Under review as a conference paper at ICLR 2025

COST-SENSITIVE MULTI-FIDELITY BAYESIAN OPTI-
MIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we address the problem of cost-sensitive multi-fidelity Bayesian
Optimization (BO) for efficient hyperparameter optimization (HPO). Specifically,
we assume a scenario where users want to early-stop the BO when the performance
improvement is not satisfactory with respect to the required computational cost.
Motivated by this scenario, we introduce utility, which is a function describing
the trade-off between cost and performance of BO and can be estimated from the
user’s preference data. This utility function, combined with our novel acquisition
function and stopping criterion, allows us to dynamically choose for each BO step
the best configuration that we expect to maximally improve the utility in future, and
also automatically stop the BO around the maximum utility. Further, we improve
the sample efficiency of existing learning curve (LC) extrapolation methods with
transfer learning to develop a sensible surrogate function for multi-fidelity BO.
We validate our algorithm on various LC datasets and found it outperform all
the previous multi-fidelity BO and transfer-BO baselines we consider, achieving
significantly better trade-off between cost and performance of BO.

1 INTRODUCTION

Hyperparameter optimization (HPO) (Bergstra & Bengio, 2012; Bergstra et al., 2011; Hutter et al.,
2011; Snoek et al., 2012; Cowen-Rivers et al., 2022; Li et al., 2018; Franceschi et al., 2017) stands as a
crucial challenge in the domain of deep learning, given its importance of achieving optimal empirical
performance. Unfortunately, the field of HPO for deep learning remains relatively underexplored,
with many practitioners resorting to simple trial-and-error methods (Bergstra & Bengio, 2012; Li et al.,
2018). Moreover, traditional black-box Bayesian optimization (BO) approaches for HPO (Bergstra
et al., 2011; Snoek et al., 2012; Cowen-Rivers et al., 2022) have limitations when applied to deep
neural networks due to the impracticality of evaluating a vast number of hyperparameter configurations
until convergence, each of which may take several days.

Recently, multi-fidelity (or gray-box) BO (Li et al., 2018; Falkner et al., 2018; Awad et al., 2021;
Swersky et al., 2014; Wistuba et al., 2022; Arango et al., 2023; Kadra et al., 2023; Rakotoarison
et al., 2024) has gained increasing attention to improve the sample efficiency of traditional black-box
BO. Multi-fidelity BO makes use of lower fidelity information (e.g., validation accuracies at fewer
training epoches) to predict and optimize the performances at higher or full fidelity (e.g., validation
accuracies at the last training epoch). Unlike black-box BO, multi-fidelity BO dynamically selects
hyperparameter configurations even before finishing a single training run, demonstrating its ability of
finding better configurations in a more sample efficient manner than black-box BO.

However, one critical limitation of the conventional multi-fidelity BO frameworks is that they are
not aware of the trade-off between the cost and performance of BO. For instance, given a limited
amount of total credits, customers of cloud computing services (e.g., GCP, AWS, or Azure) may
choose to heavily penalize the cost of BO relative to its performance, in order to conserve credits
for other tasks. A similar scenario applies to users of task managers such as Slurm, who aim to
optimize their allocated time within a computing instance. In those cases, users may want the BO
process to focus on exploiting the current belief on good hyperparameter configurations than trying
to explore new configurations, in order to efficiently consuming their limited resources. Yet, the
existing multi-fidelity BO methods tend to over-explore because they usually assume a sufficiently
large budget (e.g., total credits, or allocated time) for the BO and aim to obtain the best asymptotic

Under review as a conference paper at ICLR 2025

performance on a validation set, hence are not able to properly penalize the cost (Swersky et al.,
2014; Kadra et al., 2023). We could lower the total BO budget and maximize the performance at that
maximum budget, but in practice it is hard to specify the target budget in advance as it is difficult to
accurately predict the trajectory of the future BO performances.

Therefore, in this paper we in- s Uty

troduce a more sophisticated no- 9

tion of cost-sensitivity for multi- Q8 I <
fidelity BO. Specifically, we as- § £ L5y, /\ j N
sume that it is easier to specify é“g 1 S
the trade-off between cost and &3 1 3 ’
performance of multi-fidelity BO, & % !

than to know the proper target g ‘ 3 P |
budget in advance. We call this N P o steps B e
trade-off utility. This utility func- (a) (b)

tion describes users’ own prefer- Figure 1: (a) A utility function shown in the dotted black lines. The red

ences about the trade-off and can . .) .

. R curve shows a BO trajectory from which we determine the maximum
be estimated from the u§er s pref- utility (= 0.7) and when to stop (b*). (b) An illustration of selecting the
erence data. It has higher val- peg configuration at each BO step. Notice, the y-axis is utility. Starting
ues as cost decreases and perfor- from the current BO step b, we extrapolate the LCs with the three
mance increases, and vice versa configurations x1, x2, 3 (shown in the solid curves with colors and the
(Fig. 1a). Some users may want shaded area), and then select x3 which achieves at b3 the maximum
to strongly penalize the amount expected improvement (EI) of utility over the previous utility Uprey.
of BO budgets spent, while others
may weakly penalize or not penalize at all as with the conventional multi-fidelity BO. We explicitly
maximize this utility by dynamically selecting hyperparameter configurations expected to achieve the
greatest improvement in the future (Fig. 1b), and also automatically terminating the BO around the
maximum utility (Fig. 1a), instead of terminating at an arbitrary target budget.

Solving this problem requires our multi-fidelity BO method to have the following capabilities. Firstly,
it should support freeze-thaw BO (Swersky et al., 2014; Rakotoarison et al., 2024), an advanced form
of multi-fidelity BO in which we can dynamically pause (freeze) and resume (thaw) hyperparameter
configurations based on future performances extrapolated from a set of partially observed learning
curves (LCs) with various configurations. Such efficient and sensible allocation of computational
resources suits well for our purpose of finding the best trade-off between cost and performance of
multi-fidelity BO. Secondly, freeze-thaw BO requires its surrogate function to be equipped with a
good LC extrapolation mechanism (Adriaensen et al., 2023; Rakotoarison et al., 2024; Kadra et al.,
2023). In our case, it is crucial for making a good probabilistic inference on future utilities with
which we dynamically select the best configuration and accurately early-stop the BO. Lastly, since we
assume that users want to stop the BO as early as possible, LC extrapolation should be accurate even
at the very early stages of BO. Therefore, we should make use of transfer learning to maximally
improve the sample efficiency of BO (Arango et al., 2023) and to prevent inaccurate early-stopping
when there are only few or even no observations in the BO.

Based on those criteria, we introduce our novel Cost-sensitive Multi-fidelity BO (CMBO) that can
effectively maximize the utility based on the three components mentioned above. We first introduce
the detailed notion of utility function and how to estimate it from the user’s own preference data'
(§3.1) . We then describe the acquisition function and stopping criterion specifically developed
for our framework, and explain how to achieve a good trade-off between cost and performance
of multi-fidelity BO with them (§3.2). Building on the recently introduced Prior-Fitted Networks
(PFNs) (Miiller et al., 2021; Adriaensen et al., 2023) for in-context Bayesian inference, we explain
how to train a PFN with the existing LC datasets to develop a sample efficient in-context surrogate
function for freeze-thaw BO that can also effectively capture the correlations between different
hyperparameter configurations (§3.3). Lastly, we empirically demonstrate the superiority of CMBO
on a set of diverse utility functions, three multi-fidelity HPO benchmarks, and one real-world
object-detection LC dataset we collected, showing that it significantly outperforms all the previous
multi-fidelity BO and the transfer-BO baselines we consider (§4).

'Some users may already have an exact form of their utility function, but for the others we need to provide a
reasonable way to quantify it with their own preference data.

Under review as a conference paper at ICLR 2025

We summarize our contributions and findings as follows:

* We introduce the concept of utility, which describes the trade-off between cost and performance of
multi-fidelity BO, along with the method to quantify it with user preference data.

* We propose a new problem formulation, cost-sensitive multi-fidelity HPO, where we aim to
maximize utility instead of maximizing the asymptotic validation performances.

* We introduce our novel acquisition function and stopping criterion specifically designed for our
problem formulation, along with the transfer learning of in-context LC extrapolation.

* We extensively validate the superiority of CMBO on various cost-sensitive multi-fidelity HPO set-
tings, with three popular benchmarks and one real-world object detection LC dataset we collected.

2 RELATED WORK

We briefly discuss the related work in this section. See §A for the other related work on multi-fidelity
HPO, transfer BO, cost-sensitive HPO, and BO with user preference.

Freeze-thaw BO. Freeze-thaw BO (Swersky et al., 2014) dynamically pauses (freezes) and resumes
(thaws) configurations based on the last epoch performances extrapolated from a set of partially
observed LCs obtained from other configurations, leading to an efficient and sensible allocation of
computational resources. DyHPO (Wistuba et al., 2022) and its transfer version (Arango et al., 2023)
improve the computational efficiency of freeze-thaw BO with deep kernel GP (Wilson et al., 2016),
but their acquisition extrapolates the LCs only a one-step forward, producing a greedy strategy. Other
recent variants of freeze-thaw BO include DPL (Kadra et al., 2023) and ifBO (Rakotoarison et al.,
2024) which are not greedy, and their acquisitions maximize the performance either at the last BO
step or random future steps. On the other hand, we maximize the utility specified by each user.

Learning curve extrapolation. Freeze-thaw BO requires the ability of dynamically updating
predictions on future performances from partially observed LCs, thus heavily relies on LC extrap-
olation (Baker et al., 2017; Gargiani et al., 2019; Wistuba & Pedapati, 2020). DyHPO (Wistuba
et al., 2022) and Quick-Tune (Arango et al., 2023) propose to extrapolate LCs for only a single
step forward. Freeze-thaw BO (Swersky et al., 2014) and DPL (Kadra et al., 2023) use non-greedy
extrapolations but limit the shape of the LCs. Domhan et al. (2015) consider a broader set of basis
functions, but requires computationally expensive MCMC, and also do not consider correlations
between different configurations. Klein et al. (2017b) models interactions between configurations
with a Bayesian neural network (BNN), but suffers from the same computational inefficiency of
MCMC and online retraining. LC-PFNs (Adriaensen et al., 2023) are an in-context Bayesian LC
extrapolation method without retraining, but they do not consider interactions between configurations.
Recently, ifBO (Rakotoarison et al., 2024) further combine LC-PFNs with PENs4BO (Miiller et al.,
2023) to develop an in-context surrogate function for freeze-thaw BO, but they train PFNs only with
a prior distribution. On the other hand, we use transfer learning, i.e., train PFNs with the existing
LC datasets, to improve the sample efficiency of freeze-thaw BO while successfully encoding the
correlations between configurations at the same time.

3 APPROACH

In this section, we introduce CMBO, a novel method for cost-sensitive multi-fidelity HPO. We first
introduce notation, backgrounds on freeze-thaw BO, and utility function in §3.1. We then introduce
the overall method and algorithm in §3.2, and the transfer learning of surrogate functions in §3.3.

3.1 BACKGROUNDS AND UTILITY FUNCTION

Notation. Following the convention, we assume that we are given a finite pool of hyperparameter
configurations X = {1, ..., zn}, with N the number of configurations. Let t € [T] := {1,...,T}
denote the training epochs, 1" the last epoch, and yy, 1, ..., y,, 7 the validation performances (e.g.,
validation accuracies) obtained with the configuration x,,. We further introduce notations for multi-
fidelity BO. Let b = 1,..., B denote the BO steps, B the last BO step, and 91, ...,yp the BO
performances, i.e., each g, is the best validation performance (y) obtained until the BO step b.

Freeze-thaw BO. The goal of multi-fidelity BO is to find the optimal intermediate performance over
the hyperparameter configurations, i.e., max, c|nJ,te[T] Yn,t- Freeze-thaw BO (Swersky et al., 2014)

Under review as a conference paper at ICLR 2025

is an advanced form of multi-fidelity BO. At each BO step, it allows us to dynamically select and
evaluate the best hyperparameter configuration x.,,» with n* € [N] denoting the corresponding index,
while pausing the evaluation on the previous best configuration. Specifically, given C = {(z,t,y)}
that represents a set of partial LCs collected up to a specific BO step, we predict for all x € X the
remaining part of the LCs up to the last training epoch 7" with a (pretrained) LC extrapolator, compute
the acquisition such as the expected improvement (Mockus et al., 1978) of validation performance at
epoch 7', and select and evaluate the best configuration x,,~ that maximizes the acquisition. Note that
at any BO step, the partial LCs in C can have different length across the configurations. Suppose that
at BO step b the next training epoch for x,,« is t,,~. We then evaluate x,,- a single epoch from the
corresponding checkpoint to obtain the validation performance ¥, ;, . at the next epoch %,,-, which
we use to update the corresponding partial LC in C and compute the BO performance ;. We repeat
this process B times until convergence. See Alg. 1 for the pseudocode (except the red parts).
Utility function. A utility function U describes the trade-off 0 o™ / /)
between the BO step b and the BO performance g,. Its values A% //
N4
a > 0, such that the utility gives linear incentives and penalties
square root function, as appropriate (used to draw Fig. 2).

U (b, gp) negatively correlate with b and positively with ¢;,. For y
to the performance and number of BO steps, respectively. Or, we
uNormanlizzed Cour:wputati:nal Buésget (g)

Performance (y

instance, we may simply define U (b, §) = @ — ab for some /
could use a weighted linear combination of linear, quadratic, and
We assume that users have their own utility functions. However,
it is often difficult for them to quantify the function. We thus Figure 2: An example of utility func-

propose to use Bradley-Terry model (Bradley & Terry, 1952): tion estimation. True and estimated
(g /7) utility are denoted as black solid and

expl(ui/7 blue dotted lines, respectively.

plur > u) = (1) pecey

exp(u1/7) + exp(uz/7)”

Eq. (1) is the probability that the user prefers u; to us, where vy and us are the utility values of two
different points in the space consisting of BO step b and BO performance ¢, and 7 is a temperature.
Specifically, we first collect the user preference data by asking users to decide which points to prefer
given a set of pair of points (Bai et al., 2022). We then optimize the parameters in the utility function
(e.g., &) by minimizing the binary cross entropy loss —m log p(u1 > us)—(1 — m)log(1 — p(u; >
uz)) with gradient descent, where m € {0, 1} is the binary label of user preference.

Fig. 2 shows that the proposed method can recover the true utility function very accurately with 1,000
datapoints. See §B for the detailed experimental setups and other examples with fewer datapoints. In
this way, for the rest of this paper, we assume that we can estimate the utility function with the user
preference data, or users already know the exact form of their utility functions.

3.2 COST-SENSITIVE MULTI-FIDELITY BO
We next introduce our main method based on freeze-thaw BO and the notion of utility (§3.1).

Acquisition function. Let ¢,, be the next training epoch for the configuration x,, at a BO step
b. Further, suppose we have a LC extrapolator f(-|z,,C) that can probabilistically estimate x,,’s
remaining part of LC, ¥y, 1.7, conditioned on C a set of partial LCs collected up to the step b. Then,
based on the expected improvement (EI) (Mockus et al., 1978), we define the acquisition function A:

A(n) = Ate{gﬁ%_tn} Ey, o rmf(lznC) [max (0, U(b+ At, Jorat) — Uprev)] -)

In Eq. (2), we first extrapolate yy, ¢, .7, the remaining part of the LC associated with x,,, and compute
the corresponding predictive BO performances {Jpa: | At =0, ..., T —t, }. Note that according to
the definition in §3.1, ;4 A, is computed by taking the maximum among the last step BO performance
J»—1 as well as the newly extrapolated validation performances ¥ ¢, - - -, Yn,t,,+A¢. Then, based on
the increased BO step b+ At and the updated BO performance ¢+ A:, we compute the corresponding
utility, and its expected improvement over the previous utility U,y Over the distribution of LC
extrapolation with the Monte-Carlo (MC) estimation. The acquisition A(n) for each configuration
index n is defined by picking the best increment At € {0,...,T — t,} that maximizes the expected
improvement, and we eventually choose the best configuration index n that maximizes A (see Fig. 1b).

Under review as a conference paper at ICLR 2025

The main differences of our acquisition
function in Eq. (2) from the El-based ac-
quisitions used in the previous works are ~ 1: Input: LC extrapolator f, acquisition function A, util-

Algorithm 1 Cost-sensitive Multi-fidelity BO

twofold. First, instead of maximizing the ity g‘nm(’.n U, mf‘fémum]133 0 Sfteps f ’ hyPerRa]r\?meter
expected improvement of validation perfor- configuration pool ', number of configurations V.
.. . 2: Upmeo,yo<——oo,C<—®,t1,...,tN<—1

mance y, we maximize the expected im- 3 forb—1 B do

proyement of utility. Second,.rather than 4: n* + argmax, A(n) b Acquisition func., Eq. (2)

setting the target .epoch at which we eval- 5. if Eq. (3) and b > 1 then > Stopping criterion

uate the acquisition to the last epoch 7', ¢: Break the for loop > Stop the BO

we dynamically choose the optimal target 7: end if

epoch that is expected to maximally im- 8: Evaluate ynx ¢, . With zpx.

prove the utility. 9: C + CU{(xn*,tn*,Yn*t,.)} > Update the history
10: b <+ max(Jo—1,Yn*,t,«) > Update the BO perf.

Those aspects allow our BO framework i: Upeev < U (b, G) > Update the prev. utility

to more carefully select configurations for 12: toe <t + 1

each BO step, seeking the best trade-off be- 13: end for

tween cost and performance of BO. Specif-

ically, the acqusition function initially prefers configurations that are expected to produce good
asymptotic validation performances, but as the BO proceeds it will gradually become greedy as the
performance of BO saturates and the associated cost dominates the utility function. As a result,
the acquisition function will tend to exploit more than explore — it will try to avoid selecting new
configurations but stick to the few current configurations to maximize the short term performances.

Note that Upy in Eq. (2), the threshold of EI, is not the greatest utility achieved so far, but simply
set to the utility value achieved most recently (line 11 in Alg. 1). This is because the cost of BO
that has previously been incurred is not reversible. It differs from the typical EI-based BO settings
where all the previous evaluations are meaningful and we can set the threshold to the maximum
among them. As a result, Upey can either increase or decrease during the BO, and we need to stop the
BO when Uy starts decreasing monotonically, i.e., when the performance of BO stops improving
meaningfully with respect to the associated cost.

Stopping criterion. The next question is how to properly stop 10— poew
the BO around the maximum utility. We propose to stop when — p=e’
the following criterion is satisfied at each BO step b > 1: 3% gfzj

({max - ({prev > 5b~ (3) Eo.s p— 23271

Umax - Umin E Bieiz
R O 04 B=e

In Eq. (3), Uprey is the utility value at the last step b — 1, Upax g e

m 0.2

is defined as the maximum utility value seen up to the last step,
and Upy, = U(B,§1). The role of Unax and Upin is to roughly
estimate the maximum and the minimum utility achievable over oo o0z o
the course of BO, respectively. Therefore, the LHS of Eq. (3) Ps

can be seen as the normalized regret of utility roughly estimated Figure 3: Eq. (4) with v = log, 5
at the current step b, and we stop the BO as soon as the current and the various values for 3.
estimation on the regret exceeds some threshold dy,.

=}
=}
&

o
IS
o
o
o
©
-
o

To define Jy, let n* = argmax,, A(n) denote the index of the currently chosen best configuration
T+ based on Eq. (2), BetaCDF the cumulative distribution function (CDF) of Beta, and 1 the
indicator function. Then, we have:

(sb = BetaCDF(ph 576)W7 B»W > 07 (4)

Py = Ate{lr,l.’??%—tn* } Ey”“n* o~ f(zn,C) []]- (U (b + At, gb+At) > Uprev)] . 4)
py in Eq. (5) is the probability that the current best configuration x,,~ improves on Upey in some
future BO step (i.e., probability of improvement, or PI (Mockus et al., 1978)). Intuitively, we want to
defer the termination as p; increases, and vice versa. It is considered in Eq. (4) — as p;, increases, the
threshold ¢, increases as well because BetaCDF(+; 8,)" is a monotonically increasing function in
[0, 1], so we have less motivation to stop according to Eq. (3).

Fig. 3 plots BetaCDF(+; 3, 5)7 in Eq. (4) over the various values of 5. We can see that the function
becomes vertical as 5 — +oo and horizontal as 5 — 0. In the former case, we terminate the BO

Under review as a conference paper at ICLR 2025

process when p, < 0.5, ignoring the regret on the left-hand side of Eq.(3), whereas in the latter
case, we ignore p, and decide solely based on the regret, with the threshold §; fixed to some value
specified by 7 (e.g., in Fig. 3, d, = 0.2 corresponds to v = log, 5)*. Thus, the role of 3 is to smoothly
interpolate between the two extreme stopping criteria: 1) regret-based criterion (whether Eq. 3 is
satisfied with d;, = 0.2 or not), and 2) PI-based criterion (whether p; > 0.5 or not).

Algorithm. We summarize the pseudocode of our overall method in Alg. 1, with the red parts
corresponding to the specifics of our method.

3.3 TRANSFER LEARNING OF LC EXTRAPOLATION

Since users may want to early-stop the BO, we should have a sample efficient LC extrapolation
for preventing inaccurate early-stopping at the early stage of BO. We thus propose to use transfer
learning to maximally improve the sample efficiency of our LC extrapolator.

Transfer learning with LC mixup. Among many plausible options, in this paper we propose to
use Prior Fitted Networks (PFNs) (Miiller et al., 2021) for LC extrapolation. PFNs are an in-context
Bayesian inference method based on Transformer architectures (Vaswani et al., 2017), and show good
performances on LC extrapolation (Adriaensen et al., 2023; Rakotoarison et al., 2024) without the
computationally expensive online retraining (Kadra et al., 2023). A major difficulty of using PFNs
for our purpose is that their training examples are generated only from a prior distribution, and to
our knowledge, there are no existing ways to train PFNs with the given datasets. Also, PFNs require
relatively a large Transformer architecture as well as huge amounts of training examples for good
generalization performance (Adriaensen et al., 2023), which makes it risky to train PFNs with a finite
set of examples.

Here we explain our novel transfer learning method for PFNs that can circumvent those difficulties
with the mixup strategy (Zhang et al., 2018). Suppose we have M different datasets and the
corresponding M sets of LCs collected from N hyperparameter configurations. Define [, , =
(y;’fl, ey y:{”fT), the T'-dimensional row vector of validation performances (y’s) collected from the
m-th dataset and the n-th configuration, forming a complete LC of length 7". Further define the matrix
Ly = [l 1511}, v, the row-wise stack of those LCs. In order to augment training examples,
we propose to perform the following two consecutive mixups (Zhang et al., 2018):

1. Across datasets: L' = A1 Ly, + (1 — A1) Ly, with Ay ~ Unif(0,1), forall m,m’ € [M].
2. Across configurations: (z”,1") = Aa(2n,1],) + (1 — A2)(zpr, 1)
with I/, the n-th row of L, A9 ~ Unif(0,1), forall L’ andn,n’ € [N].

In this way, we can sample infinitely many training examples {(z"’, ")} by interpolating between the
LCs, leading to a robust LC extrapolator with less overfitting. Note that in the first step, we do not
individually perform the mixup over the configurations but apply the same \; to all the configurations,
in order to preserve the correlations between the configurations encoded in the given datasets.

As for the network architecture and the training objective, we mostly follow Rakotoarison et al. (Rako-
toarison et al., 2024). We use a similar Transformer architecture that takes a set of partial LCs and
the corresponding configurations as an input and extrapolates the remaining part of the LCs. The
training objective then maximizes the likelihood of those predictions conditioned on the partial LCs.
We defer more details on the training to §E. Also, see §G for more discussion about the connection of
our transfer learning method with ifBO (Rakotoarison et al., 2024) TNPs (Nguyen & Grover, 2022).

4 EXPERIMENTS

We next validate the efficacy of our method on various multi-fidelity HPO settings. We will publicly
release our code upon acceptance.

Datasets. We use the following benchmark datasets for multi-fidelity HPO. LCBench (Zimmer
et al., 2021): A LC dataset that evaluates the performance of 7 different hyperparameters on 35

Note that the PI criterion in Eq. (5) is based on our novel acquisition function with utility. Therefore, the
baselines should resort to only the regret-based criterion in Eq. (3). We found that §, = 0.2 performs well
over all the baselines, which corresponds to v = log, 5 and § — 0. Our method also use v = log, 5 for fair
comparison, but is allowed to use different 5 > 0 to combine it with the PI-based criterion in Eq. (5).

Under review as a conference paper at ICLR 2025

LCBench) TaskSet PD1

Normalized Regret

0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Total Epochs Spent Total Epochs Spent Total Epochs Spent
e Random e BOHB @=== DEHB === DyHPO DPL e=== {fBO === Quick-Tune' = FSBO CMBO (ours)

Figure 4: The results on the conventional multi-fidelity HPO setup (o = 0). For each benchmark, we report
the normalized regret of utility aggregated over all the test datasets.

different tabular datasets. The LCs are collected by training MLPs with 2,000 hyperparameter
configurations, each for 51 epochs. We train our LC prediction model on 20 datasets and evaluate on
the remaining 15 datasets. TaskSet (Metz et al., 2020): A LC dataset that consists of a diverse set of
1,000 optimization tasks drawn from various domains. We select 30 natural language processing (text
classification and language modeling) tasks, train our LC extrapolator on 21 tasks, and evaluate on the
remaining 9 tasks. Each task include 8 different hyperparameters and 1,000 their configurations. Each
LC is collected by training models for 50 epochs. PD1 (Wang et al., 2021): A LC benchmark that
includes the performance of modern neural architectures (including Transformers) run on large vision
datasets such as CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), ImageNet (Russakovsky et al.,
2015), as well as statistical modeling corpora and protein sequence datasets from bioinformatics. We
use 23 tasks with 4 different hyperparameters from SyneTune (Salinas et al., 2022) package, train our
LC extrapolator on 16 tasks, and evaluate on the remaining 7 tasks. To facilitate transfer learning, we
preprocess the data by excluding hyperparameter configurations with their training diverging (e.g.,
LCs with NaN), and linearly interpolate the LCs to match their length across different tasks. We then
obtain the LCs of 50 epochs over the 240 configurations. See §D for more details.

Baselines. We compare our method against Random Search (Bergstra & Bengio, 2012) that
randomly selects hyperparameter configurations sequentially. We next compare against several
variants of Hyperband (Li et al., 2018) such as BOHB (Falkner et al., 2018) which replaces its
random sampling of configurations with BO, and DEHB (Awad et al., 2021) which promotes internal
knowledge transfer with evolution strategy. We also compare against more recent multi-fidelity BO
methods such as DyHPO (Wistuba et al., 2022) which uses deep kernel GP (Wilson et al., 2016) and
a greedy acquisition function with a short-horizon LC extrapolation, and DPL (Kadra et al., 2023)
which extrapolates LCs with power law functions and model ensemble. ifBO (Rakotoarison et al.,
2024) is an extension of PFNs (Miiller et al., 2021) for freeze-thaw BO, whose acquisition is based
on the PI at randomly chosen future training epochs. Quick-Tune', is a modified version of Quick-
Tune (Arango et al., 2023) which is originally developed for dynamically selecting both pretrained
models and hyperparmater configurations, with the additional cost term penalizing the non-uniform
evaluation wall-time associated with each joint configuration. Since our experimental setup does not
consider selecting pretrained models nor non-uniform evaluation wall-time, we only leave the transfer
learning part of the model, which corresponds to a transfer learning version of DyHPO, i.e., we train
its surrogate function with the same LC datasets used for training our LC extrapolator. Lastly, we
compare against FSBO (Wistuba & Grabocka, 2020), a black-box transfer-BO that uses the same LC
datasets to train a deep kernel GP surrogate. The difference of FSBO from Quick-Tune' is that its
surrogate models the validation performances at the last epoch, whereas that of Quick-Tune! predicts
the performances at the next epoch for multi-fidelity HPO. See §F for more details.

Utility function. While it is possible to collect user preference data manually and estimate the
corresponding utility function (§3.1), in our experiments we use either linear function (i.e., U (b, §) =
y — ab), quadratic, square root, or stair-case function for simplicity. Note that for linear function, we
let a € {0, 4e-05,2e-04}, where o = 0 does not penalize the number of BO steps at all — the BO
does not terminate until the last BO step B as with the conventional multi-fidelity BO setup.

Stopping criterion. As mentioned in the footnote in page 6, for the baselines we simply set the
threshold 6, = 0.2 in Eq. (3). For our model, we also use v = log, 5 for fair comparison, but use
B = e~ ! for all the experiments in this paper, except the ablation study in Fig. 7d.

Evaluation metric. In order to report the average performances over the tasks, we use the nor-
malized regret of utility (Umax — Up*)/(Umax — Unin) € [0, 1], similarly to Eq. (3). Up~ is the utility

Under review as a conference paper at ICLR 2025

Table 1: Results on the cost-sensitive multi-fidelity HPO with linear utility (o € {4e-05, 2e-04}). For better
readability, we multiply 100 to the normalized regrets. Transfer learning methods are indicated by underline.

LCBench TaskSet PD1
Method a = 4e-05 o = 2e-04 o = 4e-05 o = 2e-04 o = 4e-05 o = 2e-04
Regret Rank Regret Rank Regret Rank Regret Rank Regret Rank Regret Rank

Random (Bergstra & Bengio, 2012) 13.5+23 8.1 179417 80 184448 7.7 223+a1 7.7 53420 7.1 9.6+40 6.8

BOHB (Falkner et al., 2018) 7.0+18 5.2 11.8+17 55 8.0+23 6.9 11.7+2.1 6.5 1.8404 5.4 5.0+03 5.1
DEHB (Awad et al., 2021) 57+14 52 10.6+12 5.6 53418 64 9.7+14 6.2 2.1+02 6.6 54402 6.7
DyHPO (Wistuba et al., 2022) 72412 6.1 12.1+16 6.3 7.5+210 7.0 1l.1+20 6.9 2.5+06 6.3 6.2+00 6.7
DPL (Kadra et al., 2023) 3.8+05 3.6 93+05s 4.7 2.6+07 4.0 75+06 4.8 1.8+03 44 5.1+06 4.1

ifBO (Rakotoarison et al., 2024) 42404 3.8 9.3+04 4.6 35412 44 8.1+07 5.2 2.0+0.1 5.7 5.8+06 6.3
Quick-Tunef (Arango et al., 2023) 9.6+00 6.9 12.7+00 6.4 3.7+00 3.9 5.6+00 3.2 24+00 54 55+00 4.9

FSBO (Wistuba & Grabocka, 2020) ~ 2.6+00 2.9 6.4+00 2.6 29+00 3.2 49+00 2.8 13400 22 42400 2.0
CMBO (ours) 23101 32 3100 13 13200 1.6 31:0 1.7 0.8:00 2.1 0.9:00 1.0
LCBench (a = 4e-05) TaskSet (a = 4e-05) PD1 (a = 4e-05)

Normalized Regret

0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
LCBench (a = 2e-04) TaskSet (a = 2e-04) PD1 (a = 2e-04)

Normalized Regret

0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Total Epochs Spent Total Epochs Spent Total Epochs Spent
= Random = BOHB = DEHB @ DyHPO DPL e {fBO e Quick-Tunet e FSBO CMBO (ours)

Figure 5: Visualization of the normalized regrets over BO steps. The first and second row correspond
to a = 4e-05 and 2e-04, respectively. Each column corresponds to the cherry-picked examples from each
benchmark. The asterisks indicate the stopping points, and the dotted lines represent the normalized regrets
achievable by running each method without stopping. See §H for the results on all the other tasks.

obtained right after the BO terminates at step b*, and Upax is the maximum achievable by running
a single optimal configuration up to its maximum utility. Computing the exact Uy, is a difficult
combinatorial optimization problem, thus we simply approximate it with U (B, y}°'), where y}°' is
the worst 1-epoch validation performance across the configurations — we simply let ¢} decay over
the maximum BO steps B, corresponding to a lower bound of the exact Up,;,. We then average the
normalized regrets across all the tasks in each benchmark, and report the mean and standard deviation
over 5 runs, or even 30 runs for the baselines with relatively large variances such as Random, BOHB,
DEHB. Lastly, we also report the rank of each method averaged over the tasks.

4.1 ANALYSIS

Effectiveness of our transfer learning. We .. PD1 PD1

first demonstrate the effectiveness of our transfer w/o Mixup

learning method. Fig. 4 shows the results on the | " MIxup (OUrS) 7 g

conventional multi-fidelity HPO setting where 3~ g

we do not penalize the cost of BO at all (o = 0). g i, g

First of all, note that FSBO, a black-box transfer- £

BO method which switches its configuration ™ B

only after a single complete training (e.g., 50 -

epochs), even outperforms all the other multi- O ation T " potal Epochs spent "
fidelity methods that can change the configura- (a) Test loss (b) Normalized Regret

tions every epoch. The results clearly show the
importance of transfer learning for improving
the sample efficiency of HPO. Quick-Tune, a
transfer version of DyHPO, performs similarly to the other baselines despite the use of the transfer
learning, except on TaskSet. We attribute it to its greedy acquisition function, and more importantly

Figure 6: Ablation study on the mixup training. We use
o = 0 and PD1 benchmark for the experiments.

Under review as a conference paper at ICLR 2025

DyHPO CMBO (2e-04)

i 0.8 —— DPL 038 —— CMBO (4e-05) ®
5.0 . N 2. - 1
g il b i Quick-Tune ° —— CMBO (0) 3 1
o e RS —— CMBO (ours) 06 DyHPO (2e-04)
b=t D | I 2 o
& s 3 < —— DPL (2e-04) g LCBench
2 DyHPO 04 I i 004 Quick-Tune' (2e-04) g Taskset
£ 102 — DPL b = £ —— PD1
2 Quick-Tune! 0.2 Ll ‘l’r“ w N T R 0.2 = 2 = Average
—— CMBO (ours) KA iw‘«w = — %
0.0 ! e 0.0 ~10g-3p-2g-1 g0 @l @2 @3 El0
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 2 4 6 8 eePe?e el el e? el e
Total Epochs Spent Total Epochs Spent HP Index Sorted by Freq. Ratio B
(a) (b) © (d)

Figure 7: (a, b, ¢) Additional analysis on the effectiveness of our acquisition function. We use PD1 for the
visualization. In (c), the values of « are shown in the parenthesis. (d) Ablation study on /3, with the minimum
regret shown with the asterisks.

its lack of data augmentation. On the other hand, our method is non-greedy (when o = 0) and
can effectively augment the data with our mixup strategy, thereby showing significantly better per-
formances than all the other multi-fidelity methods. Fig. 6 shows the ablation study on our mixup
training. Fig. 6a shows that we can effectively reduce the risk of overfitting by adding the mixup
strategy. As a result, the performance of BO improves significantly (Fig. 6b). Lastly, our method
outperforms FSBO on TaskSet and PD1, while achieving comparative results on LCBench.

Effectiveness of our acquisition function. Next, Table 1 shows the performance of each method
on the cost-sensitive multi-fidelity HPO setup (av > 0). We see that our method largely outperforms
all the methods on all the settings, including the multi-fidelity HPO and the transfer-BO methods,
in terms of both normalized regret and average rank. Notice, our method achieves better average
rank as the penalty becomes stronger (o = 2e-04). Fig. 5 visualizes the normalized regret over the
course of BO, where our method achieves significantly lower regret upon termination. Our method
tends to achieve the minimum regret earlier than the baselines, demonstrating its sample efficiency in
searching good hyperparameter configurations by explicitly considering the utility during the BO.

In order to clearly understand the source of improvements, we next analyze the configurations chosen
by each method. Specifically, for each BO step b, we run the configuration currently selected at step
b up to its last epoch T', and compute its minimum ground-truth regret achievable at some future
step b + At (Fig. 7a), as well as the corresponding optimal increment At (Fig. 7b). In Fig. 7a, our
method shows much lower minimum regret than the baselines. It means that our acquisition function
in Eq. (2) works as intended, trying to select at each BO step the best configuration which is expected
to maximally improve the utility in future. Fig. 7b shows that the configurations chosen by our
method initially correspond to greater At (i.e., non-greedy), but gradually to the smaller At (i.e.,
greedy). It is because as the BO proceeds, the performance improvements of BO saturate, so the
cost of BO quickly dominates the trade-off, leading to smaller At even close to 0. Fig. 7c shows
the distribution of the top-10 most frequently selected configurations during the BO. As expected,
our method tends to focus only on a few configurations during the BO to maximize the short-term
performances, especially when the penalty is stronger with greater . On the other hand, the baselines
tend to overly explore the configurations even when the penalty is the strongest (o = 2e-04).

Effectiveness of our stopping criterion. We analyze the effectiveness of our stopping criterion in
Eq. (3), (4), and (5). Fig. 7d shows the normalized regret over the different values of 3, a mixing
coefficient between the two extreme stopping criteria, as discussed in §3.2. 8 — 0 corresponds to
the criterion used by the baselines which is only based on the estimated normalized regret, whereas
B8 — +oo corresponds to the hard thresholding only based on the PI. We can see that the optimal
criterion is achieved by smoothly mixing between the two (3 = e~!), demonstrating the superiority
of our stopping criterion to the one used by the baselines (3 — 0).

Experimental results on various utility functions. In real-world scenarios, any functional forms
of utility can be defined by various users. To investigate the effectiveness of CMBO on various
utility functions, we perform additional experiments on PD1 benchmark using three additional utility
functions as follows: 1) Staircase: U(b, %) = §p — >, &;1(b € Z;) where 1(-) is an indicator
function and Z; is the i-th interval, 2) Quadratic: U (b, %) = ¥, — &b, and 3) Square Root:
U(b,) = G — cb'/2. Here, @ is the scaled v so that it has a similar range to the « used in the linear
utility function (e.g., for the Quadratic utility function, we let & := a%). We randomly sample o’s
from the uniform distribution v ~ U (1e-05, 5e-03) to verify that the choice of a does not affect the
overall results. Furthermore, We estimate a utility function using ifBO by assuming that the user

Under review as a conference paper at ICLR 2025

Table 2: Results on the cost-sensitive multi-fidelity HPO setups with various utility functions (o« ~
U(1e-05, 5e-03) with staircase, quadratic, and square root function). We estimate a utility function using ifBO
by assuming that user wants better tradeoff than ifBO, denoted as “Estimated”. See §C for more details.

Estimated Staircase Quadratic Square Root
Method - a = 0.00292 a = 0.00436 o = 0.00076 a = 0.00459 a = 0.00283 o = 0.00378
Regret Rank Regret Rank Regret Rank Regret Rank Regret Rank Regret Rank Regret Rank

Random 25.5£77 69 252x17 7.5 262+ 7.5 16.6x1s 7.6 20309 7.3 268+i3 7.1 26312 7.0

BOHB 92+00 5.1 20.8+00 5.1 224400 52 12.1+06 52 17406 54 199z00 55 212403 5.3
DEHB 14.8:63 64 23.6+03 7.1 23.0+00 7.1 140401 7.5 187+12 69 199+09 6.0 19705 5.6
DyHPO 109+16 59 220412 6.5 23.0400 64 143123 6.7 187+12 69 20.1x22 57 203120 5.6
DPL 155+70 59 192400 44 20.8+00 43 11.8+19 4.8 16.5+08 4.7 17.6+12 49 18.6+1.1 4.8
ifBO 112415 63 209415 57 228+ 57 143+ 7.0 181+ 64 23.7+2s 73 253104 7.7
Quick-Tunet 19.5:00 4.8 21.3z00 6.9 244100 7.5 11.6400 4.5 173400 4.5 172400 34 17.6+00 34
FSBO T4+00 28 16700 24 19.1x00 24 8.0+00 24 1441400 23 16.8+00 4.6 188400 5.0

CMBO (ours) 2.1+00 1.0 2.0+02 1.0 0.9-+00 1.0 0.7 +00 1.0 0.7+00 1.0 S5.1+0a 1.0 4.6+00 1.0

wants to achieve better trade-off than the one obtained by ifBO, denoted as “Estimated”. See §C for
moore details. Table 2 shows that our CMBO consistently outperforms all the baselines on various
utility functions, showing that the superiority of our method is not affected by the types of utility
functions.

Ablation Studies. To evaluate the effectiveness of each Taple 3: Results of ablation study using
component, we conduct ablation studies on the proposed PD1 benchmark (« € {0, 4e-05, 2e-04)}.

stopping criterion (pp), acquisition function (Acq.), and
transfer learning (T.), with mixup strategy on the PD1

py Acq. T. a=0 a=4e05 «=2e-04

: CP . X X X 0.8+01 2.0+01 5.8+06
benchmark. 'For thq stopping criterion, wle elther usethe % % 02:00 1dsoo T
smoothly-mixed criterion with § = e~ as in our full x 0.2:00 12400 44400

method (py), or use the regret-based criterion with 5 — 0200 08200 0.9:00

0, the one used by the baselines (p;, X). For the acquisition

function, we either use Eq.(2) (Acq. v') or the acquisition function of ifBO (Rakotoarison et al.,
2024) (Acq. X). For transfer learning, we either use our surrogate trained with the proposed mixup
strategy (T. ') or the surrogate of ifBO (Rakotoarison et al., 2024) (T. X). The results in Table 3
show that the performance improves sequentially as each component is added, with more pronounced
improvements under strong penalties (o = 2e-4). Notably, the stopping criterion does not affect the
results in the conventional setting (v = 0).

Effectiveness on the real-world HPO. Lastly, Table 4: Results on the cost-sensitive multi-fidelity
we investigate the effectiveness of our method HPO (a = 0,4e — 05,2¢ — 04) setups with object
on real-world object-detection dataset, along detection datasets.

with estimating the utility function from the user

. Method a=0 a = 4e-05 a = 2e-04
preference data. From the 10 different datasets Regret Rank Regret Rank Regret Rank
from RoboFlowlOO (Clagha et al_’ 2022)’ we Random 5.0+13 6.5 T 1426 6.4 13.1426 6.5

. . BOHB 32410 52 48+10 53 10.7x10 54

collect 500 LCs of validation performances DEHB 5014 66 66:4 65 124115 66

by training three different network architec- DIYDISEO ‘ggﬂﬁ ig 1;-§t?5 2‘2 ﬁ-k” §’§
JIE14 3 DEl4 . AE13 .

tures, such as ResNet-50 (He et al., 2016), HR- ifBO 2305 43 39+0s 43 98+0s 44

Net (Wang et al., 2020), MobileNetv2 (San- %T ;?izs ‘3‘2 ggizz ‘3‘3 13233 451(2)
dler et al., 2018), with 4 different hyperparam- —— - - - - - -

. . CMBO (ours) 13:01 33 3.6:03 29 57w 14
eters (batch size, learning rate, momentum, and ——
weight decay factor). Based on this setting, we
construct 30 tasks (= 3 network architectures x 10 datasets) and split them into 20 / 10 tasks for
meta-training / meta-test, respectively. In Table 4, we can clearly see that our method consistently and
significantly outperforms all the baselines on this real-world dataset as well, on both the estimated
utility function and the linear utility functions with various c.

5 CONCLUSION

In this paper, we discussed cost-sensitive multi-fidelity BO, a novel framework for dramatically
improving the efficiency of HPO. Based on the assumption that users want to early-stop the BO when
the utility saturates, we explained how to achieve the maximum utility with our novel acquisition
function and the stopping criterion specifically tailored to this problem setup, as well as the novel
transfer learning method for training a sample efficient in-context LC extraploator. We empirically
demonstrated the effectiveness of our method over the previous multi-fidelity HPO and the transfer-
BO methods, with numerous empirical evidence strongly supporting our claim.

10

Under review as a conference paper at ICLR 2025

Reproducibility statement. All the implementation details are described throughout §D, E, and F.
We provide anonymized code in supplemental materials, and will publish the code upon acceptance.

Ethics statement. Our work presents a cost-sensitive multi-fidelity Bayesian Optimization method
designed to make HPO more accessible to users with limited computational resources. By allowing
users to define a utility function that balances performance improvements with computational cost,
our method enables more efficient optimization and early stopping when costs outweigh benefits.
This approach helps under-resourced individuals or organizations achieve competitive results without
excessive financial or computational burden, promoting inclusivity and reducing inequality in machine
learning research and practice.

REFERENCES

Majid Abdolshah, Alistair Shilton, Santu Rana, Sunil Gupta, and Svetha Venkatesh. Cost-aware
multi-objective bayesian optimisation. arXiv preprint arXiv:1909.03600, 2019.

Steven Adriaensen, Herilalaina Rakotoarison, Samuel Miiller, and Frank Hutter. Efficient bayesian
learning curve extrapolation using prior-data fitted networks. Advances in Neural Information
Processing Systems, 36, 2023.

Sebastian Pineda Arango, Fabio Ferreira, Arlind Kadra, Frank Hutter, and Josif Grabocka. Quick-
tune: Quickly learning which pretrained model to finetune and how. In The Twelfth International
Conference on Learning Representations, 2023.

Noor Awad, Neeratyoy Mallik, and Frank Hutter. Dehb: Evolutionary hyberband for scalable, robust
and efficient hyperparameter optimization. In Zhi-Hua Zhou (ed.), Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IICAI-21, pp. 2147-2153. International
Joint Conferences on Artificial Intelligence Organization, 8 2021. doi: 10.24963/ijcai.2021/296.
URL https://doi.org/10.24963/ijcai.2021/296. Main Track.

Tianyi Bai, Yang Li, Yu Shen, Xinyi Zhang, Wentao Zhang, and Bin Cui. Transfer learning for
bayesian optimization: A survey. arXiv preprint arXiv:2302.05927, 2023.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Accelerating neural architecture
search using performance prediction. arXiv preprint arXiv:1705.10823, 2017.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
machine learning research, 13(2), 2012.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Baldzs Kégl. Algorithms for hyper-parameter
optimization. Advances in neural information processing systems, 24, 2011.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324-345, 1952.

Floriana Ciaglia, Francesco Saverio Zuppichini, Paul Guerrie, Mark McQuade, and Jacob Solawetz.
Roboflow 100: A rich, multi-domain object detection benchmark. arXiv preprint arXiv:2211.13523,
2022.

Alexander I Cowen-Rivers, Wenlong Lyu, Rasul Tutunov, Zhi Wang, Antoine Grosnit, Ryan Rhys
Griffiths, Alexandre Max Maraval, Hao Jianye, Jun Wang, Jan Peters, et al. Hebo: Pushing the
limits of sample-efficient hyper-parameter optimisation. Journal of Artificial Intelligence Research,
74:1269-1349, 2022.

Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hyperparameter

optimization of deep neural networks by extrapolation of learning curves. In Twenty-fourth
international joint conference on artificial intelligence, 2015.

11

https://doi.org/10.24963/ijcai.2021/296

Under review as a conference paper at ICLR 2025

Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter op-
timization at scale. In International conference on machine learning, pp. 1437-1446. PMLR,
2018.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse
gradient-based hyperparameter optimization. In International Conference on Machine Learning,
pp- 1165-1173. PMLR, 2017.

Matilde Gargiani, Aaron Klein, Stefan Falkner, and Frank Hutter. Probabilistic rollouts for learning
curve extrapolation across hyperparameter settings. arXiv preprint arXiv:1910.04522, 2019.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami, and
Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and David
Sculley. Google vizier: A service for black-box optimization. In Proceedings of the 23rd ACM
SIGKDD international conference on knowledge discovery and data mining, pp. 1487-1495, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 770-778, 2016.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for
general algorithm configuration. In Learning and Intelligent Optimization: 5th International
Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected Papers 5, pp. 507-523. Springer,
2011.

Carl Hvarfner, Danny Stoll, Artur Souza, Marius Lindauer, Frank Hutter, and Luigi Nardi. \pi bo:
Augmenting acquisition functions with user beliefs for bayesian optimization. In International
Conference on Learning Representations, 2021.

Arlind Kadra, Maciej Janowski, Martin Wistuba, and Josif Grabocka. Scaling laws for hyperparameter
optimization. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Kirthevasan Kandasamy, Gautam Dasarathy, Barnabas Poczos, and Jeff Schneider. The multi-fidelity
multi-armed bandit. Advances in neural information processing systems, 29, 2016.

Kirthevasan Kandasamy, Gautam Dasarathy, Jeff Schneider, and Barnabas P6czos. Multi-fidelity
bayesian optimisation with continuous approximations. In International conference on machine
learning, pp. 1799-1808. PMLR, 2017.

Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed bandits.
In International conference on machine learning, pp. 1238-1246. PMLR, 2013.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. Fast bayesian
optimization of machine learning hyperparameters on large datasets. In Artificial intelligence and
statistics, pp. 528-536. PMLR, 2017a.

Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. Learning curve prediction
with bayesian neural networks. In International conference on learning representations, 2017b.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Eric Hans Lee, Valerio Perrone, Cedric Archambeau, and Matthias Seeger. Cost-aware bayesian
optimization. arXiv preprint arXiv:2003.10870, 2020.

Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Jonathan Ben-Tzur, Moritz Hardt,
Benjamin Recht, and Ameet Talwalkar. A system for massively parallel hyperparameter tuning.
Proceedings of Machine Learning and Systems, 2:230-246, 2020.

12

Under review as a conference paper at ICLR 2025

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning
Research, 18(185):1-52, 2018.

Anastasia Makarova, Huibin Shen, Valerio Perrone, Aaron Klein, Jean Baptiste Faddoul, Andreas
Krause, Matthias Seeger, and Cedric Archambeau. Automatic termination for hyperparameter
optimization. In International Conference on Automated Machine Learning, pp. 7-1. PMLR, 2022.

Neeratyoy Mallik, Edward Bergman, Carl Hvarfner, Danny Stoll, Maciej Janowski, Marius Lindauer,
Luigi Nardi, and Frank Hutter. Priorband: Practical hyperparameter optimization in the age of
deep learning. Advances in Neural Information Processing Systems, 36, 2024.

Luke Metz, Niru Maheswaranathan, Ruoxi Sun, C Daniel Freeman, Ben Poole, and Jascha Sohl-
Dickstein. Using a thousand optimization tasks to learn hyperparameter search strategies. arXiv
preprint arXiv:2002.11887, 2020.

J Mockus, V Tiesis, and A Zilinskas. The application of bayesian methods for seeking the extremum,
vol. 2. L Dixon and G Szego. Toward Global Optimization, 2, 1978.

Samuel Miiller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter.
Transformers can do bayesian inference. In International Conference on Learning Representations,
2021.

Samuel Miiller, Matthias Feurer, Noah Hollmann, and Frank Hutter. Pfns4bo: In-context learning
for bayesian optimization. In International Conference on Machine Learning, pp. 25444-25470.
PMLR, 2023.

Tung Nguyen and Aditya Grover. Transformer neural processes: Uncertainty-aware meta learning via
sequence modeling. In International Conference on Machine Learning, pp. 16569-16594. PMLR,
2022.

Valerio Perrone, Rodolphe Jenatton, Matthias W Seeger, and Cédric Archambeau. Scalable hyperpa-
rameter transfer learning. Advances in neural information processing systems, 31, 2018.

Matthias Poloczek, Jialei Wang, and Peter Frazier. Multi-information source optimization. Advances
in neural information processing systems, 30, 2017.

Herilalaina Rakotoarison, Steven Adriaensen, Neeratyoy Mallik, Samir Garibov, Edward Bergman,
and Frank Hutter. In-context freeze-thaw bayesian optimization for hyperparameter optimization.
arXiv preprint arXiv:2404.16795, 2024.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211-252, 2015. doi: 10.1007/s11263-015-0816-y.

David Salinas, Matthias Seeger, Aaron Klein, Valerio Perrone, Martin Wistuba, and Cedric Ar-
chambeau. Syne tune: A library for large scale hyperparameter tuning and reproducible re-
search. In International Conference on Automated Machine Learning, AutoML 2022, 2022. URL
https://proceedings.mlr.press/v188/salinas22a.html.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510-4520, 2018.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

Jasper Snoek, Kevin Swersky, Rich Zemel, and Ryan Adams. Input warping for bayesian optimization
of non-stationary functions. In International conference on machine learning, pp. 1674—1682.
PMLR, 2014.

13

https://proceedings.mlr.press/v188/salinas22a.html

Under review as a conference paper at ICLR 2025

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,
Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization using deep neural
networks. In International conference on machine learning, pp. 2171-2180. PMLR, 2015.

Artur Souza, Luigi Nardi, Leonardo B Oliveira, Kunle Olukotun, Marius Lindauer, and Frank
Hutter. Bayesian optimization with a prior for the optimum. In Machine Learning and Knowledge
Discovery in Databases. Research Track: European Conference, ECML PKDD 2021, Bilbao,
Spain, September 13—17, 2021, Proceedings, Part 111 21, pp. 265-296. Springer, 2021.

Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task bayesian optimization. Advances in
neural information processing systems, 26, 2013.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimization. arXiv
preprint arXiv:1406.3896, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu, Yadong
Mu, Mingkui Tan, Xinggang Wang, et al. Deep high-resolution representation learning for visual
recognition. IEEE transactions on pattern analysis and machine intelligence, 43(10):3349-3364,
2020.

Zi Wang, George E Dahl, Kevin Swersky, Chansoo Lee, Zachary Nado, Justin Gilmer, Jasper Snoek,
and Zoubin Ghahramani. Pre-trained gaussian processes for bayesian optimization. arXiv preprint
arXiv:2109.08215, 2021.

Ying Wei, Peilin Zhao, and Junzhou Huang. Meta-learning hyperparameter performance prediction
with neural processes. In International Conference on Machine Learning, pp. 11058-11067.
PMLR, 2021.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel learning.
In Artificial intelligence and statistics, pp. 370-378. PMLR, 2016.

Martin Wistuba and Josif Grabocka. Few-shot bayesian optimization with deep kernel surrogates. In
International Conference on Learning Representations, 2020.

Martin Wistuba and Tejaswini Pedapati. Learning to rank learning curves. In International Conference
on Machine Learning, pp. 10303-10312. PMLR, 2020.

Martin Wistuba, Arlind Kadra, and Josif Grabocka. Supervising the multi-fidelity race of hyperpa-
rameter configurations. Advances in Neural Information Processing Systems, 35:13470-13484,
2022.

Jian Wu and Peter I Frazier. Continuous-fidelity bayesian optimization with knowledge gradient.
2018.

Jian Wu, Saul Toscano-Palmerin, Peter I Frazier, and Andrew Gordon Wilson. Practical multi-fidelity
bayesian optimization for hyperparameter tuning. In Uncertainty in Artificial Intelligence, pp.
788-798. PMLR, 2020.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=r1Ddpl-Rb.

Lucas Zimmer, Marius Lindauer, and Frank Hutter. Auto-pytorch: Multi-fidelity metalearning for
efficient and robust autodl. IEEE transactions on pattern analysis and machine intelligence, 43(9):
3079-3090, 2021.

14

https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb

Under review as a conference paper at ICLR 2025

A RELATED WORK

Multi-fidelity HPO. Unlike traditional black-box approaches for HPO (Bergstra & Bengio, 2012;
Hutter et al., 2011; Bergstra et al., 2011; Snoek et al., 2012; 2015; 2014; Cowen-Rivers et al., 2022;
Miiller et al., 2023), multi-fidelity (or gray-box) HPO aims to optimize hyperparameters in a sample
efficient manner by utilizing low fidelity information (e.g., validation set performances with smaller
training dataset) as a proxy for higher or full fidelities (Swersky et al., 2013; Kandasamy et al.,
2016; Klein et al., 2017a; Poloczek et al., 2017; Kandasamy et al., 2017; Wu & Frazier, 2018;
Wu et al., 2020), dramatically speeding up the HPO. In this paper, we focus on making use of
performances at fewer training epochs to better predict/optimize the performances at longer training
epochs. One of the well-known examples is Hyperband (Li et al., 2018), a bandit-based method
that randomly selects a set of random hyperparameter configurations, and stops poorly performing
ones using successive halving (Karnin et al., 2013) even before reaching the last training epoch.
While Hyperband shows much better performance than random search (Bergstra & Bengio, 2012),
its computational or sample efficiency can be further improved by replacing random sampling of
configurations with Bayesian optimization (Falkner et al., 2018), adopting evolution strategy to
promote internal knowledge transfer (Awad et al., 2021), or making it asynchronously parallel (Li
et al., 2020).

Transfer BO. Transfer learning can be used for improving the sample efficiency of BO (Bai et al.,
2023), and here we list a few of them. Some of recent works explore scalable transfer learning with
deep neural networks (Perrone et al., 2018; Wistuba & Grabocka, 2020). Also, different components
of BO can be transferred such as observations (Swersky et al., 2013), surrogate functions (Golovin
et al., 2017; Wistuba & Grabocka, 2020), hyperparmater initializations (Wistuba & Grabocka, 2020),
or all of them (Wei et al., 2021). However, most of the existing transfer-BO approaches assume the
traditional black-box BO settings. To the best of our knowledge, Quick-Tune (Arango et al., 2023)
is the only recent work which targets multi-fidelity and transfer BO at the same time. However, as
mentioned above, their multi-fidelity BO formulation is greedy, whereas our transfer-BO method can
dynamically control the degree of greediness during the BO by explicitly taking into consideration
the trade-off between cost and performance of BO.

Cost-sensitive HPO. Multi-fidelity BO is inherently cost-sensitive since predictions get more
accurate as the gap between the fidelities becomes closer. However, the performance metric of such
vanilla multi-fidelity BO monotonically increases as we spend more budget, whereas in this paper we
want to find the optimal trade-off between the amount of budget spent thus far and the corresponding
intermediate performances of BO, thereby automatically early-stopping the BO around the maximal
utility. Quick-Tune (Arango et al., 2023) also suggests a cost-sensitive BO in multi-fidelity settings,
but unlike our work, their primary focus is to trade-off between the performance and the cost of BO
associated with pretrained models of various size, which can be seen as a generalization of more
traditional notion of cost-sensitive BO (Snoek et al., 2012; Abdolshah et al., 2019; Lee et al., 2020),
from black-box to multi-fidelity settings. In addition to the above discussion, Makarova et al. (2022)
propose a stopping criterion which terminates the BO when the suboptimality in optimizing validation
performance (instead of the test performance) is dominated by the statistical estimation error. Roughly
speaking, this stopping criterion can be seen as an instance of our utility-based stopping criteria,
where the user preference is not willing to spend further computational budgets after reaching the
certain BO performance. Furthermore, in this paper we focus on maximizing any possible utility
functions defined by user, instead of minimizing population error.

BO with user preference. Several works have tried to encode user’s initial belief on good hyperpa-
rameter configurations into BO frameworks (Souza et al., 2021; Hvarfner et al., 2021; Mallik et al.,
2024). On the othet hand, our paper suggests encoding user’s preference about the trade-off between
cost and performance of multi-fidelity BO. Therefore, the notion of user preference in this paper is
largely different from the previous literature.

15

Under review as a conference paper at ICLR 2025

B UTILITY ESTIMATION

As mentioned in the main paper, it is not easy for users to define or quantify their utilities. Here we
first briefly remind the notion of utility and then detail how we simulate the estimation of user utility
with Bradley-Terry (BT) model (Bradley & Terry, 1952).

Utility. A utility function U describes the trade-off between the BO step b and the BO performance
Jp. Its values U (b, §p) negatively correlate with b and positively with ¢,. For instance, we can
assume a linear utility function U (b,) = 4» — ab for some o > 0, such that the utility gives linear
incentives and penalties to the performance and number of BO steps, respectively.

Functional forms. In real-world scenario, however, one can have much more complex utility
function other than the above linear case. We therefore consider the following additional functional
forms including linear one: 1) Linear: UM (p) = § — ab, 2) Staircase: UG (b,) =
o — »_, a;1(b € A;) (1(-) is an indicator function, and A; is an i-th interval), 3) Quadratic:
U@ad) (b 5) = g, — ab?, and 4) Square Root: UM (b,) = 4, — ab'/?. In contrast to the
notation of main paper, we normalize the budget b by the allowed total computation budget B, i.e.,
b € [0,1] instead of b € {1,..., B}. Furthermore, we assume that these utility functions can be
linearly combined, e.g., U = w(lineanyliinear) o 4 4, (sa) 77 () | where w(linean) 4 4 qp(at) = 1,

Data collection. We now describe how we roughly estimate user utility based on the user preference
data pairs. First of all, we assume that it is possible for users to decide whether they prefer one point
to the other one, instead of quantifying their utility, i.e., we can collect user preference data. For
simulation, we assume that we are given these preference data generated by true utility function. True
utility function U is randomly defined by sampling penalizing coefficient from U(0, 1) and linear
combination coefficients from Dirichlet distribution. We randomly select meaningful data pairs from
b ~ U(0,1) and g, ~ U(0, 1). Here, meaningful data pairs means that one datapoint of each pair
is not trivially preferred by user, for example, one has larger performance ¢, with smaller budget b
than the other. A user then label their preference on these data pairs; for simulation, we label them by
using the true utility functions.

SPerfoimancae (yh)c
Performance (}7,4)=
c)Perfu:zmancge (%):
:Perfo:mancf (yb)°

<7|7erfo[7mancce (ib)c
Performance (}75)=
QPerforfmanc:e (h)o
:Perforimancge (}73):

Normalized Computational Budget (gi

—o9
ool 08]

Performance (ys)

Performance (y5)

Performance (yp)
° \\ c
2
s |\ e \9
\ ® \ “
Performance (§7y)

s I

Normalized Computational Budget (3) Normalized Computational Budget (3) Normalized Computational Budget (3) Normalized Computational Budget (3)

Figure 8: Contour plots of true utilities and their approximations. From left to right, the columns show
different functional forms of linear, quadratic, square root, and a combination of four different functions
including a staircase function. From top to bottom, the rows represent 30, 100, and 1000 user preference data
pairs.

16

Under review as a conference paper at ICLR 2025

Training details and results. As explained in the main paper, we use binary cross entropy loss
between the probability of preference described by the BT model in Eq. (1) and the label. In Fig. 2
of the main paper, we set w(5t@7<a5¢) o be 0. We begin by randomly initializing another utility
function to approximate a randomly sampled true utility function, setting the linear combination and
penalizing coefficients to % and 0.0001, respectively. We use gradient-based optimization algorithm
(e.g., SGD, L-FBGS) with 1000 iterations for optimizing the coefficients. The temperature term 7 in
Eq. (1) is set to 0.05.

In addition to Fig. 2, we perform other experiments on single utility functions such as linear, quadratic,
square root, and combination of the four functional forms we consider. Fig. 8 demonstrates that not
only can single utilities —linear, quadratic, and square root — be well approximated using preference
data, but even more complex utilities (e.g., a combination of four different utilities) can also be
accurately approximated. Furthermore, we found that the approximation works well even with smaller
numbers (e.g., 30, 100) of user preference data pairs for simple cases.

C UTILITY FUNCTION ESTIMATION FOR PD1

In this section, we explain the experimental details for utility
estimation denoted as “Estimated” in Table 2. Here, we assume
that the user wants to set the trade-off (between the cost and
performance of BO) to the trade-off achievable by running other
multi-fidelity HPO methods, such as ifBO (Rakotoarison et al.,
2024). Therefore, we run ifBO to all the meta-training tasks and
average those BO trajectories, obtaining a single BO trajectory
corresponding to the overall representative trade-off on the PD1
dataset.

Performance (yp)

WNorm;Izized C:)omputaot;onal Bal.:dget (éo)
Based on that single curve, we randomly sample many points Figure 9: The estimated utility
around that curve, such that all the points locate either upper function with the user preference
or bottom parts of the curve. Then, we can collect infinitely data. The solid line represents the av-
many pair of points by randomly picking one upper point and ~erage BO trajectory obtained by run-
one bottom point (with the constraint that the upper one should ning ifBO on the meta-training tasks,
be on the right side of the bottom one), and construct the user and the dotted lines show the corre-
preference data {(u1,u2)}. As a fitting function, we use an spondingly estimated utility function.
exponential function with bias term, i.e., U (b, §5) = g — @b +¢,

where o, a,c > 0.

Figure 9 shows the average BO trajectory obtained by running BOHB on the meta-training tasks
(solid black line), and the correspondingly estimated utility function (dotted blue lines). We can see
that the shape of the utility function fits reasonably well to the trajectory of ifBO.

D DETAILS ON BENCHMARKS AND DATA PREPROCESSING

In this section, we elaborate the details on the LC benchmarks and data preprocessing we have done.

LCBench We use [APSFailure, Amazon_employee_access, Australian, Fashion-MNIST, KDD-
Cup09_appetency, MiniBooNE, adult, airlines, albert, bank-marketing, blood-transfusion-service-
center, car, christine, cnae-9, connect-4, covertype, credit-g, dionis, fabert, helena] for training LC
extrapolator. We evaluate it on [higgs, jannis, jasmine, jungle_chess_2pcs_raw_endgame_complete,
kcl, kr-vs-kp, mfeat-factors, nomao, numerai28.6, phoneme, segment, shuttle, sylvine, vehicle,
volkert]. Each task contains 2000 LCs with 51 training epochs. We summarize the hyperparameter of
LCBench in Table 5.

17

Under review as a conference paper at ICLR 2025

Table 5: The 7 hyperparameters for LCBench tasks.

Name Type Vaules Info
batch_size integer (16, 51] log
learning_rate continuous [0.0001,0.1] log
max_dropout continuous [0.0,1.0]
max_units integer [64,1024] log
momentum continuous [0.1,0.99]
max_layers integer [1,5]

weight_decay continuous [le — 05,0.1]

TaskSet We use [rnn_text_classification_family_seed{19, 3, 46, 47, 59, 6, 66},

word_rnn_language_model_family_seed{22, 47, 48, 74, 76, 81},
char_rnn_language_model family_{seed19, 26, 31, 42, 48, 5, 74}] for training LC
extrapolator. We evaluate it on [rnn_text_classification_family_seed{8, 82, 89},

word_rnn_language_model_family_seed{84, 98, 99}, char_rnn_language_model_family_seed{84, 94,
96}]. Each task contains 1000 LCs with 50 training epochs. We summarize the hyperparameter of
TaskSet in Table 6.

Table 6: The 8 hyperparameters for Taskset tasks.

Name Type Vaules Info

learning_rate continuous [le — 09,10.0] log
betal continuous [0.0001, 1.0]
beta2 continuous [0.001,1.0]

epsilon continuous [le — 12,1000] log

11 continuous [le — 09,10.0] log

12 continuous [le — 09,10.0] log

linear_decay continuous [le — 08,0.0001] log

PD1 We use [uniref50_transformer_batch_size_128, Im1b_transformer_batch_size_2048,
imagenet_resnet_batch_size_256, mnist_max_pooling_cnn_tanh_batch_size 2048,
mnist_max_pooling_cnn_relu_batch_size_{2048, 256}, mnist_simple_cnn_batch_size_{2048, 256},
fashion_mnist_max_pooling_cnn_tanh_batch_size_2048, fashion_mnist_max_pooling_cnn_relu_batch_size_{2048,
256}, fashion_mnist_simple_cnn_batch_size_{2048, 256}, svhn_no_extra_wide_resnet_batch_size_1024,
cifar{100, 10} wide_resnet_batch_size_2048] for training LC extrapolator. We evaluate it on
[imagenet_resnet_batch_size_512, translate_wmt_xformer_translate_batch_size_64,
mnist_max_pooling_cnn_tanh_batch_size_256, fashion_mnist_max_pooling_cnn_tanh_batch_size 256,
svhn_no_extra_wide_resnet_batch_size_256, cifar100_wide_resnet_batch_size_256,
cifar10_wide_resnet_batch_size_256]. Each task contains 240 LCs with 50 training epochs. We
summarize the hyperparameter of PD1 in Table 7.

Table 7: The 8 hyperparameters for PD1 tasks.

Name Type Vaules Info
Ir_initial value continuous [le — 05,10.0] log
Ir_power continuous [0.1,2.0]
Ir_decay_steps_factor ~ continuous [0.01,0.99]
one_minus_momentum continuous [le — 05,1.0] log

Data Preprocessing As will be detailed in the §F, we use the 0-epoch LC value y,, o which is the
performance before taking any gradient steps. The 0-epoch LC values originally are not provided
except for LCBench; we use the log-loss of the first epoch as the 0-epoch LC value for TaskSet, as it
is already sufficiently large in our chosen tasks. For PD1, we interpolate the LCs to be the length
of 51 training epochs, and we take the first performance as the 0-epoch LC value. Furthermore,
we take the average over the 0-epoch LC values 3 since it is hard to have different initial values
among optimizer hyperparameter configurations in a task, without taking any gradient steps. For

18

Under review as a conference paper at ICLR 2025

transfer learning, we follow the convention of PFN (Adriaensen et al., 2023) for data preprocessing;
we consistently apply non-linear LC normalization® to the LC data of three benchmarks, which not
only maps either accuracy or log-loss LCs into [0, 1] but also simply make our optimization as a
maiximization problem. To facilitate transfer learning, we use the maximum and minimum values in
each task in LCBench and PD1 benchmark for the LC normalization. In TaskSet, we only use the g
for the LC normalization.

E DETAILS ON ARCHITECTURE AND TRAINING OF LC EXTRAPOLATOR

In the section, we elaborate our LC extrapolator model and how to train it on the learning curve
dataset.

Construction of Context and Query points. As mentioned earlier in §3.3, the whole training
pipeline of our learning curve extrapolator model can be seen an instance of TNPs (Nguyen & Grover,
2022). Here we can simulate each step of Bayesian Optimization; predicting the remaining part of
LC in all configurations conditioned on the set C of the collected partial LCs. To do so, we construct a
training task by randomly sampling context and query points from LC benchmark after the proposed
LC mixup as follows:

1. We choose a LC dataset Ly, = [I,}, 1. - - ZL7N]T € RN¥*T by randomly sampling m € [M].

2. From L,,, we randomly sample n1,...,nc € [N] and t1,...,tc € [T] and construct context
points of X(©) = [z ... 2] JT € RO*d= T() = [t /T, ... tc/T]" € R and Y(©) =
[Yny trs -+ s Unete] € REXL,

3. From L,,, we exclude ny, ...,nc € [N]and ty, ...,tc € [T] and randomly sample 77, ..., ng, €
[N] and #,,...,t, € [T] and construct query points of X (4 = [:CI,I,...,a:I,Q]T € R4,

T = [th)T,...,t/T)T € RY*! and Y@ = gt Yngyty] € RE*1,

Transformer for Predicting Learning Curves. From now on, we denote each row vec-
tor of the constructed context and query points with the lowercase, e.g., y(? of Y@, We
learn a Transformer-based learning curve extrapolator model which is a probabilistic model of
f(y@x () () y(e) x(@ 7)) Conditioned on any subsets of LCs (i.e., X(©), T(¢) and Y'(9)),
this model predicts a mini-batch of the remaining part of LCs of existing hyperparameter configura-
tions in a given dataset (i.e., V(@ of X(@ and T(9)). For the computational efficiency, we further
assume that the query points are independent to each other, as done in PFN (Adriaensen et al., 2023):

f(Y(q)|X(C),T(C),Y(C),X(Q),T(q)) — H f(y(4)|x(‘I),t(Q)’X(C)’T(C),Y(C))_ (6)

(@) t(a) y(a)

Before encoding the input into the Transformer, we first encode the input of X (¢), 7(¢) y() x(9),
and T using simple linear layer as follows:

H = XOW, + TOW, + Y Ow, (7)
HD = x@w, 4+ 17@Ow,, (8)

where W, € Ré=*dn W, € R4 and W, € R1*4n. Here, we abbreviate the bias term.

Then we concatenate the encoded represnetations of H (©) and H(@, and feedforward it into Trans-

former layer by treating each pair of each row vector of H(©) and H(?) as a separate position/token
as follows:

H = Transformer([H®); H® Mask]) € RM+N)xdn)
Y =Head(H) € RWM+N)xdo, (10)

3The details can be found in Appendix A of PEN (Adriaensen et al., 2023) and ht tps: //github.com/
automl/lcpfn/blob/main/lcpfn/utils.py.

19

https://arxiv.org/pdf/2310.20447
https://github.com/automl/lcpfn/blob/main/lcpfn/utils.py
https://github.com/automl/lcpfn/blob/main/lcpfn/utils.py

Under review as a conference paper at ICLR 2025

where Transformer(-) and Head(-) denote the Transformer layer and multi-layer perceptron (MLP)
for the output prediction, respectively. Mask € R(Ne+Na)x(Ne+Na) s the mask of transformer that
allows all the tokens to attend context tokens only. Here, the output dimension d, is specified by
output distribution of y. Following PFN (Adriaensen et al., 2023), we discretize the domain of y by
d, = 1000 and use the categorical distribution. Finally, we only take the output of the last N, tokens

as output, i.e., Y@ = Y[:, N, : (N, + N,)] € RNa*dn (PyTorch-style indexing operation), since
we only need the outputs of query tokens for modeling [] f(y(®|z(®), (@) x () () y(e)),

Training Objective. Our pre-training objective is then defined as follows:

arg;nin]Ep — Z logf(y(Q)|x(q),t(Q),X(C),T(C),Y(c)) + ApENLPEN, (11

(@) t(a) y(a)

where D, is the Kullback—Leibler divergence, and p is the empirical LC data distribution. We
additionally minimize Lppy With coefficient \pgy, Which is the LC extrapolation loss in each LC
(Adriaensen et al., 2023). We found Apgy = 0.1 works well for most cases. We use the stochastic
gradient descent algorithm to solve the above optimization problem.

Training Details. We sample 4 training tasks for each iteration, i.e., the size of meta mini-batch is
set to 4. We uniformly sample the size C' of context points from 1 to 300, and the size of query points
@ is set to 2048. Following PEN (Adriaensen et al., 2023), the hidden size of each Transformer block
dp,, the hidden size of feed-forward networks, the number of layers of Transformer, dropout rate are
set 1024, 2048, 12, 0.2. We use GeLU (Hendrycks & Gimpel, 2016). We train the extrapolator for
10,000 iterations on training split of each benchmark with Adam (Kingma & Ba, 2014) optimizer.
The /2 norm of meta mini-batch gradient is clipped to 1.0. The learning rate is linearly increased
to 2e-05 for 25000 iterations, and it is decreased with a cosine scheduling until the end. The whole
training process takes roughly 10 hours in one NVIDIA Tensor Core A100 GPU.

F ADDITIONAL DETAILS ON EXPERIMENTAL SETUPS
In this section, we elaborate additional details on the experimental setups.

0-epoch LC value. We assume the access of the 0-epoch LC value gy in §D which is the model
performance before taking gradient steps. This is also plausible for realistic scenarios since in most
deep-learning models one evaluation cost is acceptable in comparison to training costs. The 0-epoch
LC value g is always conditioned on our LC extrapolator f for both pretraining and BO stage.

Monte-Carlo (MC) sampling for reducing variance of LCs. As mentioned in §3.2, we estimate
the expectation of proposed acquisition function A in Eq. (2) with 1000 MC samples. We found
that each LC yy, +,.,. sampled from LC extrapolator f(-|z,,C) is noisy, due to the assumption that
query points of ¥, ¢, .. are independent to each other in Eq. (6). We compute ¢, ¢ by taking the
maximum among the last step BO performance (i.e., cumulative max operation), therefore, the quality
of estimation highly degenerates due to the noise in the small At. To prevent this, we reduce the
variance of MC samples by taking the average of the sampled LCs. For example, we sample 5000
LC samples from the LC extrapolator f, then we divide them into 1000 groups and take the average
among the 5 LC samples in each group. We empirically found that this stabilize the estimation of not
only acquisition function A and probability of utility improvement p;, in Eq. (5).

Inference Time for BO. In Table 8, we report aver-
age wall-clock time and standard deviation spent on BO
over 5 runs for PDL, ifBO, CMBO. For ifBO, we use the
same surrogate model provided in github but re-implement s NS — o
the BO process of ifBO based on our code base, which

. . s - . DPL 19444615 191.5+237 189.3+173
dramatically reduce the wall-clock time of original imple- {BO T4dsrs0 904o1m 2325110
mentation. We measure all the wall-clock times in one ~ CMBO (ours) 456.0+506 23431321 67.6155
NVIDIA Tensor Core A100 GPU using the same experi-
mental setups. ifBO is the most of efficient method among

Table 8: Wall-clock time (seconds) for BP
on LCBench, TaskSet, and PD1 datasets

20

Under review as a conference paper at ICLR 2025

them, but we believe that the difference between the wall-clock time of ifBO and CMBO is negligible
since training neural networks usually dominates the total wall-clock time spent for HPO.

Details on Baseline Implementation. We list the implementation detils for baselines as follows:

1. Random Search. Instead of randomly selecting a hyperparameter configuration for each BO step,
we run the selected configuration until the last epoch 7T'.

2. BOHB and DEHB. We follow the most recent implementation of these algorithms in Quick-
Tune (Arango et al., 2023). We slightly modify the official code*, which is heavily based on
SyneTune (Salinas et al., 2022) package.

3. DPL. We follow the official code® provided the authors of DPL (Kadra et al., 2023), and slightly
modify the benchmark implementation to incorporate our experimental setups.

4. ifBO. We follow the official code® provided the authors for surrogate model of ifBO (Rakotoarison
et al., 2024), and incorporate the surrogate model in our code base to be aligned with our
experimental setups.

5. DyHPO and Quick-Tune'. We follow the official code’ provided the authors of DyHPO (Wistuba
et al., 2022), and slightly modify the benchmark implementation to incorporate our experimental
setups. For Quick-Tune®, we pretrain the deep kernel GP for 50000 iterations with Adam optimizer
with mini-batch size of 512. The initial learning rate is set to 1e-03 and decayed with cosine
scheduling. To leverage the transfer learning scenario, we use the best configuration among the
LC datasets which is used for training the GP as an initial guess of BO.

6. FSBO. FSBO does not provide an official code, therefore, we follow an available code in the
internet®. We also slightly modify the benchmark implementation, and use the best configuration
among the LC datasets as an initial guess.

G CONNECTION BETWEEN OUR MIXUP STRATEGY WITH IFBO AND TNP

Our mixup strategy is reminiscent of the data generation scheme of ifBO (Rakotoarison et al., 2024),
a variant of PFNs for in-context freeze-thaw BO. Similarly to our ancestral sampling, ifBO first
samples random weights for a neural network (i.e., a prior distribution) to sample a correlation
between configurations (the first mixup step), and then linearly combines a set of basis functions
to generate LCs (the second mixup step). Our training method differs from ifBO in that our prior
distribution is implicitly defined by LC datasets and the mixup strategy, whereas ifBO resorts to a
manually defined distribution.

Indeed, our training method is more similar to Transformer Neural Processes (TNPs) (Nguyen &
Grover, 2022), a Transformer variant of Neural Processes (NPs) (Garnelo et al., 2018). Similarly to
PFNs, TNPs directly maximize the likelihood of target data given context data with a Transformer
architecture, which differs from the typical NP variants that summarize the context into a latent
variable and perform variational inference on it. Moreover, as with the other NP variants, TNPs
meta-learn a model over a distribution of tasks to perform sample efficient probabilistic inference. In
this vein, the whole training pipeline of our LC extrapolator can be seen as an instance of TNPs — we
also meta-learn a sample efficient Transformer-based LC extrapolator over the distribution of LCs
induced by the mixup strategy.

H ADDITIONAL EXPERIMENTAL RESULTS

Ablation Study on Cost Limits To understand the behavior of our method under varying cost limits
(or total computational budgets, i.e., B), we conducted additional experiments similar to those in Fig.
7b, varying the cost limits to 100, 200, and 300. Fig. 10 presents the distribution of the top-10 most
frequently chosen hyperparameter configurations throughout the optimization process. The results

*nttps://github.com/releaunifreiburg/QuickTune

5https ://github.com/releaunifreiburg/DPL
Shttps://github.com/automl/ifBO/tree/48ec25ed7997e653e2c5£4ffbd99eef60590£638
"nttps://github.com/releaunifreiburg/DyHPO
$https://github.com/releaunifreiburg/fsbo

21

https://github.com/releaunifreiburg/QuickTune
https://github.com/releaunifreiburg/DPL
https://github.com/automl/ifBO/tree/48ec25ed7997e653e2c5f4ffbd99eef60590f638
https://github.com/releaunifreiburg/DyHPO
https://github.com/releaunifreiburg/fsbo

Under review as a conference paper at ICLR 2025

1.0
100
0.8 w200
° 300
206
o
o
@ 0.4
s

0.2 k

0.0
0 2 4 6 8

HP Index Sorted by Freq. Ratio

Figure 10: The distribution of top-10 frequently chosen hyperparameter configuration throughout optimization.

clearly indicate that our method explores a wider variety of hyperparameter configurations when the
computational budget is large (B=300) but focuses on exploiting a smaller subset of configurations
when the budget is limited (B = 100).

Visualizations of the normalized regret over BO steps for LCBench (a = 4e-05), LCBench
(o = 2e-04), TaskSet (o = 4e-05), TaskSet (o« = 2e-04), PD1 (a = 4e-05), and PD1 (o = 2e-04)
are provided Figure 11, 12, 13, 14, 15, and 16, respectively.

Visualizations of the LC extrapolation over BO steps for LCBench, TaskSet, and PD1 are
provided Figure 17, 18, and 19, respectively. Here, we plot the LC extrapolation results of unseen
hyperparameter configurations through BO. Each row shows the results for a different size of the
observation set (|C| = 0, 10, 50, and 300), and each column shows a different size of context points
in each LC (0, 2, 5, 10, 20, and 30).

22

Under review as a conference paper at ICLR 2025

higgs jannis jasmine

Normalized Regret
Normalized Regret
Normalized Regret

0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Total Epochs Spent Total Epochs Spent Total Epochs Spent
jungle_chess_2pcs_raw_endgame_complete kel kr-vs-kp

= = o
o o [
= o o
& & &
° o o
& i 2
© © ©
£ £ E
S S S
= = =
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Total Epochs Spent Total Epochs Spent Total Epochs Spent

mfeat-factors nomao numerai28.6

g g B0 = |
= o 01 o
& 9! g
o ° o -2
g 8 £
© © ©
E E o E 1o
2 2 2
1074
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Total Epochs Spent Total Epochs Spent Total Epochs Spent
phoneme segment shuttle
10°
° ° °
<) 517 <)
17 U 5 Q
o o L o
T T 102 5 k- ©
N N { _— N
£ E \ - £
5 £ / 5
=4 =4 =2
}/
1074
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Total Epochs Spent Total Epochs Spent Total Epochs Spent
sylvine vehicle volkert
10°
o o o
o o S
g g0 g
o o o
° o o
[UJ [
N N N
© © 1072 ©
E E E
=} o (=}
=4 =4 =2
1073
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Total Epochs Spent Total Epochs Spent Total Epochs Spent
= Random e BOHB e DEHB @ DyHPO DPL — fBO @ Quick-Tune? e FSBO = CMBO (ours)

Figure 11: Visualization of the normalized regret over BO steps on LCBench (o =4e-05).

23

Under review as a conference paper at ICLR 2025

jannis jasmine

Normalized Regret
Normalized Regret
g
Normalized Regret

0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Total Epochs Spent Total Epochs Spent Total Epochs Spent
jungle_chess_2pcs_raw_endgame_complete kel kr-vs-kp

= o =
o o o
o o o
L7 [7
o -4 o«
e o o
[[[
N N N
© © ‘©
£ g 107 €
S S S
= = =
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Total Epochs Spent Total Epochs Spent Total Epochs Spent
mfeat-factors nomao numerai28.6
= o =
o o o
o o i
173 U 7
4 -4 -4
e o e
[[[
N N N
© © ©
£ £ E
(=} o (=}
= = =
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Total Epochs Spent Total Epochs Spent Total Epochs Spent
phoneme segment shuttle
= = =
o o S
= o i=J
17 U 7
4 -4 4
e ° e
[o [
N N N
© © ©
E E E
2 210 2
|
\
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Total Epochs Spent Total Epochs Spent Total Epochs Spent
sylvine vehicle volkert
10°
= o =
o o IS
= o o
Q QU Q
-4 o 107! o
° o o
[[[
N N N
© © ©
£ E £
S S0 s
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Total Epochs Spent Total Epochs Spent Total Epochs Spent
= Random e BOHB e DEHB @ DyHPO DPL — fBO e Quick-Tune? e FSBO e CMBO (ours)

Figure 12: Visualization of the normalized regret over BO steps on LCBench (v =2e-04).

24

Under review as a conference paper at ICLR 2025

rn_text_classification_family_seeds mn_text_classification_family_seed82 rnn_text_classification_family_seed89

o o o
o o o
o o o
L7 [7
4 -4 o«
e o o
[[[
N N N
© © ©
E E E
o o o
=4 =z 2
— N
1072 i * -
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Total Epochs Spent Total Epochs Spent Total Epochs Spent
word_rnn_language_model_family_seed84 . word_mn_language_model_family seed98 word_rnn_language_model_family_seed99
10 == = = =
= o
g g . g1
° kel 10 kel
i I i
] S S
= Z 107 =102
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Total Epochs Spent Total Epochs Spent Total Epochs Spent
char_rnn_language_model_family_seed84 char_rn_language_model_family_seed94 5 char_rnn_language_model_family_seed96
100 10 == = = =
= o o
g g 3
o o o
& & 10 &
o ° -
& & 2
© © ©
E £ E
o o o
z Z 0 =
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Total Epochs Spent Total Epochs Spent Total Epochs Spent
= Random = BOHB s DEHB @ DyHPO DPL — ifBO e Quick-Tune’ w— FSBO @ CMBO (ours)

Figure 13: Visualization of the normalized regret over BO steps on TaskSet (a =4e-05).

rnn_text_classification_family_seeds mn_text_classification_family_seed82 rn_text_classification_family_seed89

e g g
g o >
o & 4
e hel e
[[(7]
N N N
© © ©
E £ £
o o o
= = =
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Total Epochs Spent Total Epochs Spent Total Epochs Spent

word_rnn_language_model_family_seed84 word_rnn_language_model_family_seed98 word_rnn_language_model_family_seed99

Normalized Regret
Normalized Regret
g
Normalized Regret

0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Total Epochs Spent Total Epochs Spent Total Epochs Spent
char_mn_language_model_family_seed84 char_mn_language_model_family_seed94 char_mn_language_model_family_seed96

e g g
o o o
7 [Q
4 -4 4
e o e
[[[
N N N
© © ‘©
E E £
o o o
P4 =2 2
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Total Epochs Spent Total Epochs Spent Total Epochs Spent
e Random em== BOHB === DEHB e=== DyHPO DPL === {fB0 === Quick-Tune’ = FSBO e CMBO (ours)

Figure 14: Visualization of the normalized regret over BO steps on TaskSet (o« =2e-04).

25

Under review as a conference paper at ICLR 2025

imagenet_resnet_batch_size_512 translate_wmt_xformer_translate_batch_size_64 mnist_max_pooling_cnn_tanh_batch_size_256
100
8o g g
o o o
7 [Q
4 ;o 4
g~ 3 3
N N N
© © ©
E o £ E
o o o
= = =
10
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Total Epochs Spent Total Epochs Spent Total Epochs Spent
fashion_mnist_max_pooling_cnn_tanh_batch_size_256 svhn_no_extra_wide_resnet_batch_size_256 5 Cifar100_wide_resnet_batch_size_256
10
107
\ -
@ g g
o o o
& & &
° ° - 107!
o B &
© © ©
£ € 102 €
o o S
= = =
102
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Total Epochs Spent Total Epochs Spent Total Epochs Spent
cifar10_wide_resnet_batch_size_256
-
o
101
-4
o
o
N
©
E
S10?
0 50 100 150 200 250 300
Total Epochs Spent
= Random = BOHB s DEHB @ DyHPO DPL e {fBO e Quick-Tune w— FSBO @ CMBO (ours)

Figure 15: Visualization of the normalized regret over BO steps on PD1 (o =4e-05).

imagenet_resnet_batch_size 512 translate_wmt_xformer translate_batch_size_64 mnist_max_pooling_cnn_tanh_batch_size_256
00

Normalized Regret
Normalized Regret
Normalized Regret

0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Total Epochs Spent Total Epochs Spent Total Epochs Spent
fashion_mnist_max_pooling_cnn_tanh_batch_size_256 svhn_no_extra_wide._resnet_batch_size 256 | Cifar100 wide resnet batch size 256
. 10 — ——
107 \)
g g g
o o o
& & & .
o - S0
i i i
© © ©
E E E
S S 1072 S
= = Z 102
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Total Epochs Spent Total Epochs Spent Total Epochs Spent
cifar10_wide_resnet_batch_size_256
g
o
[
-4
o
[
N
©
E
o
=2
0 50 100 150 200 250 300
Total Epochs Spent
e Random e BOHB @=== DEHB === DyHPO DPL e=== {fBO === Quick-Tune® s FSBO === CMBO (ours)

Figure 16: Visualization of the normalized regret over BO steps on PD1 (. =2e-04).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

10 ‘ ‘
08
J—
— A
o o
il 7
S o
02
0
10 ‘ ‘
o
So
Il /

1110
) |
11

111

)
)

Context Points in LC: 0 # Context Points in LC: 2 # Context Points in LC: 5 # Context Points in LC: 10 # Context Points in LC: 20

Context Points in LC: 30

i e

|

P
4

Context Points in LC: 0 # Context Points in LC: 2

#

Context Points in LC: 5 # Context Points in LC: 10 # Context Points in LC: 20

Context Points in LC: 30

e
YY)

||
N
N

Figure 17: Visualization of LC extrapolation over BO steps on LCBench.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Context Points in LC: 0 # Context Points in LC: 2 # Context Points in LC: 5 # Context Points in LC: 10 # Context Points in LC: 20

Context Points in LC: 30

|c|=10

Qo5 |
It
Toa |
02
00
10
08
=3
S 06 |
Il
Il
T4 |
02
00
o 10 20 3 4 00 10 20 30 4 500 10 20 30 4 500 10 20 30 40 500 10 20 30 40 500 10 20 30 40 50
o # Context Points in LC: 0 # Context Points in LC: 2 # Context Points in LC: 5 # Context Points in LC: 10 # Context Points in LC: 20 # Context Points in LC: 30
08
© 06
It
Tos [—
= | " _—_
02
00
10
08
S os
It
Toa —_— =
02
00
10
08
Qos
It
E’“‘f_ e 5 = -
02
00
10
08
=3
S o6
Il
It
oo
= F s - - -
02
00
o 10 20 3 4 00 10 20 30 4 500 10 20 30 4 500 10 20 30 40 500 10 20 30 4 500 10 20 30 40 50

Figure 18: Visualization of LC extrapolation over BO steps on TaskSet.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

lcl=0

|c|=10

|c] =50

|| = 300

Icl=0

|c]=10

|c] =50

|| =300

10

0

Context Points in LC: 0

10

Context Points in LC: 0

Context Points in LC: 2 # Context Points in LC: 5

f

—~

—~

~

Context Points in LC: 2 # Context Points in LC: 5

=
-
i =

Context Points in LC: 10

Ff_‘—

Context Points in LC: 20

Context Points in LC: 30

o 10 20 30 4 50

Context Points in LC: 10

(_
[
/

(—

0o 10 20 30 40 50

Context Points in LC: 20

T P

o 10 20

30

40

50

Context Points in LC: 30

ﬁ

Figure 19: Visualization of LC extrapolation over BO steps on PD1.

29

S .

	Introduction
	Related Work
	Approach
	Backgrounds and Utility Function
	Cost-sensitive Multi-fidelity BO
	Transfer Learning of LC Extrapolation

	Experiments
	Analysis

	Conclusion
	Related Work
	Utility Estimation
	Utility Function Estimation for PD1
	Details on Benchmarks and Data Preprocessing
	Details on Architecture and Training of LC Extrapolator
	Additional Details on Experimental Setups
	Connection between our Mixup Strategy with ifBO and TNP
	Additional Experimental Results

