methods were explored in the context of continual RL (Rusu et al., 2016), yet118

remain understudied in a standard single-task RL setting.119

3 Preliminaries120

Let a Markov Decision Problem (MDP) be defined by the tuple (S,A,R, P, γ), such that S and A121

are finite state and action spaces, R is a bounded reward function R : S ×A 7→ [−Rx, Rx] for some122

positive constant Rx, P defines the (Markovian) transition probabilities of the decision process and γ123

is a discount factor. The algorithms presented in this paper can be extended to more general state124

3

spaces. However, the limitation to a finite A is non-trivial to lift due to the sampling from softmax125

distributions as in Eq. 2. We discuss in Sec. 7 potential ways to address this limitation.126

Let ∆(A) be the space of probability distributions over A, and h be the negative entropy given by127

h : ∆(A) 7→ R, h(p) = p · log p, where · is the dot product and the log is applied element-wise to128

the vector p. Let π : S 7→ ∆(A) be a stationary stochastic policy mapping states to distributions over129

actions. We denote the entropy regularized V-function for policy π and regularization weight τ > 0130

as V π
τ : S 7→ R, which is defined by V π

τ (s) = Eπ [
∑∞

t=0 γ
t{R(st, at)− τh(π(st))}|s0 = s].131

In turn, the entropy regularized Q-function is given by Qπ
τ (s, a) = R(s, a) + γEs′ [V

π
τ (s′)].132

The V-function can be written as the expectation of the Q-function plus the current state en-133

tropy, i.e. V π
τ (s) = Ea [Q

π
τ (s, a)] − τh(π(s)) which leads to the Bellman equation Qπ

τ (s, a) =134

R(s, a) + γEs′,a′ [Qπ
τ (s

′, a′)− τh(π(s′))]. In the following, we will write policies of the form135

π(s) ∝ exp(Q(s, ·)) for all s ∈ S more succinctly as π ∝ exp(Q). We define optimal V and Q136

functions where for all s ∈ S, a ∈ A, V ⋆
τ (s) := maxπ V

π
τ (s) and Q⋆

τ (s, a) := maxπ Q
π
τ (s, a).137

Moreover, the policy π⋆ ∝ exp
(

Q⋆
τ

τ

)
satisfies Qπ⋆

τ = Q⋆
τ and V π⋆

τ = V ⋆
τ simultaneously for all138

s ∈ S (Zhan et al., 2023). In the following, we will overload notations of real functions defined on139

S × A and allow them to only take a state input and return a vector in R|A|. For example, Qπ
τ (s)140

denotes a vector for which the ith entry i ∈ {1, . . . , |A|} is equal to Qπ
τ (s, i). Finally we define141

R̄ := Rx+γτ log |A|
1−γ , as the finite upper-bound of ∥Qπ

τ ∥∞ for any policy π, that can be computed by142

assuming the agent collects the highest reward and entropy possible at every step.143

3.1 Entropy-regularized policy mirror descent144

To find π⋆, we focus on Entropy-regularized Policy Mirror Descent (EPMD) methods (Neu et al.,145

2017; Abbasi-Yadkori et al., 2019; Lazic et al., 2021) and notably on those that regularize both the146

policy update and the Q-function (Lan, 2022; Zhan et al., 2023). The PMD setting discussed here is147

also equivalent to the regularized natural policy gradient algorithm on softmax policies of Cen et al.148

(2022). Let πk be the policy at iteration k of EPMD, and Qk
τ := Qπk

τ its Q-function. The next policy149

in EPMD is the solution of the following optimization problem:150

∀s ∈ S, πk+1(s) = argmax
p∈∆(A)

{Qk
τ (s) · p− τh(p)− ηDKL(p;πk(s))} (3)

∝ πk(s)
η

η+τ exp

(
Qk

τ (s)

η + τ

)
, (4)

where DKL(p; p
′) = p · (log p − log p′) and η > 0 is the DKL regularization weight. The closed151

form expression in Eq. 4 is well-known and its proof can be checked in, e.g. Vieillard et al. (2020a).152

We let α = 1
η+τ and β = η

η+τ , hereafter referred to as a step-size and a decay factor respectively.153

Let ξk be a real function of S × A for any positive integer k. We assume as the initial condition154

that π0 ∝ exp(ξ0) with ξ0 = 0, i.e. π0 is uniform over the actions. At every iteration of EPMD, the155

update in Eq. 4 yields the following logits update156

πk+1 ∝ exp(ξk+1), ξk+1 = βξk + αQk
τ . (5)

From the recursive definition of ξk+1, it can easily be verified that ξk+1 = α
∑k

i=0 β
k−iQi

τ . The157

convergence of EPMD is characterized by the following theorem158

Theorem 3.1 (Adapted from Zhan et al. (2023), Thm. 1). At iteration k of EPMD, the Q-function of159

πk satisfies
∥∥Q⋆

τ −Qk
τ

∥∥
∞ ≤ γdk−1

(∥∥Q⋆
τ −Q0

τ

∥∥
∞ + 2β ∥Q⋆

τ∥∞
)
, with d = β + γ(1− β) < 1.160

The above theorem shows that by following EPMD, we have a linear convergence of Qk
τ towards Q⋆

τ ,161

with a convergence rate of d. In the next section, we will be interested in an approximate version of162

EPMD, where the Q-function Qk
τ is computed exactly but where ξk is limited to summing at most M163

Q-functions. We name this setting finite-memory EPMD. In the main paper, we only focus for clarity164

on the error introduced by this deletion mechanism in the policy update. The theoretical analysis of165

our algorithm that takes into account errors in policy evaluation is deferred to App. A.166

4

4 Finite-memory policy mirror descent167

Let M > 0 be a positive integer defining the maximum number of Q-functions we are allowed to168

store. As a warm-up, we first show in Sec. 4.1 a straightforward implementation of finite-memory169

EPMD, where we simply truncate the sum of the Q-functions in Eq. 2 to the last M Q-functions.170

The main step in this analysis is to quantify the effect of the finite-memory assumption on the policy171

improvement theorem. As in the class of approximate algorithms analyzed in Zhan et al. (2023), the172

algorithm in Sec. 4.1 always exhibits an irreducible error for a finite M . To address this issue, we173

introduce a weight corrected algorithm in Sec. 4.2 that rescales the policy in Eq. 2 to account for its174

finite-memory nature. This rescaling introduces long range dependencies that complicate the analysis,175

but can result in convergence to Q⋆
τ , without residual error, provided a large but finite M .176

4.1 Vanilla finite-memory EPMD177

Consider an approximate EPMD setting where the update to ξk is given by178

ξk+1 = βξk + α
(
Qk

τ − βMQk−M
τ

)
, (6)

with Qk−M
τ := 0 whenever k −M < 0. Compared to ξk+1 in Eq. 5, we both add the new Qk

τ and179

‘delete’ an old Q-function by subtracting Qk−M
τ in Eq. 6. As a result, ξk+1 can now be written as180

ξk+1 = α
∑M−1

i=0 βiQk−i
τ , which is a finite-memory EPMD algorithm using at most M Q-functions.181

We now want to investigate if we have any convergence guarantees of Qk
τ towards Q⋆

τ as for182

EPMD. Let the policy π̃k be defined by π̃k ∝ exp(ξ̃k) with ξ̃k = α
∑M−2

i=0 βiQk−1−i
τ . Here,183

ξ̃k = ξk − αβM−1Qk−M
τ , i.e. it is obtained by deleting the oldest Q-function from ξk and thus is a184

sum of M − 1 Q-functions. The update in Eq. 6 can now be rewritten as ξk+1 = βξ̃k + αQk
τ . From185

Sec. 3, we recognize this update as the result of the following optimization problem:186

for all s ∈ S, πk+1(s) = argmax
p∈∆(A)

{Qk
τ (s) · p− τh(p)− ηDKL(p; π̃k(s))}. (7)

In this approximate scheme, we compute the DKL regularization w.r.t. π̃k instead of the previous187

policy πk. This can negatively impact the quality of πk+1 as it might force πk+1 to stay close to the188

potentially bad policy π̃k. In the following theorem, we provide a form of an approximate policy189

improvement of πk+1 on πk, that depends on how close π̃k is to πk. This theorem applies to any190

policy π̃k, therefore it can be of interest beyond the scope of this paper.191

Theorem 4.1 (Approximate policy improvement). Let πk ∝ exp(ξk) be a policy with associated192

Q-function Qk
τ . Let π̃k ∝ exp(ξ̃k) be an arbitrary policy. Let πk+1 be the policy optimizing Eq. 7193

w.r.t. the hereby defined Qk
τ and π̃k, then the Q-function Qk+1

τ of πk+1 satisfies194

Qk+1
τ ≥ Qk

τ − γη
maxs∈S ∥(πk − π̃k)(s)∥1

∥∥∥ξk − ξ̃k

∥∥∥
∞

1− γ
. (8)

195

The proof of Thm. 4.1 and all future proofs are given in App. A. Applying Thm. 4.1 to our setting196

gives the following policy improvement lower bound197

Corollary 4.1.1. Let πk ∝ exp(ξk) be a policy with associated Q-function Qk
τ , such that ξk =198

α
∑M−1

i=0 βiQk−1−i
τ . Let π̃k ∝ exp(ξ̃k) be the policy such that ξ̃k = α

∑M−2
i=0 βiQk−1−i

τ . Let πk+1199

be the policy optimizing Eq. 7, then the Q-function Qk+1
τ of πk+1 satisfies200

Qk+1
τ ≥ Qk

τ − γβM min
{
2, αβM−1R̄

}
R̄

1− γ
. (9)

201

In vanilla EPMD, it is guaranteed that Qk+1
τ ≥ Qk

τ (Zhan et al., 2023). In this approximate setting,202

the error is arbitrarily close to 0 through the term βM by choosing a large enough M , since β < 1.203

Having quantified the error in the policy improvement step, we follow the general steps of the proof204

of approximate EPMD of Zhan et al. (2023) and come to the following convergence guarantees.205

5

Theorem 4.2 (Convergence of vanilla finite-memory EPMD). After k ≥ 0 iterations of Eq. 6,206

we have that
∥∥Q⋆

τ −Qk
τ

∥∥
∞ ≤ γdk ∥Q⋆

τ∥∞ + βMC1, with d = β + γ(1 − β) < 1 and C1 =207

2γR̄
1−γ

(
1 + γ(1−βM)

(1−β)(1−γ)

)
.208

Convergence of finite-memory EPMD is still at a rate of d as with exact EPMD. However, we209

eventually reach an error of βMC1, that does not decrease as k increases, and that we can only control210

by increasing the memory size M . A problem with the current algorithm is that even if all past211

Q-functions are equal to Q⋆
τ , then τξk = (1− β)

∑M−1
i=0 βiQ⋆

τ = (1− βM)Q⋆
τ , whereas we know212

that asymptotically ξk should converge to the logits of π⋆ (Sec. 3) which are Q⋆
τ

τ . This suggests a213

slightly modified algorithm that rescales ξk by 1− βM , which we analyze in the next section.214

4.2 Weight corrected finite-memory EPMD215

Consider now the alternative update to ξk given by216

ξk+1 = βξk + αQk
τ +

αβM

1− βM
(Qk

τ −Qk−M
τ), (10)

where Qk−M
τ := 0 whenever k −M < 0. In contrast to the vanilla algorithm in Sec. 4.1, we now217

delete the oldest Q-function in ξk and also slightly overweight the most recent Q-function to ensure218

that the Q-function weights sum to 1. Indeed, assuming that ξ0 := 0, we can show (see App. A.4.1219

for a proof) for all k ≥ 0 that the logits only use the past M Q-functions and are given by220

ξk+1 =
α

1− βM

M−1∑
i=0

βiQk−i
τ . (11)

Similar to the previous section, we introduce a policy π̃k ∝ exp(ξ̃k) with ξ̃k = ξk + αβM−1

1−βM (Qk
τ −221

Qk−M
τ) such that logits of πk+1 are given by ξk+1 = βξ̃k + αQk

τ . This form of ξk+1 implies that222

πk+1 satisfies the policy update in Eq. 7, and thus Thm. 4.1 applies and we have223

Corollary 4.1.2. Let πk ∝ exp(ξk) be a policy with associated Q-function Qk
τ , such that ξk =224

α
1−βM

∑M−1
i=0 βiQk−1−i

τ . Let π̃k ∝ exp(ξ̃k) be the policy such that ξ̃k = ξk+
αβM−1

1−βM (Qk
τ −Qk−M

τ).225

Let πk+1 be the policy optimizing Eq. 7 with the hereby defined Qk
τ and π̃k, then the Q-function Qk+1

τ226

of πk+1 satisfies227

Qk+1
τ ≥ Qk

τ − 2γβM

∥∥Qk
τ −Qk−M

τ

∥∥
∞

(1− γ)(1− βM)
. (12)

228

Compared to the approximate policy improvement of Sec. 4.1, we see that the lower-bound in229

Eq. 12 depends on
∥∥Qk

τ −Qk−M
τ

∥∥
∞ instead of just

∥∥Qk−M
τ

∥∥
∞. Thus, we can expect that as the230

Q-functions converge to Q⋆
τ , we get tighter and tighter guarantees on the policy improvement step,231

which in turn guarantees convergence to Q⋆
τ without the residual error of Sec. 4.1. The next two232

results show that indeed, for M large enough, the finite-memory EPMD scheme defined by Eq. 10233

leads to convergence to Q⋆
τ . Lem. 4.3 provides an upper bounding sequence for

∥∥Q⋆
τ −Qk

τ

∥∥
∞.234

Lemma 4.3. Let xk+1 = d1xk + d2xk−M be a sequence such that ∀k < 0, xk =
∥Q⋆

τ∥∞
γ , x0 =235

∥Q⋆
τ∥∞ +

∥∥Q0
τ

∥∥
∞, d1 := β + γ 1−β

1−βM + γc2, d2 := 2c1γ
2

1−γ , c1 := βM

1−βM , and c2 :=
(

1+γ
1−γ − β

)
c1.236

After k ≥ 0 iterations of Eq. 10, we have that
∥∥Q⋆

τ −Qk
τ

∥∥
∞ ≤ xk.237

Then, we compute values of M for which the sequence xk converges to 0 and characterize the238

convergence rate of
∥∥Q⋆

τ −Qk
τ

∥∥
∞ through Thm. 4.4.239

Theorem 4.4 (Convergence of weight corrected finite-memory EPMD). With the definitions of240

Lemma 4.3, if M > log (1−γ)2(1−β)
γ2(3+β)+1−β (log β)

−1 then limk→∞ xk = 0. Moreover, ∀k ≥ 0,241 ∥∥Q⋆
τ −Qk

τ

∥∥
∞ ≤ (d1+d2d

−1
3)k max

{
∥Q⋆

τ∥∞
γ , ∥Q⋆

τ∥∞+
∥∥Q0

τ

∥∥
∞

}
, where d3 :=

(
dM1 + d2

1−dM
1

1−d1

)
242

and limM→∞ d1 + d2d
−1
3 = β + γ(1− β).243

6

Table 1: Training times for StaQ (5 million steps), as a function of M , on Hopper-v4 (state dim.=11)
and Ant-v4 (state dim. = 105), computed on an NVIDIA Tesla V100 and averaged over 3 seeds.

Memory size M 1 50 100 300 500

Hopper-v4 Training time (hrs) 9.8 10.1 10.3 10.3 10.9

Ant-v4 Training time (hrs) 10.4 10.7 10.3 11 10.5

Thm. 4.4 defines a minimum memory size that guarantees convergence to Q⋆
τ . This minimum M244

depends only on β and γ, and is usually within the range of practical values: for example, with245

γ = 0.99 and β = 0.95, the minimum M suggested by Thm. 4.4 is 265, which is reasonable in terms246

of memory and computation with current GPUs (we used M = 300 in all our experiments). As can247

be expected, these values of M are generally pessimistic and even with higher values of β, we did248

not observe in practice better performance when using as large M as suggested by Thm. 4.4.249

In terms of convergence rate, d1 + d2d
−1
3 given in Thm 4.4 tends to d—the convergence rate of exact250

EPMD—as M goes to infinity. Thus, it is slower than exact EPMD, and slower than the algorithm in251

Sec. 4.1, but unlike the latter it does not have an irreducible error and converges to Q⋆
τ .252

5 Practical implementation253

Since we only require a finite number of M Q-functions in Thm. 4.4 (for sufficiently large M),254

we can exactly implement the policy update step by stacked neural networks (SNN, illustrated in255

Fig. 1). By using batched operations we make efficient use of GPUs and compute multiple Q-values256

in parallel. We call the resulting algorithm StaQ. After each policy evaluation, we push the weights257

corresponding to this new Q-function onto the stack. If the stacked NN contains more than M NNs,258

the oldest NN is deleted in a “first in first out” fashion.259

To further reduce the impact of a large M , we pre-compute ξk for all entries in the replay buffer1 at260

the start of policy evaluation. The logits ξk are used to sample on-policy actions when computing the261

targets for Qk
τ . As a result of the pre-computation, during policy evaluation, forward and backward262

passes only operate on the current Q-function and hence the impact of large M is minimized, however263

rolling out the current behavioural policy πb
k still requires a full forward pass. Conversely, the policy264

update consists only of adding the new weights to the stack, and thus, is optimization free and (almost)265

instantaneous. Table 1 shows the training time of StaQ as a function of M for two environments.266

Varying M or the state space size has little impact on the runtime of StaQ on GPU, at least for these267

medium-sized environments.268

The NN for Q0
τ is initialized with an output of zero, so that π0 is a uniform policy, and for all269

consecutive iterations the NN for Qk
τ is initialized at the computed Qk−1

τ (to make the transfer from270

Qk
τ to Qk−1

τ smoother). Similarly to SAC (Haarnoja et al., 2018), we learn Qk
τ by sampling an action271

from the current policy and using an ensemble of two target Q-functions updated in a hard manner.272

While it is natural to use the stochastic policy πk for the behavioural policy, we find it beneficial273

to instead consider an ϵ-softmax policy over πk — by analogy with ϵ-greedy policies, mixing the274

softmax policy πk and a uniform policy with probabilities (1− ϵ) and ϵ respectively. This provides a275

hard minimum sampling probability for all actions, even when the policy πk learns to suppress some276

actions. Using only πk can cause instabilities in the Q-function learning, as discussed in App. B.4277

and App. B.2. For further implementation details and the full set of hyperparameters consult App. E.278

6 Experiments279

In this section, we assess the empirical merits of StaQ, paying attention to both the performance and280

stability, and then discuss some limitations of our algorithms and how they open new perspectives281

towards a fully reliable deep RL solver.282

1Since we use small replay buffer sizes of 50K transitions, we are likely to process each transition multiple
times (25.6 times in expectation in our experiments) making this optimization worthwhile.

7

0 1 2 3 4 50

0.5

1

1.5

2

2.5

3

3.5

Re
tu

rn
 (1

K)

Hopper-v4

0 1 2 3 4 50
0.5

1
1.5

2
2.5

3
3.5

4
Walker2d-v4

0 1 2 3 4 50

0.5

1

1.5

2

2.5

3

3.5

First deletion in StaQ
Corresponds to Vanilla PMD
update until 1.5M

HalfCheetah-v4

0 1 2 3 4 50.5

1

1.5

2

2.5

3
Ant-v4

0 1 2 3 4 50

1

2

3

4

5

Humanoid-v4

0 1 2 3 4 5
Env steps (1M)

0

10

20

30

40

50

60

Re
tu

rn

MinAtar/Asterix-v1

0 1 2 3 4 5
Env steps (1M)

0

10

20

30

40

50

60
MinAtar/Breakout-v1

0 1 2 3 4 5
Env steps (1M)

0

10

20

30

40

50

60

70
MinAtar/Freeway-v1

0 1 2 3 4 5
Env steps (1M)

0

20

40

60

80

100

120

140
MinAtar/Seaquest-v1

0 1 2 3 4 5
Env steps (1M)

0

50

100

150

200

250

300

350
MinAtar/SpaceInvaders-v1

StaQ PQN M-DQN DQN PPO TRPO

Figure 2: Policy return of StaQ and of deep RL baselines. Plots show mean and one standard deviation
computed over 10 seeds. StaQ has consistent performance in both the MuJoCo and MinAtar domains.
See App. B.1 for additional results.

Environments. We use all 9 environments suggested by Ceron & Castro (2021) for comparing deep283

RL algorithms with finite action spaces, comprising 4 classic control tasks from Gymnasium (Towers284

et al., 2023), and all MinAtar tasks (Young & Tian, 2019). To that we add 5 Mujoco tasks (Todorov285

et al., 2012), adapted to discrete action spaces by considering only extreme actions similarly to (Seyde286

et al., 2021). To illustrate, the discrete version of a Mujoco task with action space A = [−1, 1]d287

consists in several 2d dimensional vectors that have zeroes everywhere except at entry i ∈ {1, . . . , d}288

that can either take a value of 1 or −1; to that we add the zero action, for a total of 2d+ 1 actions.289

Baselines. We compare StaQ against the value iteration algorithm DQN (Mnih et al., 2015) and290

its entropy-regularized variant M-DQN (Vieillard et al., 2020b), the policy gradient algorithm291

TRPO (Schulman et al., 2015) as it uses a DKL regularizer and PPO (Schulman et al., 2017). StaQ292

performs entropy regularization on top of a Fitted-Q Iteration (FQI) approach. DQN only uses FQI293

and is a good baseline to measure the impact of entropy regularization over vanilla FQI, while the294

other baselines cover a wide range of alternative approaches to entropy regularization in deep RL:295

through a bonus term (M-DQN), following the natural gradient (TRPO) or with a clipping loss (PPO).296

SAC (Haarnoja et al., 2018) is another popular deep RL baseline that uses entropy regularization but297

is not adapted for discrete action environments. However, M-DQN is a close alternative to SAC for298

discrete action spaces as discussed in App. C. Finally, we compare to PQN (Gallici et al., 2025), a299

recent algorithm that builds on DQN, replacing the target networks with LayerNorm regularisation (Ba300

et al., 2016), and adding λ-returns (Daley & Amato, 2020). This baseline provides an example of301

more complex systems which incorporate improvements in policy evaluation orthogonal to our302

proposed policy update, other examples of such algorithms include Rainbow (Hessel et al., 2017).303

Comparisons with baselines are averaged over 10 seeds, showing the mean and standard deviation of304

the return. The return is computed every 100K steps by evaluating the current deterministic policy,305

averaging 50 rollouts. Hyperparameters for StaQ and the baselines are provided in App. E.306

Performance. A comparison of StaQ to deep RL baselines is shown for a selection of environments307

in Fig. 2, and for all environments in App. B.1. For our setting of M = 300, the first deletion occurs at308

1.5M timesteps, indicated by a vertical dashed line. Fig. 2 shows that StaQ has consistent performance,309

and is competitive with the baselines on most MuJoCo and MinAtar environments. In contrast, we310

see that PPO/TRPO underperforms on MinAtar tasks while M-DQN/DQN/PQN underperform on311

MuJoCo tasks. While StaQ strongly outperforms PQN in the majority of MuJoCo tasks, it is312

outperformed by PQN on some MinAtar tasks, especially in SpaceInvaders. PQN builds on DQN by313

introducing improvements that stabilize Q-function learning, suggesting that a similar direction —314

further improving the policy evaluation strategy — may similarly improve the performance of StaQ,315

as discussed in Sec. 7.316

Stability. Beyond pure performance, StaQ typically exhibits less performance oscillation when317

looking at the variability within individual runs, especially in the MuJoCo domain. For example, in318

8

0 1 2 3 4 5
Env step (1M)

1000

750

500

250

0

250

500

750

1000

De
vi

at
io

n
fro

m
 m

ea
n

re
tu

rn

Hopper-v4
StaQ

0 1 2 3 4 5
Env step (1M)

Hopper-v4
PQN

(a) Deviation from the mean return for StaQ/PQN.

0 1 2 3 4 5

Env steps (1M)

1

2

3

4

5

Humanoid-v4

M=1
M=50
M=100

M=300
M=500
M=1000

0 1 2 3 4 5
Env step (1M)

1000

2000

3000

4000

5000

Un
di

sc
ou

nt
ed

 p
ol

icy
 re

tu
rn

Humanoid-v4

M=100
M=50
M=500
M=300

0 1 2 3 4 5
Env step (1M)

74

72

70

68

66

64

62

60
Acrobot-v1

M=1
M=5
M=100
M=50
M=500
M=300

(b) Impact of memory size M.

Figure 3: Left: Deviation from mean policy returns for individual runs on Hopper, comparing StaQ
and PQN, the best performing baseline on this environment. Returns are centered at every timestep
by subtracting the mean across 10 seeds. In general, individual runs of StaQ have significantly
lower variance across timesteps compared to baselines. For clarity, we plot the first three seeds, and
one-sided tolerance intervals. See App B.2 for further environments and algorithms. Right: Policy
returns under different choice of M . On the simpler Acrobot task, M > 5 seems sufficient but on
Humanoid, even M = 100 is insufficient. Plots showing mean and one std computed over 5 seeds.

Fig. 3 (Left), we plot the variation of the return for each seed, centered by subtracting the mean return319

across all seeds at each evaluation timestep. We see that PQN, while achieving a final performance320

similar to StaQ on Hopper, exhibits significantly more performance oscillation. Stability comparisons321

on more environments and all baselines are provided in App. B.2. These experiments confirm the322

preliminary results of Abbasi-Yadkori et al. (2019) that a policy averaging over multiple Q-functions323

stabilizes learning. While prior work considered only saving the last 10 Q-functions, we show next324

that, on more complex tasks, saving an order of magnitude more Q-functions can still have positive325

effects on stability and performance.326

Impact of the memory-size M . According to Sec. 4.2, M is a crucial parameter that should be327

large enough to guarantee convergence. The M estimation obtained from Thm. 4.4 may be very328

conservative in practice. In Fig. 3 (Right), we present the results for different choices of M for “easy”329

Acrobot and “difficult” Humanoid. While a low value of M ≤ 100 (M ≤ 10 for Acrobot) can still330

achieve a decent mean performance, stability is negatively affected, which is especially pronounced331

for more challenging environments such as Humanoid. Conversely, higher M = 500, 1000, while332

more expensive to compute, does not generally lead to an improvement either in terms of performance333

or stability. We found M = 300 to be a good compromise between stability and compute time. See334

App B.2 for more environments.335

7 Discussion and future work336

In this paper, we proposed a policy update rule based on Policy Mirror Descent, that by using a novel337

re-weighting scheme, results in a convergent policy when storing a finite number of M Q-functions,338

provided M is sufficiently large. Surprisingly, even when M is large, the final computational burden339

is small on modern hardware, due to stacking of the Q-functions. The resulting policy update has340

a solid theoretical foundation and clear empirical benefits as it improves performance and reduces341

learning instability compared to other entropy regularization methods in the literature.342

While the policy update is more stable, some instability in learning the Q-function remains. In343

App. B.4, we describe an ablation where we compare the ϵ-softmax policy with a pure softmax policy344

(i.e. ϵ = 0) that hints at Q-learning instability. Even though those issues are mitigated thanks to the345

averaging over Q-functions of StaQ, they suggest that policy evaluation errors remain significant.346

Due to its exact policy update, StaQ provides a promising setting for testing more sophisticated forms347

of policy evaluation, especially recent methods that use normalization techniques to reduce policy348

evaluation error (Gallici et al., 2025; Bhatt et al., 2024).349

Finally, extending StaQ to continuous action domains could be done as in SAC (Haarnoja et al.,350

2018), using an extra actor network learned by minimizing the DKL to a soft policy. This will lose the351

optimization-free and exact nature of the policy update but may still result in improved stability if we352

replace the soft policy exp(Qk
τ) used by SAC with exp(ξk), which stabilizes the target by averaging353

over a large number of past Q-functions.354

9

References355

Abbasi-Yadkori, Y., Bartlett, P., Bhatia, K., Lazic, N., Szepesvari, C., and Weisz, G. POLITEX:356

Regret bounds for policy iteration using expert prediction. In International Conference on Machine357

Learning, 2019.358

Agarwal, R., Schuurmans, D., and Norouzi, M. An optimistic perspective on offline reinforcement359

learning. In International conference on machine learning, pp. 104–114. PMLR, 2020.360

Alfano, C., Yuan, R., and Rebeschini, P. A novel framework for policy mirror descent with general361

parameterization and linear convergence. In Advances in Neural Information Processing Systems,362

2023.363

Anschel, O., Baram, N., and Shimkin, N. Averaged-DQN: Variance reduction and stabilization for364

deep reinforcement learning. In International Conference on Machine Learning, 2017.365

Azar, M. G., Gómez, V., and Kappen, H. J. Dynamic policy programming. Journal of Machine366

Learning Research, 2012.367

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer Normalization, July 2016.368

Beck, A. and Teboulle, M. Mirror descent and nonlinear projected subgradient methods for convex369

optimization. Operations Research Letters, 31(3):167–175, May 2003. ISSN 0167-6377. doi:370

10.1016/S0167-6377(02)00231-6.371

Bhatt, A., Palenicek, D., Belousov, B., Argus, M., Amiranashvili, A., Brox, T., and Peters, J.372

CrossQ: Batch Normalization in Deep Reinforcement Learning for Greater Sample Efficiency and373

Simplicity, March 2024.374

Cen, S., Cheng, C., Chen, Y., Wei, Y., and Chi, Y. Fast global convergence of natural policy gradient375

methods with entropy regularization. Operations Research, 2022.376

Ceron, J. S. O. and Castro, P. S. Revisiting rainbow: Promoting more insightful and inclusive deep377

reinforcement learning research. In International Conference on Machine Learning, 2021.378

Chen, X., Wang, C., Zhou, Z., and Ross, K. Randomized ensembled double q-learning: Learning fast379

without a model. arXiv preprint arXiv:2101.05982, 2021.380

Daley, B. and Amato, C. Reconciling $λ$-Returns with Experience Replay, January 2020.381

De Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., Slabaugh, G., and382

Tuytelaars, T. A continual learning survey: Defying forgetting in classification tasks. IEEE383

Transactions on Pattern Analysis and Machine Intelligence, 2021.384

Deisenroth, M. P., Neumann, G., and Peters, J. A Survey on Policy Search for Robotics. Foundations385

and Trends in Robotics, 2013.386

Della Vecchia, R., Shilova, A., Preux, P., and Akrour, R. Entropy regularized reinforcement learning387

with cascading networks. arXiv, 2022.388

Fahlman, S. and Lebiere, C. The cascade-correlation learning architecture. Advances in neural389

information processing systems, 2, 1989.390

Fox, R., Pakman, A., and Tishby, N. G-learning: Taming the noise in reinforcement learning via soft391

updates. In Conference on Uncertainty in Artificial Intelligence, 2016.392

Gallici, M., Fellows, M., Ellis, B., Pou, B., Masmitja, I., Foerster, J. N., and Martin, M. Simplifying393

Deep Temporal Difference Learning, March 2025.394

Geist, M., Scherrer, B., and Pietquin, O. A theory of regularized Markov decision processes. In395

Proceedings of the 36th International Conference on Machine Learning (ICML), 2019.396

Girgin, S. and Preux, P. Basis function construction in reinforcement learning using cascade-397

correlation learning architecture. In IEEE International Conference on Machine Learning and398

Applications, 2008.399

10

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta,400

A., Abbeel, P., and Levine, S. Soft Actor-Critic Algorithms and Applications. In International401

Conference on Machine Learning (ICML), 2018.402

Henderson, P. Reproducibility and reusability in deep reinforcement learning. Master’s thesis, McGill403

University, 2018.404

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B.,405

Azar, M., and Silver, D. Rainbow: Combining Improvements in Deep Reinforcement Learning,406

October 2017.407

Huang, S., Dossa, R. F. J., Ye, C., Braga, J., Chakraborty, D., Mehta, K., and Araújo, J. G. Cleanrl:408

High-quality single-file implementations of deep reinforcement learning algorithms. Journal409

of Machine Learning Research, 23(274):1–18, 2022. URL http://jmlr.org/papers/v23/410

21-1342.html.411

Ilyas, A., Engstrom, L., Santurkar, S., Tsipras, D., Janoos, F., Rudolph, L., and Madry, A. A closer412

look at deep policy gradients. In International Conference on Learning Representations, 2020.413

Johnson, E., Pike-Burke, C., and Rebeschini, P. Optimal convergence rate for exact policy mirror414

descent in discounted markov decision processes. Advances in Neural Information Processing415

Systems, 36:76496–76524, 2023.416

Kakade, S. M. A natural policy gradient. In Advances in Neural Information Processing Systems,417

2001.418

Khodadadian, S., Jhunjhunwala, P. R., Varma, S. M., and Maguluri, S. T. On the linear convergence419

of natural policy gradient algorithm. In 2021 60th IEEE Conference on Decision and Control420

(CDC), pp. 3794–3799. IEEE, 2021.421

Krishnamoorthy, K. and Mathew, T. Statistical Tolerance Regions: Theory, Applications, and422

Computation. John Wiley & Sons, May 2009. ISBN 978-0-470-47389-4.423

Kumar, A., Gupta, A., and Levine, S. Discor: Corrective feedback in reinforcement learning via424

distribution correction. In Advances in Neural Information Processing Systems, 2020.425

Lagoudakis, M. G. and Parr, R. Least-squares policy iteration. Journal of Machine Learning Research,426

2003.427

Lan, G. Policy mirror descent for reinforcement learning: linear convergence, new sampling428

complexity, and generalized problem classes. Mathematical Programming, 2022.429

Lan, Q., Pan, Y., Fyshe, A., and White, M. Maxmin q-learning: Controlling the estimation bias of430

q-learning. arXiv preprint arXiv:2002.06487, 2020.431

Lazic, N., Yin, D., Abbasi-Yadkori, Y., and Szepesvari, C. Improved regret bound and experience432

replay in regularized policy iteration. In International Conference on Machine Learning, 2021.433

Lee, K., Kim, S., Lim, S., Choi, S., and Oh, S. Tsallis reinforcement learning: A unified framework434

for maximum entropy reinforcement learning. arXive, 2019.435

Lee, K., Laskin, M., Srinivas, A., and Abbeel, P. Sunrise: A simple unified framework for ensemble436

learning in deep reinforcement learning. In International Conference on Machine Learning, pp.437

6131–6141. PMLR, 2021.438

Lesort, T., Lomonaco, V., Stoian, A., Maltoni, D., Filliat, D., and Díaz-Rodríguez, N. Continual439

learning for robotics: Definition, framework, learning strategies, opportunities and challenges.440

Information Fusion, 2020.441

Li, Y., Lan, G., and Zhao, T. Homotopic policy mirror descent: Policy convergence, implicit442

regularization, and improved sample complexity. arXiv preprint arXiv:2201.09457, 2022.443

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Ried-444

miller, M., Fidjeland, A. K., Ostrovski, G., et al. Human-level control through deep reinforcement445

learning. Nature, 2015.446

11

http://jmlr.org/papers/v23/21-1342.html
http://jmlr.org/papers/v23/21-1342.html
http://jmlr.org/papers/v23/21-1342.html

Nemirovsky, A. S. and Yudin, D. B. Problem Complexity and Method Efficiency in Optimization.447

Wiley-Interscience Series in Discrete Mathematics. John Wiley, 1983.448

Neu, G., Jonsson, A., and Gómez, V. A unified view of entropy-regularized markov decision processes.449

arXiv, 2017.450

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. Deep exploration via bootstrapped dqn. In451

Advances in Neural Information Processing Systems, 2016.452

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter, S. Continual lifelong learning with453

neural networks: A review. Neural Networks, 2019.454

Protopapas, K. and Barakat, A. Policy mirror descent with lookahead. Advances in Neural Information455

Processing Systems, 37:26443–26481, 2024.456

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dormann, N. Stable-baselines3:457

Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22458

(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.459

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu,460

R., and Hadsell, R. Progressive neural networks. CoRR, 2016.461

Schulman, J., Levine, S., Jordan, M., and Abbeel, P. Trust Region Policy Optimization. International462

Conference on Machine Learning, 2015.463

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal policy optimization464

algorithms. arXiv, 2017.465

Seyde, T., Gilitschenski, I., Schwarting, W., Stellato, B., Riedmiller, M., Wulfmeier, M., and Rus, D.466

Is bang-bang control all you need? solving continuous control with bernoulli policies. In Advances467

in Neural Information Processing Systems, 2021.468

Shi, W., Song, S., Wu, H., Hsu, Y.-C., Wu, C., and Huang, G. Regularized anderson acceleration for469

off-policy deep reinforcement learning. Advances in Neural Information Processing Systems, 32,470

2019.471

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J.,472

Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner,473

N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis, D. Mastering474

the game of Go with deep neural networks and tree search. Nature, 2016.475

Stanley, K. O. and Miikkulainen, R. Evolving neural networks through augmenting topologies.476

Evolutionary Computation, 2002.477

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics engine for model-based control. In478

International Conference on Intelligent Robots and Systems (IROS), 2012.479

Tomar, M., Shani, L., Efroni, Y., and Ghavamzadeh, M. Mirror descent policy optimization. arXiv480

preprint arXiv:2005.09814, 2020.481

Tosatto, S., Pirotta, M., d’Eramo, C., and Restelli, M. Boosted fitted q-iteration. In International482

Conference on Machine Learning, pp. 3434–3443. PMLR, 2017.483

Towers, M., Terry, J. K., Kwiatkowski, A., Balis, J. U., Cola, G. d., Deleu, T., Goulão, M., Kallinteris,484

A., KG, A., Krimmel, M., Perez-Vicente, R., Pierré, A., Schulhoff, S., Tai, J. J., Shen, A. T. J., and485

Younis, O. G. Gymnasium, March 2023. URL https://zenodo.org/record/8127025.486

van Hasselt, H., Doron, Y., Strub, F., Hessel, M., Sonnerat, N., and Modayil, J. Deep reinforcement487

learning and the deadly triad. arXiv, 2018.488

Vieillard, N., Kozuno, T., Scherrer, B., Pietquin, O., Munos, R., and Geist, M. Leverage the average:489

an analysis of kl regularization in reinforcement learning. In Advances in Neural Information490

Processing Systems, 2020a.491

12

http://jmlr.org/papers/v22/20-1364.html
https://zenodo.org/record/8127025

Vieillard, N., Pietquin, O., and Geist, M. Munchausen reinforcement learning. In Advances in Neural492

Information Processing Systems, 2020b.493

Wang, L., Zhang, X., Su, H., and Zhu, J. A comprehensive survey of continual learning: Theory,494

method and application. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.495

Wurman, P. R., Barrett, S., Kawamoto, K., MacGlashan, J., Subramanian, K., Walsh, T. J., Capo-496

bianco, R., Devlic, A., Eckert, F., Fuchs, F., Gilpin, L., Khandelwal, P., Kompella, V. R., Lin, H.,497

MacAlpine, P., Oller, D., Seno, T., Sherstan, C., Thomure, M. D., Aghabozorgi, H., Barrett, L.,498

Douglas, R., Whitehead, D., Dürr, P., Stone, P., Spranger, M., and Kitano, H. Outracing champion499

gran turismo drivers with deep reinforcement learning. Nature, 2022.500

Young, K. and Tian, T. Minatar: An atari-inspired testbed for thorough and reproducible reinforcement501

learning experiments. arXiv preprint arXiv:1903.03176, 2019.502

Yuan, R., Du, S. S., Gower, R. M., Lazaric, A., and Xiao, L. Linear convergence of natural policy503

gradient methods with log-linear policies. arXiv preprint arXiv:2210.01400, 2022.504

Zhan, W., Cen, S., Huang, B., Chen, Y., Lee, J. D., and Chi, Y. Policy mirror descent for regularized505

reinforcement learning: A generalized framework with linear convergence. SIAM Journal on506

Optimization, 2023.507

13

A Proofs508

This section includes proofs of the lemmas and theorems of the main paper.509

A.1 Properties of entropy regularized Bellman operators510

We first start with a reminder of some basic properties of the (entropy regularized) Bellman operators,511

as presented in (Geist et al., 2019). Within the MDP setting defined in Sec. 3, let Tπ
τ be the operator512

defined for any map f : S ×A 7→ R by513

(Tπ
τ f) (s, a) = R(s, a) + γEs′,a′ [f(s′, a′)− τh(π(s′))], (13)

For this operator we will need the three following properties.514

Proposition A.1 (Contraction). Tπ
τ is a γ-contraction w.r.t. the ∥.∥∞ norm, i.e. ∥Tπ

τ f − Tπ
τ g∥∞ ≤515

γ ∥f − g∥∞ for any real functions f and g of S ×A.516

Proposition A.2 (Fixed point). Qπ
τ is the unique fixed point of the operator Tπ

τ , i.e. Tπ
τ Q

π
τ = Qπ

τ .517

Let f , g be two real functions of S×A. We say that f ≥ g iff f(s, a) ≥ g(s, a) for all (s, a) ∈ S×A.518

Proposition A.3 (Monotonicity). Tπ
τ is monotonous, i.e. if f ≥ g then Tπ

τ f ≥ Tπ
τ g.519

Let the Bellman optimality T ⋆
τ operator be defined by520

(T ⋆
τ f) (s, a) = R(s, a) + γEs′

[
max

p∈∆(A)
f(s′) · p− τh(p)

]
. (14)

For the Bellman optimality operator we need the following two properties.521

Proposition A.4 (Contraction). T ⋆
τ is a γ-contraction w.r.t. the ∥.∥∞ norm, i.e. ∥T ⋆

τ f − T ⋆
τ g∥∞ ≤522

γ ∥f − g∥∞ for any real functions f and g of S ×A.523

Proposition A.5 (Optimal fixed point). T ⋆
τ admits Q⋆

τ as a unique fixed point, satisfying T ⋆
τ Q

⋆
τ = Q⋆

τ .524

Finally, we will make use of the well known property that the softmax distribution is entropy525

maximizing (Geist et al., 2019). Specifically, we know that the policy πk as defined in Eq. 5 satisfies526

the following property527

for all s ∈ S, πk(s) = argmax
p∈∆(A)

ξk(s) · p− h(p), (15)

A.2 Proof of Theorem 4.1528

We present in this appendix proofs for a more general setting where the Q-functions are inexact.529

Results with exact policy evaluation of the main paper can be recovered by simply setting the policy530

evaluation error ϵeval, as defined below, to zero and by replacing Q̃τ by Qτ .531

Assumption A.1. We assume that we can only compute Qk
τ approximately, which is the Q-value532

function of πk. We use Q̃k
τ to denote the approximate Qk

τ and we assume that there exists ϵeval < ∞533

such that the following holds for any k534 ∥∥∥Qk
τ − Q̃k

τ

∥∥∥
∞

≤ ϵeval. (16)

Note that Eq. 16 implies that for any s, a,535

|Qk
τ (s, a)− Q̃k

τ (s, a)| ≤ ϵeval (17)
or equivalently536

−ϵeval ≤ Qk
τ (s, a)− Q̃k

τ (s, a) ≤ ϵeval. (18)

As the exact Qk
τ is no longer available, the policy update is done in the inexact policy evaluation with537

Q̃k
τ :538

for all s ∈ S, πk+1(s) = argmax
p∈∆(A)

{
Q̃k

τ (s) · p− τh(p)− ηDKL(p; π̃k(s))
}
. (19)

We restate below the approximate policy improvement theorem in its more general form, and Theorem539

4.1 can be recovered for ϵeval = 0.540

14

Theorem A.1 (Approximate policy improvement with inexact policy evaluation). Let πk ∝ exp(ξk)541

be a policy with associated evaluated Q-function Q̃k
τ . Let π̃k ∝ exp(ξ̃k) be an arbitrary policy. Let542

πk+1 be the policy optimizing Eq. 19 w.r.t. the hereby defined Q̃k
τ and π̃k, then the Q-function Qk+1

τ543

of πk+1 satisfies544

Qk+1
τ ≥ Q̃k

τ − γη
maxs∈S ∥(πk − π̃k)(s)∥1

∥∥∥ξk − ξ̃k

∥∥∥
∞

1− γ
− 1 + γ

1− γ
ϵeval. (20)

545

Proof. Let πk ∝ exp(ξk) and let π̃k ∝ exp(ξ̃k) with X := ξk − ξ̃k. Define πk+1 as in Eq. 19. From546

Sec. 3, we have that πk+1 ∝ exp(ξk+1) with the change that now an approximate Q̃k
τ is used in the547

update:548

ξk+1 = βξ̃k + αQ̃k
τ . (21)

From the optimality of πk+1 w.r.t. the policy update optimization problem in Eq. 19 we have549

Q̃k
τ (s) · πk(s)− τh(πk(s)) ≤ Q̃k

τ (s) · πk+1(s)− τh(πk+1(s))

− ηDKL(πk+1(s); π̃k(s)) + ηDKL(πk(s); π̃k(s)),
(22)

≤ Q̃k
τ (s) · πk+1(s)− τh(πk+1(s)) + ηDKL(πk(s); π̃k(s)), (23)

where the last inequality is due to the non-negativity of the DKL. Let us try now to upper bound550

DKL(πk(s); π̃k(s)) for any s ∈ S. For clarity, we will drop s from the notations, and only write551

for e.g. ξ(a) instead of ξk(s, a). We define Z =
∑

a exp(ξ(a)) and Z̃ =
∑

a exp(ξ̃(a)), where the552

sums are over all a ∈ A.553

DKL(πk; π̃k) = Eπ[log π(a)− log π̃(a)], (24)

= Eπ

[
log

exp ξ(a)

Z
− log

exp ξ̃(a)

Z̃

]
, (25)

= Eπ

[
ξ(a)− ξ̃(a)− log

Z

Z̃

]
, (26)

= Eπ

[
X(a)− log

∑
a′ exp(X(a′)) exp(ξ̃(a′))∑

a′ exp(ξ̃(a′))

]
, (27)

(i)
≤ Eπ [X(a)− Eπ̃ [X(a′)]] , (28)
= (π − π̃) ·X, (29)

where (i) is due to Jensen’s inequality. Replacing Eq. 29 into Eq. 23 yields554

Q̃k
τ (s) · πk(s)− τh(πk(s)) ≤ Q̃k

τ (s) · πk+1(s)− τh(πk+1(s)) + η(π − π̃)(s) ·X(s). (30)

For any s ∈ S, we have that555

η(π − π̃)(s) ·X(s) ≤ ηmax
s∈S

|(π − π̃)(s) ·X(s)|, (31)

(i)

≤ ηmax
s∈S

∥(π − π̃)(s)∥1 ∥X(s)∥∞ , (32)

= ηmax
s∈S

∥(π − π̃)(s)∥1 ∥X∥∞ , (33)

:= ϵ, (34)

where we applied Hölder’s inequality in (i). Combining Eq. 34 with Eq. 30 and using the definition556

of the operator Tπ
τ as in Eq. 13 yields for any s ∈ S and a ∈ A557

R(s, a) + γEs′

[
Q̃k

τ (s
′) · πk − τh(πk(s

′))
]
≤ R(s, a) + γEs′ [Q̃

k
τ (s

′) · πk+1(s
′)

− τh(πk+1(s
′)) + ϵ],

(35)

=⇒ (T k
τ Q̃

k
τ)(s, a) ≤ (T k+1

τ Q̃k
τ)(s, a) + γϵ, (36)

15

where ϵ = ηmaxs∈S ∥(π − π̃)(s)∥1 ∥X∥∞. Since Eq. 36 is valid for any s and a, then558

T k
τ Q̃

k
τ ≤ T k+1

τ Q̃k
τ + γϵ, (37)

Let us have a closer look at T k
τ Q̃

k
τ , if we use Eq. 16 and by the fixed point property of Prop. A.2 we559

have560

T k
τ Q̃

k
τ = T k

τ Q
k
τ + γEs′

[
(Q̃k

τ −Qk
τ) · πk

]
≥ Qk

τ − γϵeval. (38)

and similarly T k+1
τ Q̃k

τ ≤ T k+1
τ Qk

τ + γϵeval. Together, these imply561

Qk
τ ≤ T k+1

τ Qk
τ + γϵ+ 2γϵeval. (39)

The addition of γ(ϵ+ 2ϵeval) in the above expression is performed element-wise for all states and562

actions. Using the monotonicity property of Prop. A.3 on Eq. 39, we have563

T k+1
τ Qk

τ ≤ T k+1
τ

(
T k+1
τ Qk

τ + γ(ϵ+ 2ϵeval)
)
, (40)

≤ (T k+1
τ)2Qk

τ + γ2(ϵ+ 2ϵeval), (41)

=⇒ Qk
τ ≤ (T k+1

τ)2Qk
τ + γ(ϵ+ 2ϵeval) + γ2(ϵ+ 2ϵeval). (42)

By repeating the same process one can easily show by induction that564

Qk
τ ≤ (T k+1

τ)nQk
τ +

n∑
i=1

γi(ϵ+ 2ϵeval). (43)

Taking the limit of Eq. 43 for n → ∞ yields by the uniqueness of the fixed point of T k+1
τ565

Qk
τ ≤ Qk+1

τ +
γ(ϵ+ 2ϵeval)

1− γ
, (44)

Finally,566

Q̃k
τ ≤ Qk+1

τ +
γϵ

1− γ
+

1 + γ

1− γ
ϵeval (45)

= Qk+1
τ + γη

maxs∈S ∥(π − π̃)(s)∥1
∥∥∥ξk − ξ̃k

∥∥∥
∞

1− γ
+

1 + γ

1− γ
ϵeval. (46)

567

A.3 Approximate finite-memory EPMD568

A.3.1 Proof of Corollary 4.1.1569

Cor. 4.1.1 is a direct application of Thm. 4.1 with the specific values for ξk and ξ̃k of finite-memory570

EPMD as defined in Sec. 4.1.571

Proof. To prove Cor. 4.1.1, we will bound the two terms η
∥∥∥ξk − ξ̃k

∥∥∥
∞

and maxs∈S ∥(π − π̃)(s)∥1572

individually, using the fact that573

ξk − ξ̃k = αβM−1Q̃k−M
τ . (47)

Let us first start with the term574

η
∥∥∥ξk − ξ̃k

∥∥∥
∞

(i)
= βM

∥∥∥Q̃k−M
τ

∥∥∥
∞

(48)

≤ βM R̄+ βM ϵeval. (49)

In (i) we used the fact that ηα = β, whereas the second inequality comes from the bounded nature575

of Q̃τ for any π, where R̄ is defined in Sec. 3.576

16

For maxs∈S ∥(π − π̃)(s)∥1, we can either upper-bound it by 2, or use the fact that π and π̃ are close577

given large enough M . First, note that the gradient of the negative entropy is given by578

∇h(p) = ∇(p · log p), (50)
= log p+ 1. (51)

As the negative entropy is 1-strongly convex w.r.t. the ∥.∥1 norm (a.k.a. Pinsker’s inequality), we579

have for all s ∈ S, where the s dependency is dropped580

∥πk − π̃k∥21 ≤ (πk − π̃k) · (∇h(πk)−∇h(π̃k)), (52)
= (πk − π̃k) · (log πk − log π̃k), (53)
(i)
= (πk − π̃k) · (ξk − ξ̃k), (54)

≤ ∥πk − π̃k∥1
∥∥∥ξk − ξ̃k

∥∥∥
∞

, (55)

= ∥πk − π̃k∥1 αβ
M−1

∥∥∥Q̃k−M
τ

∥∥∥
∞

, (56)

=⇒ ∥πk − π̃k∥1 ≤ αβM−1
∥∥∥Q̃k−M

τ

∥∥∥
∞

, (57)

≤ αβM−1(R̄+ ϵeval). (58)

In (i), the normalizing constants logZ = log
∑

a exp(ξ(a)) and log Z̃ = log
∑

a exp(ξ̃(a)) do not581

appear because their dot product with π− π̃k is equal to 0, as they have constant values for all actions.582

Combining both results, we have583

∥πk − π̃k∥1 ≤ min
{
2, αβM−1(R̄+ ϵeval)

}
. (59)

which holds for all s ∈ S and thus also for the state argmaxs∈S ∥(π − π̃)(s)∥1.584

In the case of an update585

ξk+1 = βξk + α
(
Q̃k

τ − βM Q̃k−M
τ

)
, (60)

we get that for any k ≥ 0 holds586

Qk+1
τ ≥ Q̃k

τ −min
{
2, αβM−1(R̄+ ϵeval)

}
γβM R̄+ ϵeval

1− γ
− 1 + γ

1− γ
ϵeval. (61)

For simplicity, we will further analyse the case of587

Qk+1
τ ≥ Q̃k

τ − 2γβM R̄+ ϵeval
1− γ

− 1 + γ

1− γ
ϵeval. (62)

Note that for k ≤ M , Eq. 62 can be replaced by a stronger Qk+1
τ ≥ Q̃k

τ − 1+γ
1−γ ϵeval as ξk − ξ̃k = 0,588

but for simplicity we only consider Eq. 62.589

A.3.2 Proof of Theorem 4.2590

To prove Thm. 4.2, we first need the following Lemma, that uses the approximate policy improvement591

bounds of vanilla finite-memory EPMD in Cor. 4.1.1, to show a relation between the Q-function592

Qk
τ and the sum of Q-functions ξk. Further, we show the final error that is introduced by having an593

approximate policy evaluation and how it affects the final convergence results.594

Lemma A.2. After k ≥ 0 iterations of Eq. 60, we have
∥∥∥Q⋆

τ − Q̃k+1
τ

∥∥∥
∞

≤ γ ∥Q⋆
τ − τξk+1∥∞ +595

1−βM

1−β γϵ+ 1−βM+1

1−β ϵeval + γβM R̄, where ϵ = 2γβM R̄+ϵeval

1−γ + 1+γ
1−γ ϵeval.596

Proof. For all s ∈ S and a ∈ A597

(Q⋆
τ −Qk+1

τ)(s, a) = (T ⋆
τ Q

⋆
τ)(s, a)−

(
R(s, a) + γEs′,a′ [Qk+1

τ (s′, a′)− τh(πk+1(s
′))]
)

(63)

= (T ⋆
τ Q

⋆
τ)(s, a)−

(
R(s, a) + γEs′,a′ [τξk+1(s

′, a′)− τh(πk+1(s
′))]

+ γEs′,a′ [Qk+1
τ (s′, a′)− τξk+1(s

′, a′)]
)
.

(64)

17

Looking at the first inner term, using the entropy maximizing nature of πk+1 as defined in Eq. 15,598

and using the definition of the Bellman optimality operator T ⋆
τ gives599

R(s, a) + γEs′ [τξk+1(s
′) · πk+1(s

′)− τh(πk+1(s
′))] = R(s, a)

+ γEs′ [max
p∈∆(A)

τξk+1(s
′) · p− τh(p)]

(65)
= (T ⋆

τ τξk+1)(s, a) (66)

For the second inner term, using the definition of ξk+1, the fact that τα = 1− β and the definition of600

ϵ, we have for all s ∈ S and a ∈ A601

Qk+1
τ − τξk+1 = Qk+1

τ − (1− β)

M−1∑
i=0

βiQ̃k−i
τ (67)

=

M∑
i=0

βiQk+1−i
τ −

M∑
i=1

βiQk+1−i
τ +

M−1∑
i=0

βi+1Q̃k−i
τ −

M−1∑
i=0

βiQ̃k−i
τ (68)

=

M−1∑
i=0

βi(Qk+1−i
τ − Q̃k−i

τ) +

M∑
i=1

βi(Q̃k+1−i
τ −Qk+1−i

τ) + βMQk+1−M
τ (69)

≥ −
M−1∑
i=0

βiϵ− βM R̄+

M∑
i=1

βi(Q̃k+1−i
τ −Qk+1−i

τ) (70)

= −1− βM

1− β
ϵ− βM R̄+

M∑
i=1

βi(Q̃k+1−i
τ −Qk+1−i

τ). (71)

Using successively Eq. 66 and Eq. 71 back into Eq. 64 yields602

(Q⋆
τ −Qk+1

τ)(s, a) = (T ⋆
τ Q

⋆
τ)(s, a)− (T ⋆

τ τξk+1)(s, a)

− γEs′,a′ [Qk+1
τ (s′, a′)− τξk+1(s

′, a′)],
(72)

≤ (T ⋆
τ Q

⋆
τ)(s, a)− (T ⋆

τ τξk+1)(s, a)

+
γ(1− βM)

1− β
ϵ+ γβM R̄− γEs′,a′

M∑
i=1

βi(Q̃k+1−i
τ −Qk+1−i

τ).
(73)

Since Q⋆
τ − Qk+1

τ ≥ 0 and using the triangle inequality, the fact that Es,a[X] ≤ ∥X∥∞ and the603

contraction property of T ⋆
τ completes the proof604 ∥∥∥Q⋆

τ − Q̃k+1
τ

∥∥∥
∞

≤
∥∥Q⋆

τ −Qk+1
τ

∥∥
∞ +

∥∥∥Qk+1
τ − Q̃k+1

τ

∥∥∥
∞

(74)

(i)

≤ ∥T ⋆
τ Q

⋆
τ − T ⋆

τ τξk+1∥∞ +
γ(1− βM)

1− β
ϵ+ γβM R̄

+

M∑
i=0

βi
∥∥∥Q̃k+1−i

τ −Qk+1−i
τ

∥∥∥
∞

,

(75)

≤ γ ∥Q⋆
τ − τξk+1∥∞ +

γ(1− βM)

1− β
ϵ+ γβM R̄+

1− βM+1

1− β
ϵeval. (76)

Here (i) is due to Eq. 73 and γ < 1. This completes the proof.605

606

The next theorem generalizes Thm. 4.2 from the main paper to the case of inexact Q-functions. Thus,607

the proof for Thm. 4.2 can be retrieved by cancelling ϵeval terms and replacing Q̃τ by Qτ .608

Theorem A.3 (Convergence of approximate vanilla finite-memory EPMD). After k ≥ 0 iterations of609

Eq. 6, we have that
∥∥∥Q⋆

τ − Q̃k
τ

∥∥∥
∞

≤ γdk ∥Q⋆
τ∥∞+C1β

M+ (1+γ2)ϵeval

(1−γ)2(1−β) , with d = β+γ(1−β) < 1,610

C1 = 2γR̄
1−γ

(
1 + γ(1−βM)

(1−β)(1−γ)

)
+ γϵeval

(1−γ)(1−β) .611

18

This theorem states that the approximate vanilla finite-memory EPMD algorithm converges to an612

error that consists of two components: the first one scales with βM and thus should become negligible613

for large enough M and the second one fully depends on ϵeval and is small only if ϵeval is small too.614

Proof. From the definition of ξk+1 in Eq. 60 and the triangle inequality we get615

∥Q⋆
τ − τξk+1∥∞ =

∥∥∥Q⋆
τ − βτξk − (1− β)Q̃k

τ + (1− β)βM Q̃k−M
τ

∥∥∥
∞

, (77)

≤ β ∥Q⋆
τ − τξk∥∞ + (1− β)

∥∥∥Q⋆
τ − Q̃k

τ

∥∥∥
∞

+ (1− β)βM
∥∥∥Q̃k−M

τ

∥∥∥
∞

, (78)

≤ β ∥Q⋆
τ − τξk∥∞

+ (1− β)γ ∥Q⋆
τ − τξk∥∞ + γ(1− βM)ϵ+ (1− βM+1)ϵeval

+ (1− β)γβM R̄+ (1− β)βM
∥∥∥Q̃k−M

τ

∥∥∥
∞

,

(79)

≤ (β + γ(1− β)) ∥Q⋆
τ − τξk∥∞ + γ(1− βM)ϵ

+ (1 + γ)(1− β)βM R̄+ (1 + βM)ϵeval.
(80)

Where in the last inequality we used the fact that
∥∥∥Q̃k−M

τ

∥∥∥
∞

≤ R̄ + ϵeval and 1 − βM+1 + (1 −616

β)βM = 1 + βM − 2βM+1 ≤ 1 + βM . Letting617

d := β + γ(1− β), (81)

one can show by induction, using the fact that ξ0 = 0, that618

∥Q⋆
τ − τξk+1∥∞ ≤ dk+1 ∥Q⋆

τ∥∞

+

k∑
i=0

di
[
γ(1− βM)ϵ+ (1 + γ)(1− β)βM R̄+ (1 + βM)ϵeval

]
,

(82)

≤ dk+1 ∥Q⋆
τ∥∞ +

γ(1− βM)ϵ+ (1 + γ)(1− β)βM R̄+ (1 + βM)ϵeval
1− d

, (83)

= dk+1 ∥Q⋆
τ∥∞ +

(1 + γ)βM R̄

1− γ
+

γ(1− βM)ϵ+ (1 + βM)ϵeval
(1− γ)(1− β)

. (84)

For Eq. 83, we used the fact that
∑k

i=0 d
i = 1−dk+1

1−d ≤ 1
1−d . Using Eq. 84 in Eq. 76 finally gives619 ∥∥∥Q⋆

τ − Q̃k+1
τ

∥∥∥
∞

≤ γdk+1 ∥Q⋆
τ∥∞

+

[
γβM +

(1 + γ)γβM

1− γ

]
R̄

+

[
γ2(1− βM)

(1− γ)(1− β)
+

γ(1− βM)

1− β

]
ϵ

+

[
γ(1 + βM)

(1− γ)(1− β)
+

1− βM+1

1− β

]
ϵeval

(85)

Now, let us analyse more closely the constants in front of R̄ and ϵeval. First, let us simplify the620

constant in front of ϵ, we get γ2(1−βM)
(1−γ)(1−β) +

γ(1−βM)
1−β = γ(1−βM)

1−β

(
γ

1−γ + 1
)

= γ(1−βM)
(1−γ)(1−β) . By621

inserting the value of ϵ from Lemma A.2 we obtain the following coefficient for R̄622

γβM +
(1 + γ)γβM

1− γ
+

γ(1− βM)

(1− γ)(1− β)

2γβM

1− γ
=

2γβM

1− γ

(
1 +

γ(1− βM)

(1− β)(1− γ)

)
(86)

19

and ϵeval623

γ(1 + βM)

(1− γ)(1− β)
+

1− βM+1

1− β
+

γ(1− βM)

(1− γ)(1− β)

2γβM + 1 + γ

1− γ

(i)
<

γ(1 + βM)

(1− γ)(1− β)
+

1− βM+1

1− β
+

γ(1 + γ)

(1− γ)2(1− β)

(ii)

≤ γ + γβM + 1− γ

(1− γ)(1− β)
+

γ(1 + γ)

(1− γ)2(1− β)

=
1− γ + γ + γ2

(1− γ)2(1− β)
+

γβM

(1− γ)(1− β)

=
1 + γ2

(1− γ)2(1− β)
+

γβM

(1− γ)(1− β)
,

(87)

where in (i) we use γ(1− βM)(2γβM +1+ γ) = 2γ2βM − 2γ2β2M + γ− γβM + γ2 − γ2βM <624

γ2βM − γβM + γ + γ2 < γ(1 + γ) and in (ii) we cancel the negative components. Combining625

Eq. 85, Eq. 86 and Eq. 87, we complete the proof.626

20

A.4 Approximate weight-corrected finite-memory EPMD627

A.4.1 Proof of the logits expression in Sec. 4.2628

Proof. For k = 0,629

ξ1 = β × 0 + αQ̃0
τ +

αβM

1− βM
(Q̃0

τ − 0), (88)

= α

(
1 +

βM

1− βM

)
Q̃0

τ , (89)

=
α

1− βM
Q̃0

τ . (90)

If it is true for k, then630

ξk+1 = β
α

1− βM

M−1∑
i=0

βiQ̃k−1−i
τ + αQ̃k

τ +
αβM

1− βM
(Q̃k

τ − Q̃k−M
τ), (91)

=
α

1− βM

M−2∑
i=0

βi+1Q̃k−1−i
τ +

αβM

1− βM
(Q̃k−M

τ − Q̃k−M
τ) +

α

1− βM
Q̃k

τ , (92)

=
α

1− βM

M−1∑
i=0

βiQ̃k−i
τ (93)

631

A.4.2 Proof of Corollary 4.1.2632

Proof. The proof is immediate from Thm. 4.1, upper-bounding maxs∈S ∥(πk − π̃k)(s)∥1 by 2, using633

the definition of ξ̃k−ξk = αβM−1

1−βM (Q̃k
τ − Q̃k−M

τ) in
∥∥∥ξk − ξ̃k

∥∥∥
∞

and using the fact that αη = β.634

Note that, as in Cor. 4.1.1, we could have used the expression of the logits of π and π̃ to have a635

bound of ∥(πk − π̃k)(s)∥1 that depends on
∥∥∥ξk − ξ̃k

∥∥∥
∞

and ultimately on
∥∥∥Q̃k

τ − Q̃k−M
τ

∥∥∥
∞

. This636

bound becomes tighter as k goes to infinity for M large enough, since we show below that Q̃k
τ637

converges to Q⋆
τ with some error that depends on ϵeval and thus maxs∈S ∥(πk − π̃k)(s)∥1 converges638

to 0. Nonetheless, using this tighter bound would introduce quadratic terms
∥∥∥Q̃k

τ − Q̃k−M
τ

∥∥∥2
∞

that639

would complicate the overall analysis of the algorithm, and thus we use the more crude bound of 2640

for maxs∈S ∥(πk − π̃k)(s)∥1 in the remainder of the proofs for Sec. 4.2.641

Thus, given Theorem A.1 and Corollary 4.1.2, and in case of an update642

ξk+1 = βξk + αQ̃k
τ +

αβM

1− βM
(Q̃k

τ − Q̃k−M
τ), (94)

we get643

Qk+1
τ ≥ Q̃k

τ − 2γβM

∥∥∥Q̃k
τ − Q̃k−M

τ

∥∥∥
∞

(1− γ)(1− βM)
− 1 + γ

1− γ
ϵeval. (95)

A.5 Proof of Lemma 4.3644

As with Thm. 4.2, we first need an intermediary Lemma connecting
∥∥Q⋆

τ −Qk+1
τ

∥∥
∞ and645

∥Q⋆
τ − τξk+1∥∞ before proving Lem. 4.3.646

Lemma A.4. After k ≥ 0 iterations of Eq. 94, we have
∥∥∥Q⋆

τ − Q̃k+1
τ

∥∥∥
∞

≤ γ ∥Q⋆
τ − τξk+1∥∞ +647

γβk+1
∥∥Q0

τ

∥∥
∞+γ

∑k
i=0 β

iϵ′k−i+
1+γ2

(1−γ)(1−β)ϵeval, with ϵ′k =
(

1+γ
1−γ − β

)
βM

1−βM

∥∥∥Q̃k−M
τ − Q̃k

τ

∥∥∥
∞

.648

649

21

Proof. Define ϵk as650

ϵk :=
2βM

1− βM

∥∥∥Q̃k−M
τ − Q̃k

τ

∥∥∥
∞

, (96)

For all s ∈ S and a ∈ A651

(Q⋆
τ −Qk+1

τ)(s, a) = (T ⋆
τ Q

⋆
τ)(s, a)−

(
R(s, a) + γEs′,a′ [Qk+1

τ (s′, a′)− τh(πk+1(s
′))]
)

(97)

= (T ⋆
τ Q

⋆
τ)(s, a)−

(
R(s, a) + γEs′,a′ [τξk+1(s

′, a′)− τh(πk+1(s
′))]+

γEs′,a′ [Qk+1
τ (s′, a′)− τξk+1(s

′, a′)]
) (98)

Looking at the first inner term and using the entropy maximizing nature of πk+1 as defined in Eq. 15652

gives653

R(s, a) + γEs′ [τξk+1(s
′) · πk+1(s

′)− τh(πk+1(s
′))] (99)

= R(s, a) + γEs′ [max
p∈∆(A)

τξk+1(s
′) · p− τh(p)] = (T ⋆

τ τξk+1)(s, a) (100)

For the second inner term, using the recursive definition of ξk+1 in Eq. 94 gives654

Qk+1
τ − τξk+1 = Qk+1

τ −
(
βτξk + (1− β)Q̃k

τ +
(1− β)βM

1− βM
(Q̃k

τ − Q̃k−M
τ)

)
, (101)

= β(Q̃k
τ − τξk) +Qk+1

τ − Q̃k
τ − (1− β)βM

1− βM
(Q̃k

τ − Q̃k−M
τ), (102)

≥ β(Qk
τ − τξk)−

γϵk
1− γ

− (1− β)ϵk
2

− 1 + γ

1− γ
ϵeval + β

(
Q̃k

τ −Qk
τ

)
. (103)

Letting655

ϵ′k :=
γϵk
1− γ

+
(1− β)ϵk

2
=

(
1 + γ

1− γ
− β

)
βM

1− βM

∥∥∥Q̃k−M
τ − Q̃k

τ

∥∥∥
∞

, (104)

one can easily show by induction that656

Qk+1
τ − τξk+1 ≥ βk+1Q0

τ −
k∑

i=0

βiϵ′k−i −
k∑

i=0

βi 1 + γ

1− γ
ϵeval −

k+1∑
i=1

βiϵeval (105)

= βk+1Q0
τ −

k∑
i=0

βiϵ′k−i −
(1− βk+1)(1 + γ)

(1− β)(1− γ)
ϵeval −

β(1− βk+1)

1− β
ϵeval (106)

≥ βk+1Q0
τ −

k∑
i=0

βiϵ′k−i −
(1 + γ)ϵeval

(1− γ)(1− β)
− βϵeval

1− β
. (107)

The inequality uses the fact that ξ0 = 0. Using successively Eq. 100 and Eq. 107 back into Eq. 98657

yields658

(Q⋆
τ −Qk+1

τ)(s, a) = (T ⋆
τ Q

⋆
τ)(s, a)− (T ⋆

τ τξk+1)(s, a)− γEs′,a′ [Qk+1
τ (s′, a′)− τξk+1(s

′, a′)],

(108)

≤ (T ⋆
τ Q

⋆
τ)(s, a)− (T ⋆

τ τξk+1)(s, a)− γEs′,a′ [βk+1Q0
τ (s

′, a′)]

+ γ

k∑
i=0

βiϵ′k−i +
γβ

1− β
ϵeval +

γ(1 + γ)ϵeval
(1− γ)(1− β)

.
(109)

22

Since Q⋆
τ −Qk+1

τ ≥ 0 and using the triangle inequality, the fact that Es,a[Q
0
τ (s, a)] ≤

∥∥Q0
τ

∥∥
∞, and659

the contraction property of T ⋆
τ gives us660

∥∥Q⋆
τ −Qk+1

τ

∥∥
∞ ≤ ∥T ⋆

τ Q
⋆
τ − T ⋆

τ τξk+1∥∞ + γβk+1
∥∥Q0

τ

∥∥
∞

+ γ

k∑
i=0

βiϵ′k−i +
γβ

1− β
ϵeval +

γ(1 + γ)ϵeval
(1− γ)(1− β)

(110)

≤ γ ∥Q⋆
τ − τξk+1∥∞ + γβk+1

∥∥Q0
τ

∥∥
∞

+ γ

k∑
i=0

βiϵ′k−i +
γβ

1− β
ϵeval +

γ(1 + γ)ϵeval
(1− γ)(1− β)

.
(111)

Finally, using661

∥∥∥Q⋆
τ − Q̃k+1

τ

∥∥∥
∞

≤
∥∥Q⋆

τ −Qk+1
τ

∥∥
∞ +

∥∥∥Qk+1
τ − Q̃k+1

τ

∥∥∥
∞

≤
∥∥Q⋆

τ −Qk+1
τ

∥∥
∞ + ϵeval (112)

and also simplifying the constants γβ
1−β + 1 = 1−β+γβ

1−β ≤ 1
1−β and 1

1−β + γ(1+γ)
(1−γ)(1−β) = 1

1−β (1 +662

γ(1+γ)
1−γ) = 1+γ2

(1−γ)(1−β) , we obtain the statement of the lemma.663

We now state a more general form of Lemma 4.3 and prove it.664

Lemma A.5. Let xk+1 = d1xk + d2xk−M + (1+γ2)ϵeval

1−γ be a sequence such that ∀k < 0, xk =665

∥Q⋆
τ∥∞
γ , x0 = ∥Q⋆

τ∥∞+
∥∥∥Q̃0

τ

∥∥∥
∞
+ (1+γ2)ϵeval

(1−γ)(1−β) , d1 := β+γ 1−β
1−βM +γc2, d2 := 2c1γ

2

1−γ , c1 := βM

1−βM ,666

and c2 :=
(

1+γ
1−γ − β

)
c1. After k ≥ 0 iterations of Eq. 10, we have that

∥∥∥Q⋆
τ − Q̃k

τ

∥∥∥
∞

≤ xk.667

Proof. Define the following constants668

c1 :=
βM

1− βM
, and c2 :=

(
1 + γ

1− γ
− β

)
c1. (113)

Let a sequence xk defined by ∀k < 0, xk =
∥Q⋆

τ∥∞
γ and let669

x0 = ∥Q⋆
τ∥∞ +

∥∥Q0
τ

∥∥
∞ +

(1 + γ2)ϵeval
(1− γ)(1− β)

. (114)

For subsequent terms, we define xk by the recursive definition, ∀k ≥ 0670

xk+1 = γ

(
1− β

1− βM

M−1∑
i=0

βixk−i + βk+1

∥∥Q0
τ

∥∥
∞

γ
+ c2

k∑
i=0

βi(xk−i + xk−i−M)

)
+

(1 + γ2)ϵeval
(1− γ)(1− β)

.

(115)

23

Note that x0 can also be recovered by Eq. 115, for k = −1. Now, let us simplify Eq. 115. Using this671

recursive definition, we have ∀k ≥ 0672

xk+1 = γ
1− β

1− βM

M−1∑
i=0

βixk−i + βk+1
∥∥Q0

τ

∥∥
∞ + c2γ

k∑
i=0

βi(xk−i + xk−i−M)

+
(1 + γ2)ϵeval
(1− γ)(1− β)

,

(116)

= β

(
γ(1− β)

1− βM

M−1∑
i=0

βixk−1−i + βk
∥∥Q0

τ

∥∥
∞ + γc2

k−1∑
i=0

βi(xk−1−i + xk−1−i−M)

+
(1 + γ2)ϵeval
(1− γ)(1− β)

)
+

γ(1− β)

1− βM

(
xk − βMxk−M

)
+ γc2 (xk + xk−M)

+
(1 + γ2)ϵeval

1− γ
,

(117)

(i)
= βxk + γ

(
1− β

1− βM

(
xk − βMxk−M

)
+ c2 (xk + xk−M)

)
+

(1 + γ2)ϵeval
1− γ

, (118)

=

(
β + γ

1− β

1− βM
+ γc2

)
xk + γ

(
c2 −

βM (1− β)

1− βM

)
xk−M +

(1 + γ2)ϵeval
1− γ

(119)

=

(
β + γ

1− β

1− βM
+ γc2

)
xk +

2c1γ
2

1− γ
xk−M +

(1 + γ2)ϵeval
1− γ

(120)

In (i) we used the recursive definition of xk which is also valid for x0. Letting673

d1 := β + γ
1− β

1− βM
+ γc2, and d2 :=

2c1γ
2

1− γ
, (121)

xk+1 for all k ≥ 0 can be more compactly defined by674

xk+1 = d1xk + d2xk−M +
(1 + γ2)ϵeval

1− γ
. (122)

Let us now prove that
∥∥∥Q⋆

τ − Q̃k
τ

∥∥∥
∞

≤ xk by induction. For k = 0, we have that675

∥∥∥Q⋆
τ − Q̃0

τ

∥∥∥
∞

≤
∥∥Q⋆

τ −Q0
τ

∥∥
∞ +

∥∥∥Q0
τ − Q̃0

τ

∥∥∥
∞

(123)

≤ ∥Q⋆
τ∥∞ +

∥∥Q0
τ

∥∥
∞ + ϵeval, (124)

≤ x0. (125)

and for k < 0, we have that676

∥∥∥Q⋆
τ − Q̃k

τ

∥∥∥
∞

= ∥Q⋆
τ∥∞ , (126)

≤
∥Q⋆

τ∥∞
γ

, (127)

= xk. (128)

24

Now assume that
∥∥∥Q⋆

τ − Q̃i
τ

∥∥∥
∞

≤ xi is true for all i ≤ k and let us prove that
∥∥∥Q⋆

τ − Q̃k+1
τ

∥∥∥
∞

≤677

xk+1. First, we note that678

∥Q⋆
τ − τξk+1∥∞ =

∥∥∥∥∥Q⋆
τ − τ

α

1− βM

M−1∑
i=0

βiQ̃k−i
τ

∥∥∥∥∥
∞

, (129)

=

∥∥∥∥∥ 1− β

1− βM

M−1∑
i=0

βiQ⋆
τ − 1− β

1− βM

M−1∑
i=0

βiQ̃k−i
τ

∥∥∥∥∥
∞

, (130)

≤ 1− β

1− βM

M−1∑
i=0

βi
∥∥∥Q⋆

τ − Q̃k−i
τ

∥∥∥
∞

, (131)

≤ 1− β

1− βM

M−1∑
i=0

βixk−i. (132)

We also have that679

ϵ′k = c2

∥∥∥Q̃k−M
τ − Q̃k

τ

∥∥∥
∞

, (133)

≤ c2

(∥∥∥Q⋆
τ − Q̃k−M

τ

∥∥∥
∞

+
∥∥∥Q⋆

τ − Q̃k
τ

∥∥∥
∞

)
(134)

≤ c2(xk + xk−M). (135)

Finally, using Eq. 132, Eq. 135 and
∥∥Q0

τ

∥∥
∞ ≤ ∥Q0

τ∥∞
γ into Lemma A.4 completes the proof680

∥∥∥Q⋆
τ − Q̃k+1

τ

∥∥∥
∞

≤ γ

(
∥Q⋆

τ − τξk+1∥∞ + βk+1
∥∥Q0

τ

∥∥
∞ +

k∑
i=0

βiϵ′k−i

)
+

(1 + γ2)ϵeval
(1− γ)(1− β)

,

(136)

≤ γ

(
1− β

1− βM

M−1∑
i=0

βixk−i + βk+1

∥∥Q0
τ

∥∥
∞

γ
+ c2

k∑
i=0

βi(xk−i + xk−i−M)

)

+
(1 + γ2)ϵeval
(1− γ)(1− β)

,

(137)
= xk+1. (138)

681

A.6 Proof of Theorem 4.4682

We state a more general form for Theorem 4.4 that includes policy evaluation error and prove it683

below.684

Theorem A.6 (Convergence of approximate weight corrected finite-memory EPMD). With the defini-685

tions of Lemma 4.3, if M > log (1−γ)2(1−β)
γ2(3+β)+1−β (log β)

−1 then limk→∞ xk ≤ (1+γ2)ϵeval

(1−γ)(1−d1−d2)
. More-686

over, ∀k ≥ 0,
∥∥∥Q⋆

τ − Q̃k
τ

∥∥∥
∞

≤ (d1+d2d
−1
3)k max

{
∥Q⋆

τ∥∞
γ , ∥Q⋆

τ∥∞+
∥∥Q0

τ

∥∥
∞

}
+ (1+γ2)ϵeval

(1−γ)(1−d1−d2)
,687

where d3 :=
(
dM1 + d2

1−dM
1

1−d1

)
and limM→∞ d1 + d2d

−1
3 = β + γ(1− β).688

25

Proof. Let us find a value of M such that689

d1 + d2 < 1, (139)

⇔β(1− βM) + γ(1− β) + γ

(
1 + γ

1− γ
− β

)
βM +

2γ2βM

1− γ
< 1− βM , (140)

⇔β − βM+1 − γβ + γ
1 + γ

1− γ
βM − γβM+1 + βM +

2γ2βM

1− γ
< 1− γ, (141)

⇔(1− γ)β +
γ2(3 + β) + 1− β

1− γ
βM < 1− γ, (142)

⇔βM <
(1− γ)2(1− β)

γ2(3 + β) + 1− β
, (143)

⇔M log β < log
(1− γ)2(1− β)

γ2(3 + β) + 1− β
, (144)

⇔M > log
(1− γ)2(1− β)

γ2(3 + β) + 1− β
(log β)−1. (145)

We will now show that for the values of M that satisfy Eq. 145, the sequence xk converges to some690

finite error that depends on ϵeval as k goes to infinity. To simplify the analysis of xk we study a slightly691

modified version thereof that has the same recursive definition xk+1 = d1xk+d2xk−M + (1+γ2)ϵeval

1−γ692

but replaces the terms x−k, ∀k ≥ 0 with x−k = max
{

∥Q⋆
τ∥∞
γ , ∥Q⋆

τ∥∞ +
∥∥Q0

τ

∥∥
∞ + (1+γ2)ϵeval

(1−γ)(1−β)

}
.693

Clearly, this modified sequence upper-bounds the previous sequence.694

To simplify the analysis, we first analyse another sequence yk that for k ≤ 0 is identical to xk, but for695

k ≥ 0 it evolves following the next law yk+1 = d1yk+d2yk−M . Now, if M is such that d1+d2 < 1,696

then the sequence yk is constant from y−M to y0 and is strictly decreasing thereafter, since for y1 we697

have698

y1 = d1y0 + d2y−M , (146)
= (d1 + d2)y0, (147)
< y0. (148)

Then, ∀k ≥ 1699

yk+1 = d1yk + d2yk−M , (149)
< d1yk−1 + d2yk−M−1, (150)
= yk. (151)

Since the sequence is decreasing and lower bounded by 0, it has a limit due to the monotone700

convergence theorem. Let us study the convergence of a sub-sequence. Let for any integer a > 0701

yaM+a = d1yaM+a−1 + d2yaM+a−1−M , (152)
< (d1 + d2)yaM+a−1−M , (153)
= (d1 + d2)y(a−1)M+(a−1), (154)

< (d1 + d2)
ay0. (155)

Thus, lima→∞ yaM+a = 0, which implies that limk→∞ yk = 0.702

Further, let us show that for all k and C(k) =
∑k−1

i=0 (d1 + d2)
i,703

xk ≤ yk + C(k)
(1 + γ2)ϵeval

1− γ
, (156)

and therefore, if we simplify the above expression, then for all k704

xk ≤ yk +
(1 + γ2)ϵeval

(1− γ)(1− d1 − d2)
. (157)

26

We do it by mathematical induction. First,705

x1 = d1x0 + d2x−M +
(1 + γ2)ϵeval

1− γ
= d1y0 + d2y−M +

(1 + γ2)ϵeval
1− γ

= y1 +
(1 + γ2)ϵeval

1− γ
.

(158)

Then, let us assume that Eq. 156 holds for any i ≤ k, now we show that it also holds for k + 1706

xk+1 = d1xk + d2xk−M +
(1 + γ2)ϵeval

1− γ
(159)

≤ d1

(
yk + C(k)

(1 + γ2)ϵeval
1− γ

)
+ d2

(
yk−M + C(k −M)

(1 + γ2)ϵeval
1− γ

)
+

(1 + γ2)ϵeval
1− γ

(160)

≤ yk+1 +max {C(k), C(k −M)} (d1 + d2)
(1 + γ2)ϵeval

1− γ
+

(1 + γ2)ϵeval
1− γ

(161)

(i)
= yk+1 + C(k)(d1 + d2)

(1 + γ2)ϵeval
1− γ

+
(1 + γ2)ϵeval

1− γ
(162)

= yk+1 +

k∑
i=0

(d1 + d2)
i (1 + γ2)ϵeval

1− γ
. (163)

Here, in (i) we use the definition of C(k) from Eq. 156 and its monotonicity that comes out707

of it. Therefore, we get that limk→∞ xk ≤ limk→∞

(
yk +

∑k−1
i=0 (d1 + d2)

i (1+γ2)ϵeval

1−γ

)
= 0 +708 ∑∞

i=0(d1 + d2)
i (1+γ2)ϵeval

1−γ = (1+γ2)ϵeval

(1−γ)(1−(d1+d2))
, which completes the first part of our proof. Now,709

let us have a closer look on the convergence speed.710

To better characterize the convergence of xk, we again analyse the sequence yk. First, we note that711

the constant d1 ≥ β + γ(1 − β) is typically very close to 1, whereas d2 → 0 as M → ∞. The712

sequence yk thus behaves almost as dk1y0. A much tighter upper-bounding sequence than that of713

Eq. 155 can be obtained using the following inequalities714

yk = d1yk−1 + d2yk−1−M , (164)

= dM1 yk−M + d2

M−1∑
i=0

di1yk−1−M−i, (165)

≥
(
dM1 + d2

1− dM1
1− d1

)
yk−M , (166)

where we have used in the last inequality the fact that yk is a decreasing sequence. Let715

d3 :=

(
dM1 + d2

1− dM1
1− d1

)
, (167)

then we can upper bound the sequence yk by716

yk+1 =
(
d1 + d2d

−1
3

)
yk + d2(yk−M − d−1

3 yk), (168)

≤
(
d1 + d2d

−1
3

)
yk + d2(yk−M − d−1

3 d3yk−M), (169)

=
(
d1 + d2d

−1
3

)
yk, (170)

≤
(
d1 + d2d

−1
3

)k+1
y0. (171)

27

Figure 4: Evolution of xk for two successive values of M , one being large enough for xk to converge.
The plot additionally shows the sequence x′

k introduced by Thm. 4.4 that closely follows the behavior
of xk. See text for more details.

Now to study the limit limM→∞ d1 + d2d
−1
3 , let us first start with the rightmost term717

d2d
−1
3 ≤ d2

dM1
, (172)

≤ d2
(β + γ(1− β))M

, (173)

=
1

(β + γ(1− β))M
2βMγ2

(1− γ)(1− βM)
, (174)

=

(
β

β + γ(1− β)

)M
2γ2

(1− γ)(1− βM)
. (175)

Since β < β+γ(1−β), then clearly limM→∞ d2d
−1
3 = 0, and from the definition of d1 one can see718

that limM→∞ d1 = β+ γ(1− β). Combining the result above with Eq. 157, we obtain the statement719

of the theorem.720

To illustrate how close the sequence
(
d1 + d2d

−1
3

)k
x0 is to xk, let us take a numerical example721

with γ = 0.99 and β = 0.95. In this case, we have that d1 + d2 < 1 whenever M ≥ 265. At722

M = 265 we have that d1 ≈ 0.9997 and d2 ≈ 0.0002. In Fig. 4 we plot the three sequences xk,723

x′
k =

(
d1 + d2d

−1
3

)k
x0 and x′′

k = (d1+d2)
k/(M+1)x0 for M = 264 and M = 265 and we see that724

x′
k converges to zero for the same M as xk and is almost indistinguishable from the latter, whereas725

x′′
k is a much more loose upper-bounding sequence at M = 265.726

28

B Additional experimental results727

B.1 Comparison with deep RL baselines728

We summarize all performance comparisons in Fig. 5 and Table 2. We provide a discussion of the729

MountainCar environment and some of the challenges of exploration in an entropy-regularized setting730

in App. B.5.731

0 1 2 3 4 52.5

3

3.5

4

4.5

5

5.5

Re
tu

rn
 (x

10
0)

CartPole-v1

0 1 2 3 4 5-0.8

-0.75

-0.7

-0.65

-0.6
Acrobot-v1

0 1 2 3 4 5-2

-1

0

1

2

3

LunarLander-v2

0 1 2 3 4 5

-2

-1.8

-1.6

-1.4

-1.2

-1

MountainCar-v0

0 1 2 3 4 50

0.5

1

1.5

2

2.5

3

3.5

Re
tu

rn
 (1

K)

Hopper-v4

0 1 2 3 4 50

0.5

1

1.5

2

2.5

3

3.5

4
Walker2d-v4

0 1 2 3 4 50

0.5

1

1.5

2

2.5

3

3.5

First deletion in StaQ
Corresponds to Vanilla PMD
update until 1.5M

HalfCheetah-v4

0 1 2 3 4 50.5

1

1.5

2

2.5

3
Ant-v4

0 1 2 3 4 50

1

2

3

4

5

Humanoid-v4

0 1 2 3 4 5
Env steps (1M)

0

10

20

30

40

50

60

Re
tu

rn

MinAtar/Asterix-v1

0 1 2 3 4 5
Env steps (1M)

0

10

20

30

40

50

60
MinAtar/Breakout-v1

0 1 2 3 4 5
Env steps (1M)

0

10

20

30

40

50

60

70
MinAtar/Freeway-v1

0 1 2 3 4 5
Env steps (1M)

0

20

40

60

80

100

120

140
MinAtar/Seaquest-v1

0 1 2 3 4 5
Env steps (1M)

0

50

100

150

200

250

300

350
MinAtar/SpaceInvaders-v1

StaQ PQN M-DQN DQN PPO TRPO

Figure 5: Policy performance across all environments.

StaQ PQN M-DQN DQN PPO TRPO

CartPole-v1 500 479 457 411 500 500
Acrobot-v1 -62 -75 -63 -63 -63 -64
LunarLander-v2 285 280 88 -317 227 222
MountainCar-v0 -200 -200 -100 -110 -141 -118
Hopper-v4 3196 3263 2600 2279 2411 2672
Walker2d-v4 3550 2585 1364 1424 2799 3010
HalfCheetah-v4 3061 2850 2098 2294 2001 1731
Ant-v4 2910 1879 1776 1871 2277 2452
Humanoid-v4 5273 2965 2580 2887 588 700
MinAtar/Asterix-v1 46 53 31 19 9 23
MinAtar/Breakout-v1 48 32 55 34 10 15
MinAtar/Freeway-v1 62 65 59 54 60 47
MinAtar/Seaquest-v1 114 114 51 14 5 7
MinAtar/SpaceInvaders-v1 242 327 116 95 92 94

Table 2: Final performance on all environments.

29

B.2 Stability plots (variation within individual runs)732

In this section we provide further stability plots to complement Fig. 3 (Left). In Fig. 6-8 we plot the733

returns of the first three seeds of the full results (shown in Fig. 5). At each timestep, the returns for734

each individual seed are normalised by subtracting and then dividing by the mean across all seeds. In735

addition to the first three seeds, the shaded regions indicate one-sided tolerance intervals such that at736

least 95% of the population measurements are bounded by the upper or lower limit, with confidence737

level 95% (Krishnamoorthy & Mathew, 2009).738

We can see from Fig. 6-8 that Approximate Policy Iteration (API) algorithms (StaQ, TRPO, PPO)739

generally exhibit less variation within runs than Approximate Value Iteration (AVI) ones (DQN,740

M-DQN, PQN). In simple environments, such as CartPole, all three API algorithms have stable741

performance, but on higher dimensional tasks, only StaQ retains a similar level of stability while742

maintaining good performance. This is especially striking on Hopper, where runs show comparatively743

little variation within iterations while having the highest average performance, as shown in Fig. 5.744

We attribute this improved stability in the performance of the evaluation policy by the averaging over745

a very large number of Q-functions (M = 300) of StaQ, which reduces the infamous performance746

oscillation of deep RL algorithms in many cases.

0 1 2 3 4 5
Env step (1M)

-40

-20

0

20

40

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

CartPole-v1
StaQ

0 1 2 3 4 5
Env step (1M)

CartPole-v1
PQN

0 1 2 3 4 5
Env step (1M)

CartPole-v1
M-DQN

0 1 2 3 4 5
Env step (1M)

CartPole-v1
DQN

0 1 2 3 4 5
Env step (1M)

CartPole-v1
PPO

0 1 2 3 4 5
Env step (1M)

CartPole-v1
TRPO

0 1 2 3 4 5
Env step (1M)

-20

-10

0

10

20

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

Acrobot-v1
StaQ

0 1 2 3 4 5
Env step (1M)

Acrobot-v1
PQN

0 1 2 3 4 5
Env step (1M)

Acrobot-v1
M-DQN

0 1 2 3 4 5
Env step (1M)

Acrobot-v1
DQN

0 1 2 3 4 5
Env step (1M)

Acrobot-v1
PPO

0 1 2 3 4 5
Env step (1M)

Acrobot-v1
TRPO

0 1 2 3 4 5
Env step (1M)

-100

-50

0

50

100

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

LunarLander-v2
StaQ

0 1 2 3 4 5
Env step (1M)

LunarLander-v2
PQN

0 1 2 3 4 5
Env step (1M)

LunarLander-v2
M-DQN

0 1 2 3 4 5
Env step (1M)

LunarLander-v2
DQN

0 1 2 3 4 5
Env step (1M)

LunarLander-v2
PPO

0 1 2 3 4 5
Env step (1M)

LunarLander-v2
TRPO

Figure 6: Stability plots for Classic Control environments, plotting normalized performance of the
first three individual runs for each algorithm. See text for more details. Figures continue on the next
page.

747

30

0 1 2 3 4 5
Env step (1M)

-40

-20

0

20

40

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

Hopper-v4
StaQ

0 1 2 3 4 5
Env step (1M)

Hopper-v4
PQN

0 1 2 3 4 5
Env step (1M)

Hopper-v4
M-DQN

0 1 2 3 4 5
Env step (1M)

Hopper-v4
DQN

0 1 2 3 4 5
Env step (1M)

Hopper-v4
PPO

0 1 2 3 4 5
Env step (1M)

Hopper-v4
TRPO

0 1 2 3 4 5
Env step (1M)

-100

-50

0

50

100

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

Walker2d-v4
StaQ

0 1 2 3 4 5
Env step (1M)

Walker2d-v4
PQN

0 1 2 3 4 5
Env step (1M)

Walker2d-v4
M-DQN

0 1 2 3 4 5
Env step (1M)

Walker2d-v4
DQN

0 1 2 3 4 5
Env step (1M)

Walker2d-v4
PPO

0 1 2 3 4 5
Env step (1M)

Walker2d-v4
TRPO

0 1 2 3 4 5
Env step (1M)

-40

-20

0

20

40

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

HalfCheetah-v4
StaQ

0 1 2 3 4 5
Env step (1M)

HalfCheetah-v4
PQN

0 1 2 3 4 5
Env step (1M)

HalfCheetah-v4
M-DQN

0 1 2 3 4 5
Env step (1M)

HalfCheetah-v4
DQN

0 1 2 3 4 5
Env step (1M)

HalfCheetah-v4
PPO

0 1 2 3 4 5
Env step (1M)

HalfCheetah-v4
TRPO

0 1 2 3 4 5
Env step (1M)

-40

-20

0

20

40

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

Ant-v4
StaQ

0 1 2 3 4 5
Env step (1M)

Ant-v4
PQN

0 1 2 3 4 5
Env step (1M)

Ant-v4
M-DQN

0 1 2 3 4 5
Env step (1M)

Ant-v4
DQN

0 1 2 3 4 5
Env step (1M)

Ant-v4
PPO

0 1 2 3 4 5
Env step (1M)

Ant-v4
TRPO

Figure 7: Stability plots for MuJoCo environments, plotting normalized performance of the first three
individual runs for each algorithm. See text for more details. Figures continue on the next page.

31

0 1 2 3 4 5
Env step (1M)

-40

-20

0

20

40

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

MinAtar/Asterix-v1
StaQ

0 1 2 3 4 5
Env step (1M)

MinAtar/Asterix-v1
PQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Asterix-v1
M-DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Asterix-v1
DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Asterix-v1
PPO

0 1 2 3 4 5
Env step (1M)

MinAtar/Asterix-v1
TRPO

0 1 2 3 4 5
Env step (1M)

-40

-20

0

20

40

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

MinAtar/Breakout-v1
StaQ

0 1 2 3 4 5
Env step (1M)

MinAtar/Breakout-v1
PQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Breakout-v1
M-DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Breakout-v1
DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Breakout-v1
PPO

0 1 2 3 4 5
Env step (1M)

MinAtar/Breakout-v1
TRPO

0 1 2 3 4 5
Env step (1M)

-100

-50

0

50

100

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

MinAtar/Freeway-v1
StaQ

0 1 2 3 4 5
Env step (1M)

MinAtar/Freeway-v1
PQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Freeway-v1
M-DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Freeway-v1
DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Freeway-v1
PPO

0 1 2 3 4 5
Env step (1M)

MinAtar/Freeway-v1
TRPO

0 1 2 3 4 5
Env step (1M)

-150

-100

-50

0

50

100

150

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

MinAtar/Seaquest-v1
StaQ

0 1 2 3 4 5
Env step (1M)

MinAtar/Seaquest-v1
PQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Seaquest-v1
M-DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Seaquest-v1
DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Seaquest-v1
PPO

0 1 2 3 4 5
Env step (1M)

MinAtar/Seaquest-v1
TRPO

0 1 2 3 4 5
Env step (1M)

-75

-50

-25

0

25

50

75

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

MinAtar/SpaceInvaders-v1
StaQ

0 1 2 3 4 5
Env step (1M)

MinAtar/SpaceInvaders-v1
PQN

0 1 2 3 4 5
Env step (1M)

MinAtar/SpaceInvaders-v1
M-DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/SpaceInvaders-v1
DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/SpaceInvaders-v1
PPO

0 1 2 3 4 5
Env step (1M)

MinAtar/SpaceInvaders-v1
TRPO

Figure 8: Stability plots for MinAtar environments, plotting normalized performance of the first three
individual runs for each algorithm. See text for more details.

32

0 1 2 3 4 5
0.25

0.3

0.35

0.4

0.45

0.5

0.55

Re
tu

rn
 (x

10
0)

CartPole-v1

0 1 2 3 4 5

-0.72

-0.7

-0.68

-0.66

-0.64

-0.62

-0.6
Acrobot-v1

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

LunarLander-v2

0 1 2 3 4 5

-2

-1.8

-1.6

-1.4

-1.2

-1

MountainCar-v0

0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

Re
tu

rn
 (1

K)

Hopper-v4

0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

4
Walker2d-v4

0 1 2 3 4 5

1.5

2

2.5

3

3.5
HalfCheetah-v4

0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

Ant-v4

0 1 2 3 4 5

1

2

3

4

5

Humanoid-v4

0 1 2 3 4 5

Env steps (1M)

0

10

20

30

40

50

60

Re
tu

rn

MinAtar/Asterix-v1

0 1 2 3 4 5

Env steps (1M)

0

10

20

30

40

50

60
MinAtar/Breakout-v1

0 1 2 3 4 5

Env steps (1M)

40

45

50

55

60

65
MinAtar/Freeway-v1

0 1 2 3 4 5

Env steps (1M)

0

20

40

60

80

100

120

140
MinAtar/Seaquest-v1

0 1 2 3 4 5

Env steps (1M)

0

50

100

150

200

250

300
MinAtar/SpaceInvaders-v1

M=1 M=5 M=50 M=100 M=300 M=500 M=1000 M = 300 (=0)

Figure 9: Ablation study for different memory sizes M and for ϵ = 0, on all environments. Results
showing the mean and one standard deviation averaged over 5 seeds.

B.3 The impact of the memory-size M and value of ϵ748

Figure 9 shows the performance of StaQ for different choices of M and for the hyperparameter ϵ = 0749

instead of ϵ = 0.05 on additional MuJoCo tasks. Setting M = 1 corresponds to no KL-regularization750

as discussed in App. C and can be seen as an adaptation of SAC to discrete action spaces. M = 1751

is unstable on both Hopper and Walker, in addition to Acrobot as shown in Fig. 3 in the main752

paper. Adding KL-regularization and averaging over at least 50 Q-functions greatly helps to stabilize753

performance except on the Humanoid task, as shown in Fig. 3, where M = 50 was still unstable754

compared to M = 300. Finally, the default setting of ϵ = 0.05 outperforms a pure softmax policy755

with ϵ = 0 on the Mujoco environments. While being fully on-policy (when ϵ = 0) can benefit some756

MinAtar environments such as Asterix, Freeway and SpaceInvaders, for many other environments757

it may result in a very poor performance. We discuss some of the likely reasons for the need of758

ϵ-softmax exploration in the next section.759

B.4 Instability in learning the Q-function760

In certain environments such as Hopper-v4 (leftmost panel of Fig. 9), we observe that when the761

behavior policy πb
k is the current softmax policy πk (i.e. ϵ = 0), there are more performance drops762

than with the ϵ-softmax behavior policy (ϵ > 0) which StaQ uses by default.763

To understand why adding an ϵ-softmax policy on top of the softmax policy πk stabilizes performance764

on Hopper-v4 as shown in Fig. 9, we have conducted the following experiment. We first launched765

two runs of StaQ with an ϵ-softmax policy on top of πk, with ϵ being either 0.05 or 0. From these two766

runs, we collected 100 states spread along both training processes. We then launched 5 independent767

runs for each value of ϵ, and recorded for these 100 states the learned Q-values at each iteration. Upon768

manual inspection of the Q-values, we immediately notice that when ϵ = 0, the Q-values vary more769

wildly across time for all the actions, which can be seen as an analogue of catastrophic forgetting in770

Q-learning, the phenomenon widely studied in Continual Learning, see App. D. Fig. 10 shows a few771

examples for four different seeds. To understand whether these variations have any tangible impact on772

the instability of the policy, we have performed the following test: we compute the logits ξk at every773

33

(a) Q-functions recorded at a given state
across 1000 iterations for StaQ’s behavior
policy hyperparameter ϵ = 0 and ϵ = 0.05.
Seed 0.

(b) Q-functions recorded at a given state
across 1000 iterations for StaQ’s behavior
policy hyperparameter ϵ = 0 and ϵ = 0.05.
Seed 1.

(c) Q-functions recorded at a given state
across 1000 iterations for StaQ’s behavior
policy hyperparameter ϵ = 0 and ϵ = 0.05.
Seed 2.

(d) Q-functions recorded at a given state
across 1000 iterations for StaQ’s behavior
policy hyperparameter ϵ = 0 and ϵ = 0.05.
Seed 3.

Figure 10: Q-values on four different states across 1000 iterations of StaQ, using an ϵ-softmax
behavior policy to collect data in the replay, with ϵ = 0.05 or ϵ = 0. With ϵ = 0, we noticed very
large variations in the Q-function between iterations that are reduced when using ϵ = 0.05.

Figure 11: The percentage of states (out of 100 states) in which from iteration k and onward, an action
was considered both the best and the worst according to ξk of EPMD. The difference of stability in
the Q-values between ϵ = 0.05 and ϵ = 0 noted in Fig. 10 causes a difference in stability of policies,
where actions switch more frequently from being worst to best when ϵ = 0. The comparison is
performed over 5 seeds showing the median and interquartile range.

34

0 5 10 15 20 25 30 35 40
Poisson rate ()

0.0000

0.0002

0.0004

0.0006

0.0008

Su
cc

es
s F

re
qu

en
cy

0 1 2 3 4 5

Env steps (1M)

0

0.2

0.4

0.6

0.8

1

1.2

En
tr

op
y

MountainCar-v0

StaQ(-softmax)
StaQ(sticky)
Max entropy

0 1 2 3 4 5

Env steps (1M)

-200

-180

-160

-140

-120

-100

-80

Re
tu

rn

MountainCar-v0
DQN
M-DQN
TRPO
PPO
StaQ(-softmax)
StaQ(sticky)

Figure 12: Left: Frequency of non-zero rewards of a uniform policy with sticky actions for different
choice of Poisson rate λ on MountainCar over 5M timesteps. Middle: Entropy of learned policies
under different behavior policies. Entropy of the uniform (Max entropy) policy plotted for reference.
Right: Policy returns for StaQ with different behavior policies and deep RL baselines on MountainCar.
Adding sticky actions to StaQ’s behavior policy fixes its performance on this task.

iteration following the EPMD formula (Eq. 5) and rank the actions according to ξk. At each iteration774

k, we then compute the proportion of states, out of 100 reference states, in which an action has both775

the highest and the lowest rank in the next iterations k′ ≥ k. The results are shown in Fig. 11, where776

we can see that when ϵ = 0, the fraction of states in which an action is considered as either being the777

best or the worst remains higher than when ϵ = 0.05, which might result in performance drops across778

iterations. Thus the observed Q-function oscillations that appear more pronounced for ϵ = 0 have a779

quantifiable impact on the stability of the policy, resulting in more states seeing actions switching780

from best to worst or vice versa.781

It is hard to know exactly what causes the Q-values to oscillate more when ϵ = 0. On the one hand,782

as these instabilities generally happen after the policy reached its peak performance, they could be783

because of some actions having very low probability of being selected in some states thus becoming784

under-represented in the replay buffer Dk. Setting ϵ > 0 ensures that all actions have a non-zero785

probability of being sampled at any given state. On the other hand, due to the convexity2 of DKL, i.e.786

DKL ((1− ϵ)π + ϵp, (1− ϵ)π′ + ϵp′) ≤ (1 − ϵ)DKL(π, π
′) + ϵDKL(p, p

′), if πb
k is an ϵ-softmax787

strategy of πk, then DKL(π
b
k, π

b
k+1) ≤ (1 − ϵ)DKL(πk, πk+1) for any ϵ > 0. This implies that788

successive replay buffers should be more similar when ϵ > 0, which stabilizes the learning due to789

smoother transfer from Qk
τ to Qk+1

τ . Nonetheless, a case of ϵ > 0 is not without its own challenges:790

ϵ-softmax policies, similarly to ϵ-greedy ones, might prevent deep exploration (Osband et al., 2016)791

and their off-policy nature might complicate learning (Kumar et al., 2020). We can see in Fig. 10792

that ϵ = 0.05 still exhibits sudden changes in the Q-function which might harm stability. While793

the averaging over past Q-functions of an EPMD policy can stabilize learning, we believe that the794

catastrophic forgetting in the Q-function itself should be addressed in the future work, which could795

potentially fix all remaining instabilities in deep RL.796

B.5 Entropy regularization does not solve exploration797

StaQ achieves competitive performance on all 14 environments except on MountainCar where it fails798

to learn, as can be seen in Fig. 5. In this section, we perform additional experiments to understand799

the failure of StaQ on MountainCar.800

In short, it appears that the initial uniform policy—which has maximum entropy—acts as a strong801

(local) attractor for this task: StaQ starts close to the uniform policy, and exploration with this policy802

does not generate a reward signal in MountainCar. As StaQ does not observe a reward signal in803

early training, it quickly converges to the uniform policy which has maximum entropy, but also never804

generates a reward signal. Indeed, if we unroll a pure uniform policy on MountainCar for 5M steps,805

we will never observe a reward.806

However, StaQ is not limited to a specific choice of behavior policy, and choosing a policy that807

introduces more correlation between adjacent actions, like a simple “sticky” policy allows StaQ to808

solve MountainCar. This policy samples an action from πk and applies it for a few consecutive steps,809

where a number of steps is drawn randomly from Poisson(λ) distribution (in our experiments with810

2See e.g. https://statproofbook.github.io/P/kl-conv.html for the proof.

35

https://statproofbook.github.io/P/kl-conv.html

StaQ we fix the rate of Poisson distribution at λ = 10). In Fig. 12, we can see that StaQ with the same811

hyperparameters for classical environments (see Table 3) and a "sticky" behavior policy manages812

to find a good policy for MountainCar matching the best baseline. The final policy demonstrates813

much lower entropy compared to ϵ-softmax policy that fails at learning for this environment, which814

confirms our statement that entropy maximization cannot be a universal tool when dealing with the815

exploration problems.816

C Comparison with Soft Actor-Critic817

In this appendix, we explain the relation between Soft Actor-Critic (SAC, Haarnoja et al. (2018)) and818

both M-DQN (Vieillard et al., 2020b) and StaQ with M = 1. SAC is not directly used as a baseline819

because SAC is not compatible with discrete action spaces. However, M-DQN can be seen as an820

adaptation of SAC to discrete action spaces with an additional KL-divergence regularizer. Please see821

the discussion in Vieillard et al. (2020b) on page 3, between Eq. (1) and (2). Vieillard et al. (2020b)822

also describe Soft-DQN in Eq. (1) as a straightforward discrete-action version of SAC, that can be823

obtained from M-DQN by simply setting the KL-divergence regularization weight to zero. Soft-DQN824

was not included as a baseline because the results of Vieillard et al. (2020b) suggest that M-DQN825

generally outperforms Soft-DQN.826

We also note that by setting M = 1 in StaQ, we remove the KL-divergence regularization and only827

keep the entropy bonus. This baseline can also be seen as an adaptation of SAC to discrete action828

spaces: indeed, if we set M = 1 in Eq. (11) we recover the policy logits829

ξk+1 =
α

1− βM

M−1∑
i=0

βiQk−i
τ

=
α

1− β
Qk

τ

=
Qk

τ

τ
,

where the last line is due to ατ = 1 − β. This results in a policy of the form πk+1 ∝ exp
(

Qk
τ

τ

)
.830

Meanwhile, for SAC, the actor network is obtained by minimizing the following problem (Eq. 14 in831

Haarnoja et al. (2018))832

πk+1 = argminKL

π

∣∣∣∣∣∣
exp

(
Qk

τ

τ

)
Znorm.

 .

However, in the discrete action setting, we can sample directly from exp
(

Qk
τ

τ

)
—which is the833

minimizer of the above KL-divergence term—and we do not need an explicit actor network. As such834

StaQ with M = 1 could be seen as an adaptation of SAC to discrete action spaces.835

D A Continual Learning Perspective to Entropy Regularized Deep RL836

Reinforcement Learning has strong ties with CL due to the sequential nature in which data arrives.837

This is true even in this “single-task RL” setting, where we consider only a single MDP, unlike838

Continual RL (Lesort et al., 2020) where the learner is presented with a sequence of MDPs and one839

evaluates whether the learner is able learn on the new MDPs while retaining the information of older840

ones (De Lange et al., 2021; Wang et al., 2024). Drawing a connection with RL is interesting because841

it opens up a plethora of CL methods that are not well researched in the deep RL context, but are842

applicable even in a single task setting. Specifically, in this paper we focus on the entropy regularized843

policy update problem described below (Eq. 3 of the paper)844

for all s ∈ S, πk+1(s) = argmax
p∈∆(A)

{
Qk

τ (s) · p− τh(p)− ηDKL(p;πk(s))
}
.

The objective of this update can be seen as CL, as we receive a new “task” which is to find p a845

maximum entropy distribution over actions that puts its largest mass on actions with high Q-values,846

yet, through the KL-divergence term above, we do not want to differ too much from πk, and forget847

36

the solution of the previous “task”. Because of this similarity with CL, existing methods to solve848

this problem can be categorized with the CL literature lens, for example: Lazic et al. (2021) used a849

rehearsal method (replay buffer/experience replay in deep RL terminology) to tackle the above policy850

update, while Schulman et al. (2015) uses a parameter regularization approach. These methods cover851

two of the three main classes of CL methods (De Lange et al., 2021), and the novelty of this paper is852

in investigating a method pertaining to the third class (parameter isolation) to tackle this problem,853

as this class of methods has strong performance in CL benchmarks (See Sec. 6 of De Lange et al.854

(2021)), yet remains largely understudied in deep RL.855

E Hyperparameters856

Here, we provide the full list of hyperparameters used in our experiments3. StaQ’s hyperparameters857

are listed in Table 3, while the hyperparameters for our baselines are provided in Tables 4-7. For858

TRPO and PPO, we use the implementation provided in stable-baselines4 (Raffin et al., 2021),859

while we used our in-house PyTorch implementation of (M)-DQN4. For PQN, we use the CleanRL860

implementation (Huang et al., 2022).861

Across all environments, we enforce a time limit of 5000 steps. This is particularly useful for862

Seaquest-v1, since an agent can get stuck performing an infinitely long rollout during data collection.863

For MinAtar environments, we followed the network architecture used by Young & Tian (2019)864

consisting of a single convolutional layer with 16 channels and a 3 × 3 kernel (Conv(16, 3, 3))865

followed by a linear layer with 128 neurons.866

To account for the different scales of the reward between environments, we apply a different reward867

scaling to the Classic/MuJoCo environments and MinAtar. Note that this is equivalent to inverse-868

scaling the entropy weight τ and KL weight η, ensuring that ξk is of the same order of magnitude for869

all environments. To account for the varying action dimension |A| of the environments, we set the870

scaled entropy coefficient τ̄ as a hyperparameter, defined by τ̄ = τ log |A|, rather than directly setting871

τ . Furthermore, the entropy weight is linearly annealed from its minimum and maximum values.872

Policy evaluation. In all our experiments, we use an ensemble of two neural networks, similarly to873

e.g. SAC (Haarnoja et al., 2018), to evaluate a Q-function and therefore two SNNs for ξ-logits. In874

particular, we optimize the current Q-function weights θ to minimize the loss L(θ),875

L(θ) = E(s,a)∼D

[
1

2

(
Qθ (s, a)− Q̂ (s, a)

)2]
(176)

Q̂(s, a) := R(s, a) + γEs′∼D,a∼π(s′)

[
aggi∈{1,2} Qθ̂i

(s′, a′)− τh(π(s′))
]

(177)

where agg computes either the min or mean over the target Q-functions with weights θ̂1, θ̂2. We find876

that using the min of the two Q-functions to compute the target values often results in more stable877

training. min gives a more conservative target that is robust to overestimation bias in the Q-functions,878

and this allows us to reduce the KL weight. However, such a strategy may struggle when reward is879

not dense enough, e.g. some MinAtar and some classic control environments. Therefore we instead880

use the mean in Classic/MinAtar environments. Future work could use a more sophisticated approach881

that is both robust to overestimation bias and yet sensitive to weak reward signals.882

3Code is provided in the supplemental zip file, and will be released to an open-source repository upon
publication.

4We will add the link to the in-house library upon publication.

37

Hyperparameter Classic MuJoCo MinAtar

Discount (γ) 0.99 0.99 0.99
Memory size (M) 300 300 300

Policy update interval 5000 5000 5000
Ensembling mode mean min mean

Target type hard hard hard
Target update interval 200 200 200

Epsilon 0.05 0.05 0.05
Reward scale 10 10∗ 100
KL weight (η) 20 10 20

Initial scaled ent. weight 2.0 2.0 2.0
Final scaled ent. weight 0.4 0.4 0.4
Ent. weight decay steps 500K 1M 1M

Architecture 256× 2 256× 2 Conv(16, 3, 3) + 128 MLP
Activation function ReLU ReLU ReLU

Learning rate 0.0001 0.0001 0.0001
Optimizer Adam Adam Adam

Replay capacity 50K 50K 50K
Batch size 256 256 256

Table 3: StaQ hyperparameters, with parameters which vary across environment types in bold.
∗Hopper-V4 uses a reward scale of 1.

Hyperparameter Classic MuJoCo MinAtar

Discount factor (γ) 0.99 0.99 0.99
Horizon 2048 2048 1024

Num. epochs 10 10 3
Learning starts 5000 20000 20000

GAE parameter 0.95 0.95 0.95
VF coefficient 0.5 0.5 1

Entropy coefficient 0 0 0.01
Clipping parameter 0.2 0.2 0.1× α

Optimizer Adam Adam Adam
Architecture 64× 2 64× 2 ∗ Conv(16, 3, 3) + 128 MLP

Activation function Tanh Tanh Tanh
Learning rate 3× 10−4 3× 10−4 2.5× 10−4 × α

Batch size 64 64 256
Table 4: PPO hyperparameters, based on (Schulman et al., 2017). In the MinAtar environments α is
linearly annealed from 1 to 0 over the course of learning. ∗Humanoid-v4 uses a hidden layer size of
256.

38

Hyperparameter Classic MuJoCo MinAtar

Discount factor (γ) 0.99 0.99 0.99
Horizon 2048 2048 2048

Learning starts 5000 20000 20000

GAE parameter 0.95 0.95 0.95
Stepsize 0.01 0.01 0.01

Optimizer Adam Adam Adam
Architecture 64× 2 64× 2 ∗ Conv(16, 3, 3) + 128 MLP

Activation function Tanh Tanh Tanh
Learning rate 3× 10−4 3× 10−4 2.5× 10−4

Batch size 64 64 256
Table 5: TRPO hyperparameters, based on (Schulman et al., 2015). ∗Humanoid-v4 uses a hidden
layer size of 256.

Hyperparameter Classic MuJoCo MinAtar

Discount factor (γ) 0.99 0.99 0.99
Lambda 0.95 0.85 0.65

Epsilon start 1.0 1.0 1.0
Epsilon finish 0.05 0.05 0.05
Decay steps 1M 1M 1M

Num envs 32 32 128
Num steps 64 32 32

Max Grad Norm 10.0 10.0 10.0

Num minibatches 16 32 32
Num epochs 4 4 2

Optimizer RAdam RAdam RAdam
Architecture 128× 2 128× 2 Conv(16, 3, 3) + 128 MLP

Normalization Type LayerNorm LayerNorm LayerNorm
Input Normalization None None None
Activation function ReLU ReLU ReLU

Learning rate∗ 1× 10−4 1× 10−4 1× 10−4

Table 6: PQN hyperparameters. Classic and MinAtar hyperparameters are based on the original
paper (Gallici et al., 2025), while MuJoCo hyperparameters were found by hyperparameter tuning. ∗

Learning rate linearly annealed to 0 across the course of training.

Hyperparameter Classic MuJoCo MinAtar

Discount factor (γ) 0.99 0.99 0.99
Target update interval 100 8000 8000

Epsilon 0.1 0.1 0.1
Decay steps 20K 20K 20K

M-DQN temperature 0.03 0.03 0.03
M-DQN scaling term 1.0 0.9 0.9

M-DQN clipping value -1 -1 -1

Architecture 512× 2 128× 2 Conv(16, 3, 3) + 128 MLP
Activation function ReLU ReLU ReLU

Learning rate 1× 10−3 5× 10−5 2.5× 10−4

Optimizer Adam Adam Adam
Replay capacity 50K 1M 1M

Batch size 128 32 32
Table 7: MDQN and DQN hyperparameters, based on (Vieillard et al., 2020b; Ceron & Castro, 2021)

39

F Training and Inference Time Comparisons883

Memory size M 1 50 100 300 500

Hopper-v4 Training time (hrs) 9.8 10.1 10.3 10.3 10.9
Inference speed (steps/s) 610 610 620 640 600

Ant-v4 Training time (hrs) 10.4 10.7 10.3 11 10.5
Inference speed (steps/s) 540 570 560 540 560

Table 8: Training and inference times for StaQ, as a function of M , on Hopper-v4 (state dim.=11)
and Ant-v4 (state dim. = 105), computed on an NVIDIA Tesla V100 and averaged over 3 seeds.

StaQ PPO TRPO M-DQN DQN PQN

Hopper-v4 Training time (hrs) 10.3 3.7 3.2 5.6 4.9 0.6
Inference speed (steps/s) 640 1040 1020 1550 1460 3740

Ant-v4 Training time (hrs) 11 4.3 3.6 6.1 5.3 0.6
Inference speed (steps/s) 540 830 850 1110 1040 2180

Table 9: Training and inference times for StaQ (M = 300) vs baselines, on the Hopper-v4 and
Ant-v4 environments. Timings are computed on an NVIDIA Tesla V100, averaged over 3 seeds.

In this section, we report the training time and inference speed of StaQ, as a function of memory size884

M and state space dimension. We also compare it to the deep RL baselines. All timing experiments885

were computed on an NVIDIA Tesla V100, and averaged over 3 seeds. The training time is defined886

as the time required to train StaQ for 5 million timesteps, not including the time require for data887

collection, while the inference speed is measured by the number of environment steps per second that888

can be evaluated during inference. Table 8 shows that memory size and dimension of the state space889

have a negligible impact on training and inference times, as discussed in Sec 6. Table 9 compares the890

training and inference time of StaQ (M = 300) with the baselines.891

G Pseudocode of StaQ892

We provide in this section the pseudocode of StaQ in Alg. 1. As an approximate policy iteration893

algorithm, StaQ comprises three main steps: i) data collection, ii) policy evaluation iii) policy894

improvement. Data collection (Line 4-5) consist in interacting with the environment to collect895

transitions of type (state, action, reward, next state) that are stored in a replay buffer. A policy896

evaluation algorithm (Eq. 176) is then called to evaluate the current Q-function Qk
τ using the replay897

buffer. Finally, the policy update is optimization-free and simply consists in stacking the Q-function898

in the SNN policy as discussed in Sec. 5. After K iterations, the last policy is returned.

Algorithm 1 StaQ (Finite-memory entropy regularized policy mirror descent)

1: Input: An MDP M, a memory-size M , Number of samples per iteration N , Replay buffer size
D, Initial behavior policy πb

0, entropy weight τ , DKL weight η, ϵ-softmax exploration parameter
2: Output: Policy πK ∝ exp(ξK)
3: for k = 0 to K − 1 do
4: Interact with M using the behavior policy πb

k for N times steps
5: Update replay buffer Dk to contain the last D transitions
6: Learn Qk

τ from Dk using a policy evaluation algorithm (Eq. 176)
7: Obtain logits ξk+1 by stacking the last M Q-functions (see Sec. 5) following the finite-memory

EPMD update of Eq. 10.
8: Set πk+1 ∝ exp(ξk+1) and πb

k+1 to an ϵ-softmax policy over πk+1

9: end for

899

40

	Introduction
	Related Work
	Preliminaries
	Entropy-regularized policy mirror descent

	Finite-memory policy mirror descent
	Vanilla finite-memory EPMD
	Weight corrected finite-memory EPMD

	Practical implementation
	Experiments
	Discussion and future work
	Proofs
	Properties of entropy regularized Bellman operators
	Proof of Theorem 4.1
	Approximate finite-memory EPMD
	Proof of Corollary 4.1.1
	Proof of Theorem 4.2

	Approximate weight-corrected finite-memory EPMD
	Proof of the logits expression in Sec. 4.2
	Proof of Corollary 4.1.2

	Proof of Lemma 4.3
	Proof of Theorem 4.4

	Additional experimental results
	Comparison with deep RL baselines
	Stability plots (variation within individual runs)
	The impact of the memory-size M and value of
	Instability in learning the Q-function
	Entropy regularization does not solve exploration

	Comparison with Soft Actor-Critic
	A Continual Learning Perspective to Entropy Regularized Deep RL
	Hyperparameters
	Training and Inference Time Comparisons
	Pseudocode of StaQ

