
StaQ it! Growing neural networks for
Policy Mirror Descent

Alena Shilova
Inria TAU team

LISN, Université Paris-Saclay
Orsay, France

alena.shilova@inria.fr

Alex Davey
Univ. Lille, Inria

CNRS, Centrale Lille
UMR 9189 – CRIStAL

Lille, France
alex.davey@inria.fr

Brahim Driss
Univ. Lille, Inria

CNRS, Centrale Lille
UMR 9189 – CRIStAL

Lille, France
brahim.driss@inria.fr

Riad Akrour
Univ. Lille, Inria

CNRS, Centrale Lille
UMR 9189 – CRIStAL

Lille, France
riad.akrour@inria.fr

Abstract

In Reinforcement Learning (RL), regularization has emerged as a popular tool both
in theory and practice, typically based either on an entropy bonus or a Kullback-
Leibler divergence that constrains successive policies. In practice, these approaches
have been shown to improve exploration, robustness and stability, giving rise to
popular Deep RL algorithms such as SAC and TRPO. Policy Mirror Descent (PMD)
is a theoretical framework that solves this general regularized policy optimization
problem, however the closed-form solution involves the sum of all past Q-functions,
which is intractable in practice. We propose and analyze PMD-like algorithms
that only keep the last M Q-functions in memory, and show that for finite and
large enough M , a convergent algorithm can be derived, introducing no error in
the policy update, unlike prior deep RL PMD implementations. StaQ, the resulting
algorithm, enjoys strong theoretical guarantees and is competitive with deep RL
baselines, while exhibiting less performance oscillation, paving the way for fully
stable deep RL algorithms and providing a testbed for experimentation with Policy
Mirror Descent.

1 Introduction
Deep RL has seen rapid development in the past decade, achieving super-human results on several
decision making tasks (Mnih et al., 2015; Silver et al., 2016; Wurman et al., 2022). However, the
use of neural networks as function approximators exacerbates many challenges of RL, such as the
difficulties of exploration and brittleness to hyperparameters (Henderson, 2018). Furthermore, the
empirical behavior often poorly aligns with our theoretical understandings (Ilyas et al., 2020; Kumar
et al., 2020; van Hasselt et al., 2018). To address these issues, many successful deep RL algorithms
consider regularized versions of the original objective, typically either by regularizing the Bellman
operators with an entropy bonus e.g. SAC (Haarnoja et al., 2018) or by introducing a KL constraint
between successive policies, e.g. TRPO (Schulman et al., 2015).

Policy Mirror Descent (PMD, Abbasi-Yadkori et al. (2019); Lazic et al. (2021); Zhan et al. (2023))
applies Mirror Descent (Nemirovsky & Yudin, 1983; Beck & Teboulle, 2003), a first-order convex
optimization method, to the policy improvement step. In the more general entropy-regularized form of

18th European Workshop on Reinforcement Learning (EWRL 2025).

Figure 1: Overview of StaQ, showing the continual training of a Q-function (left), from which we
periodically “stack” frozen weight snapshots to form the policy (right). See Sec. 5 for more details.
At each iteration k, two steps are performed. i) Policy evaluation, where we generate a dataset Dk

of transitions that are gathered by a behavior policy πb
k, typically derived from πk, and then learn

Qπk from Dk. ii) Policy update, performed by “stacking” the NN of Qπk into the current policy. The
policy update is optimization-free and theoretically grounded (Sec. 4), thus only the choice of πb

k and
the policy evaluation algorithm can remain sources of instabilities in this deep RL setting.

PMD, starting with the previous Q-function Qk, the improved policy at each iteration is the solution
of the following optimization problem

πk+1(s) = argmax
p∈∆(A)

{
Ea∼p[Q

k(s, a)]− τh(p)− ηDR(p, πk)
}

(1)

for some entropy weight τ ≥ 0 and (inverse) step size η > 0, where h is the negative Shannon
entropy and DR is the Bregman divergence associated with the convex regularizer R and πk is the
previous policy. This has received a lot of recent theoretical interest as a unifying framework for
many regularized policy iteration algorithms (Neu et al., 2017; Geist et al., 2019).

When also using the negative entropy as the convex regularizer, the Bregman divergence reduces to
the KL-divergence between successive policies, the resulting policy that solves Eq. 1 at each iteration
k is given by a weighted average of past Q-functions

πk ∝ exp

(
α

k∑
i=0

βiQk−i

)
, (2)

with temperature α := 1/(η + τ) and decay factor β := η/(η + τ) (see Sec. 3 for more details).
The averaging over previous Q-functions induced by the DKL regularizer is known to average out
approximation errors over the true Q-functions and has stabilizing properties in practice (Geist et al.,
2019; Abbasi-Yadkori et al., 2019).

The sum in Eq. 2 can be computed exactly if the Q-function is a linear function of some fixed
feature space, as summing Q-functions is equivalent to summing their weights. Beyond that, for
non-linear function approximators such as neural networks, no closed form update for Eq. 2 exists in
parameter space, requiring the storage of all past Q-functions, which is intractable. As such, prior
work considered several type of approximations to the policy update in Eq. 1, such as following the
natural gradient as in TRPO (Schulman et al., 2015) or performing a few gradient steps over Eq. 1 as
in MDPO (Tomar et al., 2020).

Instead, we consider a PMD-like algorithm that implements a policy similar to Eq. 2, but where at
most M Q-functions are stored. This corresponds to solving Eq. 1 approximately, replacing πk in the
DKL regularization with a slightly altered policy π̃k, for which we have deleted the oldest Q-function
(Sec. 4). Abbasi-Yadkori et al. (2019) performed an experiment of the sort on an RL task, keeping in
memory the past 10 Q-functions, and noted increased stability and performance over vanilla DQN,
but provided no theoretical justification for keeping a finite set of Q-functions, which we adress in
this paper. Interestingly, we show that for M large enough, replacing πk with π̃k will not hinder the
asymptotic convergence to π⋆.

This paper extends prior work on PMD (Abbasi-Yadkori et al., 2019; Lazic et al., 2021; Zhan et al.,
2023) by proposing a provably converging finite-memory PMD-like algorithm (see Fig. 1), that both
has strong theoretical guarantees and is fully implementable with promising empirical performance.
In detail, our contributions are as follows:

i) We theoretically study the convergence of PMD-like algorithms that store up to M Q-functions,
and show that this finite-memory algorithm still converges if M is large enough.

2

ii) We show that by batching the Q-functions we can efficiently compute the full stack of Q-functions
on GPU in parallel.

iii) We show on a large set of tasks that StaQ, the resulting Deep RL algorithm, with its closed-form
entropy regularized policy update, is competitive with deep RL baselines on a wide range of
MuJoCo (discrete-action setting) and MinAtar environments, while demonstrating stabilized
learning, bringing us closer to a completely stable deep RL algorithm.

2 Related Work
Regularization in RL. Regularization has seen widespread usage in RL. It was used with (nat-
ural) policy gradient ((N)PG) (Kakade, 2001; Schulman et al., 2015; Yuan et al., 2022), policy
search (Deisenroth et al., 2013), policy iteration (Abbasi-Yadkori et al., 2019; Zhan et al., 2023) and
value iteration methods (Fox et al., 2016; Vieillard et al., 2020b). Common choices of regularizers
include minimizing the DKL between the current and previous policy (Azar et al., 2012; Schulman
et al., 2015) or encouraging high Shannon entropy (Fox et al., 2016; Haarnoja et al., 2018), but other
regularizers exist (Lee et al., 2019; Alfano et al., 2023). We refer the reader to Neu et al. (2017); Geist
et al. (2019) for a broader categorization of entropy regularizers and their relation to existing deep
RL methods. In this paper, we use both a DKL penalization w.r.t. the previous policy and a Shannon
entropy bonus in a policy iteration context. In Vieillard et al. (2020b), both types of regularizers
were used but in a value iteration context. Abbasi-Yadkori et al. (2019); Lazic et al. (2021) are policy
iteration methods but only use DKL penalization.

Policy Mirror Descent. Policy Mirror Descent is a family of policy optimization algorithms that can
be all characterized by a similar objective functions, where a new policy is found by solving Eq. 1.
Prior works on PMD focus mostly on performing a theoretical analysis of convergence speeds or
sample complexity for different choices of regularizers (Li et al., 2022; Johnson et al., 2023; Alfano
et al., 2023; Zhan et al., 2023; Lan, 2022; Protopapas & Barakat, 2024). As PMD provides a general
framework for many regularized RL algorithms, PMD theoretical results can be naturally extended to
many policy gradient algorithms like Natural PG (Khodadadian et al., 2021) and TRPO (Schulman
et al., 2015) as shown in Neu et al. (2017); Geist et al. (2019). However, the deep RL algorithms from
the PMD family generally perform inexact policy updates, adding an additional source of error from
the theoretical perspective. For example, TRPO and the more recent MDPO (Tomar et al., 2020) rely
on approximate policy updates using policy gradients.

We build on (Abbasi-Yadkori et al., 2019; Lazic et al., 2021; Zhan et al., 2023) by proposing a
finite-memory variant, proving the new convergence results and offering a new deep RL algorithm
policy update step that does not introduce any additional error, in contrast to prior works.

Growing neural architectures and ensemble methods in RL. Saving past Q-functions has previ-
ously been investigated in the context of policy evaluation. In Tosatto et al. (2017), a first Q-function
is learned, then frozen and a new network is added, learning the residual error. Shi et al. (2019) uses
past Q-functions to apply Anderson acceleration for a value iteration type of algorithm. Anschel
et al. (2017) extend DQN by saving the past 10 Q-functions, and using them to compute lower
variance target values. Instead of past Q-functions, Chen et al. (2021); Lee et al. (2021); Agarwal et al.
(2020); Lan et al. (2020) use an ensemble of independent Q network functions to stabilize Q-function
learning in DQN type of algorithms. The aforementioned works are orthogonal to ours, as they are
concerned with learning one Q, while policy evaluation in StaQ is a secondary choice. Conversely,
both Girgin & Preux (2008) and Della Vecchia et al. (2022) use a special neural architecture called
the cascade-correlation network (Fahlman & Lebiere, 1989) to grow neural policies. The former
work studies such policies in combination with LSPI (Lagoudakis & Parr, 2003), without entropy
regularization. The latter work is closer to ours, using a DKL-regularizer but without a deletion
mechanism. As such the policy grows indefinitely, limiting the scaling of the method. Finally,
Abbasi-Yadkori et al. (2019) save the past 10 Q-functions to compute the policy in Eq. 2 for the
specific case of β = 1, but do not study the impact of deleting older Q-functions as we do in this
paper. Growing neural architectures are more common in the neuroevolution community (Stanley &
Miikkulainen, 2002), and have been used for RL, but are beyond the scope of this paper.

Parallels with Continual Learning. Continual Learning (CL) moves from the usual i.i.d assumption
of supervised learning towards a more general assumption that data distributions change through
time (Parisi et al., 2019; Lesort et al., 2020; De Lange et al., 2021; Wang et al., 2024). This problem is
closely related to that of incrementally computing πk in Eq. 2, due to the differing data distributions

3

that each Q-function is trained on, and our approach of using a growing architecture to implement
a KL-regularized policy update is inspired by parameter isolation methods in the CL literature,
which offer some of the best stability-performance trade-offs (see Sec. 6 in De Lange et al. (2021)).
Parameter isolation methods were explored in the context of continual RL (Rusu et al., 2016), yet
remain understudied in a standard single-task RL setting.

3 Preliminaries
Let a Markov Decision Problem (MDP) be defined by the tuple (S,A,R, P, γ), such that S and A
are finite state and action spaces, R is a bounded reward function R : S ×A 7→ [−Rx, Rx] for some
positive constant Rx, P defines the (Markovian) transition probabilities of the decision process and γ
is a discount factor. The algorithms presented in this paper can be extended to more general state
spaces. However, the limitation to a finite A is non-trivial to lift due to the sampling from softmax
distributions as in Eq. 2. We discuss in Sec. 7 potential ways to address this limitation.

Let ∆(A) be the space of probability distributions over A, and h be the negative entropy given by
h : ∆(A) 7→ R, h(p) = p · log p, where · is the dot product and the log is applied element-wise to
the vector p. Let π : S 7→ ∆(A) be a stationary stochastic policy mapping states to distributions over
actions. We denote the entropy regularized V-function for policy π and regularization weight τ > 0
as V π

τ : S 7→ R, which is defined by V π
τ (s) = Eπ [

∑∞
t=0 γ

t{R(st, at)− τh(π(st))}|s0 = s].
In turn, the entropy regularized Q-function is given by Qπ

τ (s, a) = R(s, a) + γEs′ [V
π
τ (s′)].

The V-function can be written as the expectation of the Q-function plus the current state en-
tropy, i.e. V π

τ (s) = Ea [Q
π
τ (s, a)] − τh(π(s)) which leads to the Bellman equation Qπ

τ (s, a) =
R(s, a) + γEs′,a′ [Qπ

τ (s
′, a′)− τh(π(s′))]. In the following, we will write policies of the form

π(s) ∝ exp(Q(s, ·)) for all s ∈ S more succinctly as π ∝ exp(Q). We define optimal V and Q func-
tions where for all s ∈ S, a ∈ A, V ⋆

τ (s) := maxπ V
π
τ (s) and Q⋆

τ (s, a) := maxπ Q
π
τ (s, a).

Moreover, the policy π⋆ ∝ exp
(

Q⋆
τ

τ

)
satisfies Qπ⋆

τ = Q⋆
τ and V π⋆

τ = V ⋆
τ simultaneously for all

s ∈ S (Zhan et al., 2023). In the following, we will overload notations of real functions defined on
S × A and allow them to only take a state input and return a vector in R|A|. For example, Qπ

τ (s)
denotes a vector for which the ith entry i ∈ {1, . . . , |A|} is equal to Qπ

τ (s, i). Finally we define
R̄ := Rx+γτ log |A|

1−γ , as the finite upper-bound of ∥Qπ
τ ∥∞ for any policy π, that can be computed by

assuming the agent collects the highest reward and entropy possible at every step.

3.1 Entropy-regularized policy mirror descent
To find π⋆, we focus on Entropy-regularized Policy Mirror Descent (EPMD) methods (Neu et al.,
2017; Abbasi-Yadkori et al., 2019; Lazic et al., 2021) and notably on those that regularize both the
policy update and the Q-function (Lan, 2022; Zhan et al., 2023). The PMD setting discussed here is
also equivalent to the regularized natural policy gradient algorithm on softmax policies of Cen et al.
(2022). Let πk be the policy at iteration k of EPMD, and Qk

τ := Qπk
τ its Q-function. The next policy

in EPMD is the solution of the following optimization problem:

∀s ∈ S, πk+1(s) = argmax
p∈∆(A)

{Qk
τ (s) · p− τh(p)− ηDKL(p;πk(s))} (3)

∝ πk(s)
η

η+τ exp

(
Qk

τ (s)

η + τ

)
, (4)

where DKL(p; p
′) = p · (log p− log p′) and η > 0 is the DKL regularization weight. The closed form

expression in Eq. 4 is well-known and its proof can be checked in, e.g. Vieillard et al. (2020a). We
let α = 1

η+τ and β = η
η+τ , hereafter referred to as a step-size and a decay factor respectively.

Let ξk be a real function of S × A for any positive integer k. We assume as the initial condition
that π0 ∝ exp(ξ0) with ξ0 = 0, i.e. π0 is uniform over the actions. At every iteration of EPMD, the
update in Eq. 4 yields the following logits update

πk+1 ∝ exp(ξk+1), ξk+1 = βξk + αQk
τ . (5)

From the recursive definition of ξk+1, it can easily be verified that ξk+1 = α
∑k

i=0 β
k−iQi

τ . The
convergence of EPMD is characterized by the following theorem

Theorem 3.1 (Adapted from Zhan et al. (2023), Thm. 1). At iteration k of EPMD, the Q-function of
πk satisfies

∥∥Q⋆
τ −Qk

τ

∥∥
∞ ≤ γdk−1

(∥∥Q⋆
τ −Q0

τ

∥∥
∞ + 2β ∥Q⋆

τ∥∞
)
, with d = β + γ(1− β) < 1.

4

The above theorem shows that by following EPMD, we have a linear convergence of Qk
τ towards Q⋆

τ ,
with a convergence rate of d. In the next section, we will be interested in an approximate version of
EPMD, where the Q-function Qk

τ is computed exactly but where ξk is limited to summing at most M
Q-functions. We name this setting finite-memory EPMD. In the main paper, we only focus for clarity
on the error introduced by this deletion mechanism in the policy update. The theoretical analysis of
our algorithm that takes into account errors in policy evaluation is deferred to App. A.

4 Finite-memory policy mirror descent
Let M > 0 be a positive integer defining the maximum number of Q-functions we are allowed to store.
As a warm-up, we first show in Sec. 4.1 a straightforward implementation of finite-memory EPMD,
where we simply truncate the sum of the Q-functions in Eq. 2 to the last M Q-functions.

The main step in this analysis is to quantify the effect of the finite-memory assumption on the policy
improvement theorem. As in the class of approximate algorithms analyzed in Zhan et al. (2023), the
algorithm in Sec. 4.1 always exhibits an irreducible error for a finite M . To address this issue, we
introduce a weight corrected algorithm in Sec. 4.2 that rescales the policy in Eq. 2 to account for its
finite-memory nature. This rescaling introduces long range dependencies that complicate the analysis,
but can result in convergence to Q⋆

τ , without residual error, provided a large but finite M .

4.1 Vanilla finite-memory EPMD
Consider an approximate EPMD setting where the update to ξk is given by

ξk+1 = βξk + α
(
Qk

τ − βMQk−M
τ

)
, (6)

with Qk−M
τ := 0 whenever k −M < 0.

Compared to ξk+1 in Eq. 5, we both add the new Qk
τ and ‘delete’ an old Q-function by subtracting

Qk−M
τ in Eq. 6. As a result, ξk+1 can now be written as ξk+1 = α

∑M−1
i=0 βiQk−i

τ , which is a
finite-memory EPMD algorithm using at most M Q-functions.

We now want to investigate if we have any convergence guarantees of Qk
τ towards Q⋆

τ as for
EPMD. Let the policy π̃k be defined by π̃k ∝ exp(ξ̃k) with ξ̃k = α

∑M−2
i=0 βiQk−1−i

τ . Here,
ξ̃k = ξk − αβM−1Qk−M

τ , i.e. it is obtained by deleting the oldest Q-function from ξk and thus is a
sum of M − 1 Q-functions. The update in Eq. 6 can now be rewritten as ξk+1 = βξ̃k + αQk

τ . From
Sec. 3, we recognize this update as the result of the following optimization problem:

for all s ∈ S, πk+1(s) = argmax
p∈∆(A)

{Qk
τ (s) · p− τh(p)− ηDKL(p; π̃k(s))}. (7)

In this approximate scheme, we compute the DKL regularization w.r.t. π̃k instead of the previous
policy πk. This can negatively impact the quality of πk+1 as it might force πk+1 to stay close to the
potentially bad policy π̃k. In the following theorem, we provide a form of an approximate policy
improvement of πk+1 on πk, that depends on how close π̃k is to πk. This theorem applies to any
policy π̃k, therefore it can be of interest beyond the scope of this paper.

Theorem 4.1 (Approximate policy improvement). Let πk ∝ exp(ξk) be a policy with associated
Q-function Qk

τ . Let π̃k ∝ exp(ξ̃k) be an arbitrary policy. Let πk+1 be the policy optimizing Eq. 7
w.r.t. the hereby defined Qk

τ and π̃k, then the Q-function Qk+1
τ of πk+1 satisfies

Qk+1
τ ≥ Qk

τ − γη
maxs∈S ∥(πk − π̃k)(s)∥1

∥∥∥ξk − ξ̃k

∥∥∥
∞

1− γ
. (8)

The proof of Thm. 4.1 and all future proofs are given in App. A. Applying Thm. 4.1 to our setting
gives the following policy improvement lower bound

Corollary 4.1.1. Let πk ∝ exp(ξk) be a policy with associated Q-function Qk
τ , such that ξk =

α
∑M−1

i=0 βiQk−1−i
τ . Let π̃k ∝ exp(ξ̃k) be the policy such that ξ̃k = α

∑M−2
i=0 βiQk−1−i

τ . Let πk+1

be the policy optimizing Eq. 7, then the Q-function Qk+1
τ of πk+1 satisfies

Qk+1
τ ≥ Qk

τ − γβM min
{
2, αβM−1R̄

}
R̄

1− γ
. (9)

5

In vanilla EPMD, it is guaranteed that Qk+1
τ ≥ Qk

τ (Zhan et al., 2023). In this approximate setting, the
error is arbitrarily close to 0 through the term βM by choosing a large enough M , since β < 1.

Having quantified the error in the policy improvement step, we follow the general steps of the proof of
approximate EPMD of Zhan et al. (2023) and come to the following convergence guarantees.

Theorem 4.2 (Convergence of vanilla finite-memory EPMD). After k ≥ 0 iterations of Eq. 6,
we have that

∥∥Q⋆
τ −Qk

τ

∥∥
∞ ≤ γdk ∥Q⋆

τ∥∞ + βMC1, with d = β + γ(1 − β) < 1 and C1 =
2γR̄
1−γ

(
1 + γ(1−βM)

(1−β)(1−γ)

)
.

Convergence of finite-memory EPMD is still at a rate of d as with exact EPMD. However, we
eventually reach an error of βMC1, that does not decrease as k increases, and that we can only control
by increasing the memory size M . A problem with the current algorithm is that even if all past
Q-functions are equal to Q⋆

τ , then τξk = (1− β)
∑M−1

i=0 βiQ⋆
τ = (1− βM)Q⋆

τ , whereas we know
that asymptotically ξk should converge to the logits of π⋆ (Sec. 3) which are Q⋆

τ

τ . This suggests a
slightly modified algorithm that rescales ξk by 1− βM , which we analyze in the next section.

4.2 Weight corrected finite-memory EPMD
Consider now the alternative update to ξk given by

ξk+1 = βξk + αQk
τ +

αβM

1− βM
(Qk

τ −Qk−M
τ), (10)

where Qk−M
τ := 0 whenever k −M < 0. In contrast to the vanilla algorithm in Sec. 4.1, we now

delete the oldest Q-function in ξk and also slightly overweight the most recent Q-function to ensure
that the Q-function weights sum to 1. Indeed, assuming that ξ0 := 0, we can show (see App. A.4.1
for a proof) for all k ≥ 0 that the logits only use the past M Q-functions and are given by

ξk+1 =
α

1− βM

M−1∑
i=0

βiQk−i
τ . (11)

Similar to the previous section, we introduce a policy π̃k ∝ exp(ξ̃k) with ξ̃k = ξk + αβM−1

1−βM (Qk
τ −

Qk−M
τ) such that logits of πk+1 are given by ξk+1 = βξ̃k + αQk

τ . This form of ξk+1 implies that
πk+1 satisfies the policy update in Eq. 7, and thus Thm. 4.1 applies and we have

Corollary 4.1.2. Let πk ∝ exp(ξk) be a policy with associated Q-function Qk
τ , such that ξk =

α
1−βM

∑M−1
i=0 βiQk−1−i

τ . Let π̃k ∝ exp(ξ̃k) be the policy such that ξ̃k = ξk+
αβM−1

1−βM (Qk
τ −Qk−M

τ).
Let πk+1 be the policy optimizing Eq. 7 with the hereby defined Qk

τ and π̃k, then the Q-function Qk+1
τ

of πk+1 satisfies

Qk+1
τ ≥ Qk

τ − 2γβM

∥∥Qk
τ −Qk−M

τ

∥∥
∞

(1− γ)(1− βM)
. (12)

Compared to the approximate policy improvement of Sec. 4.1, we see that the lower-bound in Eq. 12
depends on

∥∥Qk
τ −Qk−M

τ

∥∥
∞ instead of just

∥∥Qk−M
τ

∥∥
∞. Thus, we can expect that as the Q-functions

converge to Q⋆
τ , we get tighter and tighter guarantees on the policy improvement step, which in turn

guarantees convergence to Q⋆
τ without the residual error of Sec. 4.1. The next two results show that

indeed, for M large enough, the finite-memory EPMD scheme defined by Eq. 10 leads to convergence
to Q⋆

τ . Lem. 4.3 provides an upper bounding sequence for
∥∥Q⋆

τ −Qk
τ

∥∥
∞.

Lemma 4.3. Let xk+1 = d1xk + d2xk−M be a sequence such that ∀k < 0, xk =
∥Q⋆

τ∥∞
γ , x0 =

∥Q⋆
τ∥∞ +

∥∥Q0
τ

∥∥
∞, d1 := β + γ 1−β

1−βM + γc2, d2 := 2c1γ
2

1−γ , c1 := βM

1−βM , and c2 :=
(

1+γ
1−γ − β

)
c1.

After k ≥ 0 iterations of Eq. 10, we have that
∥∥Q⋆

τ −Qk
τ

∥∥
∞ ≤ xk.

Then, we compute values of M for which the sequence xk converges to 0 and characterize the
convergence rate of

∥∥Q⋆
τ −Qk

τ

∥∥
∞ through Thm. 4.4.

6

Theorem 4.4 (Convergence of weight corrected finite-memory EPMD). With the definitions of
Lemma 4.3, if M > log (1−γ)2(1−β)

γ2(3+β)+1−β (log β)
−1 then limk→∞ xk = 0. Moreover, ∀k ≥ 0,∥∥Q⋆

τ −Qk
τ

∥∥
∞ ≤ (d1+d2d

−1
3)k max

{
∥Q⋆

τ∥∞
γ , ∥Q⋆

τ∥∞+
∥∥Q0

τ

∥∥
∞

}
, where d3 :=

(
dM1 + d2

1−dM
1

1−d1

)
and limM→∞ d1 + d2d

−1
3 = β + γ(1− β).

Thm. 4.4 defines a minimum memory size that guarantees convergence to Q⋆
τ . This minimum M

depends only on β and γ, and is usually within the range of practical values: for example, with
γ = 0.99 and β = 0.95, the minimum M suggested by Thm. 4.4 is 265, which is reasonable in terms
of memory and computation with current GPUs (we used M = 300 in all our experiments). As can
be expected, these values of M are generally pessimistic and even with higher values of β, we did
not observe in practice better performance when using as large M as suggested by Thm. 4.4.

In terms of convergence rate, d1 + d2d
−1
3 given in Thm 4.4 tends to d—the convergence rate of exact

EPMD—as M goes to infinity. Thus, it is slower than exact EPMD, and slower than the algorithm in
Sec. 4.1, but unlike the latter it does not have an irreducible error and converges to Q⋆

τ .

5 Practical implementation
Since we only require a finite number of M Q-functions in Thm. 4.4 (for sufficiently large M),
we can exactly implement the policy update step by stacked neural networks (SNN, illustrated in
Fig. 1). By using batched operations we make efficient use of GPUs and compute multiple Q-values
in parallel. We call the resulting algorithm StaQ. After each policy evaluation, we push the weights
corresponding to this new Q-function onto the stack. If the stacked NN contains more than M NNs,
the oldest NN is deleted in a “first in first out” fashion.

To further reduce the impact of a large M , we pre-compute ξk for all entries in the replay buffer1 at
the start of policy evaluation. The logits ξk are used to sample on-policy actions when computing the
targets for Qk

τ . As a result of the pre-computation, during policy evaluation, forward and backward
passes only operate on the current Q-function and hence the impact of large M is minimized, however
rolling out the current behavioural policy πb

k still requires a full forward pass. Conversely, the policy
update consists only of adding the new weights to the stack, and thus, is optimization free and (almost)
instantaneous. Table 1 shows the training time of StaQ as a function of M for two environments.
Varying M or the state space size has little impact on the runtime of StaQ on GPU, at least for these
medium-sized environments.

The NN for Q0
τ is initialized with an output of zero, so that π0 is a uniform policy, and for all

consecutive iterations the NN for Qk
τ is initialized at the computed Qk−1

τ (to make the transfer from
Qk

τ to Qk−1
τ smoother). Similarly to SAC (Haarnoja et al., 2018), we learn Qk

τ by sampling an
action from the current policy and using an ensemble of two target Q-functions updated in a hard
manner.

While it is natural to use the stochastic policy πk for the behavioural policy, we find it beneficial
to instead consider an ϵ-softmax policy over πk — by analogy with ϵ-greedy policies, mixing the
softmax policy πk and a uniform policy with probabilities (1− ϵ) and ϵ respectively. This provides
a hard minimum sampling probability for all actions, even when the policy πk learns to suppress
some actions. Using only πk can cause instabilities in the Q-function learning, as discussed in
App. B.4 and App. B.2. For further implementation details and the full set of hyperparameters consult
App. E.

6 Experiments
In this section, we assess the empirical merits of StaQ, paying attention to both the performance and
stability, and then discuss some limitations of our algorithms and how they open new perspectives
towards a fully reliable deep RL solver.

Environments. We use all 9 environments suggested by Ceron & Castro (2021) for comparing deep
RL algorithms with finite action spaces, comprising 4 classic control tasks from Gymnasium (Towers
et al., 2023), and all MinAtar tasks (Young & Tian, 2019). To that we add 5 Mujoco tasks (Todorov

1Since we use small replay buffer sizes of 50K transitions, we are likely to process each transition multiple
times (25.6 times in expectation in our experiments) making this optimization worthwhile.

7

Table 1: Training times for StaQ (5 million steps), as a function of M , on Hopper-v4 (state dim.=11)
and Ant-v4 (state dim. = 105), computed on an NVIDIA Tesla V100 and averaged over 3 seeds.

Memory size M 1 50 100 300 500

Hopper-v4 Training time (hrs) 9.8 10.1 10.3 10.3 10.9

Ant-v4 Training time (hrs) 10.4 10.7 10.3 11 10.5

0 1 2 3 4 50

0.5

1

1.5

2

2.5

3

3.5

Re
tu

rn
 (1

K)

Hopper-v4

0 1 2 3 4 50
0.5

1
1.5

2
2.5

3
3.5

4
Walker2d-v4

0 1 2 3 4 50

0.5

1

1.5

2

2.5

3

3.5

First deletion in StaQ
Corresponds to Vanilla PMD
update until 1.5M

HalfCheetah-v4

0 1 2 3 4 50.5

1

1.5

2

2.5

3
Ant-v4

0 1 2 3 4 50

1

2

3

4

5

Humanoid-v4

0 1 2 3 4 5
Env steps (1M)

0

10

20

30

40

50

60

Re
tu

rn

MinAtar/Asterix-v1

0 1 2 3 4 5
Env steps (1M)

0

10

20

30

40

50

60
MinAtar/Breakout-v1

0 1 2 3 4 5
Env steps (1M)

0

10

20

30

40

50

60

70
MinAtar/Freeway-v1

0 1 2 3 4 5
Env steps (1M)

0

20

40

60

80

100

120

140
MinAtar/Seaquest-v1

0 1 2 3 4 5
Env steps (1M)

0

50

100

150

200

250

300

350
MinAtar/SpaceInvaders-v1

StaQ PQN M-DQN DQN PPO TRPO

Figure 2: Policy return of StaQ and of deep RL baselines. Plots show mean and one standard deviation
computed over 10 seeds. StaQ has consistent performance in both the MuJoCo and MinAtar domains.
See App. B.1 for additional results.

et al., 2012), adapted to discrete action spaces by considering only extreme actions similarly to (Seyde
et al., 2021). To illustrate, the discrete version of a Mujoco task with action space A = [−1, 1]d

consists in several 2d dimensional vectors that have zeroes everywhere except at entry i ∈ {1, . . . , d}
that can either take a value of 1 or −1; to that we add the zero action, for a total of 2d + 1
actions.

Baselines. We compare StaQ against the value iteration algorithm DQN (Mnih et al., 2015) and
its entropy-regularized variant M-DQN (Vieillard et al., 2020b), the policy gradient algorithm
TRPO (Schulman et al., 2015) as it uses a DKL regularizer and PPO (Schulman et al., 2017). StaQ
performs entropy regularization on top of a Fitted-Q Iteration (FQI) approach. DQN only uses FQI
and is a good baseline to measure the impact of entropy regularization over vanilla FQI, while the
other baselines cover a wide range of alternative approaches to entropy regularization in deep RL:
through a bonus term (M-DQN), following the natural gradient (TRPO) or with a clipping loss (PPO).
SAC (Haarnoja et al., 2018) is another popular deep RL baseline that uses entropy regularization but
is not adapted for discrete action environments. However, M-DQN is a close alternative to SAC for
discrete action spaces as discussed in App. C. Finally, we compare to PQN (Gallici et al., 2025), a
recent algorithm that builds on DQN, replacing the target networks with LayerNorm regularisation (Ba
et al., 2016), and adding λ-returns (Daley & Amato, 2020). This baseline provides an example of
more complex systems which incorporate improvements in policy evaluation orthogonal to our
proposed policy update, other examples of such algorithms include Rainbow (Hessel et al., 2017).
Comparisons with baselines are averaged over 10 seeds, showing the mean and standard deviation of
the return. The return is computed every 100K steps by evaluating the current deterministic policy,
averaging 50 rollouts. Hyperparameters for StaQ and the baselines are provided in App. E.

Performance. A comparison of StaQ to deep RL baselines is shown for a selection of environments
in Fig. 2, and for all environments in App. B.1. For our setting of M = 300, the first deletion occurs at
1.5M timesteps, indicated by a vertical dashed line. Fig. 2 shows that StaQ has consistent performance,
and is competitive with the baselines on most MuJoCo and MinAtar environments. In contrast, we
see that PPO/TRPO underperforms on MinAtar tasks while M-DQN/DQN/PQN underperform on
MuJoCo tasks. While StaQ strongly outperforms PQN in the majority of MuJoCo tasks, it is
outperformed by PQN on some MinAtar tasks, especially in SpaceInvaders. PQN builds on DQN by

8

0 1 2 3 4 5
Env step (1M)

1000

750

500

250

0

250

500

750

1000

De
vi

at
io

n
fro

m
 m

ea
n

re
tu

rn

Hopper-v4
StaQ

0 1 2 3 4 5
Env step (1M)

Hopper-v4
PQN

(a) Deviation from the mean return for StaQ/PQN.

0 1 2 3 4 5

Env steps (1M)

1

2

3

4

5

Humanoid-v4

M=1
M=50
M=100

M=300
M=500
M=1000

0 1 2 3 4 5
Env step (1M)

1000

2000

3000

4000

5000

Un
di

sc
ou

nt
ed

 p
ol

icy
 re

tu
rn

Humanoid-v4

M=100
M=50
M=500
M=300

0 1 2 3 4 5
Env step (1M)

74

72

70

68

66

64

62

60
Acrobot-v1

M=1
M=5
M=100
M=50
M=500
M=300

(b) Impact of memory size M.

Figure 3: Left: Deviation from mean policy returns for individual runs on Hopper, comparing StaQ
and PQN, the best performing baseline on this environment. Returns are centered at every timestep
by subtracting the mean across 10 seeds. In general, individual runs of StaQ have significantly
lower variance across timesteps compared to baselines. For clarity, we plot the first three seeds, and
one-sided tolerance intervals. See App B.2 for further environments and algorithms. Right: Policy
returns under different choice of M . On the simpler Acrobot task, M > 5 seems sufficient but on
Humanoid, even M = 100 is insufficient. Plots showing mean and one std computed over 5 seeds.

introducing improvements that stabilize Q-function learning, suggesting that a similar direction —
further improving the policy evaluation strategy — may similarly improve the performance of StaQ,
as discussed in Sec. 7.

Stability. Beyond pure performance, StaQ typically exhibits less performance oscillation when
looking at the variability within individual runs, especially in the MuJoCo domain. For example, in
Fig. 3 (Left), we plot the variation of the return for each seed, centered by subtracting the mean return
across all seeds at each evaluation timestep. We see that PQN, while achieving a final performance
similar to StaQ on Hopper, exhibits significantly more performance oscillation. Stability comparisons
on more environments and all baselines are provided in App. B.2. These experiments confirm the
preliminary results of Abbasi-Yadkori et al. (2019) that a policy averaging over multiple Q-functions
stabilizes learning. While prior work considered only saving the last 10 Q-functions, we show next
that, on more complex tasks, saving an order of magnitude more Q-functions can still have positive
effects on stability and performance.

9

Impact of the memory-size M . According to Sec. 4.2, M is a crucial parameter that should be
large enough to guarantee convergence. The M estimation obtained from Thm. 4.4 may be very
conservative in practice. In Fig. 3 (Right), we present the results for different choices of M for “easy”
Acrobot and “difficult” Humanoid. While a low value of M ≤ 100 (M ≤ 10 for Acrobot) can still
achieve a decent mean performance, stability is negatively affected, which is especially pronounced
for more challenging environments such as Humanoid.

Conversely, higher M = 500, 1000, while more expensive to compute, does not generally lead
to an improvement either in terms of performance or stability. We found M = 300 to be a good
compromise between stability and compute time. See App B.2 for more environments.

7 Discussion and future work
In this paper, we proposed a policy update rule based on Policy Mirror Descent, that by using a novel
re-weighting scheme, results in a convergent policy when storing a finite number of M Q-functions,
provided M is sufficiently large. Surprisingly, even when M is large, the final computational burden
is small on modern hardware, due to stacking of the Q-functions. The resulting policy update has
a solid theoretical foundation and clear empirical benefits as it improves performance and reduces
learning instability compared to other entropy regularization methods in the literature.

While the policy update is more stable, some instability in learning the Q-function remains. In
App. B.4, we describe an ablation where we compare the ϵ-softmax policy with a pure softmax policy
(i.e. ϵ = 0) that hints at Q-learning instability. Even though those issues are mitigated thanks to the
averaging over Q-functions of StaQ, they suggest that policy evaluation errors remain significant.
Due to its exact policy update, StaQ provides a promising setting for testing more sophisticated forms
of policy evaluation, especially recent methods that use normalization techniques to reduce policy
evaluation error (Gallici et al., 2025; Bhatt et al., 2024).

Finally, extending StaQ to continuous action domains could be done as in SAC (Haarnoja et al.,
2018), using an extra actor network learned by minimizing the DKL to a soft policy. This will lose the
optimization-free and exact nature of the policy update but may still result in improved stability if we
replace the soft policy exp(Qk

τ) used by SAC with exp(ξk), which stabilizes the target by averaging
over a large number of past Q-functions.

Acknowledgements
A. Davey and B. Driss were funded by the project ANR-23-CE23-0006. This work was granted access
to the HPC resources of IDRIS under the allocation 2024-AD011015599 made by GENCI.

10

References
Abbasi-Yadkori, Y., Bartlett, P., Bhatia, K., Lazic, N., Szepesvari, C., and Weisz, G. POLITEX:

Regret bounds for policy iteration using expert prediction. In International Conference on Machine
Learning, 2019.

Agarwal, R., Schuurmans, D., and Norouzi, M. An optimistic perspective on offline reinforcement
learning. In International conference on machine learning, pp. 104–114. PMLR, 2020.

Alfano, C., Yuan, R., and Rebeschini, P. A novel framework for policy mirror descent with general
parameterization and linear convergence. In Advances in Neural Information Processing Systems,
2023.

Anschel, O., Baram, N., and Shimkin, N. Averaged-DQN: Variance reduction and stabilization for
deep reinforcement learning. In International Conference on Machine Learning, 2017.

Azar, M. G., Gómez, V., and Kappen, H. J. Dynamic policy programming. Journal of Machine
Learning Research, 2012.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer Normalization, July 2016.

Beck, A. and Teboulle, M. Mirror descent and nonlinear projected subgradient methods for convex
optimization. Operations Research Letters, 31(3):167–175, May 2003. ISSN 0167-6377. doi:
10.1016/S0167-6377(02)00231-6.

Bhatt, A., Palenicek, D., Belousov, B., Argus, M., Amiranashvili, A., Brox, T., and Peters, J.
CrossQ: Batch Normalization in Deep Reinforcement Learning for Greater Sample Efficiency and
Simplicity, March 2024.

Cen, S., Cheng, C., Chen, Y., Wei, Y., and Chi, Y. Fast global convergence of natural policy gradient
methods with entropy regularization. Operations Research, 2022.

Ceron, J. S. O. and Castro, P. S. Revisiting rainbow: Promoting more insightful and inclusive deep
reinforcement learning research. In International Conference on Machine Learning, 2021.

Chen, X., Wang, C., Zhou, Z., and Ross, K. Randomized ensembled double q-learning: Learning fast
without a model. arXiv preprint arXiv:2101.05982, 2021.

Daley, B. and Amato, C. Reconciling $λ$-Returns with Experience Replay, January 2020.

De Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., Slabaugh, G., and
Tuytelaars, T. A continual learning survey: Defying forgetting in classification tasks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2021.

Deisenroth, M. P., Neumann, G., and Peters, J. A Survey on Policy Search for Robotics. Foundations
and Trends in Robotics, 2013.

Della Vecchia, R., Shilova, A., Preux, P., and Akrour, R. Entropy regularized reinforcement learning
with cascading networks. arXiv, 2022.

Fahlman, S. and Lebiere, C. The cascade-correlation learning architecture. Advances in neural
information processing systems, 2, 1989.

Fox, R., Pakman, A., and Tishby, N. G-learning: Taming the noise in reinforcement learning via soft
updates. In Conference on Uncertainty in Artificial Intelligence, 2016.

Gallici, M., Fellows, M., Ellis, B., Pou, B., Masmitja, I., Foerster, J. N., and Martin, M. Simplifying
Deep Temporal Difference Learning, March 2025.

Geist, M., Scherrer, B., and Pietquin, O. A theory of regularized Markov decision processes. In
Proceedings of the 36th International Conference on Machine Learning (ICML), 2019.

Girgin, S. and Preux, P. Basis function construction in reinforcement learning using cascade-
correlation learning architecture. In IEEE International Conference on Machine Learning and
Applications, 2008.

11

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta,
A., Abbeel, P., and Levine, S. Soft Actor-Critic Algorithms and Applications. In International
Conference on Machine Learning (ICML), 2018.

Henderson, P. Reproducibility and reusability in deep reinforcement learning. Master’s thesis, McGill
University, 2018.

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B.,
Azar, M., and Silver, D. Rainbow: Combining Improvements in Deep Reinforcement Learning,
October 2017.

Huang, S., Dossa, R. F. J., Ye, C., Braga, J., Chakraborty, D., Mehta, K., and Araújo, J. G. Cleanrl:
High-quality single-file implementations of deep reinforcement learning algorithms. Journal
of Machine Learning Research, 23(274):1–18, 2022. URL http://jmlr.org/papers/v23/
21-1342.html.

Ilyas, A., Engstrom, L., Santurkar, S., Tsipras, D., Janoos, F., Rudolph, L., and Madry, A. A closer
look at deep policy gradients. In International Conference on Learning Representations, 2020.

Johnson, E., Pike-Burke, C., and Rebeschini, P. Optimal convergence rate for exact policy mirror
descent in discounted markov decision processes. Advances in Neural Information Processing
Systems, 36:76496–76524, 2023.

Kakade, S. M. A natural policy gradient. In Advances in Neural Information Processing Systems,
2001.

Khodadadian, S., Jhunjhunwala, P. R., Varma, S. M., and Maguluri, S. T. On the linear convergence
of natural policy gradient algorithm. In 2021 60th IEEE Conference on Decision and Control
(CDC), pp. 3794–3799. IEEE, 2021.

Krishnamoorthy, K. and Mathew, T. Statistical Tolerance Regions: Theory, Applications, and
Computation. John Wiley & Sons, May 2009. ISBN 978-0-470-47389-4.

Kumar, A., Gupta, A., and Levine, S. Discor: Corrective feedback in reinforcement learning via
distribution correction. In Advances in Neural Information Processing Systems, 2020.

Lagoudakis, M. G. and Parr, R. Least-squares policy iteration. Journal of Machine Learning Research,
2003.

Lan, G. Policy mirror descent for reinforcement learning: linear convergence, new sampling
complexity, and generalized problem classes. Mathematical Programming, 2022.

Lan, Q., Pan, Y., Fyshe, A., and White, M. Maxmin q-learning: Controlling the estimation bias of
q-learning. arXiv preprint arXiv:2002.06487, 2020.

Lazic, N., Yin, D., Abbasi-Yadkori, Y., and Szepesvari, C. Improved regret bound and experience
replay in regularized policy iteration. In International Conference on Machine Learning, 2021.

Lee, K., Kim, S., Lim, S., Choi, S., and Oh, S. Tsallis reinforcement learning: A unified framework
for maximum entropy reinforcement learning. arXive, 2019.

Lee, K., Laskin, M., Srinivas, A., and Abbeel, P. Sunrise: A simple unified framework for ensemble
learning in deep reinforcement learning. In International Conference on Machine Learning, pp.
6131–6141. PMLR, 2021.

Lesort, T., Lomonaco, V., Stoian, A., Maltoni, D., Filliat, D., and Díaz-Rodríguez, N. Continual
learning for robotics: Definition, framework, learning strategies, opportunities and challenges.
Information Fusion, 2020.

Li, Y., Lan, G., and Zhao, T. Homotopic policy mirror descent: Policy convergence, implicit
regularization, and improved sample complexity. arXiv preprint arXiv:2201.09457, 2022.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Ried-
miller, M., Fidjeland, A. K., Ostrovski, G., et al. Human-level control through deep reinforcement
learning. Nature, 2015.

12

http://jmlr.org/papers/v23/21-1342.html
http://jmlr.org/papers/v23/21-1342.html

Nemirovsky, A. S. and Yudin, D. B. Problem Complexity and Method Efficiency in Optimization.
Wiley-Interscience Series in Discrete Mathematics. John Wiley, 1983.

Neu, G., Jonsson, A., and Gómez, V. A unified view of entropy-regularized markov decision processes.
arXiv, 2017.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. Deep exploration via bootstrapped dqn. In
Advances in Neural Information Processing Systems, 2016.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter, S. Continual lifelong learning with
neural networks: A review. Neural Networks, 2019.

Protopapas, K. and Barakat, A. Policy mirror descent with lookahead. Advances in Neural Information
Processing Systems, 37:26443–26481, 2024.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dormann, N. Stable-baselines3:
Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22
(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu,
R., and Hadsell, R. Progressive neural networks. CoRR, 2016.

Schulman, J., Levine, S., Jordan, M., and Abbeel, P. Trust Region Policy Optimization. International
Conference on Machine Learning, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal policy optimization
algorithms. arXiv, 2017.

Seyde, T., Gilitschenski, I., Schwarting, W., Stellato, B., Riedmiller, M., Wulfmeier, M., and Rus, D.
Is bang-bang control all you need? solving continuous control with bernoulli policies. In Advances
in Neural Information Processing Systems, 2021.

Shi, W., Song, S., Wu, H., Hsu, Y.-C., Wu, C., and Huang, G. Regularized anderson acceleration for
off-policy deep reinforcement learning. Advances in Neural Information Processing Systems, 32,
2019.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner,
N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis, D. Mastering
the game of Go with deep neural networks and tree search. Nature, 2016.

Stanley, K. O. and Miikkulainen, R. Evolving neural networks through augmenting topologies.
Evolutionary Computation, 2002.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics engine for model-based control. In
International Conference on Intelligent Robots and Systems (IROS), 2012.

Tomar, M., Shani, L., Efroni, Y., and Ghavamzadeh, M. Mirror descent policy optimization. arXiv
preprint arXiv:2005.09814, 2020.

Tosatto, S., Pirotta, M., d’Eramo, C., and Restelli, M. Boosted fitted q-iteration. In International
Conference on Machine Learning, pp. 3434–3443. PMLR, 2017.

Towers, M., Terry, J. K., Kwiatkowski, A., Balis, J. U., Cola, G. d., Deleu, T., Goulão, M., Kallinteris,
A., KG, A., Krimmel, M., Perez-Vicente, R., Pierré, A., Schulhoff, S., Tai, J. J., Shen, A. T. J., and
Younis, O. G. Gymnasium, March 2023. URL https://zenodo.org/record/8127025.

van Hasselt, H., Doron, Y., Strub, F., Hessel, M., Sonnerat, N., and Modayil, J. Deep reinforcement
learning and the deadly triad. arXiv, 2018.

Vieillard, N., Kozuno, T., Scherrer, B., Pietquin, O., Munos, R., and Geist, M. Leverage the average:
an analysis of kl regularization in reinforcement learning. In Advances in Neural Information
Processing Systems, 2020a.

13

http://jmlr.org/papers/v22/20-1364.html
https://zenodo.org/record/8127025

Vieillard, N., Pietquin, O., and Geist, M. Munchausen reinforcement learning. In Advances in Neural
Information Processing Systems, 2020b.

Wang, L., Zhang, X., Su, H., and Zhu, J. A comprehensive survey of continual learning: Theory,
method and application. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

Wurman, P. R., Barrett, S., Kawamoto, K., MacGlashan, J., Subramanian, K., Walsh, T. J., Capo-
bianco, R., Devlic, A., Eckert, F., Fuchs, F., Gilpin, L., Khandelwal, P., Kompella, V. R., Lin, H.,
MacAlpine, P., Oller, D., Seno, T., Sherstan, C., Thomure, M. D., Aghabozorgi, H., Barrett, L.,
Douglas, R., Whitehead, D., Dürr, P., Stone, P., Spranger, M., and Kitano, H. Outracing champion
gran turismo drivers with deep reinforcement learning. Nature, 2022.

Young, K. and Tian, T. Minatar: An atari-inspired testbed for thorough and reproducible reinforcement
learning experiments. arXiv preprint arXiv:1903.03176, 2019.

Yuan, R., Du, S. S., Gower, R. M., Lazaric, A., and Xiao, L. Linear convergence of natural policy
gradient methods with log-linear policies. arXiv preprint arXiv:2210.01400, 2022.

Zhan, W., Cen, S., Huang, B., Chen, Y., Lee, J. D., and Chi, Y. Policy mirror descent for regularized
reinforcement learning: A generalized framework with linear convergence. SIAM Journal on
Optimization, 2023.

14

A Proofs
This section includes proofs of the lemmas and theorems of the main paper.

A.1 Properties of entropy regularized Bellman operators
We first start with a reminder of some basic properties of the (entropy regularized) Bellman operators,
as presented in (Geist et al., 2019). Within the MDP setting defined in Sec. 3, let Tπ

τ be the operator
defined for any map f : S ×A 7→ R by

(Tπ
τ f) (s, a) = R(s, a) + γEs′,a′ [f(s′, a′)− τh(π(s′))], (13)

For this operator we will need the three following properties.

Proposition A.1 (Contraction). Tπ
τ is a γ-contraction w.r.t. the ∥.∥∞ norm, i.e. ∥Tπ

τ f − Tπ
τ g∥∞ ≤

γ ∥f − g∥∞ for any real functions f and g of S ×A.

Proposition A.2 (Fixed point). Qπ
τ is the unique fixed point of the operator Tπ

τ , i.e. Tπ
τ Q

π
τ = Qπ

τ .

Let f , g be two real functions of S × A. We say that f ≥ g iff f(s, a) ≥ g(s, a) for all (s, a) ∈
S ×A.

Proposition A.3 (Monotonicity). Tπ
τ is monotonous, i.e. if f ≥ g then Tπ

τ f ≥ Tπ
τ g.

Let the Bellman optimality T ⋆
τ operator be defined by

(T ⋆
τ f) (s, a) = R(s, a) + γEs′

[
max

p∈∆(A)
f(s′) · p− τh(p)

]
. (14)

For the Bellman optimality operator we need the following two properties.

Proposition A.4 (Contraction). T ⋆
τ is a γ-contraction w.r.t. the ∥.∥∞ norm, i.e. ∥T ⋆

τ f − T ⋆
τ g∥∞ ≤

γ ∥f − g∥∞ for any real functions f and g of S ×A.

Proposition A.5 (Optimal fixed point). T ⋆
τ admits Q⋆

τ as a unique fixed point, satisfying T ⋆
τ Q

⋆
τ = Q⋆

τ .

Finally, we will make use of the well known property that the softmax distribution is entropy
maximizing (Geist et al., 2019). Specifically, we know that the policy πk as defined in Eq. 5 satisfies
the following property

for all s ∈ S, πk(s) = argmax
p∈∆(A)

ξk(s) · p− h(p), (15)

A.2 Proof of Theorem 4.1
We present in this appendix proofs for a more general setting where the Q-functions are inexact.
Results with exact policy evaluation of the main paper can be recovered by simply setting the policy
evaluation error ϵeval, as defined below, to zero and by replacing Q̃τ by Qτ .

Assumption A.1. We assume that we can only compute Qk
τ approximately, which is the Q-value

function of πk. We use Q̃k
τ to denote the approximate Qk

τ and we assume that there exists ϵeval < ∞
such that the following holds for any k∥∥∥Qk

τ − Q̃k
τ

∥∥∥
∞

≤ ϵeval. (16)

Note that Eq. 16 implies that for any s, a,

|Qk
τ (s, a)− Q̃k

τ (s, a)| ≤ ϵeval (17)

or equivalently

−ϵeval ≤ Qk
τ (s, a)− Q̃k

τ (s, a) ≤ ϵeval. (18)

As the exact Qk
τ is no longer available, the policy update is done in the inexact policy evaluation with

Q̃k
τ :

for all s ∈ S, πk+1(s) = argmax
p∈∆(A)

{
Q̃k

τ (s) · p− τh(p)− ηDKL(p; π̃k(s))
}
. (19)

We restate below the approximate policy improvement theorem in its more general form, and Theorem
4.1 can be recovered for ϵeval = 0.

15

Theorem A.1 (Approximate policy improvement with inexact policy evaluation). Let πk ∝ exp(ξk)

be a policy with associated evaluated Q-function Q̃k
τ . Let π̃k ∝ exp(ξ̃k) be an arbitrary policy. Let

πk+1 be the policy optimizing Eq. 19 w.r.t. the hereby defined Q̃k
τ and π̃k, then the Q-function Qk+1

τ
of πk+1 satisfies

Qk+1
τ ≥ Q̃k

τ − γη
maxs∈S ∥(πk − π̃k)(s)∥1

∥∥∥ξk − ξ̃k

∥∥∥
∞

1− γ
− 1 + γ

1− γ
ϵeval. (20)

Proof. Let πk ∝ exp(ξk) and let π̃k ∝ exp(ξ̃k) with X := ξk − ξ̃k. Define πk+1 as in Eq. 19. From
Sec. 3, we have that πk+1 ∝ exp(ξk+1) with the change that now an approximate Q̃k

τ is used in the
update:

ξk+1 = βξ̃k + αQ̃k
τ . (21)

From the optimality of πk+1 w.r.t. the policy update optimization problem in Eq. 19 we have

Q̃k
τ (s) · πk(s)− τh(πk(s)) ≤ Q̃k

τ (s) · πk+1(s)− τh(πk+1(s))

− ηDKL(πk+1(s); π̃k(s)) + ηDKL(πk(s); π̃k(s)),
(22)

≤ Q̃k
τ (s) · πk+1(s)− τh(πk+1(s)) + ηDKL(πk(s); π̃k(s)), (23)

where the last inequality is due to the non-negativity of the DKL.

Let us try now to upper bound DKL(πk(s); π̃k(s)) for any s ∈ S. For clarity, we will drop s from
the notations, and only write for e.g. ξ(a) instead of ξk(s, a). We define Z =

∑
a exp(ξ(a)) and

Z̃ =
∑

a exp(ξ̃(a)), where the sums are over all a ∈ A.

DKL(πk; π̃k) = Eπ[log π(a)− log π̃(a)], (24)

= Eπ

[
log

exp ξ(a)

Z
− log

exp ξ̃(a)

Z̃

]
, (25)

= Eπ

[
ξ(a)− ξ̃(a)− log

Z

Z̃

]
, (26)

= Eπ

[
X(a)− log

∑
a′ exp(X(a′)) exp(ξ̃(a′))∑

a′ exp(ξ̃(a′))

]
, (27)

(i)
≤ Eπ [X(a)− Eπ̃ [X(a′)]] , (28)
= (π − π̃) ·X, (29)

where (i) is due to Jensen’s inequality. Replacing Eq. 29 into Eq. 23 yields

Q̃k
τ (s) · πk(s)− τh(πk(s)) ≤ Q̃k

τ (s) · πk+1(s)− τh(πk+1(s)) + η(π − π̃)(s) ·X(s). (30)

For any s ∈ S, we have that

η(π − π̃)(s) ·X(s) ≤ ηmax
s∈S

|(π − π̃)(s) ·X(s)|, (31)

(i)

≤ ηmax
s∈S

∥(π − π̃)(s)∥1 ∥X(s)∥∞ , (32)

= ηmax
s∈S

∥(π − π̃)(s)∥1 ∥X∥∞ , (33)

:= ϵ, (34)

where we applied Hölder’s inequality in (i). Combining Eq. 34 with Eq. 30 and using the definition
of the operator Tπ

τ as in Eq. 13 yields for any s ∈ S and a ∈ A

R(s, a) + γEs′

[
Q̃k

τ (s
′) · πk − τh(πk(s

′))
]
≤ R(s, a) + γEs′ [Q̃

k
τ (s

′) · πk+1(s
′)

− τh(πk+1(s
′)) + ϵ],

(35)

=⇒ (T k
τ Q̃

k
τ)(s, a) ≤ (T k+1

τ Q̃k
τ)(s, a) + γϵ, (36)

16

where ϵ = ηmaxs∈S ∥(π − π̃)(s)∥1 ∥X∥∞. Since Eq. 36 is valid for any s and a, then

T k
τ Q̃

k
τ ≤ T k+1

τ Q̃k
τ + γϵ, (37)

Let us have a closer look at T k
τ Q̃

k
τ , if we use Eq. 16 and by the fixed point property of Prop. A.2 we

have

T k
τ Q̃

k
τ = T k

τ Q
k
τ + γEs′

[
(Q̃k

τ −Qk
τ) · πk

]
≥ Qk

τ − γϵeval. (38)

and similarly T k+1
τ Q̃k

τ ≤ T k+1
τ Qk

τ + γϵeval. Together, these imply

Qk
τ ≤ T k+1

τ Qk
τ + γϵ+ 2γϵeval. (39)

The addition of γ(ϵ+ 2ϵeval) in the above expression is performed element-wise for all states and
actions. Using the monotonicity property of Prop. A.3 on Eq. 39, we have

T k+1
τ Qk

τ ≤ T k+1
τ

(
T k+1
τ Qk

τ + γ(ϵ+ 2ϵeval)
)
, (40)

≤ (T k+1
τ)2Qk

τ + γ2(ϵ+ 2ϵeval), (41)

=⇒ Qk
τ ≤ (T k+1

τ)2Qk
τ + γ(ϵ+ 2ϵeval) + γ2(ϵ+ 2ϵeval). (42)

By repeating the same process one can easily show by induction that

Qk
τ ≤ (T k+1

τ)nQk
τ +

n∑
i=1

γi(ϵ+ 2ϵeval). (43)

Taking the limit of Eq. 43 for n → ∞ yields by the uniqueness of the fixed point of T k+1
τ

Qk
τ ≤ Qk+1

τ +
γ(ϵ+ 2ϵeval)

1− γ
, (44)

Finally,

Q̃k
τ ≤ Qk+1

τ +
γϵ

1− γ
+

1 + γ

1− γ
ϵeval (45)

= Qk+1
τ + γη

maxs∈S ∥(π − π̃)(s)∥1
∥∥∥ξk − ξ̃k

∥∥∥
∞

1− γ
+

1 + γ

1− γ
ϵeval. (46)

A.3 Approximate finite-memory EPMD
A.3.1 Proof of Corollary 4.1.1
Cor. 4.1.1 is a direct application of Thm. 4.1 with the specific values for ξk and ξ̃k of finite-memory
EPMD as defined in Sec. 4.1.

Proof. To prove Cor. 4.1.1, we will bound the two terms η
∥∥∥ξk − ξ̃k

∥∥∥
∞

and maxs∈S ∥(π − π̃)(s)∥1
individually, using the fact that

ξk − ξ̃k = αβM−1Q̃k−M
τ . (47)

Let us first start with the term

η
∥∥∥ξk − ξ̃k

∥∥∥
∞

(i)
= βM

∥∥∥Q̃k−M
τ

∥∥∥
∞

(48)

≤ βM R̄+ βM ϵeval. (49)

In (i) we used the fact that ηα = β, whereas the second inequality comes from the bounded nature
of Q̃τ for any π, where R̄ is defined in Sec. 3.

For maxs∈S ∥(π − π̃)(s)∥1, we can either upper-bound it by 2, or use the fact that π and π̃ are close
given large enough M . First, note that the gradient of the negative entropy is given by

∇h(p) = ∇(p · log p), (50)
= log p+ 1. (51)

17

As the negative entropy is 1-strongly convex w.r.t. the ∥.∥1 norm (a.k.a. Pinsker’s inequality), we
have for all s ∈ S, where the s dependency is dropped

∥πk − π̃k∥21 ≤ (πk − π̃k) · (∇h(πk)−∇h(π̃k)), (52)
= (πk − π̃k) · (log πk − log π̃k), (53)
(i)
= (πk − π̃k) · (ξk − ξ̃k), (54)

≤ ∥πk − π̃k∥1
∥∥∥ξk − ξ̃k

∥∥∥
∞

, (55)

= ∥πk − π̃k∥1 αβ
M−1

∥∥∥Q̃k−M
τ

∥∥∥
∞

, (56)

=⇒ ∥πk − π̃k∥1 ≤ αβM−1
∥∥∥Q̃k−M

τ

∥∥∥
∞

, (57)

≤ αβM−1(R̄+ ϵeval). (58)

In (i), the normalizing constants logZ = log
∑

a exp(ξ(a)) and log Z̃ = log
∑

a exp(ξ̃(a)) do not
appear because their dot product with π− π̃k is equal to 0, as they have constant values for all actions.
Combining both results, we have

∥πk − π̃k∥1 ≤ min
{
2, αβM−1(R̄+ ϵeval)

}
. (59)

which holds for all s ∈ S and thus also for the state argmaxs∈S ∥(π − π̃)(s)∥1.

In the case of an update

ξk+1 = βξk + α
(
Q̃k

τ − βM Q̃k−M
τ

)
, (60)

we get that for any k ≥ 0 holds

Qk+1
τ ≥ Q̃k

τ −min
{
2, αβM−1(R̄+ ϵeval)

}
γβM R̄+ ϵeval

1− γ
− 1 + γ

1− γ
ϵeval. (61)

For simplicity, we will further analyse the case of

Qk+1
τ ≥ Q̃k

τ − 2γβM R̄+ ϵeval
1− γ

− 1 + γ

1− γ
ϵeval. (62)

Note that for k ≤ M , Eq. 62 can be replaced by a stronger Qk+1
τ ≥ Q̃k

τ − 1+γ
1−γ ϵeval as ξk − ξ̃k = 0,

but for simplicity we only consider Eq. 62.

A.3.2 Proof of Theorem 4.2
To prove Thm. 4.2, we first need the following Lemma, that uses the approximate policy improvement
bounds of vanilla finite-memory EPMD in Cor. 4.1.1, to show a relation between the Q-function
Qk

τ and the sum of Q-functions ξk. Further, we show the final error that is introduced by having an
approximate policy evaluation and how it affects the final convergence results.

Lemma A.2. After k ≥ 0 iterations of Eq. 60, we have
∥∥∥Q⋆

τ − Q̃k+1
τ

∥∥∥
∞

≤ γ ∥Q⋆
τ − τξk+1∥∞ +

1−βM

1−β γϵ+ 1−βM+1

1−β ϵeval + γβM R̄, where ϵ = 2γβM R̄+ϵeval

1−γ + 1+γ
1−γ ϵeval.

Proof. For all s ∈ S and a ∈ A

(Q⋆
τ −Qk+1

τ)(s, a) = (T ⋆
τ Q

⋆
τ)(s, a)−

(
R(s, a) + γEs′,a′ [Qk+1

τ (s′, a′)− τh(πk+1(s
′))]
)

(63)

= (T ⋆
τ Q

⋆
τ)(s, a)−

(
R(s, a) + γEs′,a′ [τξk+1(s

′, a′)− τh(πk+1(s
′))]

+ γEs′,a′ [Qk+1
τ (s′, a′)− τξk+1(s

′, a′)]
)
.

(64)

18

Looking at the first inner term, using the entropy maximizing nature of πk+1 as defined in Eq. 15,
and using the definition of the Bellman optimality operator T ⋆

τ gives

R(s, a) + γEs′ [τξk+1(s
′) · πk+1(s

′)− τh(πk+1(s
′))] = R(s, a)

+ γEs′ [max
p∈∆(A)

τξk+1(s
′) · p− τh(p)]

(65)
= (T ⋆

τ τξk+1)(s, a) (66)

For the second inner term, using the definition of ξk+1, the fact that τα = 1− β and the definition of
ϵ, we have for all s ∈ S and a ∈ A

Qk+1
τ − τξk+1 = Qk+1

τ − (1− β)

M−1∑
i=0

βiQ̃k−i
τ (67)

=

M∑
i=0

βiQk+1−i
τ −

M∑
i=1

βiQk+1−i
τ +

M−1∑
i=0

βi+1Q̃k−i
τ −

M−1∑
i=0

βiQ̃k−i
τ (68)

=

M−1∑
i=0

βi(Qk+1−i
τ − Q̃k−i

τ) +

M∑
i=1

βi(Q̃k+1−i
τ −Qk+1−i

τ) + βMQk+1−M
τ (69)

≥ −
M−1∑
i=0

βiϵ− βM R̄+

M∑
i=1

βi(Q̃k+1−i
τ −Qk+1−i

τ) (70)

= −1− βM

1− β
ϵ− βM R̄+

M∑
i=1

βi(Q̃k+1−i
τ −Qk+1−i

τ). (71)

Using successively Eq. 66 and Eq. 71 back into Eq. 64 yields

(Q⋆
τ −Qk+1

τ)(s, a) = (T ⋆
τ Q

⋆
τ)(s, a)− (T ⋆

τ τξk+1)(s, a)

− γEs′,a′ [Qk+1
τ (s′, a′)− τξk+1(s

′, a′)],
(72)

≤ (T ⋆
τ Q

⋆
τ)(s, a)− (T ⋆

τ τξk+1)(s, a)

+
γ(1− βM)

1− β
ϵ+ γβM R̄− γEs′,a′

M∑
i=1

βi(Q̃k+1−i
τ −Qk+1−i

τ).
(73)

Since Q⋆
τ − Qk+1

τ ≥ 0 and using the triangle inequality, the fact that Es,a[X] ≤ ∥X∥∞ and the
contraction property of T ⋆

τ completes the proof∥∥∥Q⋆
τ − Q̃k+1

τ

∥∥∥
∞

≤
∥∥Q⋆

τ −Qk+1
τ

∥∥
∞ +

∥∥∥Qk+1
τ − Q̃k+1

τ

∥∥∥
∞

(74)

(i)

≤ ∥T ⋆
τ Q

⋆
τ − T ⋆

τ τξk+1∥∞ +
γ(1− βM)

1− β
ϵ+ γβM R̄

+

M∑
i=0

βi
∥∥∥Q̃k+1−i

τ −Qk+1−i
τ

∥∥∥
∞

,

(75)

≤ γ ∥Q⋆
τ − τξk+1∥∞ +

γ(1− βM)

1− β
ϵ+ γβM R̄+

1− βM+1

1− β
ϵeval. (76)

Here (i) is due to Eq. 73 and γ < 1. This completes the proof.

The next theorem generalizes Thm. 4.2 from the main paper to the case of inexact Q-functions. Thus,
the proof for Thm. 4.2 can be retrieved by cancelling ϵeval terms and replacing Q̃τ by Qτ .

Theorem A.3 (Convergence of approximate vanilla finite-memory EPMD). After k ≥ 0 iterations of
Eq. 6, we have that

∥∥∥Q⋆
τ − Q̃k

τ

∥∥∥
∞

≤ γdk ∥Q⋆
τ∥∞+C1β

M+ (1+γ2)ϵeval

(1−γ)2(1−β) , with d = β+γ(1−β) < 1,

C1 = 2γR̄
1−γ

(
1 + γ(1−βM)

(1−β)(1−γ)

)
+ γϵeval

(1−γ)(1−β) .

19

This theorem states that the approximate vanilla finite-memory EPMD algorithm converges to an
error that consists of two components: the first one scales with βM and thus should become negligible
for large enough M and the second one fully depends on ϵeval and is small only if ϵeval is small
too.

Proof. From the definition of ξk+1 in Eq. 60 and the triangle inequality we get

∥Q⋆
τ − τξk+1∥∞ =

∥∥∥Q⋆
τ − βτξk − (1− β)Q̃k

τ + (1− β)βM Q̃k−M
τ

∥∥∥
∞

, (77)

≤ β ∥Q⋆
τ − τξk∥∞ + (1− β)

∥∥∥Q⋆
τ − Q̃k

τ

∥∥∥
∞

+ (1− β)βM
∥∥∥Q̃k−M

τ

∥∥∥
∞

, (78)

≤ β ∥Q⋆
τ − τξk∥∞

+ (1− β)γ ∥Q⋆
τ − τξk∥∞ + γ(1− βM)ϵ+ (1− βM+1)ϵeval

+ (1− β)γβM R̄+ (1− β)βM
∥∥∥Q̃k−M

τ

∥∥∥
∞

,

(79)

≤ (β + γ(1− β)) ∥Q⋆
τ − τξk∥∞ + γ(1− βM)ϵ

+ (1 + γ)(1− β)βM R̄+ (1 + βM)ϵeval.
(80)

Where in the last inequality we used the fact that
∥∥∥Q̃k−M

τ

∥∥∥
∞

≤ R̄ + ϵeval and 1 − βM+1 + (1 −
β)βM = 1 + βM − 2βM+1 ≤ 1 + βM . Letting

d := β + γ(1− β), (81)

one can show by induction, using the fact that ξ0 = 0, that

∥Q⋆
τ − τξk+1∥∞ ≤ dk+1 ∥Q⋆

τ∥∞

+

k∑
i=0

di
[
γ(1− βM)ϵ+ (1 + γ)(1− β)βM R̄+ (1 + βM)ϵeval

]
,

(82)

≤ dk+1 ∥Q⋆
τ∥∞ +

γ(1− βM)ϵ+ (1 + γ)(1− β)βM R̄+ (1 + βM)ϵeval
1− d

, (83)

= dk+1 ∥Q⋆
τ∥∞ +

(1 + γ)βM R̄

1− γ
+

γ(1− βM)ϵ+ (1 + βM)ϵeval
(1− γ)(1− β)

. (84)

For Eq. 83, we used the fact that
∑k

i=0 d
i = 1−dk+1

1−d ≤ 1
1−d . Using Eq. 84 in Eq. 76 finally gives∥∥∥Q⋆

τ − Q̃k+1
τ

∥∥∥
∞

≤ γdk+1 ∥Q⋆
τ∥∞

+

[
γβM +

(1 + γ)γβM

1− γ

]
R̄

+

[
γ2(1− βM)

(1− γ)(1− β)
+

γ(1− βM)

1− β

]
ϵ

+

[
γ(1 + βM)

(1− γ)(1− β)
+

1− βM+1

1− β

]
ϵeval

(85)

Now, let us analyse more closely the constants in front of R̄ and ϵeval. First, let us simplify the
constant in front of ϵ, we get γ2(1−βM)

(1−γ)(1−β) +
γ(1−βM)

1−β = γ(1−βM)
1−β

(
γ

1−γ + 1
)

= γ(1−βM)
(1−γ)(1−β) . By

inserting the value of ϵ from Lemma A.2 we obtain the following coefficient for R̄

γβM +
(1 + γ)γβM

1− γ
+

γ(1− βM)

(1− γ)(1− β)

2γβM

1− γ
=

2γβM

1− γ

(
1 +

γ(1− βM)

(1− β)(1− γ)

)
(86)

20

and ϵeval

γ(1 + βM)

(1− γ)(1− β)
+

1− βM+1

1− β
+

γ(1− βM)

(1− γ)(1− β)

2γβM + 1 + γ

1− γ

(i)
<

γ(1 + βM)

(1− γ)(1− β)
+

1− βM+1

1− β
+

γ(1 + γ)

(1− γ)2(1− β)

(ii)

≤ γ + γβM + 1− γ

(1− γ)(1− β)
+

γ(1 + γ)

(1− γ)2(1− β)

=
1− γ + γ + γ2

(1− γ)2(1− β)
+

γβM

(1− γ)(1− β)

=
1 + γ2

(1− γ)2(1− β)
+

γβM

(1− γ)(1− β)
,

(87)

where in (i) we use γ(1− βM)(2γβM +1+ γ) = 2γ2βM − 2γ2β2M + γ− γβM + γ2 − γ2βM <
γ2βM − γβM + γ + γ2 < γ(1 + γ) and in (ii) we cancel the negative components. Combining
Eq. 85, Eq. 86 and Eq. 87, we complete the proof.

21

A.4 Approximate weight-corrected finite-memory EPMD
A.4.1 Proof of the logits expression in Sec. 4.2
Proof. For k = 0,

ξ1 = β × 0 + αQ̃0
τ +

αβM

1− βM
(Q̃0

τ − 0), (88)

= α

(
1 +

βM

1− βM

)
Q̃0

τ , (89)

=
α

1− βM
Q̃0

τ . (90)

If it is true for k, then

ξk+1 = β
α

1− βM

M−1∑
i=0

βiQ̃k−1−i
τ + αQ̃k

τ +
αβM

1− βM
(Q̃k

τ − Q̃k−M
τ), (91)

=
α

1− βM

M−2∑
i=0

βi+1Q̃k−1−i
τ +

αβM

1− βM
(Q̃k−M

τ − Q̃k−M
τ) +

α

1− βM
Q̃k

τ , (92)

=
α

1− βM

M−1∑
i=0

βiQ̃k−i
τ (93)

A.4.2 Proof of Corollary 4.1.2

Proof. The proof is immediate from Thm. 4.1, upper-bounding maxs∈S ∥(πk − π̃k)(s)∥1 by 2, using

the definition of ξ̃k−ξk = αβM−1

1−βM (Q̃k
τ − Q̃k−M

τ) in
∥∥∥ξk − ξ̃k

∥∥∥
∞

and using the fact that αη = β.

Note that, as in Cor. 4.1.1, we could have used the expression of the logits of π and π̃ to have a
bound of ∥(πk − π̃k)(s)∥1 that depends on

∥∥∥ξk − ξ̃k

∥∥∥
∞

and ultimately on
∥∥∥Q̃k

τ − Q̃k−M
τ

∥∥∥
∞

. This

bound becomes tighter as k goes to infinity for M large enough, since we show below that Q̃k
τ

converges to Q⋆
τ with some error that depends on ϵeval and thus maxs∈S ∥(πk − π̃k)(s)∥1 converges

to 0. Nonetheless, using this tighter bound would introduce quadratic terms
∥∥∥Q̃k

τ − Q̃k−M
τ

∥∥∥2
∞

that
would complicate the overall analysis of the algorithm, and thus we use the more crude bound of 2
for maxs∈S ∥(πk − π̃k)(s)∥1 in the remainder of the proofs for Sec. 4.2.

Thus, given Theorem A.1 and Corollary 4.1.2, and in case of an update

ξk+1 = βξk + αQ̃k
τ +

αβM

1− βM
(Q̃k

τ − Q̃k−M
τ), (94)

we get

Qk+1
τ ≥ Q̃k

τ − 2γβM

∥∥∥Q̃k
τ − Q̃k−M

τ

∥∥∥
∞

(1− γ)(1− βM)
− 1 + γ

1− γ
ϵeval. (95)

A.5 Proof of Lemma 4.3
As with Thm. 4.2, we first need an intermediary Lemma connecting

∥∥Q⋆
τ −Qk+1

τ

∥∥
∞ and

∥Q⋆
τ − τξk+1∥∞ before proving Lem. 4.3.

Lemma A.4. After k ≥ 0 iterations of Eq. 94, we have
∥∥∥Q⋆

τ − Q̃k+1
τ

∥∥∥
∞

≤ γ ∥Q⋆
τ − τξk+1∥∞ +

γβk+1
∥∥Q0

τ

∥∥
∞+γ

∑k
i=0 β

iϵ′k−i+
1+γ2

(1−γ)(1−β)ϵeval, with ϵ′k =
(

1+γ
1−γ − β

)
βM

1−βM

∥∥∥Q̃k−M
τ − Q̃k

τ

∥∥∥
∞

.

22

Proof. Define ϵk as

ϵk :=
2βM

1− βM

∥∥∥Q̃k−M
τ − Q̃k

τ

∥∥∥
∞

, (96)

For all s ∈ S and a ∈ A

(Q⋆
τ −Qk+1

τ)(s, a) = (T ⋆
τ Q

⋆
τ)(s, a)−

(
R(s, a) + γEs′,a′ [Qk+1

τ (s′, a′)− τh(πk+1(s
′))]
)

(97)

= (T ⋆
τ Q

⋆
τ)(s, a)−

(
R(s, a) + γEs′,a′ [τξk+1(s

′, a′)− τh(πk+1(s
′))]+

γEs′,a′ [Qk+1
τ (s′, a′)− τξk+1(s

′, a′)]
) (98)

Looking at the first inner term and using the entropy maximizing nature of πk+1 as defined in Eq. 15
gives

R(s, a) + γEs′ [τξk+1(s
′) · πk+1(s

′)− τh(πk+1(s
′))] (99)

= R(s, a) + γEs′ [max
p∈∆(A)

τξk+1(s
′) · p− τh(p)] = (T ⋆

τ τξk+1)(s, a) (100)

For the second inner term, using the recursive definition of ξk+1 in Eq. 94 gives

Qk+1
τ − τξk+1 = Qk+1

τ −
(
βτξk + (1− β)Q̃k

τ +
(1− β)βM

1− βM
(Q̃k

τ − Q̃k−M
τ)

)
, (101)

= β(Q̃k
τ − τξk) +Qk+1

τ − Q̃k
τ − (1− β)βM

1− βM
(Q̃k

τ − Q̃k−M
τ), (102)

≥ β(Qk
τ − τξk)−

γϵk
1− γ

− (1− β)ϵk
2

− 1 + γ

1− γ
ϵeval + β

(
Q̃k

τ −Qk
τ

)
. (103)

Letting

ϵ′k :=
γϵk
1− γ

+
(1− β)ϵk

2
=

(
1 + γ

1− γ
− β

)
βM

1− βM

∥∥∥Q̃k−M
τ − Q̃k

τ

∥∥∥
∞

, (104)

one can easily show by induction that

Qk+1
τ − τξk+1 ≥ βk+1Q0

τ −
k∑

i=0

βiϵ′k−i −
k∑

i=0

βi 1 + γ

1− γ
ϵeval −

k+1∑
i=1

βiϵeval (105)

= βk+1Q0
τ −

k∑
i=0

βiϵ′k−i −
(1− βk+1)(1 + γ)

(1− β)(1− γ)
ϵeval −

β(1− βk+1)

1− β
ϵeval (106)

≥ βk+1Q0
τ −

k∑
i=0

βiϵ′k−i −
(1 + γ)ϵeval

(1− γ)(1− β)
− βϵeval

1− β
. (107)

The inequality uses the fact that ξ0 = 0. Using successively Eq. 100 and Eq. 107 back into Eq. 98
yields

(Q⋆
τ −Qk+1

τ)(s, a) = (T ⋆
τ Q

⋆
τ)(s, a)− (T ⋆

τ τξk+1)(s, a)− γEs′,a′ [Qk+1
τ (s′, a′)− τξk+1(s

′, a′)],

(108)

≤ (T ⋆
τ Q

⋆
τ)(s, a)− (T ⋆

τ τξk+1)(s, a)− γEs′,a′ [βk+1Q0
τ (s

′, a′)]

+ γ

k∑
i=0

βiϵ′k−i +
γβ

1− β
ϵeval +

γ(1 + γ)ϵeval
(1− γ)(1− β)

.
(109)

23

Since Q⋆
τ −Qk+1

τ ≥ 0 and using the triangle inequality, the fact that Es,a[Q
0
τ (s, a)] ≤

∥∥Q0
τ

∥∥
∞, and

the contraction property of T ⋆
τ gives us

∥∥Q⋆
τ −Qk+1

τ

∥∥
∞ ≤ ∥T ⋆

τ Q
⋆
τ − T ⋆

τ τξk+1∥∞ + γβk+1
∥∥Q0

τ

∥∥
∞

+ γ

k∑
i=0

βiϵ′k−i +
γβ

1− β
ϵeval +

γ(1 + γ)ϵeval
(1− γ)(1− β)

(110)

≤ γ ∥Q⋆
τ − τξk+1∥∞ + γβk+1

∥∥Q0
τ

∥∥
∞

+ γ

k∑
i=0

βiϵ′k−i +
γβ

1− β
ϵeval +

γ(1 + γ)ϵeval
(1− γ)(1− β)

.
(111)

Finally, using

∥∥∥Q⋆
τ − Q̃k+1

τ

∥∥∥
∞

≤
∥∥Q⋆

τ −Qk+1
τ

∥∥
∞ +

∥∥∥Qk+1
τ − Q̃k+1

τ

∥∥∥
∞

≤
∥∥Q⋆

τ −Qk+1
τ

∥∥
∞ + ϵeval (112)

and also simplifying the constants γβ
1−β + 1 = 1−β+γβ

1−β ≤ 1
1−β and 1

1−β + γ(1+γ)
(1−γ)(1−β) = 1

1−β (1 +
γ(1+γ)
1−γ) = 1+γ2

(1−γ)(1−β) , we obtain the statement of the lemma.

We now state a more general form of Lemma 4.3 and prove it.

Lemma A.5. Let xk+1 = d1xk + d2xk−M + (1+γ2)ϵeval

1−γ be a sequence such that ∀k < 0, xk =
∥Q⋆

τ∥∞
γ , x0 = ∥Q⋆

τ∥∞+
∥∥∥Q̃0

τ

∥∥∥
∞
+ (1+γ2)ϵeval

(1−γ)(1−β) , d1 := β+γ 1−β
1−βM +γc2, d2 := 2c1γ

2

1−γ , c1 := βM

1−βM ,

and c2 :=
(

1+γ
1−γ − β

)
c1. After k ≥ 0 iterations of Eq. 10, we have that

∥∥∥Q⋆
τ − Q̃k

τ

∥∥∥
∞

≤ xk.

Proof. Define the following constants

c1 :=
βM

1− βM
, and c2 :=

(
1 + γ

1− γ
− β

)
c1. (113)

Let a sequence xk defined by ∀k < 0, xk =
∥Q⋆

τ∥∞
γ and let

x0 = ∥Q⋆
τ∥∞ +

∥∥Q0
τ

∥∥
∞ +

(1 + γ2)ϵeval
(1− γ)(1− β)

. (114)

For subsequent terms, we define xk by the recursive definition, ∀k ≥ 0

xk+1 = γ

(
1− β

1− βM

M−1∑
i=0

βixk−i + βk+1

∥∥Q0
τ

∥∥
∞

γ
+ c2

k∑
i=0

βi(xk−i + xk−i−M)

)
+

(1 + γ2)ϵeval
(1− γ)(1− β)

.

(115)

24

Note that x0 can also be recovered by Eq. 115, for k = −1. Now, let us simplify Eq. 115. Using this
recursive definition, we have ∀k ≥ 0

xk+1 = γ
1− β

1− βM

M−1∑
i=0

βixk−i + βk+1
∥∥Q0

τ

∥∥
∞ + c2γ

k∑
i=0

βi(xk−i + xk−i−M)

+
(1 + γ2)ϵeval
(1− γ)(1− β)

,

(116)

= β

(
γ(1− β)

1− βM

M−1∑
i=0

βixk−1−i + βk
∥∥Q0

τ

∥∥
∞ + γc2

k−1∑
i=0

βi(xk−1−i + xk−1−i−M)

+
(1 + γ2)ϵeval
(1− γ)(1− β)

)
+

γ(1− β)

1− βM

(
xk − βMxk−M

)
+ γc2 (xk + xk−M)

+
(1 + γ2)ϵeval

1− γ
,

(117)

(i)
= βxk + γ

(
1− β

1− βM

(
xk − βMxk−M

)
+ c2 (xk + xk−M)

)
+

(1 + γ2)ϵeval
1− γ

, (118)

=

(
β + γ

1− β

1− βM
+ γc2

)
xk + γ

(
c2 −

βM (1− β)

1− βM

)
xk−M +

(1 + γ2)ϵeval
1− γ

(119)

=

(
β + γ

1− β

1− βM
+ γc2

)
xk +

2c1γ
2

1− γ
xk−M +

(1 + γ2)ϵeval
1− γ

(120)

In (i) we used the recursive definition of xk which is also valid for x0. Letting

d1 := β + γ
1− β

1− βM
+ γc2, and d2 :=

2c1γ
2

1− γ
, (121)

xk+1 for all k ≥ 0 can be more compactly defined by

xk+1 = d1xk + d2xk−M +
(1 + γ2)ϵeval

1− γ
. (122)

Let us now prove that
∥∥∥Q⋆

τ − Q̃k
τ

∥∥∥
∞

≤ xk by induction. For k = 0, we have that

∥∥∥Q⋆
τ − Q̃0

τ

∥∥∥
∞

≤
∥∥Q⋆

τ −Q0
τ

∥∥
∞ +

∥∥∥Q0
τ − Q̃0

τ

∥∥∥
∞

(123)

≤ ∥Q⋆
τ∥∞ +

∥∥Q0
τ

∥∥
∞ + ϵeval, (124)

≤ x0. (125)

and for k < 0, we have that

∥∥∥Q⋆
τ − Q̃k

τ

∥∥∥
∞

= ∥Q⋆
τ∥∞ , (126)

≤
∥Q⋆

τ∥∞
γ

, (127)

= xk. (128)

25

Now assume that
∥∥∥Q⋆

τ − Q̃i
τ

∥∥∥
∞

≤ xi is true for all i ≤ k and let us prove that
∥∥∥Q⋆

τ − Q̃k+1
τ

∥∥∥
∞

≤
xk+1. First, we note that

∥Q⋆
τ − τξk+1∥∞ =

∥∥∥∥∥Q⋆
τ − τ

α

1− βM

M−1∑
i=0

βiQ̃k−i
τ

∥∥∥∥∥
∞

, (129)

=

∥∥∥∥∥ 1− β

1− βM

M−1∑
i=0

βiQ⋆
τ − 1− β

1− βM

M−1∑
i=0

βiQ̃k−i
τ

∥∥∥∥∥
∞

, (130)

≤ 1− β

1− βM

M−1∑
i=0

βi
∥∥∥Q⋆

τ − Q̃k−i
τ

∥∥∥
∞

, (131)

≤ 1− β

1− βM

M−1∑
i=0

βixk−i. (132)

We also have that

ϵ′k = c2

∥∥∥Q̃k−M
τ − Q̃k

τ

∥∥∥
∞

, (133)

≤ c2

(∥∥∥Q⋆
τ − Q̃k−M

τ

∥∥∥
∞

+
∥∥∥Q⋆

τ − Q̃k
τ

∥∥∥
∞

)
(134)

≤ c2(xk + xk−M). (135)

Finally, using Eq. 132, Eq. 135 and
∥∥Q0

τ

∥∥
∞ ≤ ∥Q0

τ∥∞
γ into Lemma A.4 completes the proof

∥∥∥Q⋆
τ − Q̃k+1

τ

∥∥∥
∞

≤ γ

(
∥Q⋆

τ − τξk+1∥∞ + βk+1
∥∥Q0

τ

∥∥
∞ +

k∑
i=0

βiϵ′k−i

)
+

(1 + γ2)ϵeval
(1− γ)(1− β)

,

(136)

≤ γ

(
1− β

1− βM

M−1∑
i=0

βixk−i + βk+1

∥∥Q0
τ

∥∥
∞

γ
+ c2

k∑
i=0

βi(xk−i + xk−i−M)

)

+
(1 + γ2)ϵeval
(1− γ)(1− β)

,

(137)
= xk+1. (138)

A.6 Proof of Theorem 4.4

We state a more general form for Theorem 4.4 that includes policy evaluation error and prove it
below.

Theorem A.6 (Convergence of approximate weight corrected finite-memory EPMD). With the defini-
tions of Lemma 4.3, if M > log (1−γ)2(1−β)

γ2(3+β)+1−β (log β)
−1 then limk→∞ xk ≤ (1+γ2)ϵeval

(1−γ)(1−d1−d2)
. More-

over, ∀k ≥ 0,
∥∥∥Q⋆

τ − Q̃k
τ

∥∥∥
∞

≤ (d1+d2d
−1
3)k max

{
∥Q⋆

τ∥∞
γ , ∥Q⋆

τ∥∞+
∥∥Q0

τ

∥∥
∞

}
+ (1+γ2)ϵeval

(1−γ)(1−d1−d2)
,

where d3 :=
(
dM1 + d2

1−dM
1

1−d1

)
and limM→∞ d1 + d2d

−1
3 = β + γ(1− β).

26

Proof. Let us find a value of M such that

d1 + d2 < 1, (139)

⇔β(1− βM) + γ(1− β) + γ

(
1 + γ

1− γ
− β

)
βM +

2γ2βM

1− γ
< 1− βM , (140)

⇔β − βM+1 − γβ + γ
1 + γ

1− γ
βM − γβM+1 + βM +

2γ2βM

1− γ
< 1− γ, (141)

⇔(1− γ)β +
γ2(3 + β) + 1− β

1− γ
βM < 1− γ, (142)

⇔βM <
(1− γ)2(1− β)

γ2(3 + β) + 1− β
, (143)

⇔M log β < log
(1− γ)2(1− β)

γ2(3 + β) + 1− β
, (144)

⇔M > log
(1− γ)2(1− β)

γ2(3 + β) + 1− β
(log β)−1. (145)

We will now show that for the values of M that satisfy Eq. 145, the sequence xk converges to some
finite error that depends on ϵeval as k goes to infinity. To simplify the analysis of xk we study a slightly
modified version thereof that has the same recursive definition xk+1 = d1xk+d2xk−M + (1+γ2)ϵeval

1−γ

but replaces the terms x−k, ∀k ≥ 0 with x−k = max
{

∥Q⋆
τ∥∞
γ , ∥Q⋆

τ∥∞ +
∥∥Q0

τ

∥∥
∞ + (1+γ2)ϵeval

(1−γ)(1−β)

}
.

Clearly, this modified sequence upper-bounds the previous sequence.

To simplify the analysis, we first analyse another sequence yk that for k ≤ 0 is identical to xk, but for
k ≥ 0 it evolves following the next law yk+1 = d1yk+d2yk−M . Now, if M is such that d1+d2 < 1,
then the sequence yk is constant from y−M to y0 and is strictly decreasing thereafter, since for y1 we
have

y1 = d1y0 + d2y−M , (146)
= (d1 + d2)y0, (147)
< y0. (148)

Then, ∀k ≥ 1

yk+1 = d1yk + d2yk−M , (149)
< d1yk−1 + d2yk−M−1, (150)
= yk. (151)

Since the sequence is decreasing and lower bounded by 0, it has a limit due to the monotone
convergence theorem. Let us study the convergence of a sub-sequence. Let for any integer a > 0

yaM+a = d1yaM+a−1 + d2yaM+a−1−M , (152)
< (d1 + d2)yaM+a−1−M , (153)
= (d1 + d2)y(a−1)M+(a−1), (154)

< (d1 + d2)
ay0. (155)

Thus, lima→∞ yaM+a = 0, which implies that limk→∞ yk = 0.

Further, let us show that for all k and C(k) =
∑k−1

i=0 (d1 + d2)
i,

xk ≤ yk + C(k)
(1 + γ2)ϵeval

1− γ
, (156)

and therefore, if we simplify the above expression, then for all k

xk ≤ yk +
(1 + γ2)ϵeval

(1− γ)(1− d1 − d2)
. (157)

27

We do it by mathematical induction. First,

x1 = d1x0 + d2x−M +
(1 + γ2)ϵeval

1− γ
= d1y0 + d2y−M +

(1 + γ2)ϵeval
1− γ

= y1 +
(1 + γ2)ϵeval

1− γ
.

(158)

Then, let us assume that Eq. 156 holds for any i ≤ k, now we show that it also holds for k + 1

xk+1 = d1xk + d2xk−M +
(1 + γ2)ϵeval

1− γ
(159)

≤ d1

(
yk + C(k)

(1 + γ2)ϵeval
1− γ

)
+ d2

(
yk−M + C(k −M)

(1 + γ2)ϵeval
1− γ

)
+

(1 + γ2)ϵeval
1− γ

(160)

≤ yk+1 +max {C(k), C(k −M)} (d1 + d2)
(1 + γ2)ϵeval

1− γ
+

(1 + γ2)ϵeval
1− γ

(161)

(i)
= yk+1 + C(k)(d1 + d2)

(1 + γ2)ϵeval
1− γ

+
(1 + γ2)ϵeval

1− γ
(162)

= yk+1 +

k∑
i=0

(d1 + d2)
i (1 + γ2)ϵeval

1− γ
. (163)

Here, in (i) we use the definition of C(k) from Eq. 156 and its monotonicity that comes out
of it. Therefore, we get that limk→∞ xk ≤ limk→∞

(
yk +

∑k−1
i=0 (d1 + d2)

i (1+γ2)ϵeval

1−γ

)
= 0 +∑∞

i=0(d1 + d2)
i (1+γ2)ϵeval

1−γ = (1+γ2)ϵeval

(1−γ)(1−(d1+d2))
, which completes the first part of our proof. Now,

let us have a closer look on the convergence speed.

To better characterize the convergence of xk, we again analyse the sequence yk. First, we note that
the constant d1 ≥ β + γ(1 − β) is typically very close to 1, whereas d2 → 0 as M → ∞. The
sequence yk thus behaves almost as dk1y0. A much tighter upper-bounding sequence than that of
Eq. 155 can be obtained using the following inequalities

yk = d1yk−1 + d2yk−1−M , (164)

= dM1 yk−M + d2

M−1∑
i=0

di1yk−1−M−i, (165)

≥
(
dM1 + d2

1− dM1
1− d1

)
yk−M , (166)

where we have used in the last inequality the fact that yk is a decreasing sequence. Let

d3 :=

(
dM1 + d2

1− dM1
1− d1

)
, (167)

then we can upper bound the sequence yk by

yk+1 =
(
d1 + d2d

−1
3

)
yk + d2(yk−M − d−1

3 yk), (168)

≤
(
d1 + d2d

−1
3

)
yk + d2(yk−M − d−1

3 d3yk−M), (169)

=
(
d1 + d2d

−1
3

)
yk, (170)

≤
(
d1 + d2d

−1
3

)k+1
y0. (171)

28

Figure 4: Evolution of xk for two successive values of M , one being large enough for xk to converge.
The plot additionally shows the sequence x′

k introduced by Thm. 4.4 that closely follows the behavior
of xk. See text for more details.

Now to study the limit limM→∞ d1 + d2d
−1
3 , let us first start with the rightmost term

d2d
−1
3 ≤ d2

dM1
, (172)

≤ d2
(β + γ(1− β))M

, (173)

=
1

(β + γ(1− β))M
2βMγ2

(1− γ)(1− βM)
, (174)

=

(
β

β + γ(1− β)

)M
2γ2

(1− γ)(1− βM)
. (175)

Since β < β+γ(1−β), then clearly limM→∞ d2d
−1
3 = 0, and from the definition of d1 one can see

that limM→∞ d1 = β+ γ(1− β). Combining the result above with Eq. 157, we obtain the statement
of the theorem.

To illustrate how close the sequence
(
d1 + d2d

−1
3

)k
x0 is to xk, let us take a numerical example

with γ = 0.99 and β = 0.95. In this case, we have that d1 + d2 < 1 whenever M ≥ 265. At
M = 265 we have that d1 ≈ 0.9997 and d2 ≈ 0.0002. In Fig. 4 we plot the three sequences xk,
x′
k =

(
d1 + d2d

−1
3

)k
x0 and x′′

k = (d1+d2)
k/(M+1)x0 for M = 264 and M = 265 and we see that

x′
k converges to zero for the same M as xk and is almost indistinguishable from the latter, whereas

x′′
k is a much more loose upper-bounding sequence at M = 265.

29

B Additional experimental results
B.1 Comparison with deep RL baselines
We summarize all performance comparisons in Fig. 5 and Table 2. We provide a discussion of the
MountainCar environment and some of the challenges of exploration in an entropy-regularized setting
in App. B.5.

0 1 2 3 4 52.5

3

3.5

4

4.5

5

5.5

Re
tu

rn
 (x

10
0)

CartPole-v1

0 1 2 3 4 5-0.8

-0.75

-0.7

-0.65

-0.6
Acrobot-v1

0 1 2 3 4 5-2

-1

0

1

2

3

LunarLander-v2

0 1 2 3 4 5

-2

-1.8

-1.6

-1.4

-1.2

-1

MountainCar-v0

0 1 2 3 4 50

0.5

1

1.5

2

2.5

3

3.5

Re
tu

rn
 (1

K)

Hopper-v4

0 1 2 3 4 50

0.5

1

1.5

2

2.5

3

3.5

4
Walker2d-v4

0 1 2 3 4 50

0.5

1

1.5

2

2.5

3

3.5

First deletion in StaQ
Corresponds to Vanilla PMD
update until 1.5M

HalfCheetah-v4

0 1 2 3 4 50.5

1

1.5

2

2.5

3
Ant-v4

0 1 2 3 4 50

1

2

3

4

5

Humanoid-v4

0 1 2 3 4 5
Env steps (1M)

0

10

20

30

40

50

60

Re
tu

rn

MinAtar/Asterix-v1

0 1 2 3 4 5
Env steps (1M)

0

10

20

30

40

50

60
MinAtar/Breakout-v1

0 1 2 3 4 5
Env steps (1M)

0

10

20

30

40

50

60

70
MinAtar/Freeway-v1

0 1 2 3 4 5
Env steps (1M)

0

20

40

60

80

100

120

140
MinAtar/Seaquest-v1

0 1 2 3 4 5
Env steps (1M)

0

50

100

150

200

250

300

350
MinAtar/SpaceInvaders-v1

StaQ PQN M-DQN DQN PPO TRPO

Figure 5: Policy performance across all environments.

StaQ PQN M-DQN DQN PPO TRPO

CartPole-v1 500 479 457 411 500 500
Acrobot-v1 -62 -75 -63 -63 -63 -64
LunarLander-v2 285 280 88 -317 227 222
MountainCar-v0 -200 -200 -100 -110 -141 -118
Hopper-v4 3196 3263 2600 2279 2411 2672
Walker2d-v4 3550 2585 1364 1424 2799 3010
HalfCheetah-v4 3061 2850 2098 2294 2001 1731
Ant-v4 2910 1879 1776 1871 2277 2452
Humanoid-v4 5273 2965 2580 2887 588 700
MinAtar/Asterix-v1 46 53 31 19 9 23
MinAtar/Breakout-v1 48 32 55 34 10 15
MinAtar/Freeway-v1 62 65 59 54 60 47
MinAtar/Seaquest-v1 114 114 51 14 5 7
MinAtar/SpaceInvaders-v1 242 327 116 95 92 94

Table 2: Final performance on all environments.

30

B.2 Stability plots (variation within individual runs)
In this section we provide further stability plots to complement Fig. 3 (Left). In Fig. 6-8 we plot the
returns of the first three seeds of the full results (shown in Fig. 5). At each timestep, the returns for
each individual seed are normalised by subtracting and then dividing by the mean across all seeds. In
addition to the first three seeds, the shaded regions indicate one-sided tolerance intervals such that at
least 95% of the population measurements are bounded by the upper or lower limit, with confidence
level 95% (Krishnamoorthy & Mathew, 2009).

We can see from Fig. 6-8 that Approximate Policy Iteration (API) algorithms (StaQ, TRPO, PPO)
generally exhibit less variation within runs than Approximate Value Iteration (AVI) ones (DQN,
M-DQN, PQN). In simple environments, such as CartPole, all three API algorithms have stable
performance, but on higher dimensional tasks, only StaQ retains a similar level of stability while
maintaining good performance. This is especially striking on Hopper, where runs show comparatively
little variation within iterations while having the highest average performance, as shown in Fig. 5.
We attribute this improved stability in the performance of the evaluation policy by the averaging over
a very large number of Q-functions (M = 300) of StaQ, which reduces the infamous performance
oscillation of deep RL algorithms in many cases.

0 1 2 3 4 5
Env step (1M)

-40

-20

0

20

40

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

CartPole-v1
StaQ

0 1 2 3 4 5
Env step (1M)

CartPole-v1
PQN

0 1 2 3 4 5
Env step (1M)

CartPole-v1
M-DQN

0 1 2 3 4 5
Env step (1M)

CartPole-v1
DQN

0 1 2 3 4 5
Env step (1M)

CartPole-v1
PPO

0 1 2 3 4 5
Env step (1M)

CartPole-v1
TRPO

0 1 2 3 4 5
Env step (1M)

-20

-10

0

10

20

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

Acrobot-v1
StaQ

0 1 2 3 4 5
Env step (1M)

Acrobot-v1
PQN

0 1 2 3 4 5
Env step (1M)

Acrobot-v1
M-DQN

0 1 2 3 4 5
Env step (1M)

Acrobot-v1
DQN

0 1 2 3 4 5
Env step (1M)

Acrobot-v1
PPO

0 1 2 3 4 5
Env step (1M)

Acrobot-v1
TRPO

0 1 2 3 4 5
Env step (1M)

-100

-50

0

50

100

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

LunarLander-v2
StaQ

0 1 2 3 4 5
Env step (1M)

LunarLander-v2
PQN

0 1 2 3 4 5
Env step (1M)

LunarLander-v2
M-DQN

0 1 2 3 4 5
Env step (1M)

LunarLander-v2
DQN

0 1 2 3 4 5
Env step (1M)

LunarLander-v2
PPO

0 1 2 3 4 5
Env step (1M)

LunarLander-v2
TRPO

Figure 6: Stability plots for Classic Control environments, plotting normalized performance of the
first three individual runs for each algorithm. See text for more details. Figures continue on the next
page.

31

0 1 2 3 4 5
Env step (1M)

-40

-20

0

20

40

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

Hopper-v4
StaQ

0 1 2 3 4 5
Env step (1M)

Hopper-v4
PQN

0 1 2 3 4 5
Env step (1M)

Hopper-v4
M-DQN

0 1 2 3 4 5
Env step (1M)

Hopper-v4
DQN

0 1 2 3 4 5
Env step (1M)

Hopper-v4
PPO

0 1 2 3 4 5
Env step (1M)

Hopper-v4
TRPO

0 1 2 3 4 5
Env step (1M)

-100

-50

0

50

100

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

Walker2d-v4
StaQ

0 1 2 3 4 5
Env step (1M)

Walker2d-v4
PQN

0 1 2 3 4 5
Env step (1M)

Walker2d-v4
M-DQN

0 1 2 3 4 5
Env step (1M)

Walker2d-v4
DQN

0 1 2 3 4 5
Env step (1M)

Walker2d-v4
PPO

0 1 2 3 4 5
Env step (1M)

Walker2d-v4
TRPO

0 1 2 3 4 5
Env step (1M)

-40

-20

0

20

40

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

HalfCheetah-v4
StaQ

0 1 2 3 4 5
Env step (1M)

HalfCheetah-v4
PQN

0 1 2 3 4 5
Env step (1M)

HalfCheetah-v4
M-DQN

0 1 2 3 4 5
Env step (1M)

HalfCheetah-v4
DQN

0 1 2 3 4 5
Env step (1M)

HalfCheetah-v4
PPO

0 1 2 3 4 5
Env step (1M)

HalfCheetah-v4
TRPO

0 1 2 3 4 5
Env step (1M)

-40

-20

0

20

40

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

Ant-v4
StaQ

0 1 2 3 4 5
Env step (1M)

Ant-v4
PQN

0 1 2 3 4 5
Env step (1M)

Ant-v4
M-DQN

0 1 2 3 4 5
Env step (1M)

Ant-v4
DQN

0 1 2 3 4 5
Env step (1M)

Ant-v4
PPO

0 1 2 3 4 5
Env step (1M)

Ant-v4
TRPO

Figure 7: Stability plots for MuJoCo environments, plotting normalized performance of the first three
individual runs for each algorithm. See text for more details. Figures continue on the next page.

32

0 1 2 3 4 5
Env step (1M)

-40

-20

0

20

40

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

MinAtar/Asterix-v1
StaQ

0 1 2 3 4 5
Env step (1M)

MinAtar/Asterix-v1
PQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Asterix-v1
M-DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Asterix-v1
DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Asterix-v1
PPO

0 1 2 3 4 5
Env step (1M)

MinAtar/Asterix-v1
TRPO

0 1 2 3 4 5
Env step (1M)

-40

-20

0

20

40

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

MinAtar/Breakout-v1
StaQ

0 1 2 3 4 5
Env step (1M)

MinAtar/Breakout-v1
PQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Breakout-v1
M-DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Breakout-v1
DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Breakout-v1
PPO

0 1 2 3 4 5
Env step (1M)

MinAtar/Breakout-v1
TRPO

0 1 2 3 4 5
Env step (1M)

-100

-50

0

50

100

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

MinAtar/Freeway-v1
StaQ

0 1 2 3 4 5
Env step (1M)

MinAtar/Freeway-v1
PQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Freeway-v1
M-DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Freeway-v1
DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Freeway-v1
PPO

0 1 2 3 4 5
Env step (1M)

MinAtar/Freeway-v1
TRPO

0 1 2 3 4 5
Env step (1M)

-150

-100

-50

0

50

100

150

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

MinAtar/Seaquest-v1
StaQ

0 1 2 3 4 5
Env step (1M)

MinAtar/Seaquest-v1
PQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Seaquest-v1
M-DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Seaquest-v1
DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Seaquest-v1
PPO

0 1 2 3 4 5
Env step (1M)

MinAtar/Seaquest-v1
TRPO

0 1 2 3 4 5
Env step (1M)

-75

-50

-25

0

25

50

75

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

MinAtar/SpaceInvaders-v1
StaQ

0 1 2 3 4 5
Env step (1M)

MinAtar/SpaceInvaders-v1
PQN

0 1 2 3 4 5
Env step (1M)

MinAtar/SpaceInvaders-v1
M-DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/SpaceInvaders-v1
DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/SpaceInvaders-v1
PPO

0 1 2 3 4 5
Env step (1M)

MinAtar/SpaceInvaders-v1
TRPO

Figure 8: Stability plots for MinAtar environments, plotting normalized performance of the first three
individual runs for each algorithm. See text for more details.

33

0 1 2 3 4 5
0.25

0.3

0.35

0.4

0.45

0.5

0.55

Re
tu

rn
 (x

10
0)

CartPole-v1

0 1 2 3 4 5

-0.72

-0.7

-0.68

-0.66

-0.64

-0.62

-0.6
Acrobot-v1

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

LunarLander-v2

0 1 2 3 4 5

-2

-1.8

-1.6

-1.4

-1.2

-1

MountainCar-v0

0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

Re
tu

rn
 (1

K)

Hopper-v4

0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

4
Walker2d-v4

0 1 2 3 4 5

1.5

2

2.5

3

3.5
HalfCheetah-v4

0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

Ant-v4

0 1 2 3 4 5

1

2

3

4

5

Humanoid-v4

0 1 2 3 4 5

Env steps (1M)

0

10

20

30

40

50

60

Re
tu

rn

MinAtar/Asterix-v1

0 1 2 3 4 5

Env steps (1M)

0

10

20

30

40

50

60
MinAtar/Breakout-v1

0 1 2 3 4 5

Env steps (1M)

40

45

50

55

60

65
MinAtar/Freeway-v1

0 1 2 3 4 5

Env steps (1M)

0

20

40

60

80

100

120

140
MinAtar/Seaquest-v1

0 1 2 3 4 5

Env steps (1M)

0

50

100

150

200

250

300
MinAtar/SpaceInvaders-v1

M=1 M=5 M=50 M=100 M=300 M=500 M=1000 M = 300 (=0)

Figure 9: Ablation study for different memory sizes M and for ϵ = 0, on all environments. Results
showing the mean and one standard deviation averaged over 5 seeds.

B.3 The impact of the memory-size M and value of ϵ
Figure 9 shows the performance of StaQ for different choices of M and for the hyperparameter ϵ = 0
instead of ϵ = 0.05 on additional MuJoCo tasks. Setting M = 1 corresponds to no KL-regularization
as discussed in App. C and can be seen as an adaptation of SAC to discrete action spaces. M = 1
is unstable on both Hopper and Walker, in addition to Acrobot as shown in Fig. 3 in the main
paper. Adding KL-regularization and averaging over at least 50 Q-functions greatly helps to stabilize
performance except on the Humanoid task, as shown in Fig. 3, where M = 50 was still unstable
compared to M = 300. Finally, the default setting of ϵ = 0.05 outperforms a pure softmax policy
with ϵ = 0 on the Mujoco environments. While being fully on-policy (when ϵ = 0) can benefit some
MinAtar environments such as Asterix, Freeway and SpaceInvaders, for many other environments
it may result in a very poor performance. We discuss some of the likely reasons for the need of
ϵ-softmax exploration in the next section.

B.4 Instability in learning the Q-function
In certain environments such as Hopper-v4 (leftmost panel of Fig. 9), we observe that when the
behavior policy πb

k is the current softmax policy πk (i.e. ϵ = 0), there are more performance drops
than with the ϵ-softmax behavior policy (ϵ > 0) which StaQ uses by default.

To understand why adding an ϵ-softmax policy on top of the softmax policy πk stabilizes performance
on Hopper-v4 as shown in Fig. 9, we have conducted the following experiment. We first launched
two runs of StaQ with an ϵ-softmax policy on top of πk, with ϵ being either 0.05 or 0. From these two
runs, we collected 100 states spread along both training processes. We then launched 5 independent
runs for each value of ϵ, and recorded for these 100 states the learned Q-values at each iteration. Upon
manual inspection of the Q-values, we immediately notice that when ϵ = 0, the Q-values vary more
wildly across time for all the actions, which can be seen as an analogue of catastrophic forgetting in
Q-learning, the phenomenon widely studied in Continual Learning, see App. D. Fig. 10 shows a few
examples for four different seeds. To understand whether these variations have any tangible impact on
the instability of the policy, we have performed the following test: we compute the logits ξk at every
iteration following the EPMD formula (Eq. 5) and rank the actions according to ξk. At each iteration

34

(a) Q-functions recorded at a given state
across 1000 iterations for StaQ’s behavior
policy hyperparameter ϵ = 0 and ϵ = 0.05.
Seed 0.

(b) Q-functions recorded at a given state
across 1000 iterations for StaQ’s behavior
policy hyperparameter ϵ = 0 and ϵ = 0.05.
Seed 1.

(c) Q-functions recorded at a given state
across 1000 iterations for StaQ’s behavior
policy hyperparameter ϵ = 0 and ϵ = 0.05.
Seed 2.

(d) Q-functions recorded at a given state
across 1000 iterations for StaQ’s behavior
policy hyperparameter ϵ = 0 and ϵ = 0.05.
Seed 3.

Figure 10: Q-values on four different states across 1000 iterations of StaQ, using an ϵ-softmax
behavior policy to collect data in the replay, with ϵ = 0.05 or ϵ = 0. With ϵ = 0, we noticed very
large variations in the Q-function between iterations that are reduced when using ϵ = 0.05.

Figure 11: The percentage of states (out of 100 states) in which from iteration k and onward, an action
was considered both the best and the worst according to ξk of EPMD. The difference of stability in
the Q-values between ϵ = 0.05 and ϵ = 0 noted in Fig. 10 causes a difference in stability of policies,
where actions switch more frequently from being worst to best when ϵ = 0. The comparison is
performed over 5 seeds showing the median and interquartile range.

35

0 5 10 15 20 25 30 35 40
Poisson rate ()

0.0000

0.0002

0.0004

0.0006

0.0008

Su
cc

es
s F

re
qu

en
cy

0 1 2 3 4 5

Env steps (1M)

0

0.2

0.4

0.6

0.8

1

1.2

En
tr

op
y

MountainCar-v0

StaQ(-softmax)
StaQ(sticky)
Max entropy

0 1 2 3 4 5

Env steps (1M)

-200

-180

-160

-140

-120

-100

-80

Re
tu

rn

MountainCar-v0
DQN
M-DQN
TRPO
PPO
StaQ(-softmax)
StaQ(sticky)

Figure 12: Left: Frequency of non-zero rewards of a uniform policy with sticky actions for different
choice of Poisson rate λ on MountainCar over 5M timesteps. Middle: Entropy of learned policies
under different behavior policies. Entropy of the uniform (Max entropy) policy plotted for reference.
Right: Policy returns for StaQ with different behavior policies and deep RL baselines on MountainCar.
Adding sticky actions to StaQ’s behavior policy fixes its performance on this task.

k, we then compute the proportion of states, out of 100 reference states, in which an action has both
the highest and the lowest rank in the next iterations k′ ≥ k. The results are shown in Fig. 11, where
we can see that when ϵ = 0, the fraction of states in which an action is considered as either being the
best or the worst remains higher than when ϵ = 0.05, which might result in performance drops across
iterations. Thus the observed Q-function oscillations that appear more pronounced for ϵ = 0 have a
quantifiable impact on the stability of the policy, resulting in more states seeing actions switching
from best to worst or vice versa.

It is hard to know exactly what causes the Q-values to oscillate more when ϵ = 0. On the one hand,
as these instabilities generally happen after the policy reached its peak performance, they could be
because of some actions having very low probability of being selected in some states thus becoming
under-represented in the replay buffer Dk. Setting ϵ > 0 ensures that all actions have a non-zero
probability of being sampled at any given state. On the other hand, due to the convexity2 of DKL, i.e.
DKL ((1− ϵ)π + ϵp, (1− ϵ)π′ + ϵp′) ≤ (1 − ϵ)DKL(π, π

′) + ϵDKL(p, p
′), if πb

k is an ϵ-softmax
strategy of πk, then DKL(π

b
k, π

b
k+1) ≤ (1 − ϵ)DKL(πk, πk+1) for any ϵ > 0. This implies that

successive replay buffers should be more similar when ϵ > 0, which stabilizes the learning due to
smoother transfer from Qk

τ to Qk+1
τ . Nonetheless, a case of ϵ > 0 is not without its own challenges:

ϵ-softmax policies, similarly to ϵ-greedy ones, might prevent deep exploration (Osband et al., 2016)
and their off-policy nature might complicate learning (Kumar et al., 2020). We can see in Fig. 10
that ϵ = 0.05 still exhibits sudden changes in the Q-function which might harm stability. While
the averaging over past Q-functions of an EPMD policy can stabilize learning, we believe that the
catastrophic forgetting in the Q-function itself should be addressed in the future work, which could
potentially fix all remaining instabilities in deep RL.

B.5 Entropy regularization does not solve exploration
StaQ achieves competitive performance on all 14 environments except on MountainCar where it fails
to learn, as can be seen in Fig. 5. In this section, we perform additional experiments to understand
the failure of StaQ on MountainCar.

In short, it appears that the initial uniform policy—which has maximum entropy—acts as a strong
(local) attractor for this task: StaQ starts close to the uniform policy, and exploration with this policy
does not generate a reward signal in MountainCar. As StaQ does not observe a reward signal in
early training, it quickly converges to the uniform policy which has maximum entropy, but also never
generates a reward signal. Indeed, if we unroll a pure uniform policy on MountainCar for 5M steps,
we will never observe a reward.

However, StaQ is not limited to a specific choice of behavior policy, and choosing a policy that
introduces more correlation between adjacent actions, like a simple “sticky” policy allows StaQ to
solve MountainCar. This policy samples an action from πk and applies it for a few consecutive steps,
where a number of steps is drawn randomly from Poisson(λ) distribution (in our experiments with
StaQ we fix the rate of Poisson distribution at λ = 10). In Fig. 12, we can see that StaQ with the same
hyperparameters for classical environments (see Table 3) and a "sticky" behavior policy manages

2See e.g. https://statproofbook.github.io/P/kl-conv.html for the proof.

36

https://statproofbook.github.io/P/kl-conv.html

to find a good policy for MountainCar matching the best baseline. The final policy demonstrates
much lower entropy compared to ϵ-softmax policy that fails at learning for this environment, which
confirms our statement that entropy maximization cannot be a universal tool when dealing with the
exploration problems.

C Comparison with Soft Actor-Critic
In this appendix, we explain the relation between Soft Actor-Critic (SAC, Haarnoja et al. (2018)) and
both M-DQN (Vieillard et al., 2020b) and StaQ with M = 1. SAC is not directly used as a baseline
because SAC is not compatible with discrete action spaces. However, M-DQN can be seen as an
adaptation of SAC to discrete action spaces with an additional KL-divergence regularizer. Please see
the discussion in Vieillard et al. (2020b) on page 3, between Eq. (1) and (2). Vieillard et al. (2020b)
also describe Soft-DQN in Eq. (1) as a straightforward discrete-action version of SAC, that can be
obtained from M-DQN by simply setting the KL-divergence regularization weight to zero. Soft-DQN
was not included as a baseline because the results of Vieillard et al. (2020b) suggest that M-DQN
generally outperforms Soft-DQN.

We also note that by setting M = 1 in StaQ, we remove the KL-divergence regularization and only
keep the entropy bonus. This baseline can also be seen as an adaptation of SAC to discrete action
spaces: indeed, if we set M = 1 in Eq. (11) we recover the policy logits

ξk+1 =
α

1− βM

M−1∑
i=0

βiQk−i
τ

=
α

1− β
Qk

τ

=
Qk

τ

τ
,

where the last line is due to ατ = 1 − β. This results in a policy of the form πk+1 ∝ exp
(

Qk
τ

τ

)
.

Meanwhile, for SAC, the actor network is obtained by minimizing the following problem (Eq. 14 in
Haarnoja et al. (2018))

πk+1 = argminKL

π

∣∣∣∣∣∣
exp

(
Qk

τ

τ

)
Znorm.

 .

However, in the discrete action setting, we can sample directly from exp
(

Qk
τ

τ

)
—which is the

minimizer of the above KL-divergence term—and we do not need an explicit actor network. As such
StaQ with M = 1 could be seen as an adaptation of SAC to discrete action spaces.

D A Continual Learning Perspective to Entropy Regularized Deep RL
Reinforcement Learning has strong ties with CL due to the sequential nature in which data arrives.
This is true even in this “single-task RL” setting, where we consider only a single MDP, unlike
Continual RL (Lesort et al., 2020) where the learner is presented with a sequence of MDPs and one
evaluates whether the learner is able learn on the new MDPs while retaining the information of older
ones (De Lange et al., 2021; Wang et al., 2024). Drawing a connection with RL is interesting because
it opens up a plethora of CL methods that are not well researched in the deep RL context, but are
applicable even in a single task setting. Specifically, in this paper we focus on the entropy regularized
policy update problem described below (Eq. 3 of the paper)

for all s ∈ S, πk+1(s) = argmax
p∈∆(A)

{
Qk

τ (s) · p− τh(p)− ηDKL(p;πk(s))
}
.

The objective of this update can be seen as CL, as we receive a new “task” which is to find p a
maximum entropy distribution over actions that puts its largest mass on actions with high Q-values,
yet, through the KL-divergence term above, we do not want to differ too much from πk, and forget
the solution of the previous “task”. Because of this similarity with CL, existing methods to solve
this problem can be categorized with the CL literature lens, for example: Lazic et al. (2021) used a
rehearsal method (replay buffer/experience replay in deep RL terminology) to tackle the above policy
update, while Schulman et al. (2015) uses a parameter regularization approach. These methods cover

37

two of the three main classes of CL methods (De Lange et al., 2021), and the novelty of this paper is
in investigating a method pertaining to the third class (parameter isolation) to tackle this problem,
as this class of methods has strong performance in CL benchmarks (See Sec. 6 of De Lange et al.
(2021)), yet remains largely understudied in deep RL.

E Hyperparameters
Here, we provide the full list of hyperparameters used in our experiments. StaQ’s hyperparameters
are listed in Table 3, while the hyperparameters for our baselines are provided in Tables 4-7. For
TRPO and PPO, we use the implementation provided in stable-baselines4 (Raffin et al., 2021),
while we used our in-house PyTorch implementation of (M)-DQN. For PQN, we use the CleanRL
implementation (Huang et al., 2022).

Across all environments, we enforce a time limit of 5000 steps. This is particularly useful for
Seaquest-v1, since an agent can get stuck performing an infinitely long rollout during data collection.
For MinAtar environments, we followed the network architecture used by Young & Tian (2019)
consisting of a single convolutional layer with 16 channels and a 3 × 3 kernel (Conv(16, 3, 3))
followed by a linear layer with 128 neurons.

To account for the different scales of the reward between environments, we apply a different reward
scaling to the Classic/MuJoCo environments and MinAtar. Note that this is equivalent to inverse-
scaling the entropy weight τ and KL weight η, ensuring that ξk is of the same order of magnitude
for all environments. To account for the varying action dimension |A| of the environments, we set
the scaled entropy coefficient τ̄ as a hyperparameter, defined by τ̄ = τ log |A|, rather than directly
setting τ . Furthermore, the entropy weight is linearly annealed from its minimum and maximum
values.

Policy evaluation. In all our experiments, we use an ensemble of two neural networks, similarly to
e.g. SAC (Haarnoja et al., 2018), to evaluate a Q-function and therefore two SNNs for ξ-logits. In
particular, we optimize the current Q-function weights θ to minimize the loss L(θ),

L(θ) = E(s,a)∼D

[
1

2

(
Qθ (s, a)− Q̂ (s, a)

)2]
(176)

Q̂(s, a) := R(s, a) + γEs′∼D,a∼π(s′)

[
aggi∈{1,2} Qθ̂i

(s′, a′)− τh(π(s′))
]

(177)

where agg computes either the min or mean over the target Q-functions with weights θ̂1, θ̂2. We find
that using the min of the two Q-functions to compute the target values often results in more stable
training. min gives a more conservative target that is robust to overestimation bias in the Q-functions,
and this allows us to reduce the KL weight. However, such a strategy may struggle when reward is
not dense enough, e.g. some MinAtar and some classic control environments. Therefore we instead
use the mean in Classic/MinAtar environments. Future work could use a more sophisticated approach
that is both robust to overestimation bias and yet sensitive to weak reward signals.

38

Hyperparameter Classic MuJoCo MinAtar

Discount (γ) 0.99 0.99 0.99
Memory size (M) 300 300 300

Policy update interval 5000 5000 5000
Ensembling mode mean min mean

Target type hard hard hard
Target update interval 200 200 200

Epsilon 0.05 0.05 0.05
Reward scale 10 10∗ 100
KL weight (η) 20 10 20

Initial scaled ent. weight 2.0 2.0 2.0
Final scaled ent. weight 0.4 0.4 0.4
Ent. weight decay steps 500K 1M 1M

Architecture 256× 2 256× 2 Conv(16, 3, 3) + 128 MLP
Activation function ReLU ReLU ReLU

Learning rate 0.0001 0.0001 0.0001
Optimizer Adam Adam Adam

Replay capacity 50K 50K 50K
Batch size 256 256 256

Table 3: StaQ hyperparameters, with parameters which vary across environment types in bold.
∗Hopper-V4 uses a reward scale of 1.

Hyperparameter Classic MuJoCo MinAtar

Discount factor (γ) 0.99 0.99 0.99
Horizon 2048 2048 1024

Num. epochs 10 10 3
Learning starts 5000 20000 20000

GAE parameter 0.95 0.95 0.95
VF coefficient 0.5 0.5 1

Entropy coefficient 0 0 0.01
Clipping parameter 0.2 0.2 0.1× α

Optimizer Adam Adam Adam
Architecture 64× 2 64× 2 ∗ Conv(16, 3, 3) + 128 MLP

Activation function Tanh Tanh Tanh
Learning rate 3× 10−4 3× 10−4 2.5× 10−4 × α

Batch size 64 64 256
Table 4: PPO hyperparameters, based on (Schulman et al., 2017). In the MinAtar environments α is
linearly annealed from 1 to 0 over the course of learning. ∗Humanoid-v4 uses a hidden layer size of
256.

39

Hyperparameter Classic MuJoCo MinAtar

Discount factor (γ) 0.99 0.99 0.99
Horizon 2048 2048 2048

Learning starts 5000 20000 20000

GAE parameter 0.95 0.95 0.95
Stepsize 0.01 0.01 0.01

Optimizer Adam Adam Adam
Architecture 64× 2 64× 2 ∗ Conv(16, 3, 3) + 128 MLP

Activation function Tanh Tanh Tanh
Learning rate 3× 10−4 3× 10−4 2.5× 10−4

Batch size 64 64 256
Table 5: TRPO hyperparameters, based on (Schulman et al., 2015). ∗Humanoid-v4 uses a hidden
layer size of 256.

Hyperparameter Classic MuJoCo MinAtar

Discount factor (γ) 0.99 0.99 0.99
Lambda 0.95 0.85 0.65

Epsilon start 1.0 1.0 1.0
Epsilon finish 0.05 0.05 0.05
Decay steps 1M 1M 1M

Num envs 32 32 128
Num steps 64 32 32

Max Grad Norm 10.0 10.0 10.0

Num minibatches 16 32 32
Num epochs 4 4 2

Optimizer RAdam RAdam RAdam
Architecture 128× 2 128× 2 Conv(16, 3, 3) + 128 MLP

Normalization Type LayerNorm LayerNorm LayerNorm
Input Normalization None None None
Activation function ReLU ReLU ReLU

Learning rate∗ 1× 10−4 1× 10−4 1× 10−4

Table 6: PQN hyperparameters. Classic and MinAtar hyperparameters are based on the original
paper (Gallici et al., 2025), while MuJoCo hyperparameters were found by hyperparameter tuning. ∗

Learning rate linearly annealed to 0 across the course of training.

Hyperparameter Classic MuJoCo MinAtar

Discount factor (γ) 0.99 0.99 0.99
Target update interval 100 8000 8000

Epsilon 0.1 0.1 0.1
Decay steps 20K 20K 20K

M-DQN temperature 0.03 0.03 0.03
M-DQN scaling term 1.0 0.9 0.9

M-DQN clipping value -1 -1 -1

Architecture 512× 2 128× 2 Conv(16, 3, 3) + 128 MLP
Activation function ReLU ReLU ReLU

Learning rate 1× 10−3 5× 10−5 2.5× 10−4

Optimizer Adam Adam Adam
Replay capacity 50K 1M 1M

Batch size 128 32 32
Table 7: MDQN and DQN hyperparameters, based on (Vieillard et al., 2020b; Ceron & Castro, 2021)

40

F Training and Inference Time Comparisons

Memory size M 1 50 100 300 500

Hopper-v4 Training time (hrs) 9.8 10.1 10.3 10.3 10.9
Inference speed (steps/s) 610 610 620 640 600

Ant-v4 Training time (hrs) 10.4 10.7 10.3 11 10.5
Inference speed (steps/s) 540 570 560 540 560

Table 8: Training and inference times for StaQ, as a function of M , on Hopper-v4 (state dim.=11)
and Ant-v4 (state dim. = 105), computed on an NVIDIA Tesla V100 and averaged over 3 seeds.

StaQ PPO TRPO M-DQN DQN PQN

Hopper-v4 Training time (hrs) 10.3 3.7 3.2 5.6 4.9 0.6
Inference speed (steps/s) 640 1040 1020 1550 1460 3740

Ant-v4 Training time (hrs) 11 4.3 3.6 6.1 5.3 0.6
Inference speed (steps/s) 540 830 850 1110 1040 2180

Table 9: Training and inference times for StaQ (M = 300) vs baselines, on the Hopper-v4 and
Ant-v4 environments. Timings are computed on an NVIDIA Tesla V100, averaged over 3 seeds.

In this section, we report the training time and inference speed of StaQ, as a function of memory size
M and state space dimension. We also compare it to the deep RL baselines. All timing experiments
were computed on an NVIDIA Tesla V100, and averaged over 3 seeds. The training time is defined
as the time required to train StaQ for 5 million timesteps, not including the time require for data
collection, while the inference speed is measured by the number of environment steps per second that
can be evaluated during inference. Table 8 shows that memory size and dimension of the state space
have a negligible impact on training and inference times, as discussed in Sec 6. Table 9 compares the
training and inference time of StaQ (M = 300) with the baselines.

G Pseudocode of StaQ
We provide in this section the pseudocode of StaQ in Alg. 1. As an approximate policy iteration
algorithm, StaQ comprises three main steps: i) data collection, ii) policy evaluation iii) policy
improvement. Data collection (Line 4-5) consist in interacting with the environment to collect
transitions of type (state, action, reward, next state) that are stored in a replay buffer. A policy
evaluation algorithm (Eq. 176) is then called to evaluate the current Q-function Qk

τ using the replay
buffer. Finally, the policy update is optimization-free and simply consists in stacking the Q-function
in the SNN policy as discussed in Sec. 5. After K iterations, the last policy is returned.

Algorithm 1 StaQ (Finite-memory entropy regularized policy mirror descent)

1: Input: An MDP M, a memory-size M , Number of samples per iteration N , Replay buffer size
D, Initial behavior policy πb

0, entropy weight τ , DKL weight η, ϵ-softmax exploration parameter
2: Output: Policy πK ∝ exp(ξK)
3: for k = 0 to K − 1 do
4: Interact with M using the behavior policy πb

k for N times steps
5: Update replay buffer Dk to contain the last D transitions
6: Learn Qk

τ from Dk using a policy evaluation algorithm (Eq. 176)
7: Obtain logits ξk+1 by stacking the last M Q-functions (see Sec. 5) following the finite-memory

EPMD update of Eq. 10.
8: Set πk+1 ∝ exp(ξk+1) and πb

k+1 to an ϵ-softmax policy over πk+1

9: end for

41

	Introduction
	Related Work
	Preliminaries
	Entropy-regularized policy mirror descent

	Finite-memory policy mirror descent
	Vanilla finite-memory EPMD
	Weight corrected finite-memory EPMD

	Practical implementation
	Experiments
	Discussion and future work
	Proofs
	Properties of entropy regularized Bellman operators
	Proof of Theorem 4.1
	Approximate finite-memory EPMD
	Proof of Corollary 4.1.1
	Proof of Theorem 4.2

	Approximate weight-corrected finite-memory EPMD
	Proof of the logits expression in Sec. 4.2
	Proof of Corollary 4.1.2

	Proof of Lemma 4.3
	Proof of Theorem 4.4

	Additional experimental results
	Comparison with deep RL baselines
	Stability plots (variation within individual runs)
	The impact of the memory-size M and value of
	Instability in learning the Q-function
	Entropy regularization does not solve exploration

	Comparison with Soft Actor-Critic
	A Continual Learning Perspective to Entropy Regularized Deep RL
	Hyperparameters
	Training and Inference Time Comparisons
	Pseudocode of StaQ

