
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COST-SENSITIVE MULTI-FIDELITY BAYESIAN OPTI-
MIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we address the problem of cost-sensitive multi-fidelity Bayesian
Optimization (BO) for efficient hyperparameter optimization (HPO). Specifically,
we assume a scenario where users want to early-stop the BO when the performance
improvement is not satisfactory with respect to the required computational cost.
Motivated by this scenario, we introduce utility, which is a function describing
the trade-off between cost and performance of BO and can be estimated from the
user’s preference data. This utility function, combined with our novel acquisition
function and stopping criterion, allows us to dynamically choose for each BO step
the best configuration that we expect to maximally improve the utility in future, and
also automatically stop the BO around the maximum utility. Further, we improve
the sample efficiency of existing learning curve (LC) extrapolation methods with
transfer learning to develop a sensible surrogate function for multi-fidelity BO.
We validate our algorithm on various LC datasets and found it outperform all
the previous multi-fidelity BO and transfer-BO baselines we consider, achieving
significantly better trade-off between cost and performance of BO.

1 INTRODUCTION

Hyperparameter optimization (HPO) (Bergstra & Bengio, 2012; Bergstra et al., 2011; Hutter et al.,
2011; Snoek et al., 2012; Cowen-Rivers et al., 2022; Li et al., 2018; Franceschi et al., 2017) stands as a
crucial challenge in the domain of deep learning, given its importance of achieving optimal empirical
performance. Unfortunately, the field of HPO for deep learning remains relatively underexplored,
with many practitioners resorting to simple trial-and-error methods (Bergstra & Bengio, 2012; Li et al.,
2018). Moreover, traditional black-box Bayesian optimization (BO) approaches for HPO (Bergstra
et al., 2011; Snoek et al., 2012; Cowen-Rivers et al., 2022) have limitations when applied to deep
neural networks due to the impracticality of evaluating a vast number of hyperparameter configurations
until convergence, each of which may take several days.

Recently, multi-fidelity (or gray-box) BO (Li et al., 2018; Falkner et al., 2018; Awad et al., 2021;
Swersky et al., 2014; Wistuba et al., 2022; Arango et al., 2023; Kadra et al., 2023; Rakotoarison
et al., 2024) has gained increasing attention to improve the sample efficiency of traditional black-box
BO. Multi-fidelity BO makes use of lower fidelity information (e.g., validation accuracies at fewer
training epoches) to predict and optimize the performances at higher or full fidelity (e.g., validation
accuracies at the last training epoch). Unlike black-box BO, multi-fidelity BO dynamically selects
hyperparameter configurations even before finishing a single training run, demonstrating its ability of
finding better configurations in a more sample efficient manner than black-box BO.

However, one critical limitation of the conventional multi-fidelity BO frameworks is that they are
not aware of the trade-off between the cost and performance of BO. For instance, given a limited
amount of total credits, customers of cloud computing services (e.g., GCP, AWS, or Azure) may
choose to heavily penalize the cost of BO relative to its performance, in order to conserve credits
for other tasks. A similar scenario applies to users of task managers such as Slurm, who aim to
optimize their allocated time within a computing instance. In those cases, users may want the BO
process to focus on exploiting the current belief on good hyperparameter configurations than trying
to explore new configurations, in order to efficiently consuming their limited resources. Yet, the
existing multi-fidelity BO methods tend to over-explore because they usually assume a sufficiently
large budget (e.g., total credits, or allocated time) for the BO and aim to obtain the best asymptotic

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

performance on a validation set, hence are not able to properly penalize the cost (Swersky et al.,
2014; Kadra et al., 2023). We could lower the total BO budget and maximize the performance at that
maximum budget, but in practice it is hard to specify the target budget in advance as it is difficult to
accurately predict the trajectory of the future BO performances.

BO steps

Pe
rfo

rm
an

ce
 o

f B
O

(i.

e.
, B

es
t v

al
. p

er
fo

rm
an

ce
so

 fa
r)

0.2

BO trajectory
Maximum utility

b* B

0.3

0.4

0.5

0.6

0.7
0.80.91.0

(a)

Utility

Uprev

b1 b2 b3b
BO steps

EI

x1 x2

x3

(b)
Figure 1: (a) A utility function shown in the dotted black lines. The red
curve shows a BO trajectory from which we determine the maximum
utility (≈ 0.7) and when to stop (b∗). (b) An illustration of selecting the
best configuration at each BO step. Notice, the y-axis is utility. Starting
from the current BO step b, we extrapolate the LCs with the three
configurations x1, x2, x3 (shown in the solid curves with colors and the
shaded area), and then select x3 which achieves at b3 the maximum
expected improvement (EI) of utility over the previous utility Uprev.

Therefore, in this paper we in-
troduce a more sophisticated no-
tion of cost-sensitivity for multi-
fidelity BO. Specifically, we as-
sume that it is easier to specify
the trade-off between cost and
performance of multi-fidelity BO,
than to know the proper target
budget in advance. We call this
trade-off utility. This utility func-
tion describes users’ own prefer-
ences about the trade-off and can
be estimated from the user’s pref-
erence data. It has higher val-
ues as cost decreases and perfor-
mance increases, and vice versa
(Fig. 1a). Some users may want
to strongly penalize the amount
of BO budgets spent, while others
may weakly penalize or not penalize at all as with the conventional multi-fidelity BO. We explicitly
maximize this utility by dynamically selecting hyperparameter configurations expected to achieve the
greatest improvement in the future (Fig. 1b), and also automatically terminating the BO around the
maximum utility (Fig. 1a), instead of terminating at an arbitrary target budget.

Solving this problem requires our multi-fidelity BO method to have the following capabilities. Firstly,
it should support freeze-thaw BO (Swersky et al., 2014; Rakotoarison et al., 2024), an advanced form
of multi-fidelity BO in which we can dynamically pause (freeze) and resume (thaw) hyperparameter
configurations based on future performances extrapolated from a set of partially observed learning
curves (LCs) with various configurations. Such efficient and sensible allocation of computational
resources suits well for our purpose of finding the best trade-off between cost and performance of
multi-fidelity BO. Secondly, freeze-thaw BO requires its surrogate function to be equipped with a
good LC extrapolation mechanism (Adriaensen et al., 2023; Rakotoarison et al., 2024; Kadra et al.,
2023). In our case, it is crucial for making a good probabilistic inference on future utilities with
which we dynamically select the best configuration and accurately early-stop the BO. Lastly, since we
assume that users want to stop the BO as early as possible, LC extrapolation should be accurate even
at the very early stages of BO. Therefore, we should make use of transfer learning to maximally
improve the sample efficiency of BO (Arango et al., 2023) and to prevent inaccurate early-stopping
when there are only few or even no observations in the BO.

Based on those criteria, we introduce our novel Cost-sensitive Multi-fidelity BO (CMBO) that can
effectively maximize the utility based on the three components mentioned above. We first introduce
the detailed notion of utility function and how to estimate it from the user’s own preference data1

(§3.1) . We then describe the acquisition function and stopping criterion specifically developed
for our framework, and explain how to achieve a good trade-off between cost and performance
of multi-fidelity BO with them (§3.2). Building on the recently introduced Prior-Fitted Networks
(PFNs) (Müller et al., 2021; Adriaensen et al., 2023) for in-context Bayesian inference, we explain
how to train a PFN with the existing LC datasets to develop a sample efficient in-context surrogate
function for freeze-thaw BO that can also effectively capture the correlations between different
hyperparameter configurations (§3.3). Lastly, we empirically demonstrate the superiority of CMBO
on a set of diverse utility functions, three multi-fidelity HPO benchmarks, and one real-world
object-detection LC dataset we collected, showing that it significantly outperforms all the previous
multi-fidelity BO and the transfer-BO baselines we consider (§4).

1Some users may already have an exact form of their utility function, but for the others we need to provide a
reasonable way to quantify it with their own preference data.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

We summarize our contributions and findings as follows:

• We introduce the concept of utility, which describes the trade-off between cost and performance of
multi-fidelity BO, along with the method to quantify it with user preference data.

• We propose a new problem formulation, cost-sensitive multi-fidelity HPO, where we aim to
maximize utility instead of maximizing the asymptotic validation performances.

• We introduce our novel acquisition function and stopping criterion specifically designed for our
problem formulation, along with the transfer learning of in-context LC extrapolation.

• We extensively validate the superiority of CMBO on various cost-sensitive multi-fidelity HPO set-
tings, with three popular benchmarks and one real-world object detection LC dataset we collected.

2 RELATED WORK

We briefly discuss the related work in this section. See §A for the other related work on multi-fidelity
HPO, transfer BO, cost-sensitive HPO, and BO with user preference.

Freeze-thaw BO. Freeze-thaw BO (Swersky et al., 2014) dynamically pauses (freezes) and resumes
(thaws) configurations based on the last epoch performances extrapolated from a set of partially
observed LCs obtained from other configurations, leading to an efficient and sensible allocation of
computational resources. DyHPO (Wistuba et al., 2022) and its transfer version (Arango et al., 2023)
improve the computational efficiency of freeze-thaw BO with deep kernel GP (Wilson et al., 2016),
but their acquisition extrapolates the LCs only a one-step forward, producing a greedy strategy. Other
recent variants of freeze-thaw BO include DPL (Kadra et al., 2023) and ifBO (Rakotoarison et al.,
2024) which are not greedy, and their acquisitions maximize the performance either at the last BO
step or random future steps. On the other hand, we maximize the utility specified by each user.

Learning curve extrapolation. Freeze-thaw BO requires the ability of dynamically updating
predictions on future performances from partially observed LCs, thus heavily relies on LC extrap-
olation (Baker et al., 2017; Gargiani et al., 2019; Wistuba & Pedapati, 2020). DyHPO (Wistuba
et al., 2022) and Quick-Tune (Arango et al., 2023) propose to extrapolate LCs for only a single
step forward. Freeze-thaw BO (Swersky et al., 2014) and DPL (Kadra et al., 2023) use non-greedy
extrapolations but limit the shape of the LCs. Domhan et al. (2015) consider a broader set of basis
functions, but requires computationally expensive MCMC, and also do not consider correlations
between different configurations. Klein et al. (2017b) models interactions between configurations
with a Bayesian neural network (BNN), but suffers from the same computational inefficiency of
MCMC and online retraining. LC-PFNs (Adriaensen et al., 2023) are an in-context Bayesian LC
extrapolation method without retraining, but they do not consider interactions between configurations.
Recently, ifBO (Rakotoarison et al., 2024) further combine LC-PFNs with PFNs4BO (Müller et al.,
2023) to develop an in-context surrogate function for freeze-thaw BO, but they train PFNs only with
a prior distribution. On the other hand, we use transfer learning, i.e., train PFNs with the existing
LC datasets, to improve the sample efficiency of freeze-thaw BO while successfully encoding the
correlations between configurations at the same time.

3 APPROACH

In this section, we introduce CMBO, a novel method for cost-sensitive multi-fidelity HPO. We first
introduce notation, backgrounds on freeze-thaw BO, and utility function in §3.1. We then introduce
the overall method and algorithm in §3.2, and the transfer learning of surrogate functions in §3.3.

3.1 BACKGROUNDS AND UTILITY FUNCTION

Notation. Following the convention, we assume that we are given a finite pool of hyperparameter
configurations X = {x1, . . . , xN}, with N the number of configurations. Let t ∈ [T] := {1, . . . , T}
denote the training epochs, T the last epoch, and yn,1, . . . , yn,T the validation performances (e.g.,
validation accuracies) obtained with the configuration xn. We further introduce notations for multi-
fidelity BO. Let b = 1, . . . , B denote the BO steps, B the last BO step, and ỹ1, . . . , ỹB the BO
performances, i.e., each ỹb is the best validation performance (y) obtained until the BO step b.

Freeze-thaw BO. The goal of multi-fidelity BO is to find the optimal intermediate performance over
the hyperparameter configurations, i.e., maxn∈[N],t∈[T] yn,t. Freeze-thaw BO (Swersky et al., 2014)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

is an advanced form of multi-fidelity BO. At each BO step, it allows us to dynamically select and
evaluate the best hyperparameter configuration xn∗ with n∗ ∈ [N] denoting the corresponding index,
while pausing the evaluation on the previous best configuration. Specifically, given C = {(x, t, y)}
that represents a set of partial LCs collected up to a specific BO step, we predict for all x ∈ X the
remaining part of the LCs up to the last training epoch T with a (pretrained) LC extrapolator, compute
the acquisition such as the expected improvement (Mockus et al., 1978) of validation performance at
epoch T , and select and evaluate the best configuration xn∗ that maximizes the acquisition. Note that
at any BO step, the partial LCs in C can have different length across the configurations. Suppose that
at BO step b the next training epoch for xn∗ is tn∗ . We then evaluate xn∗ a single epoch from the
corresponding checkpoint to obtain the validation performance yn∗,tn∗ at the next epoch tn∗ , which
we use to update the corresponding partial LC in C and compute the BO performance ỹb. We repeat
this process B times until convergence. See Alg. 1 for the pseudocode (except the red parts).

0.0 0.2 0.4 0.6 0.8

Normalized Computational Budget (b
B)

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce
 (y

b)

-0.
7

-0.
6

-0.
5

-0.
4

-0.
3

-0.
2

-0.
1

-0.
0

0.1

0.2
0.3

0.4
0.5

0.60.7

0.80.9

-0.
7

-0.
6

-0.
5

-0.
4

-0.
3

-0.
2

-0.
1

-0.
0

0.1

0.2
0.3

0.4
0.5

0.60.7

0.80.9

Figure 2: An example of utility func-
tion estimation. True and estimated
utility are denoted as black solid and
blue dotted lines, respectively.

Utility function. A utility function U describes the trade-off
between the BO step b and the BO performance ỹb. Its values
U(b, ỹb) negatively correlate with b and positively with ỹb. For
instance, we may simply define U(b, ỹb) = ỹb − αb for some
α > 0, such that the utility gives linear incentives and penalties
to the performance and number of BO steps, respectively. Or, we
could use a weighted linear combination of linear, quadratic, and
square root function, as appropriate (used to draw Fig. 2).

We assume that users have their own utility functions. However,
it is often difficult for them to quantify the function. We thus
propose to use Bradley-Terry model (Bradley & Terry, 1952):

p(u1 > u2) =
exp(u1/τ)

exp(u1/τ) + exp(u2/τ)
. (1)

Eq. (1) is the probability that the user prefers u1 to u2, where u1 and u2 are the utility values of two
different points in the space consisting of BO step b and BO performance ỹ, and τ is a temperature.
Specifically, we first collect the user preference data by asking users to decide which points to prefer
given a set of pair of points (Bai et al., 2022). We then optimize the parameters in the utility function
(e.g., α) by minimizing the binary cross entropy loss −m log p(u1 > u2)−(1−m) log(1− p(u1 >
u2)) with gradient descent, where m ∈ {0, 1} is the binary label of user preference.

Fig. 2 shows that the proposed method can recover the true utility function very accurately with 1,000
datapoints. See §B for the detailed experimental setups and other examples with fewer datapoints. In
this way, for the rest of this paper, we assume that we can estimate the utility function with the user
preference data, or users already know the exact form of their utility functions.

3.2 COST-SENSITIVE MULTI-FIDELITY BO

We next introduce our main method based on freeze-thaw BO and the notion of utility (§3.1).

Acquisition function. Let tn be the next training epoch for the configuration xn at a BO step
b. Further, suppose we have a LC extrapolator f(·|xn, C) that can probabilistically estimate xn’s
remaining part of LC, yn,tn:T , conditioned on C a set of partial LCs collected up to the step b. Then,
based on the expected improvement (EI) (Mockus et al., 1978), we define the acquisition function A:

A(n) = max
∆t∈{0,...,T−tn}

Eyn,tn:T∼f(·|xn,C) [max (0, U(b+∆t, ỹb+∆t)− Uprev)] . (2)

In Eq. (2), we first extrapolate yn,tn:T , the remaining part of the LC associated with xn, and compute
the corresponding predictive BO performances {ỹb+∆t |∆t = 0, . . . , T − tn}. Note that according to
the definition in §3.1, ỹb+∆t is computed by taking the maximum among the last step BO performance
ỹb−1 as well as the newly extrapolated validation performances yn,tn , . . . , yn,tn+∆t. Then, based on
the increased BO step b+∆t and the updated BO performance ỹb+∆t, we compute the corresponding
utility, and its expected improvement over the previous utility Uprev over the distribution of LC
extrapolation with the Monte-Carlo (MC) estimation. The acquisition A(n) for each configuration
index n is defined by picking the best increment ∆t ∈ {0, . . . , T − tn} that maximizes the expected
improvement, and we eventually choose the best configuration index n that maximizes A (see Fig. 1b).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Cost-sensitive Multi-fidelity BO
1: Input: LC extrapolator f , acquisition function A, util-

ity function U , maximum BO steps B, hyperparameter
configuration pool X , number of configurations N .

2: Uprev ← 0, ỹ0 ← −∞, C ← ∅, t1, . . . , tN ← 1
3: for b = 1, . . . , B do
4: n∗ ← argmaxn A(n) ▷ Acquisition func., Eq. (2)
5: if Eq. (3) and b > 1 then ▷ Stopping criterion
6: Break the for loop ▷ Stop the BO
7: end if
8: Evaluate yn∗,tn∗ with xn∗ .
9: C ← C ∪ {(xn∗ , tn∗ , yn∗,tn∗)} ▷ Update the history

10: ỹb ← max(ỹb−1, yn∗,tn∗) ▷ Update the BO perf.
11: Uprev ← U(b, ỹb) ▷ Update the prev. utility
12: tn∗ ← tn∗ + 1
13: end for

The main differences of our acquisition
function in Eq. (2) from the EI-based ac-
quisitions used in the previous works are
twofold. First, instead of maximizing the
expected improvement of validation perfor-
mance y, we maximize the expected im-
provement of utility. Second, rather than
setting the target epoch at which we eval-
uate the acquisition to the last epoch T ,
we dynamically choose the optimal target
epoch that is expected to maximally im-
prove the utility.

Those aspects allow our BO framework
to more carefully select configurations for
each BO step, seeking the best trade-off be-
tween cost and performance of BO. Specif-
ically, the acqusition function initially prefers configurations that are expected to produce good
asymptotic validation performances, but as the BO proceeds it will gradually become greedy as the
performance of BO saturates and the associated cost dominates the utility function. As a result,
the acquisition function will tend to exploit more than explore – it will try to avoid selecting new
configurations but stick to the few current configurations to maximize the short term performances.

Note that Uprev in Eq. (2), the threshold of EI, is not the greatest utility achieved so far, but simply
set to the utility value achieved most recently (line 11 in Alg. 1). This is because the cost of BO
that has previously been incurred is not reversible. It differs from the typical EI-based BO settings
where all the previous evaluations are meaningful and we can set the threshold to the maximum
among them. As a result, Uprev can either increase or decrease during the BO, and we need to stop the
BO when Uprev starts decreasing monotonically, i.e., when the performance of BO stops improving
meaningfully with respect to the associated cost.

0.0 0.2 0.4 0.6 0.8 1.0
pb

0.0

0.2

0.4

0.6

0.8

1.0

Be
ta

CD
F(

p b
;

,
)

= e10

= e3

= e2

= e1

= e0

= e 1

= e 2

= e 3

= e 10

Figure 3: Eq. (4) with γ = log2 5
and the various values for β.

Stopping criterion. The next question is how to properly stop
the BO around the maximum utility. We propose to stop when
the following criterion is satisfied at each BO step b > 1:

Ûmax − Uprev

Ûmax − Ûmin
> δb. (3)

In Eq. (3), Uprev is the utility value at the last step b − 1, Ûmax
is defined as the maximum utility value seen up to the last step,
and Ûmin = U(B, ỹ1). The role of Ûmax and Ûmin is to roughly
estimate the maximum and the minimum utility achievable over
the course of BO, respectively. Therefore, the LHS of Eq. (3)
can be seen as the normalized regret of utility roughly estimated
at the current step b, and we stop the BO as soon as the current
estimation on the regret exceeds some threshold δb.

To define δb, let n∗ = argmaxn A(n) denote the index of the currently chosen best configuration
xn∗ based on Eq. (2), BetaCDF the cumulative distribution function (CDF) of Beta, and 1 the
indicator function. Then, we have:

δb = BetaCDF(pb;β, β)
γ , β, γ > 0, (4)

pb = max
∆t∈{1,...,T−tn∗}

Eyn,tn∗ :T∼f(·|xn∗ ,C) [1 (U (b+∆t, ỹb+∆t) > Uprev)] . (5)

pb in Eq. (5) is the probability that the current best configuration xn∗ improves on Uprev in some
future BO step (i.e., probability of improvement, or PI (Mockus et al., 1978)). Intuitively, we want to
defer the termination as pb increases, and vice versa. It is considered in Eq. (4) – as pb increases, the
threshold δb increases as well because BetaCDF(·;β, β)γ is a monotonically increasing function in
[0, 1], so we have less motivation to stop according to Eq. (3).

Fig. 3 plots BetaCDF(·;β, β)γ in Eq. (4) over the various values of β. We can see that the function
becomes vertical as β → +∞ and horizontal as β → 0. In the former case, we terminate the BO

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

process when pb < 0.5, ignoring the regret on the left-hand side of Eq.(3), whereas in the latter
case, we ignore pb and decide solely based on the regret, with the threshold δb fixed to some value
specified by γ (e.g., in Fig. 3, δb = 0.2 corresponds to γ = log2 5)2. Thus, the role of β is to smoothly
interpolate between the two extreme stopping criteria: 1) regret-based criterion (whether Eq. 3 is
satisfied with δb = 0.2 or not), and 2) PI-based criterion (whether pb > 0.5 or not).

Algorithm. We summarize the pseudocode of our overall method in Alg. 1, with the red parts
corresponding to the specifics of our method.

3.3 TRANSFER LEARNING OF LC EXTRAPOLATION

Since users may want to early-stop the BO, we should have a sample efficient LC extrapolation
for preventing inaccurate early-stopping at the early stage of BO. We thus propose to use transfer
learning to maximally improve the sample efficiency of our LC extrapolator.

Transfer learning with LC mixup. Among many plausible options, in this paper we propose to
use Prior Fitted Networks (PFNs) (Müller et al., 2021) for LC extrapolation. PFNs are an in-context
Bayesian inference method based on Transformer architectures (Vaswani et al., 2017), and show good
performances on LC extrapolation (Adriaensen et al., 2023; Rakotoarison et al., 2024) without the
computationally expensive online retraining (Kadra et al., 2023). A major difficulty of using PFNs
for our purpose is that their training examples are generated only from a prior distribution, and to
our knowledge, there are no existing ways to train PFNs with the given datasets. Also, PFNs require
relatively a large Transformer architecture as well as huge amounts of training examples for good
generalization performance (Adriaensen et al., 2023), which makes it risky to train PFNs with a finite
set of examples.

Here we explain our novel transfer learning method for PFNs that can circumvent those difficulties
with the mixup strategy (Zhang et al., 2018). Suppose we have M different datasets and the
corresponding M sets of LCs collected from N hyperparameter configurations. Define lm,n =
(ymn,1, . . . , y

m
n,T), the T -dimensional row vector of validation performances (y’s) collected from the

m-th dataset and the n-th configuration, forming a complete LC of length T . Further define the matrix
Lm = [l⊤m,1; . . . ; l

⊤
m,N]⊤, the row-wise stack of those LCs. In order to augment training examples,

we propose to perform the following two consecutive mixups (Zhang et al., 2018):

1. Across datasets: L′ = λ1Lm + (1− λ1)Lm′ , with λ1 ∼ Unif(0, 1), for all m,m′ ∈ [M].
2. Across configurations: (x′′, l′′) = λ2(xn, l

′
n) + (1− λ2)(xn′ , l′n′)

. with l′n the n-th row of L′, λ2 ∼ Unif(0, 1), for all L′ and n, n′ ∈ [N].

In this way, we can sample infinitely many training examples {(x′′, l′′)} by interpolating between the
LCs, leading to a robust LC extrapolator with less overfitting. Note that in the first step, we do not
individually perform the mixup over the configurations but apply the same λ1 to all the configurations,
in order to preserve the correlations between the configurations encoded in the given datasets.

As for the network architecture and the training objective, we mostly follow Rakotoarison et al. (Rako-
toarison et al., 2024). We use a similar Transformer architecture that takes a set of partial LCs and
the corresponding configurations as an input and extrapolates the remaining part of the LCs. The
training objective then maximizes the likelihood of those predictions conditioned on the partial LCs.
We defer more details on the training to §E. Also, see §G for more discussion about the connection of
our transfer learning method with ifBO (Rakotoarison et al., 2024) TNPs (Nguyen & Grover, 2022).

4 EXPERIMENTS

We next validate the efficacy of our method on various multi-fidelity HPO settings. We will publicly
release our code upon acceptance.

Datasets. We use the following benchmark datasets for multi-fidelity HPO. LCBench (Zimmer
et al., 2021): A LC dataset that evaluates the performance of 7 different hyperparameters on 35

2Note that the PI criterion in Eq. (5) is based on our novel acquisition function with utility. Therefore, the
baselines should resort to only the regret-based criterion in Eq. (3). We found that δb = 0.2 performs well
over all the baselines, which corresponds to γ = log2 5 and β → 0. Our method also use γ = log2 5 for fair
comparison, but is allowed to use different β > 0 to combine it with the PI-based criterion in Eq. (5).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

LCBench

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

100 TaskSet

0 50 100 150 200 250 300
Total Epochs Spent

10 3

10 2

10 1

PD1

Random BOHB DEHB DyHPO DPL ifBO Quick-Tune FSBO CMBO (ours)

Figure 4: The results on the conventional multi-fidelity HPO setup (α = 0). For each benchmark, we report
the normalized regret of utility aggregated over all the test datasets.

different tabular datasets. The LCs are collected by training MLPs with 2,000 hyperparameter
configurations, each for 51 epochs. We train our LC prediction model on 20 datasets and evaluate on
the remaining 15 datasets. TaskSet (Metz et al., 2020): A LC dataset that consists of a diverse set of
1,000 optimization tasks drawn from various domains. We select 30 natural language processing (text
classification and language modeling) tasks, train our LC extrapolator on 21 tasks, and evaluate on the
remaining 9 tasks. Each task include 8 different hyperparameters and 1,000 their configurations. Each
LC is collected by training models for 50 epochs. PD1 (Wang et al., 2021): A LC benchmark that
includes the performance of modern neural architectures (including Transformers) run on large vision
datasets such as CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), ImageNet (Russakovsky et al.,
2015), as well as statistical modeling corpora and protein sequence datasets from bioinformatics. We
use 23 tasks with 4 different hyperparameters from SyneTune (Salinas et al., 2022) package, train our
LC extrapolator on 16 tasks, and evaluate on the remaining 7 tasks. To facilitate transfer learning, we
preprocess the data by excluding hyperparameter configurations with their training diverging (e.g.,
LCs with NaN), and linearly interpolate the LCs to match their length across different tasks. We then
obtain the LCs of 50 epochs over the 240 configurations. See §D for more details.

Baselines. We compare our method against Random Search (Bergstra & Bengio, 2012) that
randomly selects hyperparameter configurations sequentially. We next compare against several
variants of Hyperband (Li et al., 2018) such as BOHB (Falkner et al., 2018) which replaces its
random sampling of configurations with BO, and DEHB (Awad et al., 2021) which promotes internal
knowledge transfer with evolution strategy. We also compare against more recent multi-fidelity BO
methods such as DyHPO (Wistuba et al., 2022) which uses deep kernel GP (Wilson et al., 2016) and
a greedy acquisition function with a short-horizon LC extrapolation, and DPL (Kadra et al., 2023)
which extrapolates LCs with power law functions and model ensemble. ifBO (Rakotoarison et al.,
2024) is an extension of PFNs (Müller et al., 2021) for freeze-thaw BO, whose acquisition is based
on the PI at randomly chosen future training epochs. Quick-Tune†, is a modified version of Quick-
Tune (Arango et al., 2023) which is originally developed for dynamically selecting both pretrained
models and hyperparmater configurations, with the additional cost term penalizing the non-uniform
evaluation wall-time associated with each joint configuration. Since our experimental setup does not
consider selecting pretrained models nor non-uniform evaluation wall-time, we only leave the transfer
learning part of the model, which corresponds to a transfer learning version of DyHPO, i.e., we train
its surrogate function with the same LC datasets used for training our LC extrapolator. Lastly, we
compare against FSBO (Wistuba & Grabocka, 2020), a black-box transfer-BO that uses the same LC
datasets to train a deep kernel GP surrogate. The difference of FSBO from Quick-Tune† is that its
surrogate models the validation performances at the last epoch, whereas that of Quick-Tune† predicts
the performances at the next epoch for multi-fidelity HPO. See §F for more details.

Utility function. While it is possible to collect user preference data manually and estimate the
corresponding utility function (§3.1), in our experiments we use either linear function (i.e., U(b, ỹ) =
ỹ − αb), quadratic, square root, or stair-case function for simplicity. Note that for linear function, we
let α ∈ {0, 4e-05, 2e-04}, where α = 0 does not penalize the number of BO steps at all – the BO
does not terminate until the last BO step B as with the conventional multi-fidelity BO setup.

Stopping criterion. As mentioned in the footnote in page 6, for the baselines we simply set the
threshold δb = 0.2 in Eq. (3). For our model, we also use γ = log2 5 for fair comparison, but use
β = e−1 for all the experiments in this paper, except the ablation study in Fig. 7d.

Evaluation metric. In order to report the average performances over the tasks, we use the nor-
malized regret of utility (Umax − Ub∗)/(Umax − Umin) ∈ [0, 1], similarly to Eq. (3). Ub∗ is the utility

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Results on the cost-sensitive multi-fidelity HPO with linear utility (α ∈ {4e-05, 2e-04}). For better
readability, we multiply 100 to the normalized regrets. Transfer learning methods are indicated by underline.

Method
LCBench TaskSet PD1

α = 4e-05 α = 2e-04 α = 4e-05 α = 2e-04 α = 4e-05 α = 2e-04
Regret Rank Regret Rank Regret Rank Regret Rank Regret Rank Regret Rank

Random (Bergstra & Bengio, 2012) 13.5±2.3 8.1 17.9±1.7 8.0 18.4±4.8 7.7 22.3±4.1 7.7 5.3±2.9 7.1 9.6±4.0 6.8
BOHB (Falkner et al., 2018) 7.0±1.8 5.2 11.8±1.7 5.5 8.0±2.3 6.9 11.7±2.1 6.5 1.8±0.4 5.4 5.0±0.3 5.1
DEHB (Awad et al., 2021) 5.7±1.4 5.2 10.6±1.2 5.6 5.3±1.8 6.4 9.7±1.4 6.2 2.1±0.2 6.6 5.4±0.2 6.7

DyHPO (Wistuba et al., 2022) 7.2±1.2 6.1 12.1±1.6 6.3 7.5±2.1 7.0 11.1±2.0 6.9 2.5±0.6 6.3 6.2±0.9 6.7
DPL (Kadra et al., 2023) 3.8±0.5 3.6 9.3±0.5 4.7 2.6±0.7 4.0 7.5±0.6 4.8 1.8±0.3 4.4 5.1±0.6 4.1

ifBO (Rakotoarison et al., 2024) 4.2±0.4 3.8 9.3±0.4 4.6 3.5±1.2 4.4 8.1±0.7 5.2 2.0±0.1 5.7 5.8±0.6 6.3
Quick-Tune† (Arango et al., 2023) 9.6±0.0 6.9 12.7±0.0 6.4 3.7±0.0 3.9 5.6±0.0 3.2 2.4±0.0 5.4 5.5±0.0 4.9

FSBO (Wistuba & Grabocka, 2020) 2.6±0.0 2.9 6.4±0.0 2.6 2.9±0.0 3.2 4.9±0.0 2.8 1.3±0.0 2.2 4.2±0.0 2.0

CMBO (ours) 2.3±0.1 3.2 3.1±0.0 1.3 1.3±0.0 1.6 3.1±1.0 1.7 0.8±0.0 2.1 0.9±0.0 1.0

0 50 100 150 200 250 300

10 2

10 1

No
rm

al
ize

d
Re

gr
et

LCBench (= 4e-05)

0 50 100 150 200 250 300
10 2

10 1

TaskSet (= 4e-05)

0 50 100 150 200 250 300

10 4

10 3

10 2

10 1

100
PD1 (= 4e-05)

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

No
rm

al
ize

d
Re

gr
et

LCBench (= 2e-04)

0 50 100 150 200 250 300
Total Epochs Spent

10 1

TaskSet (= 2e-04)

0 50 100 150 200 250 300
Total Epochs Spent

10 3

10 2

10 1

100
PD1 (= 2e-04)

Random BOHB DEHB DyHPO DPL ifBO Quick-Tune FSBO CMBO (ours)

Figure 5: Visualization of the normalized regrets over BO steps. The first and second row correspond
to α = 4e-05 and 2e-04, respectively. Each column corresponds to the cherry-picked examples from each
benchmark. The asterisks indicate the stopping points, and the dotted lines represent the normalized regrets
achievable by running each method without stopping. See §H for the results on all the other tasks.

obtained right after the BO terminates at step b∗, and Umax is the maximum achievable by running
a single optimal configuration up to its maximum utility. Computing the exact Umin is a difficult
combinatorial optimization problem, thus we simply approximate it with U(B, yworst

1), where yworst
1 is

the worst 1-epoch validation performance across the configurations – we simply let yworst
1 decay over

the maximum BO steps B, corresponding to a lower bound of the exact Umin. We then average the
normalized regrets across all the tasks in each benchmark, and report the mean and standard deviation
over 5 runs, or even 30 runs for the baselines with relatively large variances such as Random, BOHB,
DEHB. Lastly, we also report the rank of each method averaged over the tasks.

4.1 ANALYSIS

0k 20k 40k 60k 80k 100k
Iteration

3.0

2.5

2.0

1.5

1.0

0.5

Te
st

 L
os

s

PD1
w/o Mixup
w Mixup (ours)

(a) Test loss

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

No
rm

al
ize

d
Re

gr
et

PD1

(b) Normalized Regret

Figure 6: Ablation study on the mixup training. We use
α = 0 and PD1 benchmark for the experiments.

Effectiveness of our transfer learning. We
first demonstrate the effectiveness of our transfer
learning method. Fig. 4 shows the results on the
conventional multi-fidelity HPO setting where
we do not penalize the cost of BO at all (α = 0).
First of all, note that FSBO, a black-box transfer-
BO method which switches its configuration
only after a single complete training (e.g., 50
epochs), even outperforms all the other multi-
fidelity methods that can change the configura-
tions every epoch. The results clearly show the
importance of transfer learning for improving
the sample efficiency of HPO. Quick-Tune†, a
transfer version of DyHPO, performs similarly to the other baselines despite the use of the transfer
learning, except on TaskSet. We attribute it to its greedy acquisition function, and more importantly

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

No
rm

al
ize

d
Re

gr
et

DyHPO
DPL
Quick-Tune
CMBO (ours)

(a)

0 50 100 150 200 250 300
Total Epochs Spent

0.0

0.2

0.4

0.6

0.8

1.0

t /
 T

DyHPO
DPL
Quick-Tune
CMBO (ours)

(b)

0 2 4 6 8
HP Index Sorted by Freq. Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

. R
at

io

CMBO (2e-04)
CMBO (4e-05)
CMBO (0)
DyHPO (2e-04)
DPL (2e-04)
Quick-Tune (2e-04)

(c)

e 10e 3 e 2 e 1 e0 e1 e2 e3 e10

10 2

2 × 10 2

3 × 10 2

4 × 10 2

No
rm

al
ize

d
Re

gr
et

LCBench
TaskSet
PD1
Average

(d)

Figure 7: (a, b, c) Additional analysis on the effectiveness of our acquisition function. We use PD1 for the
visualization. In (c), the values of α are shown in the parenthesis. (d) Ablation study on β, with the minimum
regret shown with the asterisks.

its lack of data augmentation. On the other hand, our method is non-greedy (when α = 0) and
can effectively augment the data with our mixup strategy, thereby showing significantly better per-
formances than all the other multi-fidelity methods. Fig. 6 shows the ablation study on our mixup
training. Fig. 6a shows that we can effectively reduce the risk of overfitting by adding the mixup
strategy. As a result, the performance of BO improves significantly (Fig. 6b). Lastly, our method
outperforms FSBO on TaskSet and PD1, while achieving comparative results on LCBench.

Effectiveness of our acquisition function. Next, Table 1 shows the performance of each method
on the cost-sensitive multi-fidelity HPO setup (α > 0). We see that our method largely outperforms
all the methods on all the settings, including the multi-fidelity HPO and the transfer-BO methods,
in terms of both normalized regret and average rank. Notice, our method achieves better average
rank as the penalty becomes stronger (α = 2e-04). Fig. 5 visualizes the normalized regret over the
course of BO, where our method achieves significantly lower regret upon termination. Our method
tends to achieve the minimum regret earlier than the baselines, demonstrating its sample efficiency in
searching good hyperparameter configurations by explicitly considering the utility during the BO.

In order to clearly understand the source of improvements, we next analyze the configurations chosen
by each method. Specifically, for each BO step b, we run the configuration currently selected at step
b up to its last epoch T , and compute its minimum ground-truth regret achievable at some future
step b+∆t (Fig. 7a), as well as the corresponding optimal increment ∆t (Fig. 7b). In Fig. 7a, our
method shows much lower minimum regret than the baselines. It means that our acquisition function
in Eq. (2) works as intended, trying to select at each BO step the best configuration which is expected
to maximally improve the utility in future. Fig. 7b shows that the configurations chosen by our
method initially correspond to greater ∆t (i.e., non-greedy), but gradually to the smaller ∆t (i.e.,
greedy). It is because as the BO proceeds, the performance improvements of BO saturate, so the
cost of BO quickly dominates the trade-off, leading to smaller ∆t even close to 0. Fig. 7c shows
the distribution of the top-10 most frequently selected configurations during the BO. As expected,
our method tends to focus only on a few configurations during the BO to maximize the short-term
performances, especially when the penalty is stronger with greater α. On the other hand, the baselines
tend to overly explore the configurations even when the penalty is the strongest (α = 2e-04).

Effectiveness of our stopping criterion. We analyze the effectiveness of our stopping criterion in
Eq. (3), (4), and (5). Fig. 7d shows the normalized regret over the different values of β, a mixing
coefficient between the two extreme stopping criteria, as discussed in §3.2. β → 0 corresponds to
the criterion used by the baselines which is only based on the estimated normalized regret, whereas
β → +∞ corresponds to the hard thresholding only based on the PI. We can see that the optimal
criterion is achieved by smoothly mixing between the two (β = e−1), demonstrating the superiority
of our stopping criterion to the one used by the baselines (β → 0).

Experimental results on various utility functions. In real-world scenarios, any functional forms
of utility can be defined by various users. To investigate the effectiveness of CMBO on various
utility functions, we perform additional experiments on PD1 benchmark using three additional utility
functions as follows: 1) Staircase: U(b, ỹb) = ỹb −

∑
i α̂i1(b ∈ Ii) where 1(·) is an indicator

function and Ii is the i-th interval, 2) Quadratic: U(b, ỹb) = ỹb − α̂b2, and 3) Square Root:
U(b, ỹb) = ỹb− α̂b1/2. Here, α̂ is the scaled α so that it has a similar range to the α used in the linear
utility function (e.g., for the Quadratic utility function, we let α̂ := α B

B2). We randomly sample α’s
from the uniform distribution α ∼ U(1e-05, 5e-03) to verify that the choice of α does not affect the
overall results. Furthermore, We estimate a utility function using ifBO by assuming that the user

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Results on the cost-sensitive multi-fidelity HPO setups with various utility functions (α ∼
U(1e-05, 5e-03) with staircase, quadratic, and square root function). We estimate a utility function using ifBO
by assuming that user wants better tradeoff than ifBO, denoted as “Estimated”. See §C for more details.

Method
Estimated Staircase Quadratic Square Root

- α = 0.00292 α = 0.00436 α = 0.00076 α = 0.00459 α = 0.00283 α = 0.00378
Regret Rank Regret Rank Regret Rank Regret Rank Regret Rank Regret Rank Regret Rank

Random 25.5±7.7 6.9 25.2±1.7 7.5 26.2±1.6 7.5 16.6±1.5 7.6 20.3±0.9 7.3 26.8±1.3 7.1 26.3±1.2 7.0
BOHB 9.2±0.9 5.1 20.8±0.9 5.1 22.4±0.9 5.2 12.1±0.6 5.2 17.4±0.6 5.4 19.9±0.9 5.5 21.2±0.3 5.3
DEHB 14.8±6.3 6.4 23.6±0.3 7.1 23.0±0.9 7.1 14.0±0.1 7.5 18.7±1.2 6.9 19.9±0.9 6.0 19.7±0.5 5.6

DyHPO 10.9±1.6 5.9 22.0±1.2 6.5 23.0±0.9 6.4 14.3±2.3 6.7 18.7±1.2 6.9 20.1±2.2 5.7 20.3±2.0 5.6
DPL 15.5±7.0 5.9 19.2±0.9 4.4 20.8±0.9 4.3 11.8±1.9 4.8 16.5±0.8 4.7 17.6±1.2 4.9 18.6±1.1 4.8
ifBO 11.2±1.5 6.3 20.9±1.5 5.7 22.8±1.1 5.7 14.3±1.8 7.0 18.1±1.1 6.4 23.7±2.5 7.3 25.3±0.4 7.7

Quick-Tune† 19.5±0.0 4.8 21.3±0.0 6.9 24.4±0.0 7.5 11.6±0.0 4.5 17.3±0.0 4.5 17.2±0.0 3.4 17.6±0.0 3.4
FSBO 7.4±0.0 2.8 16.7±0.0 2.4 19.1±0.0 2.4 8.0±0.0 2.4 14.4±0.0 2.3 16.8±0.0 4.6 18.8±0.0 5.0

CMBO (ours) 2.1±0.0 1.0 2.0±0.2 1.0 0.9±0.0 1.0 0.7±0.0 1.0 0.7±0.0 1.0 5.1±0.1 1.0 4.6±0.0 1.0

wants to achieve better trade-off than the one obtained by ifBO, denoted as “Estimated”. See §C for
moore details. Table 2 shows that our CMBO consistently outperforms all the baselines on various
utility functions, showing that the superiority of our method is not affected by the types of utility
functions.

Table 3: Results of ablation study using
PD1 benchmark (α ∈ {0, 4e-05, 2e-04)}.
pb Acq. T. α = 0 α = 4e-05 α = 2e-04

✗ ✗ ✗ 0.8±0.1 2.0±0.1 5.8±0.6

✗ ✗ ✓ 0.2±0.0 1.4±0.0 5.7±0.3

✗ ✓ ✓ 0.2±0.0 1.2±0.0 4.4±0.0

✓ ✓ ✓ 0.2±0.0 0.8±0.0 0.9±0.0

Ablation Studies. To evaluate the effectiveness of each
component, we conduct ablation studies on the proposed
stopping criterion (pb), acquisition function (Acq.), and
transfer learning (T.), with mixup strategy on the PD1
benchmark. For the stopping criterion, we either use the
smoothly-mixed criterion with β = e−1 as in our full
method (pb ✓), or use the regret-based criterion with β →
0, the one used by the baselines (pb ✗). For the acquisition
function, we either use Eq.(2) (Acq. ✓) or the acquisition function of ifBO (Rakotoarison et al.,
2024) (Acq. ✗). For transfer learning, we either use our surrogate trained with the proposed mixup
strategy (T. ✓) or the surrogate of ifBO (Rakotoarison et al., 2024) (T. ✗). The results in Table 3
show that the performance improves sequentially as each component is added, with more pronounced
improvements under strong penalties (α = 2e-4). Notably, the stopping criterion does not affect the
results in the conventional setting (α = 0).

Table 4: Results on the cost-sensitive multi-fidelity
HPO (α = 0, 4e − 05, 2e − 04) setups with object
detection datasets.

Method α = 0 α = 4e-05 α = 2e-04
Regret Rank Regret Rank Regret Rank

Random 5.0±1.3 6.5 7.1±2.6 6.4 13.1±2.6 6.5
BOHB 3.2±1.0 5.2 4.8±1.0 5.3 10.7±1.0 5.4
DEHB 5.0±1.4 6.6 6.6±1.4 6.5 12.4±1.3 6.6

DyHPO 16.0±2.5 5.9 17.5±2.5 6.0 23.1±2.7 6.2
DPL 3.9±1.4 4.6 5.5±1.4 4.8 11.4±1.3 5.2
ifBO 2.3±0.5 4.3 3.9±0.5 4.3 9.8±0.5 4.4

Quick-Tune† 5.3±0.0 4.8 6.9±0.0 4.9 12.6±0.0 5.0
FSBO 2.1±0.0 3.9 3.7±0.0 3.9 9.6±0.0 4.2

CMBO (ours) 1.3±0.1 3.3 3.6±0.3 2.9 5.7±0.3 1.4

Effectiveness on the real-world HPO. Lastly,
we investigate the effectiveness of our method
on real-world object-detection dataset, along
with estimating the utility function from the user
preference data. From the 10 different datasets
from RoboFlow100 (Ciaglia et al., 2022), we
collect 500 LCs of validation performances
by training three different network architec-
tures, such as ResNet-50 (He et al., 2016), HR-
Net (Wang et al., 2020), MobileNetv2 (San-
dler et al., 2018), with 4 different hyperparam-
eters (batch size, learning rate, momentum, and
weight decay factor). Based on this setting, we
construct 30 tasks (= 3 network architectures × 10 datasets) and split them into 20 / 10 tasks for
meta-training / meta-test, respectively. In Table 4, we can clearly see that our method consistently and
significantly outperforms all the baselines on this real-world dataset as well, on both the estimated
utility function and the linear utility functions with various α.

5 CONCLUSION

In this paper, we discussed cost-sensitive multi-fidelity BO, a novel framework for dramatically
improving the efficiency of HPO. Based on the assumption that users want to early-stop the BO when
the utility saturates, we explained how to achieve the maximum utility with our novel acquisition
function and the stopping criterion specifically tailored to this problem setup, as well as the novel
transfer learning method for training a sample efficient in-context LC extraploator. We empirically
demonstrated the effectiveness of our method over the previous multi-fidelity HPO and the transfer-
BO methods, with numerous empirical evidence strongly supporting our claim.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Reproducibility statement. All the implementation details are described throughout §D, E, and F.
We provide anonymized code in supplemental materials, and will publish the code upon acceptance.

Ethics statement. Our work presents a cost-sensitive multi-fidelity Bayesian Optimization method
designed to make HPO more accessible to users with limited computational resources. By allowing
users to define a utility function that balances performance improvements with computational cost,
our method enables more efficient optimization and early stopping when costs outweigh benefits.
This approach helps under-resourced individuals or organizations achieve competitive results without
excessive financial or computational burden, promoting inclusivity and reducing inequality in machine
learning research and practice.

REFERENCES

Majid Abdolshah, Alistair Shilton, Santu Rana, Sunil Gupta, and Svetha Venkatesh. Cost-aware
multi-objective bayesian optimisation. arXiv preprint arXiv:1909.03600, 2019.

Steven Adriaensen, Herilalaina Rakotoarison, Samuel Müller, and Frank Hutter. Efficient bayesian
learning curve extrapolation using prior-data fitted networks. Advances in Neural Information
Processing Systems, 36, 2023.

Sebastian Pineda Arango, Fabio Ferreira, Arlind Kadra, Frank Hutter, and Josif Grabocka. Quick-
tune: Quickly learning which pretrained model to finetune and how. In The Twelfth International
Conference on Learning Representations, 2023.

Noor Awad, Neeratyoy Mallik, and Frank Hutter. Dehb: Evolutionary hyberband for scalable, robust
and efficient hyperparameter optimization. In Zhi-Hua Zhou (ed.), Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 2147–2153. International
Joint Conferences on Artificial Intelligence Organization, 8 2021. doi: 10.24963/ijcai.2021/296.
URL https://doi.org/10.24963/ijcai.2021/296. Main Track.

Tianyi Bai, Yang Li, Yu Shen, Xinyi Zhang, Wentao Zhang, and Bin Cui. Transfer learning for
bayesian optimization: A survey. arXiv preprint arXiv:2302.05927, 2023.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Accelerating neural architecture
search using performance prediction. arXiv preprint arXiv:1705.10823, 2017.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
machine learning research, 13(2), 2012.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
optimization. Advances in neural information processing systems, 24, 2011.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Floriana Ciaglia, Francesco Saverio Zuppichini, Paul Guerrie, Mark McQuade, and Jacob Solawetz.
Roboflow 100: A rich, multi-domain object detection benchmark. arXiv preprint arXiv:2211.13523,
2022.

Alexander I Cowen-Rivers, Wenlong Lyu, Rasul Tutunov, Zhi Wang, Antoine Grosnit, Ryan Rhys
Griffiths, Alexandre Max Maraval, Hao Jianye, Jun Wang, Jan Peters, et al. Hebo: Pushing the
limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research,
74:1269–1349, 2022.

Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hyperparameter
optimization of deep neural networks by extrapolation of learning curves. In Twenty-fourth
international joint conference on artificial intelligence, 2015.

11

https://doi.org/10.24963/ijcai.2021/296

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter op-
timization at scale. In International conference on machine learning, pp. 1437–1446. PMLR,
2018.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse
gradient-based hyperparameter optimization. In International Conference on Machine Learning,
pp. 1165–1173. PMLR, 2017.

Matilde Gargiani, Aaron Klein, Stefan Falkner, and Frank Hutter. Probabilistic rollouts for learning
curve extrapolation across hyperparameter settings. arXiv preprint arXiv:1910.04522, 2019.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami, and
Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and David
Sculley. Google vizier: A service for black-box optimization. In Proceedings of the 23rd ACM
SIGKDD international conference on knowledge discovery and data mining, pp. 1487–1495, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for
general algorithm configuration. In Learning and Intelligent Optimization: 5th International
Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected Papers 5, pp. 507–523. Springer,
2011.

Carl Hvarfner, Danny Stoll, Artur Souza, Marius Lindauer, Frank Hutter, and Luigi Nardi. \pi bo:
Augmenting acquisition functions with user beliefs for bayesian optimization. In International
Conference on Learning Representations, 2021.

Arlind Kadra, Maciej Janowski, Martin Wistuba, and Josif Grabocka. Scaling laws for hyperparameter
optimization. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Kirthevasan Kandasamy, Gautam Dasarathy, Barnabas Poczos, and Jeff Schneider. The multi-fidelity
multi-armed bandit. Advances in neural information processing systems, 29, 2016.

Kirthevasan Kandasamy, Gautam Dasarathy, Jeff Schneider, and Barnabás Póczos. Multi-fidelity
bayesian optimisation with continuous approximations. In International conference on machine
learning, pp. 1799–1808. PMLR, 2017.

Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed bandits.
In International conference on machine learning, pp. 1238–1246. PMLR, 2013.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. Fast bayesian
optimization of machine learning hyperparameters on large datasets. In Artificial intelligence and
statistics, pp. 528–536. PMLR, 2017a.

Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. Learning curve prediction
with bayesian neural networks. In International conference on learning representations, 2017b.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Eric Hans Lee, Valerio Perrone, Cedric Archambeau, and Matthias Seeger. Cost-aware bayesian
optimization. arXiv preprint arXiv:2003.10870, 2020.

Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Jonathan Ben-Tzur, Moritz Hardt,
Benjamin Recht, and Ameet Talwalkar. A system for massively parallel hyperparameter tuning.
Proceedings of Machine Learning and Systems, 2:230–246, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning
Research, 18(185):1–52, 2018.

Anastasia Makarova, Huibin Shen, Valerio Perrone, Aaron Klein, Jean Baptiste Faddoul, Andreas
Krause, Matthias Seeger, and Cedric Archambeau. Automatic termination for hyperparameter
optimization. In International Conference on Automated Machine Learning, pp. 7–1. PMLR, 2022.

Neeratyoy Mallik, Edward Bergman, Carl Hvarfner, Danny Stoll, Maciej Janowski, Marius Lindauer,
Luigi Nardi, and Frank Hutter. Priorband: Practical hyperparameter optimization in the age of
deep learning. Advances in Neural Information Processing Systems, 36, 2024.

Luke Metz, Niru Maheswaranathan, Ruoxi Sun, C Daniel Freeman, Ben Poole, and Jascha Sohl-
Dickstein. Using a thousand optimization tasks to learn hyperparameter search strategies. arXiv
preprint arXiv:2002.11887, 2020.

J Mockus, V Tiesis, and A Zilinskas. The application of bayesian methods for seeking the extremum,
vol. 2. L Dixon and G Szego. Toward Global Optimization, 2, 1978.

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter.
Transformers can do bayesian inference. In International Conference on Learning Representations,
2021.

Samuel Müller, Matthias Feurer, Noah Hollmann, and Frank Hutter. Pfns4bo: In-context learning
for bayesian optimization. In International Conference on Machine Learning, pp. 25444–25470.
PMLR, 2023.

Tung Nguyen and Aditya Grover. Transformer neural processes: Uncertainty-aware meta learning via
sequence modeling. In International Conference on Machine Learning, pp. 16569–16594. PMLR,
2022.

Valerio Perrone, Rodolphe Jenatton, Matthias W Seeger, and Cédric Archambeau. Scalable hyperpa-
rameter transfer learning. Advances in neural information processing systems, 31, 2018.

Matthias Poloczek, Jialei Wang, and Peter Frazier. Multi-information source optimization. Advances
in neural information processing systems, 30, 2017.

Herilalaina Rakotoarison, Steven Adriaensen, Neeratyoy Mallik, Samir Garibov, Edward Bergman,
and Frank Hutter. In-context freeze-thaw bayesian optimization for hyperparameter optimization.
arXiv preprint arXiv:2404.16795, 2024.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

David Salinas, Matthias Seeger, Aaron Klein, Valerio Perrone, Martin Wistuba, and Cedric Ar-
chambeau. Syne tune: A library for large scale hyperparameter tuning and reproducible re-
search. In International Conference on Automated Machine Learning, AutoML 2022, 2022. URL
https://proceedings.mlr.press/v188/salinas22a.html.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

Jasper Snoek, Kevin Swersky, Rich Zemel, and Ryan Adams. Input warping for bayesian optimization
of non-stationary functions. In International conference on machine learning, pp. 1674–1682.
PMLR, 2014.

13

https://proceedings.mlr.press/v188/salinas22a.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,
Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization using deep neural
networks. In International conference on machine learning, pp. 2171–2180. PMLR, 2015.

Artur Souza, Luigi Nardi, Leonardo B Oliveira, Kunle Olukotun, Marius Lindauer, and Frank
Hutter. Bayesian optimization with a prior for the optimum. In Machine Learning and Knowledge
Discovery in Databases. Research Track: European Conference, ECML PKDD 2021, Bilbao,
Spain, September 13–17, 2021, Proceedings, Part III 21, pp. 265–296. Springer, 2021.

Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task bayesian optimization. Advances in
neural information processing systems, 26, 2013.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimization. arXiv
preprint arXiv:1406.3896, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu, Yadong
Mu, Mingkui Tan, Xinggang Wang, et al. Deep high-resolution representation learning for visual
recognition. IEEE transactions on pattern analysis and machine intelligence, 43(10):3349–3364,
2020.

Zi Wang, George E Dahl, Kevin Swersky, Chansoo Lee, Zachary Nado, Justin Gilmer, Jasper Snoek,
and Zoubin Ghahramani. Pre-trained gaussian processes for bayesian optimization. arXiv preprint
arXiv:2109.08215, 2021.

Ying Wei, Peilin Zhao, and Junzhou Huang. Meta-learning hyperparameter performance prediction
with neural processes. In International Conference on Machine Learning, pp. 11058–11067.
PMLR, 2021.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel learning.
In Artificial intelligence and statistics, pp. 370–378. PMLR, 2016.

Martin Wistuba and Josif Grabocka. Few-shot bayesian optimization with deep kernel surrogates. In
International Conference on Learning Representations, 2020.

Martin Wistuba and Tejaswini Pedapati. Learning to rank learning curves. In International Conference
on Machine Learning, pp. 10303–10312. PMLR, 2020.

Martin Wistuba, Arlind Kadra, and Josif Grabocka. Supervising the multi-fidelity race of hyperpa-
rameter configurations. Advances in Neural Information Processing Systems, 35:13470–13484,
2022.

Jian Wu and Peter I Frazier. Continuous-fidelity bayesian optimization with knowledge gradient.
2018.

Jian Wu, Saul Toscano-Palmerin, Peter I Frazier, and Andrew Gordon Wilson. Practical multi-fidelity
bayesian optimization for hyperparameter tuning. In Uncertainty in Artificial Intelligence, pp.
788–798. PMLR, 2020.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=r1Ddp1-Rb.

Lucas Zimmer, Marius Lindauer, and Frank Hutter. Auto-pytorch: Multi-fidelity metalearning for
efficient and robust autodl. IEEE transactions on pattern analysis and machine intelligence, 43(9):
3079–3090, 2021.

14

https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A RELATED WORK

Multi-fidelity HPO. Unlike traditional black-box approaches for HPO (Bergstra & Bengio, 2012;
Hutter et al., 2011; Bergstra et al., 2011; Snoek et al., 2012; 2015; 2014; Cowen-Rivers et al., 2022;
Müller et al., 2023), multi-fidelity (or gray-box) HPO aims to optimize hyperparameters in a sample
efficient manner by utilizing low fidelity information (e.g., validation set performances with smaller
training dataset) as a proxy for higher or full fidelities (Swersky et al., 2013; Kandasamy et al.,
2016; Klein et al., 2017a; Poloczek et al., 2017; Kandasamy et al., 2017; Wu & Frazier, 2018;
Wu et al., 2020), dramatically speeding up the HPO. In this paper, we focus on making use of
performances at fewer training epochs to better predict/optimize the performances at longer training
epochs. One of the well-known examples is Hyperband (Li et al., 2018), a bandit-based method
that randomly selects a set of random hyperparameter configurations, and stops poorly performing
ones using successive halving (Karnin et al., 2013) even before reaching the last training epoch.
While Hyperband shows much better performance than random search (Bergstra & Bengio, 2012),
its computational or sample efficiency can be further improved by replacing random sampling of
configurations with Bayesian optimization (Falkner et al., 2018), adopting evolution strategy to
promote internal knowledge transfer (Awad et al., 2021), or making it asynchronously parallel (Li
et al., 2020).

Transfer BO. Transfer learning can be used for improving the sample efficiency of BO (Bai et al.,
2023), and here we list a few of them. Some of recent works explore scalable transfer learning with
deep neural networks (Perrone et al., 2018; Wistuba & Grabocka, 2020). Also, different components
of BO can be transferred such as observations (Swersky et al., 2013), surrogate functions (Golovin
et al., 2017; Wistuba & Grabocka, 2020), hyperparmater initializations (Wistuba & Grabocka, 2020),
or all of them (Wei et al., 2021). However, most of the existing transfer-BO approaches assume the
traditional black-box BO settings. To the best of our knowledge, Quick-Tune (Arango et al., 2023)
is the only recent work which targets multi-fidelity and transfer BO at the same time. However, as
mentioned above, their multi-fidelity BO formulation is greedy, whereas our transfer-BO method can
dynamically control the degree of greediness during the BO by explicitly taking into consideration
the trade-off between cost and performance of BO.

Cost-sensitive HPO. Multi-fidelity BO is inherently cost-sensitive since predictions get more
accurate as the gap between the fidelities becomes closer. However, the performance metric of such
vanilla multi-fidelity BO monotonically increases as we spend more budget, whereas in this paper we
want to find the optimal trade-off between the amount of budget spent thus far and the corresponding
intermediate performances of BO, thereby automatically early-stopping the BO around the maximal
utility. Quick-Tune (Arango et al., 2023) also suggests a cost-sensitive BO in multi-fidelity settings,
but unlike our work, their primary focus is to trade-off between the performance and the cost of BO
associated with pretrained models of various size, which can be seen as a generalization of more
traditional notion of cost-sensitive BO (Snoek et al., 2012; Abdolshah et al., 2019; Lee et al., 2020),
from black-box to multi-fidelity settings. In addition to the above discussion, Makarova et al. (2022)
propose a stopping criterion which terminates the BO when the suboptimality in optimizing validation
performance (instead of the test performance) is dominated by the statistical estimation error. Roughly
speaking, this stopping criterion can be seen as an instance of our utility-based stopping criteria,
where the user preference is not willing to spend further computational budgets after reaching the
certain BO performance. Furthermore, in this paper we focus on maximizing any possible utility
functions defined by user, instead of minimizing population error.

BO with user preference. Several works have tried to encode user’s initial belief on good hyperpa-
rameter configurations into BO frameworks (Souza et al., 2021; Hvarfner et al., 2021; Mallik et al.,
2024). On the othet hand, our paper suggests encoding user’s preference about the trade-off between
cost and performance of multi-fidelity BO. Therefore, the notion of user preference in this paper is
largely different from the previous literature.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B UTILITY ESTIMATION

As mentioned in the main paper, it is not easy for users to define or quantify their utilities. Here we
first briefly remind the notion of utility and then detail how we simulate the estimation of user utility
with Bradley-Terry (BT) model (Bradley & Terry, 1952).

Utility. A utility function U describes the trade-off between the BO step b and the BO performance
ỹb. Its values U(b, ỹb) negatively correlate with b and positively with ỹb. For instance, we can
assume a linear utility function U(b, ỹb) = ỹb − αb for some α > 0, such that the utility gives linear
incentives and penalties to the performance and number of BO steps, respectively.

Functional forms. In real-world scenario, however, one can have much more complex utility
function other than the above linear case. We therefore consider the following additional functional
forms including linear one: 1) Linear: U (linear)(b, y) = ỹ − αb, 2) Staircase: U (stair)(b, ỹb) =
ỹb −

∑
i αi1(b ∈ Ai) (1(·) is an indicator function, and Ai is an i-th interval), 3) Quadratic:

U (quad)(b, ỹb) = ỹb − αb2, and 4) Square Root: U (sqrt)(b, ỹb) = ỹb − αb1/2. In contrast to the
notation of main paper, we normalize the budget b by the allowed total computation budget B, i.e.,
b ∈ [0, 1] instead of b ∈ {1, . . . , B}. Furthermore, we assume that these utility functions can be
linearly combined, e.g., U = w(linear)U (linear)+ . . .+w(sqrt)U (sqrt), where w(linear)+ . . .+w(sqrt) = 1.

Data collection. We now describe how we roughly estimate user utility based on the user preference
data pairs. First of all, we assume that it is possible for users to decide whether they prefer one point
to the other one, instead of quantifying their utility, i.e., we can collect user preference data. For
simulation, we assume that we are given these preference data generated by true utility function. True
utility function U is randomly defined by sampling penalizing coefficient from U(0, 1) and linear
combination coefficients from Dirichlet distribution. We randomly select meaningful data pairs from
b ∼ U(0, 1) and ỹb ∼ U(0, 1). Here, meaningful data pairs means that one datapoint of each pair
is not trivially preferred by user, for example, one has larger performance ỹb with smaller budget b
than the other. A user then label their preference on these data pairs; for simulation, we label them by
using the true utility functions.

0.0 0.2 0.4 0.6 0.8

Normalized Computational Budget (b
B)

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce
 (y

b)

-0.1-0.0
0.1

0.20.3

0.40.5

0.60.7

0.80.9

-0.1-0.0
0.1

0.2

0.30.4

0.5
0.6

0.70.8

0.9

0.0 0.2 0.4 0.6 0.8

Normalized Computational Budget (b
B)

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce
 (y

b)

-0.1-0.0

0.10.2

0.30.4

0.50.6

0.70.8
0.9

-0.1-0.0

0.10.2

0.30.4

0.50.6

0.70.8
0.9

0.0 0.2 0.4 0.6 0.8

Normalized Computational Budget (b
B)

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce
 (y

b)

-0.1
-0.0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.80.9

-0.0
0.1

0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

0.0 0.2 0.4 0.6 0.8

Normalized Computational Budget (b
B)

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce
 (y

b)

-0.1
-0.0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

-0.2-0.1

-0.0
0.10.2

0.30.4

0.50.6

0.70.80.9

0.0 0.2 0.4 0.6 0.8

Normalized Computational Budget (b
B)

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce
 (y

b)

-0.1-0.0
0.1

0.20.3

0.40.5

0.60.7

0.80.9

-0.1-0.0
0.1

0.20.3

0.40.5

0.6

0.70.80.9

0.0 0.2 0.4 0.6 0.8

Normalized Computational Budget (b
B)

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce
 (y

b)

-0.1-0.0

0.10.2

0.30.4

0.50.6

0.70.8
0.9

-0.1-0.0

0.10.2

0.30.4

0.50.6

0.70.8
0.9

0.0 0.2 0.4 0.6 0.8

Normalized Computational Budget (b
B)

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce
 (y

b)

-0.1
-0.0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.80.9

-0.2
-0.1

-0.0
0.1

0.2

0.3
0.4

0.5
0.6

0.7
0.80.9

0.0 0.2 0.4 0.6 0.8

Normalized Computational Budget (b
B)

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce
 (y

b)

-0.1
-0.0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

-0.2
-0.1

-0.00.1

0.2
0.3

0.4
0.5

0.6
0.70.8

0.9

0.0 0.2 0.4 0.6 0.8

Normalized Computational Budget (b
B)

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce
 (y

b)

-0.1-0.0
0.1

0.20.3

0.40.5

0.60.7

0.80.9

-0.1-0.0
0.1

0.20.3

0.4

0.5
0.6

0.7

0.8
0.9

0.0 0.2 0.4 0.6 0.8

Normalized Computational Budget (b
B)

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce
 (y

b)

-0.1-0.0

0.10.2

0.30.4

0.50.6

0.70.8
0.9

-0.1-0.0

0.10.2

0.30.4

0.50.6

0.70.8
0.9

0.0 0.2 0.4 0.6 0.8

Normalized Computational Budget (b
B)

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce
 (y

b)

-0.1
-0.0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.80.9

-0.1-0.0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.80.9

0.0 0.2 0.4 0.6 0.8

Normalized Computational Budget (b
B)

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce
 (y

b)

-0.1
-0.0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

-0.1
-0.0

0.10.2

0.30.4

0.50.6

0.70.80.9

Figure 8: Contour plots of true utilities and their approximations. From left to right, the columns show
different functional forms of linear, quadratic, square root, and a combination of four different functions
including a staircase function. From top to bottom, the rows represent 30, 100, and 1000 user preference data
pairs.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Training details and results. As explained in the main paper, we use binary cross entropy loss
between the probability of preference described by the BT model in Eq. (1) and the label. In Fig. 2
of the main paper, we set w(staircase) to be 0. We begin by randomly initializing another utility
function to approximate a randomly sampled true utility function, setting the linear combination and
penalizing coefficients to 1

3 and 0.0001, respectively. We use gradient-based optimization algorithm
(e.g., SGD, L-FBGS) with 1000 iterations for optimizing the coefficients. The temperature term τ in
Eq. (1) is set to 0.05.

In addition to Fig. 2, we perform other experiments on single utility functions such as linear, quadratic,
square root, and combination of the four functional forms we consider. Fig. 8 demonstrates that not
only can single utilities –linear, quadratic, and square root – be well approximated using preference
data, but even more complex utilities (e.g., a combination of four different utilities) can also be
accurately approximated. Furthermore, we found that the approximation works well even with smaller
numbers (e.g., 30, 100) of user preference data pairs for simple cases.

C UTILITY FUNCTION ESTIMATION FOR PD1

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Computational Budget (b
B)

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce
 (y

b)
-0.3

-0.2

-0.1
-0.0

0.1
0.2

0.3
0.4

0.5
0.6

0.7

0.
8

Figure 9: The estimated utility
function with the user preference
data. The solid line represents the av-
erage BO trajectory obtained by run-
ning ifBO on the meta-training tasks,
and the dotted lines show the corre-
spondingly estimated utility function.

In this section, we explain the experimental details for utility
estimation denoted as “Estimated” in Table 2. Here, we assume
that the user wants to set the trade-off (between the cost and
performance of BO) to the trade-off achievable by running other
multi-fidelity HPO methods, such as ifBO (Rakotoarison et al.,
2024). Therefore, we run ifBO to all the meta-training tasks and
average those BO trajectories, obtaining a single BO trajectory
corresponding to the overall representative trade-off on the PD1
dataset.

Based on that single curve, we randomly sample many points
around that curve, such that all the points locate either upper
or bottom parts of the curve. Then, we can collect infinitely
many pair of points by randomly picking one upper point and
one bottom point (with the constraint that the upper one should
be on the right side of the bottom one), and construct the user
preference data {(u1, u2)}. As a fitting function, we use an
exponential function with bias term, i.e., U(b, ỹb) = ỹb−αba+c,
where α, a, c > 0.

Figure 9 shows the average BO trajectory obtained by running BOHB on the meta-training tasks
(solid black line), and the correspondingly estimated utility function (dotted blue lines). We can see
that the shape of the utility function fits reasonably well to the trajectory of ifBO.

D DETAILS ON BENCHMARKS AND DATA PREPROCESSING

In this section, we elaborate the details on the LC benchmarks and data preprocessing we have done.

LCBench We use [APSFailure, Amazon employee access, Australian, Fashion-MNIST, KDD-
Cup09 appetency, MiniBooNE, adult, airlines, albert, bank-marketing, blood-transfusion-service-
center, car, christine, cnae-9, connect-4, covertype, credit-g, dionis, fabert, helena] for training LC
extrapolator. We evaluate it on [higgs, jannis, jasmine, jungle chess 2pcs raw endgame complete,
kc1, kr-vs-kp, mfeat-factors, nomao, numerai28.6, phoneme, segment, shuttle, sylvine, vehicle,
volkert]. Each task contains 2000 LCs with 51 training epochs. We summarize the hyperparameter of
LCBench in Table 5.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: The 7 hyperparameters for LCBench tasks.

Name Type Vaules Info

batch size integer [16, 51] log
learning rate continuous [0.0001, 0.1] log
max dropout continuous [0.0, 1.0]

max units integer [64, 1024] log
momentum continuous [0.1, 0.99]
max layers integer [1, 5]

weight decay continuous [1e− 05, 0.1]

TaskSet We use [rnn text classification family seed{19, 3, 46, 47, 59, 6, 66},
word rnn language model family seed{22, 47, 48, 74, 76, 81},
char rnn language model family {seed19, 26, 31, 42, 48, 5, 74}] for training LC
extrapolator. We evaluate it on [rnn text classification family seed{8, 82, 89},
word rnn language model family seed{84, 98, 99}, char rnn language model family seed{84, 94,
96}]. Each task contains 1000 LCs with 50 training epochs. We summarize the hyperparameter of
TaskSet in Table 6.

Table 6: The 8 hyperparameters for Taskset tasks.

Name Type Vaules Info

learning rate continuous [1e− 09, 10.0] log
beta1 continuous [0.0001, 1.0]
beta2 continuous [0.001, 1.0]

epsilon continuous [1e− 12, 1000] log
l1 continuous [1e− 09, 10.0] log
l2 continuous [1e− 09, 10.0] log

linear decay continuous [1e− 08, 0.0001] log

PD1 We use [uniref50 transformer batch size 128, lm1b transformer batch size 2048,
imagenet resnet batch size 256, mnist max pooling cnn tanh batch size 2048,
mnist max pooling cnn relu batch size {2048, 256}, mnist simple cnn batch size {2048, 256},
fashion mnist max pooling cnn tanh batch size 2048, fashion mnist max pooling cnn relu batch size {2048,
256}, fashion mnist simple cnn batch size {2048, 256}, svhn no extra wide resnet batch size 1024,
cifar{100, 10} wide resnet batch size 2048] for training LC extrapolator. We evaluate it on
[imagenet resnet batch size 512, translate wmt xformer translate batch size 64,
mnist max pooling cnn tanh batch size 256, fashion mnist max pooling cnn tanh batch size 256,
svhn no extra wide resnet batch size 256, cifar100 wide resnet batch size 256,
cifar10 wide resnet batch size 256]. Each task contains 240 LCs with 50 training epochs. We
summarize the hyperparameter of PD1 in Table 7.

Table 7: The 8 hyperparameters for PD1 tasks.

Name Type Vaules Info

lr initial value continuous [1e− 05, 10.0] log
lr power continuous [0.1, 2.0]

lr decay steps factor continuous [0.01, 0.99]
one minus momentum continuous [1e− 05, 1.0] log

Data Preprocessing As will be detailed in the §F, we use the 0-epoch LC value yn,0 which is the
performance before taking any gradient steps. The 0-epoch LC values originally are not provided
except for LCBench; we use the log-loss of the first epoch as the 0-epoch LC value for TaskSet, as it
is already sufficiently large in our chosen tasks. For PD1, we interpolate the LCs to be the length
of 51 training epochs, and we take the first performance as the 0-epoch LC value. Furthermore,
we take the average over the 0-epoch LC values ȳ0 since it is hard to have different initial values
among optimizer hyperparameter configurations in a task, without taking any gradient steps. For

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

transfer learning, we follow the convention of PFN (Adriaensen et al., 2023) for data preprocessing;
we consistently apply non-linear LC normalization3 to the LC data of three benchmarks, which not
only maps either accuracy or log-loss LCs into [0, 1] but also simply make our optimization as a
maiximization problem. To facilitate transfer learning, we use the maximum and minimum values in
each task in LCBench and PD1 benchmark for the LC normalization. In TaskSet, we only use the ȳ0
for the LC normalization.

E DETAILS ON ARCHITECTURE AND TRAINING OF LC EXTRAPOLATOR

In the section, we elaborate our LC extrapolator model and how to train it on the learning curve
dataset.

Construction of Context and Query points. As mentioned earlier in §3.3, the whole training
pipeline of our learning curve extrapolator model can be seen an instance of TNPs (Nguyen & Grover,
2022). Here we can simulate each step of Bayesian Optimization; predicting the remaining part of
LC in all configurations conditioned on the set C of the collected partial LCs. To do so, we construct a
training task by randomly sampling context and query points from LC benchmark after the proposed
LC mixup as follows:

1. We choose a LC dataset Lm = [l⊤m,1; . . . ; l
⊤
m,N]⊤ ∈ RN×T by randomly sampling m ∈ [M].

2. From Lm, we randomly sample n1, . . . , nC ∈ [N] and t1, ..., tC ∈ [T] and construct context
points of X(c) = [x⊤

n1
, . . . , x⊤

nC
]⊤ ∈ RC×dx , T (c) = [t1/T, . . . , tC/T]

⊤ ∈ RC×1, and Y (c) =

[yn1,t1 , . . . , ynC ,tC] ∈ RC×1.
3. From Lm, we exclude n1, . . . , nC ∈ [N] and t1, ..., tC ∈ [T] and randomly sample n′

1, . . . , n
′
Q ∈

[N] and t′1, ..., t
′
Q ∈ [T] and construct query points of X(q) = [x⊤

n′
1
, . . . , x⊤

n′
Q
]⊤ ∈ RQ×dx ,

T (q) = [t′1/T, . . . , t
′
C/T]

⊤ ∈ RQ×1, and Y (q) = [yn′
1,t

′
1
, . . . , yn′

Q,t′Q
] ∈ RQ×1.

Transformer for Predicting Learning Curves. From now on, we denote each row vec-
tor of the constructed context and query points with the lowercase, e.g., y(q) of Y (q). We
learn a Transformer-based learning curve extrapolator model which is a probabilistic model of
f(Y (q)|X(c), T (c), Y (c), X(q), T (q)). Conditioned on any subsets of LCs (i.e., X(c), T (c), and Y (c)),
this model predicts a mini-batch of the remaining part of LCs of existing hyperparameter configura-
tions in a given dataset (i.e., Y (q) of X(q) and T (q)). For the computational efficiency, we further
assume that the query points are independent to each other, as done in PFN (Adriaensen et al., 2023):

f(Y (q)|X(c), T (c), Y (c), X(q), T (q)) =
∏

x(q),t(q),y(q)

f(y(q)|x(q), t(q), X(c), T (c), Y (c)). (6)

Before encoding the input into the Transformer, we first encode the input of X(c), T (c), Y (c), X(q),
and T (q) using simple linear layer as follows:

H(c) = X(c)Wx + T (c)Wt + Y (c)Wy (7)

H(q) = X(q)Wx + T (q)Wt, (8)

where Wx ∈ Rdx×dh , Wt ∈ R1×dh , and Wy ∈ R1×dh . Here, we abbreviate the bias term.

Then we concatenate the encoded represnetations of H(c) and H(q), and feedforward it into Trans-
former layer by treating each pair of each row vector of H(c) and H(q) as a separate position/token
as follows:

H = Transformer([H(c);H(q), Mask]) ∈ R(M+N)×dh (9)

Ŷ = Head(H) ∈ R(M+N)×do , (10)

3The details can be found in Appendix A of PFN (Adriaensen et al., 2023) and https://github.com/
automl/lcpfn/blob/main/lcpfn/utils.py.

19

https://arxiv.org/pdf/2310.20447
https://github.com/automl/lcpfn/blob/main/lcpfn/utils.py
https://github.com/automl/lcpfn/blob/main/lcpfn/utils.py

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where Transformer(·) and Head(·) denote the Transformer layer and multi-layer perceptron (MLP)
for the output prediction, respectively. Mask ∈ R(Nc+Nq)×(Nc+Nq) is the mask of transformer that
allows all the tokens to attend context tokens only. Here, the output dimension do is specified by
output distribution of y. Following PFN (Adriaensen et al., 2023), we discretize the domain of y by
do = 1000 and use the categorical distribution. Finally, we only take the output of the last Nq tokens
as output, i.e., Ŷ (q) = Ŷ [:, Nc : (Nc +Nq)] ∈ RNq×dh (PyTorch-style indexing operation), since
we only need the outputs of query tokens for modeling

∏
f(y(q)|x(q), t(q), X(c), T (c), Y (c)).

Training Objective. Our pre-training objective is then defined as follows:

argmin
f

Ep

− ∑
x(q),t(q),y(q)

log f(y(q)|x(q), t(q), X(c), T (c), Y (c))

 + λPFNLPFN, (11)

where DKL is the Kullback–Leibler divergence, and p is the empirical LC data distribution. We
additionally minimize LPFN with coefficient λPFN, which is the LC extrapolation loss in each LC
(Adriaensen et al., 2023). We found λPFN = 0.1 works well for most cases. We use the stochastic
gradient descent algorithm to solve the above optimization problem.

Training Details. We sample 4 training tasks for each iteration, i.e., the size of meta mini-batch is
set to 4. We uniformly sample the size C of context points from 1 to 300, and the size of query points
Q is set to 2048. Following PFN (Adriaensen et al., 2023), the hidden size of each Transformer block
dh, the hidden size of feed-forward networks, the number of layers of Transformer, dropout rate are
set 1024, 2048, 12, 0.2. We use GeLU (Hendrycks & Gimpel, 2016). We train the extrapolator for
10,000 iterations on training split of each benchmark with Adam (Kingma & Ba, 2014) optimizer.
The ℓ2 norm of meta mini-batch gradient is clipped to 1.0. The learning rate is linearly increased
to 2e-05 for 25000 iterations, and it is decreased with a cosine scheduling until the end. The whole
training process takes roughly 10 hours in one NVIDIA Tensor Core A100 GPU.

F ADDITIONAL DETAILS ON EXPERIMENTAL SETUPS

In this section, we elaborate additional details on the experimental setups.

0-epoch LC value. We assume the access of the 0-epoch LC value ȳ0 in §D which is the model
performance before taking gradient steps. This is also plausible for realistic scenarios since in most
deep-learning models one evaluation cost is acceptable in comparison to training costs. The 0-epoch
LC value ȳ0 is always conditioned on our LC extrapolator f for both pretraining and BO stage.

Monte-Carlo (MC) sampling for reducing variance of LCs. As mentioned in §3.2, we estimate
the expectation of proposed acquisition function A in Eq. (2) with 1000 MC samples. We found
that each LC yn,tn:T

sampled from LC extrapolator f(·|xn, C) is noisy, due to the assumption that
query points of yn,tn:T

are independent to each other in Eq. (6). We compute ỹb+∆t by taking the
maximum among the last step BO performance (i.e., cumulative max operation), therefore, the quality
of estimation highly degenerates due to the noise in the small ∆t. To prevent this, we reduce the
variance of MC samples by taking the average of the sampled LCs. For example, we sample 5000
LC samples from the LC extrapolator f , then we divide them into 1000 groups and take the average
among the 5 LC samples in each group. We empirically found that this stabilize the estimation of not
only acquisition function A and probability of utility improvement pb in Eq. (5).

Table 8: Wall-clock time (seconds) for BP
on LCBench, TaskSet, and PD1 datasets

Method LCBench TaskSet PD1

DPL 194.4±6.15 191.5±2.37 189.3±1.73

ifBO 174.4±2.80 90.4±1.02 23.2±1.16

CMBO (ours) 456.0±5.06 234.3±3.21 67.6±1.85

Inference Time for BO. In Table 8, we report aver-
age wall-clock time and standard deviation spent on BO
over 5 runs for PDL, ifBO, CMBO. For ifBO, we use the
same surrogate model provided in github but re-implement
the BO process of ifBO based on our code base, which
dramatically reduce the wall-clock time of original imple-
mentation. We measure all the wall-clock times in one
NVIDIA Tensor Core A100 GPU using the same experi-
mental setups. ifBO is the most of efficient method among

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

them, but we believe that the difference between the wall-clock time of ifBO and CMBO is negligible
since training neural networks usually dominates the total wall-clock time spent for HPO.

Details on Baseline Implementation. We list the implementation detils for baselines as follows:

1. Random Search. Instead of randomly selecting a hyperparameter configuration for each BO step,
we run the selected configuration until the last epoch T .

2. BOHB and DEHB. We follow the most recent implementation of these algorithms in Quick-
Tune (Arango et al., 2023). We slightly modify the official code4, which is heavily based on
SyneTune (Salinas et al., 2022) package.

3. DPL. We follow the official code5 provided the authors of DPL (Kadra et al., 2023), and slightly
modify the benchmark implementation to incorporate our experimental setups.

4. ifBO. We follow the official code6 provided the authors for surrogate model of ifBO (Rakotoarison
et al., 2024), and incorporate the surrogate model in our code base to be aligned with our
experimental setups.

5. DyHPO and Quick-Tune†. We follow the official code7 provided the authors of DyHPO (Wistuba
et al., 2022), and slightly modify the benchmark implementation to incorporate our experimental
setups. For Quick-Tune†, we pretrain the deep kernel GP for 50000 iterations with Adam optimizer
with mini-batch size of 512. The initial learning rate is set to 1e-03 and decayed with cosine
scheduling. To leverage the transfer learning scenario, we use the best configuration among the
LC datasets which is used for training the GP as an initial guess of BO.

6. FSBO. FSBO does not provide an official code, therefore, we follow an available code in the
internet8. We also slightly modify the benchmark implementation, and use the best configuration
among the LC datasets as an initial guess.

G CONNECTION BETWEEN OUR MIXUP STRATEGY WITH IFBO AND TNP

Our mixup strategy is reminiscent of the data generation scheme of ifBO (Rakotoarison et al., 2024),
a variant of PFNs for in-context freeze-thaw BO. Similarly to our ancestral sampling, ifBO first
samples random weights for a neural network (i.e., a prior distribution) to sample a correlation
between configurations (the first mixup step), and then linearly combines a set of basis functions
to generate LCs (the second mixup step). Our training method differs from ifBO in that our prior
distribution is implicitly defined by LC datasets and the mixup strategy, whereas ifBO resorts to a
manually defined distribution.

Indeed, our training method is more similar to Transformer Neural Processes (TNPs) (Nguyen &
Grover, 2022), a Transformer variant of Neural Processes (NPs) (Garnelo et al., 2018). Similarly to
PFNs, TNPs directly maximize the likelihood of target data given context data with a Transformer
architecture, which differs from the typical NP variants that summarize the context into a latent
variable and perform variational inference on it. Moreover, as with the other NP variants, TNPs
meta-learn a model over a distribution of tasks to perform sample efficient probabilistic inference. In
this vein, the whole training pipeline of our LC extrapolator can be seen as an instance of TNPs – we
also meta-learn a sample efficient Transformer-based LC extrapolator over the distribution of LCs
induced by the mixup strategy.

H ADDITIONAL EXPERIMENTAL RESULTS

Ablation Study on Cost Limits To understand the behavior of our method under varying cost limits
(or total computational budgets, i.e., B), we conducted additional experiments similar to those in Fig.
7b, varying the cost limits to 100, 200, and 300. Fig. 10 presents the distribution of the top-10 most
frequently chosen hyperparameter configurations throughout the optimization process. The results

4https://github.com/releaunifreiburg/QuickTune
5https://github.com/releaunifreiburg/DPL
6https://github.com/automl/ifBO/tree/48ec25ed7997e653e2c5f4ffbd99eef60590f638
7https://github.com/releaunifreiburg/DyHPO
8https://github.com/releaunifreiburg/fsbo

21

https://github.com/releaunifreiburg/QuickTune
https://github.com/releaunifreiburg/DPL
https://github.com/automl/ifBO/tree/48ec25ed7997e653e2c5f4ffbd99eef60590f638
https://github.com/releaunifreiburg/DyHPO
https://github.com/releaunifreiburg/fsbo

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0 2 4 6 8
HP Index Sorted by Freq. Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

. R
at

io

100
200
300

Figure 10: The distribution of top-10 frequently chosen hyperparameter configuration throughout optimization.

clearly indicate that our method explores a wider variety of hyperparameter configurations when the
computational budget is large (B=300) but focuses on exploiting a smaller subset of configurations
when the budget is limited (B = 100).

Visualizations of the normalized regret over BO steps for LCBench (α = 4e-05), LCBench
(α = 2e-04), TaskSet (α = 4e-05), TaskSet (α = 2e-04), PD1 (α = 4e-05), and PD1 (α = 2e-04)
are provided Figure 11, 12, 13, 14, 15, and 16, respectively.

Visualizations of the LC extrapolation over BO steps for LCBench, TaskSet, and PD1 are
provided Figure 17, 18, and 19, respectively. Here, we plot the LC extrapolation results of unseen
hyperparameter configurations through BO. Each row shows the results for a different size of the
observation set (|C| = 0, 10, 50, and 300), and each column shows a different size of context points
in each LC (0, 2, 5, 10, 20, and 30).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
Total Epochs Spent

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

higgs

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

No
rm

al
ize

d
Re

gr
et

jannis

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

No
rm

al
ize

d
Re

gr
et

jasmine

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

No
rm

al
ize

d
Re

gr
et

jungle_chess_2pcs_raw_endgame_complete

0 50 100 150 200 250 300
Total Epochs Spent

10 1

No
rm

al
ize

d
Re

gr
et

kc1

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

kr-vs-kp

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

mfeat-factors

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

No
rm

al
ize

d
Re

gr
et

nomao

0 50 100 150 200 250 300
Total Epochs Spent

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

numerai28.6

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

No
rm

al
ize

d
Re

gr
et

phoneme

0 50 100 150 200 250 300
Total Epochs Spent

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

segment

0 50 100 150 200 250 300
Total Epochs Spent

10 1

No
rm

al
ize

d
Re

gr
et

shuttle

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

No
rm

al
ize

d
Re

gr
et

sylvine

0 50 100 150 200 250 300
Total Epochs Spent

10 3

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

vehicle

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

No
rm

al
ize

d
Re

gr
et

volkert

Random BOHB DEHB DyHPO DPL ifBO Quick-Tune FSBO CMBO (ours)

Figure 11: Visualization of the normalized regret over BO steps on LCBench (α =4e-05).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
Total Epochs Spent

10 3

10 2

10 1

No
rm

al
ize

d
Re

gr
et

higgs

0 50 100 150 200 250 300
Total Epochs Spent

10 3

10 2

10 1

No
rm

al
ize

d
Re

gr
et

jannis

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

No
rm

al
ize

d
Re

gr
et

jasmine

0 50 100 150 200 250 300
Total Epochs Spent

10 1

No
rm

al
ize

d
Re

gr
et

jungle_chess_2pcs_raw_endgame_complete

0 50 100 150 200 250 300
Total Epochs Spent

10 1

No
rm

al
ize

d
Re

gr
et

kc1

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

No
rm

al
ize

d
Re

gr
et

kr-vs-kp

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

mfeat-factors

0 50 100 150 200 250 300
Total Epochs Spent

10 3

10 2

10 1

No
rm

al
ize

d
Re

gr
et

nomao

0 50 100 150 200 250 300
Total Epochs Spent

10 3

10 2

10 1

No
rm

al
ize

d
Re

gr
et

numerai28.6

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

No
rm

al
ize

d
Re

gr
et

phoneme

0 50 100 150 200 250 300
Total Epochs Spent

10 3

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

segment

0 50 100 150 200 250 300
Total Epochs Spent

10 1

No
rm

al
ize

d
Re

gr
et

shuttle

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

No
rm

al
ize

d
Re

gr
et

sylvine

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

vehicle

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

No
rm

al
ize

d
Re

gr
et

volkert

Random BOHB DEHB DyHPO DPL ifBO Quick-Tune FSBO CMBO (ours)

Figure 12: Visualization of the normalized regret over BO steps on LCBench (α =2e-04).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

No
rm

al
ize

d
Re

gr
et

rnn_text_classification_family_seed8

0 50 100 150 200 250 300
Total Epochs Spent

10 1

100

No
rm

al
ize

d
Re

gr
et

rnn_text_classification_family_seed82

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

No
rm

al
ize

d
Re

gr
et

rnn_text_classification_family_seed89

0 50 100 150 200 250 300
Total Epochs Spent

10 3

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

word_rnn_language_model_family_seed84

0 50 100 150 200 250 300
Total Epochs Spent

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

word_rnn_language_model_family_seed98

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

No
rm

al
ize

d
Re

gr
et

word_rnn_language_model_family_seed99

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

char_rnn_language_model_family_seed84

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

No
rm

al
ize

d
Re

gr
et

char_rnn_language_model_family_seed94

0 50 100 150 200 250 300
Total Epochs Spent

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

char_rnn_language_model_family_seed96

Random BOHB DEHB DyHPO DPL ifBO Quick-Tune FSBO CMBO (ours)

Figure 13: Visualization of the normalized regret over BO steps on TaskSet (α =4e-05).

0 50 100 150 200 250 300
Total Epochs Spent

10 1

No
rm

al
ize

d
Re

gr
et

rnn_text_classification_family_seed8

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

rnn_text_classification_family_seed82

0 50 100 150 200 250 300
Total Epochs Spent

10 1

No
rm

al
ize

d
Re

gr
et

rnn_text_classification_family_seed89

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

word_rnn_language_model_family_seed84

0 50 100 150 200 250 300
Total Epochs Spent

10 3

10 2

10 1

No
rm

al
ize

d
Re

gr
et

word_rnn_language_model_family_seed98

0 50 100 150 200 250 300
Total Epochs Spent

10 1

No
rm

al
ize

d
Re

gr
et

word_rnn_language_model_family_seed99

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

char_rnn_language_model_family_seed84

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

No
rm

al
ize

d
Re

gr
et

char_rnn_language_model_family_seed94

0 50 100 150 200 250 300
Total Epochs Spent

10 3

10 2

10 1

No
rm

al
ize

d
Re

gr
et

char_rnn_language_model_family_seed96

Random BOHB DEHB DyHPO DPL ifBO Quick-Tune FSBO CMBO (ours)

Figure 14: Visualization of the normalized regret over BO steps on TaskSet (α =2e-04).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
Total Epochs Spent

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

imagenet_resnet_batch_size_512

0 50 100 150 200 250 300
Total Epochs Spent

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

translate_wmt_xformer_translate_batch_size_64

0 50 100 150 200 250 300
Total Epochs Spent

10 3

10 2

No
rm

al
ize

d
Re

gr
et

mnist_max_pooling_cnn_tanh_batch_size_256

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

No
rm

al
ize

d
Re

gr
et

fashion_mnist_max_pooling_cnn_tanh_batch_size_256

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

No
rm

al
ize

d
Re

gr
et

svhn_no_extra_wide_resnet_batch_size_256

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

cifar100_wide_resnet_batch_size_256

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

No
rm

al
ize

d
Re

gr
et

cifar10_wide_resnet_batch_size_256

Random BOHB DEHB DyHPO DPL ifBO Quick-Tune FSBO CMBO (ours)

Figure 15: Visualization of the normalized regret over BO steps on PD1 (α =4e-05).

0 50 100 150 200 250 300
Total Epochs Spent

10 3

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

imagenet_resnet_batch_size_512

0 50 100 150 200 250 300
Total Epochs Spent

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

translate_wmt_xformer_translate_batch_size_64

0 50 100 150 200 250 300
Total Epochs Spent

10 2

No
rm

al
ize

d
Re

gr
et

mnist_max_pooling_cnn_tanh_batch_size_256

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

No
rm

al
ize

d
Re

gr
et

fashion_mnist_max_pooling_cnn_tanh_batch_size_256

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

No
rm

al
ize

d
Re

gr
et

svhn_no_extra_wide_resnet_batch_size_256

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

cifar100_wide_resnet_batch_size_256

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

No
rm

al
ize

d
Re

gr
et

cifar10_wide_resnet_batch_size_256

Random BOHB DEHB DyHPO DPL ifBO Quick-Tune FSBO CMBO (ours)

Figure 16: Visualization of the normalized regret over BO steps on PD1 (α =2e-04).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

0

Context Points in LC: 0 # Context Points in LC: 2 # Context Points in LC: 5 # Context Points in LC: 10 # Context Points in LC: 20 # Context Points in LC: 30

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

10

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

50

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

|
|=

30
0

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

0

Context Points in LC: 0 # Context Points in LC: 2 # Context Points in LC: 5 # Context Points in LC: 10 # Context Points in LC: 20 # Context Points in LC: 30

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

10

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

50

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

|
|=

30
0

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Figure 17: Visualization of LC extrapolation over BO steps on LCBench.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

0

Context Points in LC: 0 # Context Points in LC: 2 # Context Points in LC: 5 # Context Points in LC: 10 # Context Points in LC: 20 # Context Points in LC: 30

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

10

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

50

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

|
|=

30
0

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

0

Context Points in LC: 0 # Context Points in LC: 2 # Context Points in LC: 5 # Context Points in LC: 10 # Context Points in LC: 20 # Context Points in LC: 30

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

10

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

50

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

|
|=

30
0

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Figure 18: Visualization of LC extrapolation over BO steps on TaskSet.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

0

Context Points in LC: 0 # Context Points in LC: 2 # Context Points in LC: 5 # Context Points in LC: 10 # Context Points in LC: 20 # Context Points in LC: 30

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

10

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

50

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

|
|=

30
0

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

0

Context Points in LC: 0 # Context Points in LC: 2 # Context Points in LC: 5 # Context Points in LC: 10 # Context Points in LC: 20 # Context Points in LC: 30

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

10

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

50

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

|
|=

30
0

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Figure 19: Visualization of LC extrapolation over BO steps on PD1.

29

	Introduction
	Related Work
	Approach
	Backgrounds and Utility Function
	Cost-sensitive Multi-fidelity BO
	Transfer Learning of LC Extrapolation

	Experiments
	Analysis

	Conclusion
	Related Work
	Utility Estimation
	Utility Function Estimation for PD1
	Details on Benchmarks and Data Preprocessing
	Details on Architecture and Training of LC Extrapolator
	Additional Details on Experimental Setups
	Connection between our Mixup Strategy with ifBO and TNP
	Additional Experimental Results

