Under review as a conference paper at ICLR 2026

MULTIPLICATIVE DIFFUSION MODELS:
BEYOND GAUSSIAN LATENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a new class of generative models based on multiplicative score-driven
diffusion. In contrast to classical diffusion models that rely on additive Gaussian
noise, our construction is driven by skew-symmetric multiplicative noise. It yields
conservative forward-backward dynamics inspired by the principles of physics.
We prove that the forward process converges exponentially fast to a tractable
non-Gaussian latent distribution, and we characterize this limit explicitly. A key
property of our diffusion is that it preserves the distribution of data norms, resulting
in a latent space that is inherently data-aware. Unlike the standard Gaussian prior,
this structure better adapts to heavy-tailed and anisotropic data, providing a closer
match between latent and observed distributions. On the algorithmic side, we
derive the reverse-time stochastic differential equation and associated probability
flow, and show that sliced score matching furnishes a consistent estimator for the
backward dynamics. This estimation procedure is equivalent to maximizing an
evidence lower bound (ELBO), bridging our framework with established variational
principles. Empirically, we demonstrate the advantages of our model in challenging
settings, including correlated Cauchy distributions and experimental fluid dynamics
images (d = 1024). Across these tasks, our approach more accurately captures
extreme events and tail behavior than classical diffusion models, particularly in the
low-data regime. Our results suggest that multiplicative conservative diffusions
open a principled alternative to current score-based generative models, with strong
potential for domains where rare but critical events dominate.

1 INTRODUCTION

athematically equivalent (Song et al.| [2021)), diffusion models and score-based generative models
demonstrate impressive skills and are among the current state-of-the-art for the generation of two-
and three-dimensional images. Unconditioned sampling scores can be easily modified to conditioned
sampling scores to address various inverse problems (Rybchuk et al., 2023} |Rozet & Louppel [2023];
Daras et al., 2024; [Bao et al.,|2025). However, both learning and inference come with significant
computational costs. In addition, even with large computational power, the generation of rare and
extreme events remains a difficult task (Li et al.| [2024; [Stamatelopoulos & Sapsis}, [2025). Those
generative Al challenges may be more easily addressed by introducing physical-based inductive bias
in the fully-data-driven approaches. In this paper, we take inspiration from physics and its conservative
structure to build a multiplicative score-based generative model. It is inspired by transport noises in
fluid dynamics (Kraichnan, 1968} [Brzezniak et al.,|1991; Klyatskin, |1994; |Piterbarg & Ostrovskii,
1997; Mikulevicius & Rozovskii, [2004; [ Méminl 2014; Holm, [2015}; Resseguier et al.,|2021; |Zhen
et al., 2023) and, more generally, from slow-fast systems with multiplicative noise (Majda et al.,
1999; [Franzke et al., 2005} |Gottwald & Melbourne, 2013} |Gottwald & Harlim| |2013). Transport noise
models may be understood as generative models based on stochastic fluid dynamics rather than fitted
neural networks. As other generative models, they suit particularly well to Bayesian inverse problems
(Cotter et al.,|2020bza; |[Resseguier et al., 2022; Dufée et al., 2022).

Here, we might address problems outside the scope of fluid dynamics, though keeping the conservative
structure of transport noise. The noising and denoising procedures that we propose maintain a part of
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the data information: the distribution of norm of the data point. The latent distribution is hence both
tractable and close to the data distribution. ore specifically, our contributions are the following.

New generative model paradigm: We introduce a new type of diffusion model where the noising
process is multiplicative. We call it a Multiplicative Score-based Generative Model (MSGM).
Involving random rotations around the origin, it greatly differs from previous diffusion models and
opens a new research path. The key aspects are summarized in Figure[T]

Deep theoretical analysis of MSGM: Assuming a skew-symmetric structure and a rank condition
for this noise, we proved several theoretical results, guiding the use of this new generative tool. The
first theorem provides the Fokker-Planck equation of forward diffusion and its invariant measures.
Then, we separately analyze the norm and direction of the diffusion. The norm is steady, whereas the
direction follows a similar multiplicative stochastic differential equation (SDE). Two other theorems
show that distributions of the direction and thus of the whole diffusion converge exponentially fast to
a white noise in the weak sense. Asymptotically, the norm and direction are independent, and the
latter is uniformly distributed over the d-sphere.

General algorithm for MSGM: We propose to estimate the scaled diffusion score by a neural
network using sliced score matching, and our last theorem shows that it is equivalent to maximizing
the ELBO. Sampling the non-Gaussian latent vectors reduces to a one-dimensional problem that we
address with eCDF. For the denoising process, both SDE and ordinary differential equation (ODE)
formulations are proposed.

Application to extremes in moderate dimension: We propose a numerical procedure to mimic
the heavy-tail distribution with MSGM. We add a first layer to the neural network to perform a
spherical decomposition with log-norm, and the latent distribution is characterized by the law of
the data log-norm. Compared numerically with a standard diffusion model, MSGM better mimics
multidimensional Cauchy distributions and measured fluid vorticity. The proximity between latent
and data distributions facilitates the forward and the backward diffusions, and implicitly encompasses
the correct distribution tail decays.

Application in high dimension: As a first step, we focus on MSGM scalability and design of sparse
underlying tensors in the diffusion. While the latter is not covered completely by the theoretical
analysis, our numerical experiments show promising image generation results.

N
forward SDE:  d@s = G(;s) odB,

SGM (additive noise)
-
dt +vV2(ae (&, T — t)dt 4+ 0dB,)

target space

forward SDE: dzs = —;sds ++v20dB,

Figure 1: Illustration of multiplicative score-based generative modeling (ours) compared to additive
score-based generative modeling.
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2 ADDITIVE SCORE-BASED GENERATIVE MODEL

2.1 FORWARD AND BACKWARD SDES

Diffusion models or score-based generative models (SGM) can be expressed in continuous time with
stochastic differential equation (SDE) (Song et al.,[2021)). The forward SDE is

.
dz s = —x 4ds + V2dB,, Q2.1

N
where 5:)5 € R? is distributed according to some density ps for s > 0, s — B, is d—dimensional

Brownian motion, and 30 distributed according to the dataset of interest. It is an Ornstein-Uhlenbeck
process: the continuous-time version of a first-order autoregressive (AR) model and the distribution
ps convergences to a standard Gaussian density exponentially for s — oo, e.g. in total variation or
Wasserstein distance. We can then define for ¢ € [0, T'] the backward equation

-
dx, = T,dt + 2V log pr_.(,)dt + V2dBy, (2.2)

-
with t — B, another d—dimensional Brownian motion and Eo ~ pr (identifying the density pr

with its distribution). Then for any s € [0, T, <a_cT_S and 3;3 have the same law p,. In practice, when
an approximate score V log pr_, is available we initialize equation with a standard Gaussian

distribution Ty ~ N (0, I;) and integrate the backward SDE from¢ =0tot =T (i.e. froms =T
to s = 0), ideally letting <a_cT become statistically similar to our dataset of interest.

2.2 A NEURAL NETWORK TO FIT THE SCORE

In practice, the score V log pr—:(x) is approximated by a surrogate model, sg(x, T —t), e.g., a fitted

artificial neural network (ANN). Alternatively, one can work on ag(x, T — t) = \/2sg(x, T — t)
(Huang et al.| 2021)). For large-dimensional problems, [Song et al.[(2020) proposes to learn this neural
network by Sliced Score Matching (SSM). Here, ag is obtained by minimizing the loss function

T
Eggﬁ\f(@):/o E; Evoraa) |3llae(@,s)l> + (v- V)(V2a(Zs,5) = T,) - v)| ds. (2.3)

where ||.|| is the Euclidean norm, Rad(d) denotes the d-dimensional Rademacher distribution and
[E is the expectation along each path realization 55. Appendix @ details the most common score
maiching losses and their link to the concept of the Evidence Lower Bound (ELBO).

3  MULTIPLICATIVE SCORE-BASED GENERATIVE MODEL

Rather than relying on additive SDE equation 2.1 we propose a multiplicative SDE and the associated
score-based generative model. Taking inspiration from physics, this approach introduces physical-
based inductive bias and yields tractable latent distributions closer to the dataset distribution. In
this section, we introduce our forward SDE based on skew-symmetric multiplicative noise, its
corresponding latents, and backward SDE and analyze the limit properties of the process distribution.
To share didactic similarities of the forward and backward processes as in the additive noise case, we

will keep the same notation for the forward process 25 and the backward process Zs, respectively.

3.1 FORWARD SDE

Instead of considering a forward SDE with additive noise, we rely on multiplicative noise model

.

de, = G(x,) o dB,, 3.1

where d > 2, G : R? — R%*4 ig linear and o stands for the Stratonovich notation. The readers
—

unfamiliar with this notation may interpret the Stratonovich noise s — od B as a process with short

correlation time but respecting the usual rules of differential calculus — says the chain rule. The

discretized version of equation[3.1]— with an infinitely small time step ds — may also provide insight:
— — - -

N @srds — Ts—ds) = G(%4) 4 (Byyas — Bo_as)- 3.2)
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For deeper understanding, Appendix [B]recalls some important notions of stochastic calculus, including
the Stratonovich notation and the relationship to It6 calculus. Let G be represented by a third-order

tensor [GF ;] € R%% and define the random matrix Z, = _, Gk( s)k- Then, equationcan
be written more explicitly as:
d
i3, = 3 (G*3,)(odB,) ZGk odB,) @ = 0dZ, By ~ Y Zoras — Zo-as)Bsy (33)
k=1

where the time increments of the random matrix, odZ, ~ = (Zé+ds — Zs_4s), are uncorrelated.
Additionally, we will impose two assumptions valid throughout the paper:

Skew-symmetry : For any k € {1,...,d}, the matrix G* = (Gﬁj)i,j is skew-symmetric. (A1)

Rank condition : For any € R\ {0}, rank(G(x)) = d — 1. (A2)

In particular equation [3.1] does not describe a geometric Brownian motion, as the noise term Z
is not diagonal. It includes zeros on the diagonal due to the skew-symmetry of G*. A geometric

N
Brownian motion would necessitates Z, = diag(B;). A strategy to obtain a tensor G that matches
assumptions|A 1{and |A2|will be discussed in Section@ By linearity, the skew-symmetry of all G*
(assumption |A 1) implies the skew-symmetry of the whole multiplicative noise matrix odZ,. This
structure is inspired by transport noises in fluid dynamics (Kraichnanl |1968; |Piterbarg & Ostrovskii,

1997; |Resseguier et al., 2021). In this analogy, 55 would represent an image of temperature, advected
by an incompressible fluid flow. Incompressibility leads to the skew-symmetry of the advection

operator, and eventually to energy conservation of x ;. Here, we might address problems outside the
scope of fluid dynamics, though maintaining the noise skew-symmetry (assumption[AT) and thus the
energy conservation, as discussed in Section 3.2}

With assumption the noise spreads in a large space: Im(G(?c)S)) = w . It ensures sufficient
variability in the noising process and, in turn, a tractable distribution for a:T when 7" becomes large.

Theorem 3.1.1. Let the assumptions[A1|and[A2| hold. Then, the Fokker-Planck equation of equa-
tion[31l reads

0
%ps(w) = V.- (%S(w)vlps(m)) y TE Rdv 3.4

with conditional noise covariance X (x) := G(x)G(x)T and V | denoting the orthogonal projection
of nabla ¥ on the tangent plane x™, i.e

Vi = (Ig—z"(x")T)V, (3.5)

for ™ with x € D = R%\ {0} and 0 otherwise, the unit vector orthogonal to the
d-sphere. oreover, any stationary density p~. of equation is rotation-invariant on R

The proof is detailed in Appendix [D.2] In order to highlight the connection to diffusion mod-
els on Riemannian manifolds, we note that V_is the Riemannian gradient on the unit d-sphere:
St = {x € RY| ||z|| = 1}, see Appendix For a possible extension of the considered
diffusion equation[3.I]to the case of non-zero drift, we refer to section[D.6}

3.2 DYNAMICS OF NORM AND DIRECTION

We now consider for any s > 0 and :_53 2 0, the spherical decomposition

— — =N . —n — — _
z,=|x|z, with z, :=z,/|x,| S (3.6)
First, we note that the norm, stH, remains constant throughout the noising process. Indeed, the
skew-symmetry of odZ implies that dzs = odZszs is orthogonal to 58 and hence:

d|z,|> =22, -odz, =0, Vs>0. (3.7)

- = — — d—1 .

Consequently, ||z s|| = ||zol|- The vector s moves randomly on ||x(||S*~*, the d-sphere of radius
Hzo |l. Therefore, the distribution of the norms of the latent variable is exactly the distribution of
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the norms of the points of the dataset. We refer to Appendix [D.3]|for more details. This property
will have important consequences for our learning procedure and on the possibility of generating
extreme events. Indeed, the property of likely large norm events will be conserved along the diffusion.
In particular, the norm distribution is one-dimensional and we can rely on advanced techniques
available for this setup, without worrying about the curse of dimensionality. In practice, we will
fit the distribution of the log-norm, F.g | |., with eCDF. We refer to AppendixE] for details and an
overview of sampling from one-dimensional distributions.

We now focus on p7, the distribution of the direction, :_cf, in particular as s — oo. For better
readability, we postpone the full discussion and the main theorems to Appendix [D.4] Lemmal[D.4.T]
introduces the Fokker-Planck equation of the direction on S?~! and its unique invariant measure,
5. Then, Theorem@] shows the exponential convergence of the initial distribution pj to p2,
the uniform distribution on the unit sphere S*~!. Consequently, since S*~! is compact, this implies

. o . . . . —n —n —
convergence in total variation of p” to ™% and convergence in distribution of ; to &, ~ U(S41).

3.3 NON-GAUSSIAN LATENT SPACE

In this section, we characterize the generally non-Gaussian latent distribution. Although this sounds
intractable at first glance, it will turn out that we can easily sample it.

In general, the latent space of MSGM is not Gaussian. It becomes Gaussian if and only if the
distribution of the squared norms of the dataset points has x? distributions with d degrees of freedom
(see Appendix [E.2). This property differs from the usual SGM. SGM latent variables are Gaussian,
leading to x? distributions for the norms of the latent variables regardless of the data set. According
to|Lafon et al.|(2023)), without a heavy tail distribution for the latent variables, it is unlikely that the
final samples will be generated with a heavy tail distribution, at least with variational autoencoders
(VAE). With our approach, the distribution of the norms of the latent variables has heavy tails if
and only if the distribution of the norms of dataset points has heavy tails. Therefore, we expect a
significant improvement from our method in generating extreme events. In fact, for heavy-tailed data
the KL divergence to the SGM latent distribution is infinite, whereas MSGM yields a finite value,
see Appendix [E.6] ore generally, Appendix [E.5|shows that the KL divergence from data to the latent
distribution is always smaller under MSGM than SGM. So, only few time steps may be sufficient to
integrate the forward and the backward MSGM diffusions. In any case, the MSGM latent vectors
are still white noise in the weak sense (see Appendix [E.T). Moreover, the norm and direction are
independent from each other, which will drastically facilitate the sampling procedure. These results
hold for latent vectors &, ~ po. In practice, integrations of forward and backward diffusions are
only possible over a finite time 7. However, the following theorem states that the law of the solution,

zT, will become close to p., exponentially as fast as 7" — +o0o. So, we can confidently rely on
finite-time integration.
Theorem 3.3.1. Let assumptionsand hold. Let 30 ~ po € C*(D) and let p|.| be the (radial)

density of ||z || Then, the Fokker-Planck equationhas a unique solution ps; € C*(D) N L*(D)
forall s > 0. Moreover, the Fokker-Planck equation has the stationary distribution

N o (ll)) 1
@) = e 5

(3.8)

. - —n . . .
In particular, ||z || and @, are asymptotically independent for s — +00. oreover, there exists

a = a(G,d) > 0 such that

s _poo”%Z(]Rd) < exp(—as)|lpo — pooH%de)- (3.9

The proof and details on « are given in Appendix [D.5|and a specific case is discussed in Appendix
The factor ||z||*~¢ in equation|3.8]is expected. Indeed, ﬁ% is the volume of the scaled d-sphere
||||S¢=1, i.e. it corresponds to the uniform distribution on the scaled d-sphere ||||S%*.

We will now consider the practical question on how to draw samples from the latent distribution
with density po, from equation[3.8] It is of product structure between the radial and the directional
component. So, we can sample the norm R, and the direction ?E:O separately and multiply them. The
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norm R, can be sampled from an one-dimensional approximation of the data norm (see Appendix [C)

n N
and the direction zoo is uniform. So, we can sample a zoo ~ N(0, I;) and set

n n N N ~ N
Too = R, with @, =2, /|C], Re=/(Zxl) (3.10)
and f(r) := exp (Flggl.|5<FX2(d) (r2))) —€e, Vr>0. 3.11)

—N — .. . .
If x_ =0, we set £, = 0. Proposition |E.3.2{shows that this procedure leads to samples with the
correct distribution, up to the approximation of the log-norm CDF Fiog | |. = Flog|.|.. Oreover, the

. - — . . . .
direct map Fjog ||, can transform a latent vector, &, into a Gaussian one (see Appendix . This
transformation may be useful for future applications like inverse problems or time evolution fittings.

3.4 REVERSE ODE/SDE AND SCORE MATCHING

From the Itd forward SDE (see Lemma[D.1.2)), we know that the Stratonovich reverse SDE writes

-
dz, = G(T,) <G(§mv1og pr—i(y)dt + odBt) , (3.12)
and the reverse probability flow ODE is given as
d;t 1 — — T —
2t~ 16(@1) (G(@) TV Iogpr-i(z1) ) (3.13)

The corresponding derivations are formulated in Proposition [F.I]and Proposition[F2]and are proven in
the appendix using |Anderson| (1982);|Song et al.|(2021). Following [Huang et al.|(2021), we directly
model G(;t)TV log pT,t(gt) by a neural network ag(gt, T — t). Additionally, we incorporate a
spherical input layer, see Appendix We fit the parameters 6 by sliced score matching (SSM)
(Song et al.| |2020), because in the multiplicative case we do not have an analytic formula for the
conditional score V log py (s | %) and because of the better scalability of SSM to high-dimensional
problems that we would like to address in the future. To this end, we minimize the loss function:

Ls5w(8) = Esrito. 1By Everaa(a) | $a0(@..5)[ + (v V)(G(Z,)ao (., 5) - v|, (3.14)

where Rad(d) denotes the Rademacher distribution in R?. The following theorem states that even
in our multiplicative case, score matching is equivalent to maximize the ELBO, £,. In line with
Benton et al.[(2024); |Ren et al.|(2025)), this theorem generalizes the result of Huang et al.|(2021) and
gives a theoretical justification for our score-matching loss equation[3.14] The derivation of this loss
from the ELBO below is detailed in Appendix

Theorem 3.4.1. Let assumption@]holds. Then, there exists a constant C' such that

i) > Exle) =~ [ By [Hao(@ o)l + 7 (@(.)a0(E..s)

o = :c} ds. (3.15)

We proof this theorem in Appendix @ The first term C := E [log pT(gT) |§0 = w} is a constant
w.r.t. to 8. So, it has no effect on the optimization procedure. Therefore, even with our multiplicative
noise, the minimization of the ELBO corresponds precisely to Implicit Score Matching (ISM), which
is itself equivalent to explicit score matching (ESM), denoising score matching (DSM), and SSM
(Huang et al., 2021). Note that formally replacing G by v/2, we get the SGM SSM loss. For an easier
numerical comparison in Section[fl we will also rely on SSM to train our baseline SGM.

4  WORKFLOW

Algorithm [[| summarizes the proposed MSGM procedure. Here we make use of color to highlight the
differences compared to SGM. For more details, we refer to Appendix
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Algorithm 1: MSGM (Multiplicative Score-Based Generative Model).

Input: tensor G, one-dimensional distribution model f., data {x, }}_,, ¢, time horizon 7', time

steps NZJ: and Nf}, time scheduler g, score model ag, initial ANN parameter 6y, iterations Nite,
— Training stage —

I: v* « fit_distribution(f, {|@g I}M_) [
2: for n = 0to Nijer — 1 do
— 1 M
3 Lo ~ M Zm:l 62;"
4 s~ UIELT))
5. @, « SRK4(s, |2NL], ©0,0,9G) B
6: v ~ Rad(d)
7 0(8,) « LM(s 2. G, gag, , V) (.14
8 0,41 < optimizer_update(6,,¥((6,))
9: end for
10: 6% < O,

— Generative sampling stage —
N

11: @, ~N(0,1I,),

— A —N &N
12: xo = fyr <Hmo ||) =%

. H(@ [
13: T7 < SRK4(T, N2, xo, gGag-, gG) I_
14: return ~*, 0%, ET

5 RELATED WORKS

Combining machine learning and mechanistic approaches is now a common approach. We may cite
physics-informed neural networks (PINNs) (Raissi et al., 2019} |Lu & Xu, [2024), physics-based prior
covariance (Beauchamp et al., 2025} (Clarotto et al., 2024)), deep augmentation (Holzschuh et al.,
2023; [Fan et al., [2025)), neural Galerkin (Lee & Carlberg) 2020} (Chen et al., [2021; Romor et al.|
2023} [Finzi et al., 2023; Bruna et al., 2024} Kim et al., 2022), and chaos from energy-based models
(Fournier & Pierfrancesco, [2025)) among others. Here, we shall focus on score-based generative
models. [Bastek et al.|(2024) add the physical equations inside their score matching loss. [Holzschuh
et al.| (2023 fit a score to correct a backward physical equation but does not propose any generative
model. To denoise corrupted images, several authors (e.g. Zhou et al., 2014} [Shan et al., [2022;
Guha & Actonl 2023) encode the multiplicative structure of speckle noise. Since this noise is not
correlated between pixels, this approach strongly differs from ours. Most of these works do not
deal with score or generative models. (Guha & Acton|(2023); |Ren et al.[(2025); |Shetty et al.| (2025))

do, but their framework simplifies to SGM by considering the pixel-wise logarithm of images. |Guth
et al.| (2022); Lempereur & Mallat] (2024) encode a target multiscale structure (e.g. turbulence) by a
hierarchy of normalized wavelets conditioned by the larger scales. [Chen & Vanden-Eijnden| (2025)
adapt the noise to that multiscale structure in a stochastic interpolant context. [Lobbe et al.[(2023;
2025)) replaced the Gaussian process involved in the transport-noise equations (Kraichnanl |1968};
Piterbarg & Ostrovskiil |1997; Resseguier et al., 2021) by a Shrodinger bridge (De Bortoli et al., [2021)).
They inserted a SGM inside a transport noise dynamics, whereas we inserted a dynamics similar
to transport noise inside a SGM. Following general Bayesian approaches, some of the literature on
transport-noise relies on the Girsanov theorem to fit a drift modification or evaluate a likelihood
(Cotter et al.| [2020a; Singh et al.|, |2025)(see Appendix @]) By extending the ELBO of (Huang et al.|
2021) to SDEs inspired by transport noise, Theorem [3.4.1|justifies our fit of the backward SDE drift.

Several authors have recently proposed Langevin equations
(Arnaudon et al.l 2019} [Luesink & Street] 2025} |Ayala et al.,|2025)) and SGM
(De Bortoli et al., [2022} [Huang et al., 2022; [Lou et al.,|2023} |Benton et al., 2024) on Rieman-

nian manifolds in order to generate data lying on a particular manifold. Clearly different, our goal is
more classical: generating data in R?. In our work, neither data nor their noisy versions are restricted
to a single manifold. However, each solution path of our forward and backward SDE lies on its
particular Riemannian manifold, the scaled d-sphere ||z [S¢*. De Bortoli et al.| (2022) describes
diffusions and SGM in the d-sphere S?~!. A detailed comparison is given in Appendix
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Regarding extremes generation, using variational autoencoders (VAE), [Lafon et al.| (2023) ar-
gue that Gaussian latent restricts the generated samples to light-tail distributions. Accord-
ingly, they propose to use fat-tailed latent distributions (see also Jaini et al.| (2020); [Huster
et al.| (2021)) for normalizing flows (NF) and generative adversarial models (GAN) respectively).
Yoon et al.|(2023)); Shariatian et al.; Pandey et al.|(2024); |Ren et al.|(2025) proposed SGMs with ad
hoc heavy-tailed (Lévy and Student-t) latent distributions. Our approach automatically makes the
tails of the latent distribution fat when necessary. It learns it from the distribution of the data norm,
py.- Similarly, the diffusion proposed by [Dharmakeerthi et al.| (2025) adapt to data but through a
nonlinear drift and an additive noise. |Li et al.| (2024); |Price et al.| (2025); Stamatelopoulos & Sapsis
(2025)) and references therein show that the usual SGM may correctly represent extremes, especially
in "interpolation mode", that is, when extremes lie on the interior of the dataset but have difficulties
with extremes lying on the dataset boundaries. Our numerical experiments in Section [f] suggest that
our method probably overcomes this limitation. To represent the directionality of extremes, many
authors decompose norms and directions of extreme events (Engelke et al.,|2019; Palacios-Rodriguez
et al., [2020; [Lafon et al.} 2023; Naveau & Segers, [2024). Large-amplitude criterion (e.g. exceeding a
high threshold) or fat-tail model can be applied on the norm. Extreme directions may or may not
become asymptotically independent of their magnitude (Engelke et al., 2019; |[Lafon et al., [2023]).
Build on random rotations, MSGM naturally suggests such a polar decomposition. The extreme
direction of the MSGM latent vector is asymptotically independent of its magnitude. However, the
direction of the reverse process does depend on the magnitude (see Appendix [H.2)).

6 EXPERIMENTS

For our numerical experiments, we choose to define a tensor G* in a simple way. We sample d
random matrices, keep only their skew-symmetric parts, and normalize:
d A : Ak k k k iid

G-= Héfﬂz G with Gf; = LM —MF) and MF, " N(0,1). 6.1)
In Appendix [ we show that this random tensor G respects conditions [AT] and [A2] almost surely.
Appendix |[K|proposes alternative tensor definitions with sparse structures that allow high-dimensional
applications. Following Appendix [K:2.2} MSGM can generate images as in Appendix [M.6.2] For the
test cases below, we also checked in Appendix [M.6.2]and Appendix that the MSGM generation
skills are equivalent with these sparse and dense tensors. However, these sparse tensors do not match
the framework of Section B.1]so we postpone the associated numerical evaluations to future works.

6.1 MULTIVARIATE CAUCHY DISTRIBUTION

We first illustrate our method with a vector of Cauchy variables, xc,, with scale parameter :

iid . /T
a)i ™~ a th a = . 6.2
(l‘c ) yze Wi Pbc (Sﬂ) 22 + 72 (6.2)

It is an extreme case of fat-tailed distributions with a power-law tail: pc, () o< |z| =2 for large |z|.
Real problems often involve both correlation and dimensionality d > 2. So, we correlate Cauchy
variables, as g = Axc,, with a fixed matrix, A, initialized with i.i.d. coefficients A; ;~N(0,1).
Figure [2] confirms that, for d = 4, SGM hardly reproduces fat tails and extreme directionality, unlike
MSGM. An explanation is the strong dissimilarity between the data distribution and the latent SGM
distribution; see Appendix [E:5|and Appendix [E.6] For a larger number of ADAMS iterations, MSGM
becomes more accurate, whereas SGM diverges (see Figure[da)). ore plots, numerical comparisons,
and experiments with variants of the state-of-the-art SGM can be found in Appendix [M.6.1]

6.2 MEASURED VORTICITY FIELDS

We also test our algorithm on fluid dynamics experimental data: small images of vorticity fields.
These fields are two-dimensional curl of fluid velocity measured by Particle Image Velocimetry (PIV)
in wind tunnels. Vorticity quantifies the local rotation speed of fluid and is known to have point-
wise distributions with tails fatter than Gaussian ones (Wilczek & Friedrich, [2009). We focus on a
benchmark fluid flow: a wake flow at Reynolds number 3900 created by a circular cylinder embedded
in a mean stream (Parnaudeau et al., 2008). Each vorticity sample is evaluated at d = 16 spatial
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Figure 2: Pair plots of generated data (orange lines and dots) compared to ground truth data (blue
lines and dots) with the SGM (left) and MSGM (right) for a vector of 4 correlated Cauchy variables.
On the diagonal, log-histogram and logarithm of the pdf KDE estimation are superimposed.
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Figure 3: Pair plots of generated data (orange lines and dots) compared to ground truth data (blue lines
and dots) with the SGM (left) and MSGM (right) trained on 1024 16-dimensional measured vorticity
fields. On the diagonal, log-histogram and logarithm of the pdf KDE estimation are superimposed.

points to ensure low dimensionality. We use limited training data (1024 data points) to make rare
events even more rare and learning more challenging. Appendix [M.7]provides a deeper description
of this experimental dataset. Figure [3]highlights a larger concentration of points generated by SGM
in the center of the ground truth distribution. Accordingly, the tails of the marginals — i.e. the tails of
the vorticity point-wise distributions — are underestimated : SGM underestimates rare large vorticity
events. SGM performs better since the MSGM latent distribution — easy to learn — is much closer
to the data distribution than SGM latent distribution, as theoretically suggested by Appendix [E.3]
and experimentally verified in Appendix [M.7} In particular, the MSGM latent distribution seems
to have Laplace tails and to be more accurate in the low-data regime (see Figure ). Additional we
carried out high-dimensional experiments with d = 1024 in Appendix [M.6.2]based on sparse tensor
G developed in Appendix K] More details on data, preprocessing, illustrations, and other numerical
experiments are given in Appendix [M]

7 CONCLUSION AND DISCUSSION

We have proposed a new type of diffusion model with multiplicative noise. After a theoretical analysis
of this ansatz, an algorithm is specified to mimic fat-tailed distributions, surpassing SGM in this task.
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Figure 4: Convergence behaviors of the Maximum Mean Discrepancy (MMD) for two different test
cases. 10* samples are used for each MMD evaluation.

At this point, limitations of the general MSGM framework may be difficult to know. We rather
discuss the limitations of the first numerical procedure applied in Section[6] First, the forward SDE
has to be integrated numerically since we do not know an analytic solution for large-rank tensors (see
Appendix [[| for the solution with low-rank tensors). It implies either a slower training or a reduced
number of iterations compared to SGM. oreover, we do not know of any analytic solution for the score
in finite time. This prevents the use of DSM and force us to use ISM or SSM, a less stable approach.
In the next future, we can hope that the active communities of generative models on symmetric
Riemannian manifolds and, more generally, of stochastic differential geometry could come up with
more efficient sampling algorithms and score evaluation procedures for our diffusions on d-spheres.
In addition, random matrix theory and free probabilities (Bianel [1997; Delyon & Yaol [2006; Demni,
2008 ILevyl |2008; [Delyon, |2010; \IDemni & Hmidi, |2012; |Cébron, |2014) may provide alternative
sampling methods and helpful results for large-dimension cases. Indeed, for some choices of G, the
semigroup of our forward SDE may be expressed as a unitary Brownian matrix, converging for large
dimensions to a free multiplicative Brownian matrix. Both theories could facilitate the sampling
and the score evaluation of the MSGM forward diffusion. oreover, a dense third-order tensor G
prevents image processing and other large-dimensional applications, related to, say, turbulent fluid
dynamics. In fact, dimensions d of such problems are very large — typically d = O(10°) or more.
A dense tensor G as we use in our numerical experiments has d* coefficients, and the memory and
computational costs would become prohibitive in these cases. To address this issue, Appendix [K]
proposes several sparse tensors and alternative to assumptions [AT]and [A2] Appendix [M.6.2]shows
first MSGM generated images in dimension d = 1024. Furthermore, we are currently developing
physics-based sparse tensors G. Here, MSGM forward SDE is the spatial discretization of a stochastic
partial differential equation involving transport noises (Kraichnan, 1968} |Piterbarg & Ostrovskii,
1997; Resseguier et al.l[2021). We expect that the physical inductive bias will facilitate both inference
and learning, especially in low-data mode. Alternatively, the rank assumption[A2]may be expressed
more simply with the algebraic properties of G, eventually producing simple examples of sparse and
efficient tensors.

In addition to the improvements discussed above, many paths remain to be explored. First, our
theoretical results could be generalized to other multiplicative diffusions. We have considered dense
linear maps = > G(z) with Im(G(x)) = = for any x # 0. We believe that sparse linear maps of
Appendix [K]and non-linear Lipchitz-continuous maps can yield similar theoretical results as long as
that image condition is fulfilled for almost every x € R? (see Appendix [KT). The non-linear case
would include in particular sphere-wise diffusions of [De Bortoli et al. (2022) (see Appendix [H.2).
Second, we could address dynamical system forecasting. With the Gaussianization of MSGM
latent vectors (see Appendix [E4) complex nonlinear dynamics could simplify to uncoupled one-
dimensional linear dynamics as in|Arbabi & Sapsis| (2022). A third path to explore involves Bayesian
inverse problems and data assimilation (Rozet & Louppe, [2023; Bao et al., [2025). Finally, our
analytic solution issue could be bypassed by a normalizing flow approach: spherical decomposition,
stochastic interpolants and flow along scaled d-spheres, taking inspiration from normalizing flow
along Riemannian manifolds (e.g., Gemici et al., [2016} |[Mathieu & Nickel, [2020; 'Wu et al., [2025)).
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A LOSSES FOR SCORE MATCHING

This section presents some classical score-matching losses. In SGM backward SDE, the score
V logpr—i(x) is replaced by a fitted neural network sg(x,T" — ¢). This fitting is performed by
minimizing some losses, like denoising, implicit, or slicing score-matching losses. Alternatively, one
can work on ag(x, T — t) = \/2s¢(x, T — t) (Huang et al., 2021). It leads to this SGM backward
SDE:

+—
di, = T,dt + V2(ae(x, T — t)dt + dBy), (A.1)
A typical loss to learn this neural network is denoising score matching (DSM)
T
Cosnt — / LE.. [lao(@.. ) — V2V log py(Z.|Z0)|ds. (A2)
0

where ||.|| is the Euclidian norm. By integration by part, we can show that DSM is equivalent to
Implicit Score Matching (ISM) (Hyvérinen & Dayan| [2005))

T
Liou= [ By (Hao(@. o)+ V- (VEao(3.. ) ds. (A3)

0 s
A reference score V log p; is not needed anymore. However, the divergence term may be untractable

for large-dimensional problems. Using the Hutchingson trick, (2020) shows that this loss
is equivalent to a trackable version : the Sliced Score Matching (SSM)

T
Losw = / E2 Evan(o.1) (%Ilae(zs, s)|I + (v - V)(V2ae(xs, 5) 'V)) ds. (Ad4)
0

Score matching is equivalent to maximizing the Evidence Lower Bound (ELBO) both in discrete time
(Luo} 2022) and in continuous time (Huang et al.,[2021). Indeed, denoting &, the ELBO,
let al.| (2021]) shows that:

Ex(x) =E [logpo(;T)|zo = :c}

(AS)

Ts

- [ Bs. |Hlas@e o)1 + V- (VEao(@..)

30 = w] ds.

The first term does not depends on the neural network parameters 8. The expectation of the second
term over « following the dataset distribution is Lism. So, maximizing the ELBO is equivalent to
minimize the ISM. Table 1 of [Huang et al.|(2021) summarizes the classical score matching losses.

B STOCHASTIC CALCULUS AND STRATONOVICH INTEGRALS

This appendix provides a concise overview of essential stochastic calculus concepts from|Oksendall
(1998); [Kunital (1997) relevant to our work, especially the Stratonovich interpretation of stochastic
differential equations (SDEs).
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B.1 ITO INTEGRALS AND SDES

Let (£2, F,P) be a probability space equipped with a filtration (F;),> satisfying the usual conditions,
and let (B;);>o be a standard m-dimensional Brownian motion. Given an adapted process X; €
R¥*™ satisfying appropriate integrability conditions, the It6 integral of X with respect to B is
defined as the mean-square limit:

T

/O X,dB, = lim > Xu.(Bi,, - B,), (B.1)
[ti tiv1]€IL

where the sum is taken over a partition IT of [0, T7].

An SDE interpreted in the It6 sense reads:
dX; = f(X,,t)dt + G(X;,t) dB, (B.2)
where f : R x R, — R? s the drift, and G : R? x R, — R4*™ is the diffusion coefficient.

B.2 STRATONOVICH INTEGRALS AND CHAIN RULE

Unlike the Itd integral, the Stratonovich integral is defined using a symmetric discretization:

T
. X, + X,y
/0 X.0dB. = lIm Y SULSRU(B, - By). (B.3)
[ti,tig1]€II
A Stratonovich SDE is written as:
dXt = fS(Xt,t) dt+G(Xt,t) OdBt. (B4)

A key advantage of the Stratonovich formulation is that it satisfies the classical chain rule. For any
smooth function ¢ : R? — R, we have:

dop(X;) = Vo(Xy) T fo( Xy, t)dt + V(X)) TG(Xy,t) 0 dBy. (B.5)

oreover, in multiscale deterministic or stochastic equations, if the fast component is a continuous
process with infinitesimal correlation time, the slow component generally converges to the solution
of another SDE. In this other SDE, the fast component is often replaced by a Stratonovich integral
(Arnold, |1974)). Note that it is not always true for nonlinear dynamics (Gottwald & Melbourne, |2013;
Gottwald et al.l 2015). Accordingly, the readers may interpret the Stratonovich noise s — odBj; as a
formal representation of a process with a short correlation time that nevertheless respects the classical
rules of differential calculus, in particular, the chain rule.

B.3 CONVERSION BETWEEN ITO AND STRATONOVICH FORMS

Given a Stratonovich SDE, it is always possible to convert it to the equivalent It6 form:
1 m
Xy = | fs(Xit)+ 5 > Gi(Xi,t) - VG (X, t) | dt + G(X,t) dBy, (B.6)
j=1

where G (x, t) is the j-th column of the diffusion matrix G(x, t). The additional drift term arises
from the correction due to the non-zero quadratic variation of the noise.

B.4 FOKKER-PLANCK EQUATION

An Itd SDE of the form

dX, = f(Xy,t)dt + G(Xy,t) dBy, B.7)
induces a time-evolution equation for the probability density p(x,t) of X;. This is known as the
Fokker—Planck equation, given by:

8tp(w7t) =-V- (f($7t) p(a:,t)) + %v : (V ’ (2($7t) p($7t))T) ) (B.3)

where X(x,t) := G(x,t)G(x,t) " is the diffusion tensor. The Fokker—Planck equation describes
the deterministic evolution of the probability density associated with the stochastic process.
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C SAMPLING FROM 1D DISTRIBUTIONS

Let us denote by p| | the distribution of the norms, HzTH In MSGM, it is also the distribution of

|| Z0]| (see Proposition . This distribution is arbitrary, but is a one-dimensional distribution. So,
it is straightforward to learn and sample from, e.g., using an empirical cumulative distribution function
(eCDF) (Cantelli, |1933f;|Glivenko, 1933} Tucker, |1959). Norms are positive and might be close to zero,
so in practice we work with a regularized log-norm: log ||z || := log(||x|| + €) with € small, typically

€ = 1075, From a data set of the log-norms of M training samples, (log ||§; le): = (log ||§Ol) lle)is
we define eCDF Fig |, as

Flog)..: R—[0,1], (C.1)
1 M

R —S1 o C2

HM; (R10g 2.} (€.2)

Then, we approximate the distribution of the norms, plog|v‘€(R)dR, by the empirical one,

Plog |.|. (R)dR := Flog || (dR). In particular, we can sample a new norm of latent variables, ||§T||,
from a uniform one-dimensional variable u ~ U/(0, 1) as follows

|@2 = 1ol = expllog [o]l) — e = exp (Fof, | () e (€3)

eCDF is an efficient tool, but it cannot generalize the distribution p | outside the training set (| z;f) ;-
For better generalization, instead, one could use a one-dimensional kernel density estimation or fitting
of parametric distributions. In the case of one-dimensional distributions with fat tails, classical kernel
density estimation (KDE) suffers from bias in the tail estimation or peaks due to sparse data in the
tails. In that case, one could consider more robust approaches that, in general, do not require the
existence of moments of the target distribution [Tokdar et al.| (2024]).

In this paper, we rely on the eCDF.

D THE FOKKER-PLANCK EQUATION AND ITS INVARIANT MEASURES

D.1 ITO FORM OF THE FORWARD SDE
Define the conditional noise covariance X'(x) as
Y(x) :=G(x)G(x)T = E[(dz;)(dz;)T|zs = x]. (D.1)

We begin with a lemma.

Lemma D.1.1. Let the skew-symmetry assumption[Al]hold. Then,

d

1 1 E\2
5V (B(@) = 52(0 ). (D.2)

k=1
Proof. Let us explicitly state the matrix divergence. For k = 1,...,d define X*(z) = [2F(x)] :=
G*zxT(G*)T, then we decompose X as
d
2(x) :=G(x)G(x) = >_ (). (D.3)
k=1
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Then, taking the divergence of the j-th column of X* (x), we obtain

d
)
(V- (2 @), =V [ZH @) = 3 5 -5 (@), (D.4)
i=1 "
d 8 d
=D 5 > GGy, (D.5)
=1 v p,q=1
d
= Z G?p(éipxq +$p5iq)G§q7 (D.6)
%,p,q=1
d
= Z Gk 2, Gh 4+ GE 2, G (D.7)
p,q=1
= [tr(GF)G*z + GF(GF2)).. (D.8)
J

By skew-symmetry trace(G*) = 0 and consequently

d d
V- (Z(@) =) (V- (ZF@)) =D G"G*).
k=1

O

Lemma D.1.2. (Forward SDE - Ité) Let the skew-symmetry assumption equation|AI|hold. Then,
the It6 form of the forward SDE equationofzs is given by

07, = (V- 2)(@,)ds + G(Z,)dB,. (D.9)

Proof. Using the standard Stratonovich-to-It6 formula (e.g. Kunital, [1997), it holds

— —
dz, = 1d(G(z,),B,), +G(,)dB,, (D.10)
d . .
= 3 Z d(G*Z, (Bs)r)s + G(24)dBs, (D.11)
k=1
d . L
= 1) (G"?z.ds + G(z,)dB,, (D.12)
k=1
o
= LV Z)(x.,)ds + G(z,)dB,, (D.13)
where the last equality comes from Lemma [D.1.1] O

D.2 FOKKER-PLANCK EQUATION AND THEOREM[3.1.1]

Let ;0 ~ P, with Pz, € C%(R%) be twice continuously differentiable. Let p, denote the density

of the distribution of 33. For each & € R? we define the normalized vector " := H%\I forx # 0

and 0 otherwise, which is orthogonal to the d-sphere S?—!. Furthermore, let V| be the orthogonal
projection of the gradient V in the tangent plane = = T,S%~!, the tangent space on the Riemannian
manifold S?~! at the point z, defined for f € C?(R9) as

Vif = Vf—(z" -Vf)z". (D.14)
Lemma D.2.1. It holds for any smooth vector field f that
V. f=(x"-V)@" - f)+VL-f (D.15)

Proof. Let f be a smooth vector field, then
d

d d
(2" (@")1V) - f = sz?x;?(j;fi =S (@)ila", V) i = (@, V) f,a").  (D.16)

i=1 j=1 i=1
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It holds for each j = 1,...,d that

d 9 x d
(@ V)", = KZ@%) ||a:||] ol ~ 2 @17

i=1 =1
= a;/||l|* — (Z w?/llﬂill“) x5, (D.18)
i=1
—o. (D.19)
Consequently,
(™ - V)™ f)=(x" - V)" - f+ (" -V)f 2" = (" - V)f - x". (D.20)

Using the decomposition V = " (z")TV + (I — " (x")T)V = &"(z")TV + V 1, equation|D.16]
and equation [D.20] we conclude

V-f=(@"(x")'V+V.) - f=(x" - V)f-2"+V, - f=(x" -V)(x" - f)+VL-f

Define the conditional noise covariance X'(x) as

—

X(z) := G(z)G(x)" = E[(de,)(dz,)T |2, = z]. (D.21)

We can now state and proof Theorem[3.1.1]

Theorem D.2.1. Let the assumptions[Al|and[A2] hold. Then, the Fokker-Planck equation of equa-
tion[3.1l reads
{ %ps (:E)

Po

V. (15@)V.ip(2), weR,

(D.22)
Do

oreover, any stationary density poo, of equation is rotation-invariant on R,

Proof. From the Itd SDE equation [D.9] the Fokker-Planck equation describing the evolution of
(ps)s>o 1s given as

g = ¥ (45V (B@)ne) + 37 (Sen). 023
= V(57 (F@)ne) 4 3V (B @) + 5@ Vn ). 024
= V- (32(x)Vps(z)). (D.25)

The skew-symmetry condition in assumptionimplies for any = € RY that

(&) 2(x)T = Z G|zl (z")TGla" = 0. (D.26)
%/_/
=0
Combining this with the result of equation[D.16] it holds that
V- (X(x)Vps(z)) = (2" -V)(x" - X(x)Vps(x)) + VL - (X(x)Vps(x)). (D.27)

The decomposition V = ™ (x™)TV + (I — 2™ (x™)T)V = &"(x™)TV + V_ and equation
yields

Vi (X(x)Vps(x)) = Vi (X(x)Vips(z))+ VL (Z(x)x"(x")"Vps(x)), (D.28)
= Vi (¥(@)Viops(z)) (D.29)

Hence, by linearity
L pe =Y. (35@)Vapi()). (D.30)

22



Under review as a conference paper at ICLR 2026

We shall now explore the set of possible invariant densities p, of the Fokker-Planck equation [D.22}
We will show that p, is stationary if and only if it is rotation-invariant.

Let po be rotation-invariant, i.e. V| po, = 0 then it is a stationary solution of the Fokker-Planck
equation. The set of rotation-invariant measures is not empty, e.g. containing the isotropic normal
distributions (0, I 7).
Conversely, let p., be a stationary solution of the Fokker-Planck equation, in particular

Vi (32(z)V.ips(z)) = 0. (D.31)

Integrating over the test function ¢ = p., gives a necessary condition for p, to be an invariant
measure:

0 = - / Poo(@)V 1+ (B(2)V 1 poo () dit, (D32)
Rd
- / V 1 poc ()T B(@)V 1 poc (@) dat, (D33)
Rd
= /||GT(w)VJ_poo(:v)||2dw. (D.34)
Rd
>0

Hence, for a.e. = € R? it holds that V| po.(z) € ker(G"(x)). By assumption this kernel has
dimension 1. Moreover, GT(z)z = 0 and by definition of V| we have that V| po,(x) Lx. That
means

V 1 Poo(®) € ker(GT(z)) Nt = span{x} Nzt = {0}. (D.35)
We conclude that V | po () = 0 almost everywhere on RY, i.e. the measure is rotation-invariant. [

D.3 DISTRIBUTION OF THE NORMS

In this section, we see more precisely that the norm of the MSGM SDE solution remains constant
along the noising process whereas in SGM the norm dynamics is random with a mean going to v/d

asymptotically.
D.3.1 NORM DYNAMICS IN SGM

The dynamics of the SGM diffusion norm is stochastic. The following proposition states that the
norm of the SGM latent concentrates around its mean, v/d, for large dimension d.

Proposition D.3.1. If zs is an Ornstein Uhlenbeck process then

E 12, 12[@0] = e 2 [@oll? + (1 = ¢™*)d — d. (D.36)
and
o2 =2l —s _ L
lzs]|* = E[IlwsH |330} +Vd I +e Ks_d<1+\/g3900(1)>’ (D.37)

with both EK? and EI? bounded for large time s and EI? independent of the dimension d.

Proof. To get the dynamics of the squared norm mean in SGM, we can take the expectation of the
following It equation

.
d|2,|]? = 2z, - dz, +d <zT,x>,= 2|2, - d)ds + 2V2z, - dB,, Vs>0. (D.38)

Thus,
E [||§SH2|£0} = B2+ (1—e>)d — d. (D.39)

To obtain the full nom dynamics from equation [D.38] we note that ¢ — ¢~2° has finite variations.
Accordingly,

—
d(e (|| @, — d)) = 2v2e >z, - dB,, (D.40)
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and a temporal integration and the analytic expression of the Ornstein Uhlenbeck process yields:

[EX

s , —
E {||£s||2!£0} +2\/§/ e 2= . dB,, (D.41)
0

S , —
E [||3s||2120} +2v2e 2 / e~ =4B,,
0

with the martingales

s s’ / 1" g -
+2v/2 / / e~ =5"="B, - dBy, (D.42)
0 0
= E (|| +Vd I+ ek, (D.43)
8 [°[¥ = S
I, = /= / / e~ 2=5"="V4B,, - dB,, (D.44)
d 0 0
— s "o
K, = Vé;co-/ e~ =B, (D.45)
0

K corresponds to the martingale part of the Ornstein Uhlenbeck solution projected on 30. It is well
known that EX? is bounded for large time s. EI2 may be less known and we shall evaluate it below:

EI?

d S S, /7 1" — —
26—45‘1@ (Z / / o'+ d(Bsz)p-d(Bsu)p> 2 (D.46)
=170 Jo

Ee E Z /0 /0 /0 /O et kzd(Bs’l)pl'd(Bs’l’)pld(Bsg)pz'd(Bsg’)pw

p1,p2=1
(D.47)
8 d s 5/1 s 5/2 ’ "o 7
86_48 E > /0 /0 /O /0 e ESatsy s 5(sh — 55)0p, pa0(sh — s5)ds! ds" dshds?y,
p1,p2=1
(D.48)
88748/ / 82(sl+s/l)ds/d8//’ (D49)
0o Jo
fo—4s / ¢ (2 1)ds, (D.50)
0
6—45((645 _ 1) + 2(623 _ 1))7 (D51)
N (D.52)

D.3.2 NORM DYNAMICS IN MSGM

For MSGM, the norm follows totally different dynamics. We recall that the skew-symmetry of odZ,
implies that dx ; = odZsx 4 is orthogonal to x s and hence:

Consequently, & ; moves randomly on ||5:>0 |S?=1, the d-sphere of radius H;O

d|Z,|? = 2%, -odwy, =0, Vs> 0. (D.53)

, and the increments

dzs are tangent to the d-sphere. In particular, we obtain the following result.

Proposition D.3.2. Let the skew-symmetry assumption hold. Let 50 be a random variable. Then,
C = s —
for all s > 0 the distribution of ||x || equals the distribution of ||xo||.

Therefore, the distribution of the norms of the latent variable is exactly the distribution of the norms

of the points of the dataset. oreover, a_v)s = 0 if and only if £y = 0. As a consequence, we can
exclude all points exactly equal to zero from a dataset, treat them aside, and hence consider, without

loss of generality, that E;T # (0 almost surely.
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D.4 FOKKER-PLANCK EQUATION OF THE DIRECTION

This subsection is devoted to the analysis of the Fokker-Planck equation on the unit sphere S~ i.e.
n
the distribution of 25 , in particular as s — oo.

D.4.1 MAIN RESULTS ON THE DISTRIBUTION OF DIRECTIONS

We saw in Appendix that &, moves randomly on the d-sphere of radius HEJ)OH and that the
increments, dgs = G(zs) o dB s, are tangent to the d-sphere. If the rank condition, assumptio is
verified, then the support of the noise distribution G(ZS) o dﬁs coincides with the d — 1-dimensional
tangent space, i.e. it will likely explore all local directions around 5’5 With time, the support of the

n
solution distribution will gradually cover the whole d-sphere, i.e. every direction 35 will become
equiprobable. Lemma|[D.4.1]illustrates and precises this claim.

Lemma D.4.1. Let assumptions[Alland[A2] hold. Let a initial density p € C*(S4~') and X(z") :=
G(x™)G(x™)T. Then, the Fokker-Planck equation

0
ap?(w") = V.- (%E(w”)vlp?(:ﬂ")) , x"est (D.54)

has a unique density solution p? € C%*(S?~1) for all s > 0. oreover, there is a unique invariant
measure p", of that Fokker-Planck equation, i.e. the uniform distribution on the d-sphere U(S¢™1),
with density

n ny . 1 n d—1
with [S41| = 27%/2 /T (4) the volume of the d-sphere S?~ and T the gamma function.

Lemma is a consequence of Theorem as shown in Appendix Note that in this case
V1 = Vga1 is the Riemannian gradient on ST 1, see Appendix

Given the unique invariant measure of Fokker-Planck equation formulated on S%-1 we can also show
that we have exponential convergence of the initial distribution pg to pZ,, the uniform distribution on
the unit sphere S~ 1.

Theorem D.4.1. Let assumptions[Alland[A2]hold. Then, there exists o = (G, d) > 0 with
1P = Pl gasy < exp(—as) o — plllZegis. (D.56)
The convergence rate « is given as
a(G,d) = (d—1) ( mi)ns IGT(x)y|?, S ={(z,y) S xS zly}. (D.57)
Y)E

Consequently, since S?~! is compact this implies convergence in total variation of p? to p2 and
n n
convergence in distribution of :_c>s with EOO ~ U(S91). The full proof is detailed in Appendix

D.4.2 PROOF OF LEMMA [D.4.7]

Proof. Existence and Uniqueness:

Consider L(p?) = V1 - (3 X(z)V 1p2(z)) — Zp?(x). L is a parabolic type operator according to
Friedman| (1964) since  — X'(x) is positive definite by assumptionon S9!, Indeed, for any
y € T,S% ! the tangential (linear) space of S¥~! at x,

Yy E(x)y = [|GT(z)y||* > 0. (D.58)
with equality if and only if GT(x)y = 0. Then, the rank conditionimplies y = 0 as previously in
equation[D.35] Consequently, the associated spatial operator L defined by

Lop? = V1 (32(x)V.1pi(z)) (D.59)
is an elliptic operator on S¢~!, a compact manifold without boundary such that the semi-group e*%°
is strongly continuous on C2(S971), s > 0. As p? € C%(S?~1), according to chapter 1, proposition
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1.1 in Taylor| (2011} , there exists a unique solution p? € C%(S4~1), for s € [0, T[ of equation
As the semigroup is well-defined for all s > 0, this extends the uniqueness of the solution to all
s> 0.

Invariant measure: Repeating the lines in the proof of Theorem [3.1.1] given in Appendix [D.2] it
follows that p2, is rotation-invariant. The only rotation-invariant distribution on the d-sphere is the
uniform distribution. O

D.4.3 PROOF OF THEOREM[D.Z.1]: LIMIT BEHAVIOR OF FOKKER-PLANCK EQUATION OF
THE DIRECTION

Theorem D.4.2. Let assumptions|Alland[A2]hold. Then, there exists o = (G, d) > 0 with

P2 = P72 a1y < exp(—as)pg — plllizga1): (D.60)
The convergence rate o is given as
o(G.d)= (d—1) min G (@)y* §={(@y) S xS aly) D61
Y)E

Proof. Let p denoting the density of z: Define e? = p? — p with p”, = |S?~!|~! being the
uniform distribution on S¢~1. Then, by linearity of the Fokker-Planck equation, e} satisfies

e} =V - (3X(x)Vier(x)). (D.62)
Since p” and p1, are densities on S¢~1, we have fsdfl erdx = 0 for all s > 0. Consequently, since

S9=1 is a compact manifold without boundary, Poincaré inequality holds, i.e.
1

H€?||2L2(Sd—l) S d 1 Hvsd—le?||%2(sd—l)7 (D63)
with
Vgi-1 ef(y)|y=w = ProjTMdi1 Ve?(y)‘y:w =V e} (x). (D.64)
Consequently, integration by part on S%~! leads to
1d
sl = [ @@Y. ((E@V. @) de. (D.65)
§d—1
=— Vied(x)TX(x)V e} (x)dx. (D.66)

gd—1

We will now bound yT X (x)yT from below for any y € =+ and € S, in particular with a
bound independent of x. Since X'(x) is symmetric, it is real diagonalizable with eigen-basis denoted
as vi(x),...,vq(x) € R? and eigenvalues \; (), . .., \s(z). By construction X (z)x = 0, hence
we can set vg(x) := x/||x|| and Aq(z) = 0. Moreover, by the rank condition[A2] A; # 0 for i # d.
By orthonormality of the eigenvectors vy (), . .., v4_1 () then span the tangent plane z* at = on
S9! Foranyi = 1,...,d — 1, we have that
T 2
M) = vi@) Do) = |G (@), (@) |* > min 1o DY

B (D67

The polynomial (z,y) — P(z,y) = ||G"(x)y|* on the compact S = {(z,y) € S ! x
S4t|z Ly} attains its minimum P*, which from the rank condition satisfies P(zx,y) > P* > 0 for
all (z,y) € S. As a consequence \;(x) > P* fori =1,...,d—1and € S*!, which implies for
all y € x* that

Yy E(z)y = |G (2)y|* > P*|ly]*. (D.68)
Therefore, combining equation [D.63] equation[D.64]and equation [D.66] we obtain
1d, . o . n
5@”% [72i-1y) < =P Vi€t Tagary < P (d = D]led]|72(ga1)- (D.69)
Then, by Gronwall for « = P*(d — 1) > 0, we conclude that
1% = PaclZaa-1y = lledllTza-1) < leg 22 (ga-1) exp(—as). (D.70)
[
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D.5 PROOF OF THEOREM [3.3.1]: CONVERGENCE OF FOKKER-PLANCK EQUATION

This section is devoted to the analysis of the Fokker-Planck equation in the whole domain R¢. Due to
the fact that the norm of a point does not change in the SDE process as shown in equation[3.7)and the
fact that X'(x) = 0 for ¢ = 0, we exclude the origin in the analysis.

Theorem D.5.1. Let D = R\{0} ford > 1. Let assumptionsandhold. Let o ~ po € C2(D)
and let p| | be the (radial) density of ||33>0 ||l. Then, the Fokker-Planck equation

pi(@) = Vi (35@9ipe)), weD, ®71)

has a unique solution ps; € C?>(D) N L*(D) for all s > 0. Moreover, the Fokker-Planck equation has
the stationary distribution

_pulel) 1
EENEE

Poo () (D.72)

. — —n . . .
In particular, ||x || and x , are asymptotically independent for s — +oo. oreover, there exists
a = a(G,d) > 0 such that

”ps - poo”zL?(Rd) S exp(ias)”p(l *poo”%Q(]Rd)'

The convergence rate o is given as

)

a(G,d)=(d—1) ( mi)ns IGT(x)y|?, S={(z,y)cS¥ xS xly}. (D.73)
€

Proof. We will proof existence, uniqueness, regularity, invariant property and convergence separately.

Existence: Let po(x™|]| Zo || = r) be the start value of the FP equation on S4~! of Lemma

This gives rise to a smooth unique density solution p? (x"| \|§0|| = r) for s > 0 and any r > 0.
oreover, p"(x" ||| Zo|| = 1) = p7(x"||| € || = ) since d||Z ;|| = 0. Now define
- _
ps(@) = pa(@"[llzs|l = ll)py (2Dl

where we denote " = . ps 1s a density since

ll]]

[r@dz = [ @@ = lelp, (lz) - de, ®.74
R4 Rd
= [ [ meEd = oper -t aaen, @39
Ry Sd—1
- //pg(xnnﬁ’su:r)pu(r)drdm", (D.76)
R, §d-1
= /PH(T) /pZ(w"IIIE’sH:r)dw” dr, (D.77)
R+ §d—1
= 1. (D.78)

We have V| = mde—l and V| does not act on radial functions. Besides, X'(x) := G(x)G(xz)T
with G linear so ¥'(z) = E(||m||”%|‘) = ||z|?X(x™). Hence

Vip(®) = Vgl 2] = lzlp, (lel)lel (D.79)
= (el =tV et @3] = =), (D.50)

— 1 7 n
= o (el ) (mvsm)ps @2 = =), D81
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and

X(@)V Lps(x) (a)py (]2l de ("2 = ), (D-82)

. a1
= |lz|*Z(= )pu(IIfBII)IIfL’II1 dm

B (@) Vga1p (a"[||Z4]| = [lz]|) (D.84)

23 n -
Vgaapg (@"[[[z ]| = [[2]), (D.83)

a1
= alp (D]~

[l

]. — n n n
Ty Vet - (Il () o)~ 2@ Ve spl @ 12 = 1))

V.- (Z@)V.pi(@))

(D.85)

= el Ve - (B o @[] = o)) D56)
= p|.|(IIwH)IIle‘dZ(ng(w"\||¥S|| = |lz|), (D.87)
= 22 (o (el 5@ 13 = [2])). 035)
N 2%““ (D.89)

ie. Zp,(x) =1V, - (Z(z)V_Lps(z)). Then, p, solves the Fokker-Planck equation on R%.

Uniqueness: Assume there exists another j solving the FP on R? verify

ps(®) = prs(@"[[2])p2,s(l|z])-

Since d||§9\\ =0, by marglnahzlng ps (integrating on S%~1), we have the uniqueness of the radial
density po (1) = [qa1 ps(ra”)dx™ =7z ”( r)ri=d = p ((r)ri=d.
Since dH:cSH = 0, we have $p2,5(||a:||) = 0. Therefore,
0 0 n
PsPs(®) = 8*(/)15(90 izl pz,s(l]]) (D.90)
n n 8
= prs(llzl) 5 Pls( llzll) + prs (™ 2l]) 5 -p2,s (1)), (D.91)
8 n
= pzs(ll@l) 5ops(@lllz]). (D.92)
In addition,
0 .
Q%ps(az) = Vo (X(x)Vips(x)), (D.93)
= Vi (Z(@)Vips(@|z])pzs(ll]), (D.94)
= st(llmll)llwll Vi (Z(®")Viprs(™|llz])) (D.95)
p2,s([|2]) Va1 - (Z(2")Vga-1p1,s(x"[[|])) , (D.96)
and finally,
a n n n
pac(lal) (24501 llal) = Vasor - (5(@") Vs spra(allal))) = 0. 7

Then, p; s(x™|||z|) is a solution of the de Fokker-Planck equation on the sphere, for any « such that
lz|| € A:={r e R"|pas(r) > 0}. If ||x|| ¢ A, then ps s(||z|) = 0 and

ps(@) = P (@" | Z,]| = llll)py ()|~

For ||z|| € A, then py(||z|) # 0 and p1 4(.|/|z]) is solution of the Fokker Planck equa-
tion [D.54] According to lemma[D.4.]] the Fokker Planck equation [D.54] has a unique density

solution p? (™| \|¥0|| = ||[|). Hence, for any x such that p| |(||z||) > 0, we have

ps(@) = P @" || Z,]| = lll|)py (2l |2~
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It is true for any @. So, p,(x) is the unique solution of the Fokker Planck in R

Regularity: By definition of the marginal density, we have

p).|(r) = /p0(<1>(r,0))rd71d0:rd71 /po(@(r,e))dg.

§d—-1 §d—1

with ®(r, 8) = r6. According to the assumption Zo ~ po € C (R4\ {0}) and compactness of S9!,
one can conclude that p| | € C*([0, ool).

Since po(sc”|||§o|| = r) is C2, we have that p™ (2" | |2 ,| = r) is smooth by Lemma for any
s > 0. Consequently, ps(x) is smooth on D for any s > 0.

Invariant distribution: The distribution

o (l)) 1
Poe(®) = YT 5T

is radial function in ||«||. The operator V | does not act on radial functions and \ST{ll is in the kernel
of V| such that VL(W{”) = 0. Hence

0

FePe@) = Vi (3X@)Vipe(®)), @eD, (D.98)
pr (=) 1

= VL : <;E(w)VL <|:cd—1 Sd_1|)> 5 (D99)
pp (=) 1

= v (Vi v (i) (-0

= 0. (D.101)

Therefore, the Fokker-Planck distribution p is the stationary . In addition , p is a density since

e (=ll) 1
/poo(:c)d:c = 7”33”(1 = 1|d:c (D.102)
Rd
_ pH d*ld dx™ D.103
= rd1|Sd1| rdr, (D.103)
R, §d-1
1
R, §d—1
= 1, (D.106)
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Convergence: Hence, we obtain for p; = p, that, we can bound the speed of convergence

w2 Lo (el 1
Hps—pooui?(m:/ps(w @4l = iz (l2Dllall'~ = = o | de
Rd
(D.107)
2 2
o 2 L7 p ()
= [ e 113 = ) - | B e (D.108)
Rd
2 2
1 pp(r)
:/ / ps(a | |§s| = 7") - W de L|dfl dr, (D.109)
Ry §d—1
2 2
- 1 pp(7)
:/(’ps(- @l =) = || M) LLH dr, (D.110)
5, L2(sd-1)
2 2
— 1 D). (7’)
gexp(fas)/ ( ‘pO(O | |Zo|l =7) — ] ) |L_1 dr,
- L2(Sd-1) r
.
(D.111)
2 2
B 1|7 pulel)
:exp(—as)/ pof@|[Zoll = llz]) - i |‘|a‘3”2d72 de, (D.112)
Rd
2 Lo (el 1P
= exp(—as) / po@"lI@oll = leDpr (2 Dllzl' = = =2 | de
R4
(D.113)
= exp(—as)|[po — Pool|72(ra); (D.114)

2

where in the inequality we used Theorem The upper bound is finite since po, € L?(R%). In

order to see this, we will show that the function py.| (r)r% is in L?(0, 00). Recall that

pp(r) = / Po(®(r, 0))r41 46 = -1 / po(®(r,0)) d6.
Sdfl Sd*l

Then, application of Jensen inequality leads
2

[onwrrtar= [ (v [ oo | r-tar

Ry Ry gd—1
2
:/ /pO(CD(r 0))de | i tdr,
Ry §d—1
§|Sd_1|/ /po(Q(T,B))Qrd_ldOdr,
Ry Sd—1
= |Sd71|Hp0H%2(Rd)'
Consequently,
I le (el 1 |?
o0 2 d T nAa—1
FED Hw\ld US| o ]Rd)
pL(r 1 2
|Sd " / / " 4ra6 < Il <
Sd-1 Ry
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(D.120)
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D.6 BEYOND PURE STRATONOVICH NOISE

A possible extension to the described diffusion in equation [3.1) would be to add a drift term, i.e.
considering

=
dz, = Az ds + G(,) o dB,,
with a skew-symmetric matrix A € R%“, Then, the associated Fokker-Planck equations will

additional involve an advection term (Ax) - V| p,, which can be used to improve the speed of
convergence of the dynamics.

E LATENT DISTRIBUTION

The latent vectors zoo ~ Poo Of additive SGM are Gaussian white noises. This is not the case for
MSGM in general. This appendix will elaborate on this point. First, we will show that MSGM latent
vectors are white noise in the weak sense. Then, we will discuss the conditions for these latent vectors
to be Gaussian, how to sample them, and how to transform map them to another latent space which
is Gaussian. We also show that the MSGM latent distribution is always closer than the SGM latent
distribution to the data distribution. Finally, we focus on the case of Cauchy data distribution, where
SGM leads to singularity, unlike MSGM.

E.1 THE INVARIANT MEASURES DEFINE WHITE NOISES IN THE WEAK SENSE

In additive SGM, latent vectors & o, ~ p, are Gaussian white noise in the strong sense, i.e. for any

i1 # j, the coordinates (zm)l and (Em) ; are centered, independent, and identically distributed. In
contrast, the latent vectors of MSGM are white noises in the weak sense, as stated by the following

proposition. For any ¢ # j, the coordinates (zoo)l and (200) ; are uncorrelated but neither Gaussian
nor independent, in general.

Proposition E.1.1. Let the assumptions|Al|and|A2|hold, E|| T o |? < +oo, and po. be a stationary
density of the Fokker-Planck equation m Then, Zoo ~ Do IS a White noise in the weak sense,
ie. BT o = 0, B(Zoo)? < +00 independent of i, and E(zoo)z(zoo)J =0,Yi,5 € {1,...,d} with
i # 7.

Proof. From Theorem|D.2.1| p., is rotation-variant. So there exist a function h : RT™ — R™ such
that for any € RY, po.(z) = h(||z||) . Then,

IE(EEOO)Z = / zih(||z||)dx = / (/ :Ezh(m|)dxz> Izidxy =0, (E.1)
Rd Ri-1 \JR
since the function ; — x;h(||x|) is even.

Similarly, for i # jin {1,...,d}

B@n)i(@x); = [ wash(lal)de. ©2)
R
= / x; (/ xzh(||az||)d$cl) yziday, (E.3)
Rd—1 R
=0
= 0. (E4)
oreover, for i in {1,...,d}, we have
+oo > El[zel?, (E.5)
d
= EY (@)}, (E6)
i=1
> E(Tw)f, (E.7)

:/ </x§h(|w||)dmi>ﬂk¢idxk, (E.8)
Rd-1 \JR
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which does not depends of 7. O

Remark 1. Since E(zoo)f does not depend on 1, we can easily evaluate it from Theoremand

Proposition[D.3.2]

1 1 1
E(Zoo)? = El|Focl? = lim =EI|Z,|? = JElIZol?, (E9)
and thus
1
E(Z o) = SE[@0]* L. (E.10)

L . = L = . .
Therefore, monitoring the covariance of xr and its distance to éEH x> 14 are convenient proxies
of the forward SDE convergence.

E.2 CONDITION OF GAUSSIANITY FOR THE LATENT VECTOR

Proposition E.2.1. Let assumptions and hold and p| |2 be the density of |Zol|2. Then, the
latent distribution po, is Gaussian if and only if p 2 is a scaled X? distribution with d degrees of
freedom, denoted a? xﬁ with o > 0.

Proof. From Theorem [D.2.1} we know that p. is rotation invariant, i.e. it is a function of ||x||.

If this distribution is Gaussian, it has to be of the form A/(0, a%1;) with a > 0. Then, HEOHQ =
[Zool|? ~ a®x3. Reciprocally, if there exists a > 0 such that p| |2 = a?x3 then p| | = axq, where

we denote by ay, the distribution of a positive random variable X = va2R such that R ~ x2.
From Theorem[3.3.1] we know that

T 1-d x 1—d
pe(@) = (o) i = vl i ©11)

It is the distribution N/(0, «*I,;) written in spherical form. So, the latent distribution p is Gaussian.
O

. . - ; .
Remark 2. Isotropic Gaussian data xo ~ N(0,a*1,) will hence leads to Gaussian latent space.
But the contrapositive is not true. To see this, let us consider a general spherical decomposition of
the data distribution py :

T _ T _
i) =2° (Il 757 ) Il = = (llhog (25 llel ) lal . @12
]| ]|
The latent distribution would be Gaussian as long as the distribution of norn is p|| = pay,- But the

conditional distribution of direction can be any valid conditional distribution on the d-sphere. For

instance,
x
T
v (nwn

is a valid candidate even though py is not Gaussian (since its support is R* x {0}4=1),

w|> ~5 (w - e<1>) . with M =(1,0,...,0), (E.13)

|

E.3 A TRACTABLE ALGORITHM TO SAMPLE LATENT VECTORS

With the following proposition, if we know the distribution of norms, p| |, we can sample latent
vectors from po..

N N
Proposition E.3.1. Let &y, ~ N(0,1,) and To = F~! (%0 ) with F~(z) = [(|l2ll) & i
x # 0 and 0 otherwise,
F(r) = F [ (Fe@ (), ¥r>0, (E.14)
or 1 e generatizea inverse o py.| an 2 1S the of ex 1stribution wit egrees
for th lized i CDF F| " of p|| and Fyx is the CDF of the x* distribution with d d

of freedom. Then EO ~ Doo-
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N N N
Proof. Since go ~ N(0,1,), we know that ||§0 2 ~ x3_,, ie. FX2(||E0 1) ~ U(0,1) and

N N
then R := f(||<a?0 h = F\_Il (sz (||<af0 ||2)) ~ py|- In addition, the normalized vector is
~N N

N o = .
ﬁ ~ U(S?1). The norm ||z, || and the direction Hfﬁol are independent. Therefore, R and
2 - o
H%T are also independent. We can conclude that o = Rﬁ follows the correct distribution. [J
x, To

In practice, we do not exactly know the distribution of the data norm Dl So, we do not have

access to Fj | or f. Instead, we approximate the distribution of log H§0||€ with |

o with ] = |a]| + e
denoted piog |.|., by a model piog .|, Or equivalently Fi,g| | by a model Fi,g . (see Appendix.
We perform a similar sampling procedure for the latent vectors, replacing F' by our approximation.
We obtain samples of an approximate latent distribution p.., as stated by Proposition

N N . R
Proposition E.3.2. Let ©y, ~ N(0,1,) and ©o = F—! (EO ) with =1 (x) = f(|z|) 137 i
x # 0 and 0 otherwise,

F(r) := exp (Fl;gll_‘e(FXz(d) (1"2))) —e, Vr>0, (E.15)
for the generalized inverse of the approximated CDF Flgg1|.| associated to the approximated PDF
Plog|.|.» and F\z is the CDF of the x? distribution with d degrees of freedom. Then EO ~ Do, Where

—d
Poo is the empirical approximation of poo, that is Poc(T) 1= Plog .. (log ||w||e)%, Va € R

Proof. We can follow the same proof that for Proposition replacing F| |, f, p| |, and p by
Flog [les f s Plog |.|.» and Po TESPECtively. O

E.4 GAUSSIANIZATION OF THE LATENT VECTORS

If needed, we can easily build a second latent space with standard Gaussian vectors. As stated by the

. .. . — . —

following proposition, for any (non-Gaussian) latent vector 7, we can create a Gaussian vector &,
N —n . —n — PRI

xp = Rrxp, with zp=x7/||zr|, and Rr=f""(|z7]). (E.16)

- . —N
If = is zero, we just set &, to zero.

Proposition E.4.1. Let ZT ~ Poo, Where Po is the empirical approximation of peo, that is Poo () :=

ll*—7

) N o N .
Prog .. (log |zl ) Bk Ve € RY and ' = F (zT) with B(x) == [~ (|lzll) & ifx # 0

and 0 otherwise,

) = JES Fogl . (7). vr>0, (E17)

for the approximated CDF Flog || associated to the approximated PDF p\og | |., and F\z is the CDF
N
of the x? distribution with d degrees of freedom. Then %T ~ N(0, I,).

Proof. We can follow the same proof that for Proposition replacing F ﬂl, X3 N0, 1), py ),
and po by Eog [ ]e> fﬁl, plog [ ]e> Poos X2, and N(O, Id) respectively. O

E.5 A SHORTER DISTANCE BETWEEN LATENT AND DATA DISTRIBUTION

The following result states, that the latent space of MSGM is closer to the data distribution compared
to the SGM latent distribution in KL-divergence.
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Proposition E.5.1. Let the assumptions and 2, Poo and

pé\g = N(0, I;) be the MSGM and the SGM latent distributions respectively, then

Dxcr(pecllpo) < Drcr (X [1po). (E.18)
with equality if and only if p| |2 is a X? distribution with d degrees of freedom.

Proof. We recall that the MSGM latent pdf is
o (ll)) 1

Poo(®) = A (E.19)
and the data distribution reads
() = L (a1l = el (©20)
Let denotes Py2 the x? distribution with d degrees of freedom
PN (@) = Wpo( "l ol = Jal). (E21)

LN
It is the distribution of 30 =F (:1:0) with F(z) := f~1(||z|) Ty if @ # 0 and 0 otherwise, and

F7Hr) = \J(FRH(E (), vr>0, (E.22)
and F| |(R fo p|.|(r)dr the cdf associated to py |.
We have
0 < Dgr(polp§Y )a (E.23)
_ / ) log L Lo, (E.24)
p
= [ mieyos (<|||w”)> . (E29
p\ () ]t
= p(] dw, (E.26)
/ o[4S pya ()
T
— / ol m;dx, (E.27)
_ )1 ) Poo(® ) i
= po(x ng/\/ o(@) x, (E.28)
= / log ) daz — /po(ac)log Po(z) de, (E.29)
pN poo(w)
= DKL(pollpoo)*DKL(poHpoo), (E.30)
with equality if and only if pg = AN Le. p| = Dpy2- O

E.6 RELEVANCE OF MSGM LATENT SPACE FOR HEAVY-TAIL DISTRIBUTIONS.

This appendix provides an analysis of why the latent space of MSGM is better suited to heavy-
tailed data distribution as compared to the latent space of SGM. This subsection can be viewed
as an extension of Proposition In particular the derived inequality in Proposition
becomes meaning less if both sides are not finite. However, as we will see for example of heavy tail
distribution such as the (product) Cauchy distribution, this is not the case. To this end we will show
in Appendix [E.6.1]that we KL divergence of data distribution and SGM latent space is not finite and
that it is finite for the data distribution and the MSGM latent space in Appendix [E.6.2]

We note that the analysis can be extended to a broader class of heavy tailed distributions and more
general SGM latent spaces such as general Gaussian distributions.
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E.6.1 INFINITE KL DIVERGENCE BETWEEN CAUCHY DISTRIBUTION AND STANDARD
GAUSSIAN

d
Letp(x) = \/%6_22/2 be the density of the standard Gaussian N(0, I), and let po(z) = [] ~77

m(1+a3)
=1
be the product density of univariate Cauchy distributions. Then, the following holds.
Lemma E.6.1.
Dxw(pol¢) = oo
Proof. Let L > 1 and define the set
M={xecR |2y >L,|zr;| <1, j=2,...,d}.
Then for x € M and C := W
d d
1 1 1 1 1
> _ . = .
pol Hﬂl—l—x)_wd 1—|—x1 H1+1 7201 1442 1+a2

=1 =2

Moreover, for any & € R, it holds that

—(x? 3 z2)/2
o(x) = (Qﬂ)—d/% (wi+ 2, =0/ < (gﬂ)—d/%—x?/%

Consequently, for L large enough,

po(x) _ x
o(x)

where O refers to Landau-symbol of big-O notation. Together, for z € M and L large enough, there
exists C' > 0 such that

po(x)log

Consequently,

]Zpo(w) log Z?((;c)) dx > / / / Cday---dry | dzy = 0

lz;|<1,5>2

By Lebesgue decomposition, we conclude Dkr,(pol|¢) = oo. O

E.6.2 FINITE KL DIVERGENCE BETWEEN CAUCHY DISTRIBUTION AND ITS RELATED pgo
Let d > 2 and again consider the product of Cauchy densities
1
x)= — -
) }:[1 (1 + a?)

Let @ ~ po and let pr; be the density of R = ||z ||. Then, motivated by our latent space distribution
equation[3.8] consider the density

pr(llzl) d
o = R 0}, E.31
Poo(T) &[S xc \ {0} ( )
Then, the following holds
Lemma E.6.2.
Dxw(po || poo) < 00.
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Proof. Tt holds that
po(x)

og 225 = ogpo(w) ~log pr([z]) + (4 — 1) log ] +log 5"

Hence,

D (pollpe) = Ey[log po(20)] — Epllog pr(|[ol))] + (d — DE,[log [ Zol] +log [S*,

where [E,, denotes the expectation with respect to the probability measure podz. We will show, that
each term separately is finite. We start with the first term, followed by the the third. The finiteness of
the second term turns out to be a consequence of the finiteness of the second term.

e First term:1t holds that
d

logpo(zo) = —dlogm — Zlog(l + (30)12)
i=1

for 30 ~ pg. Since coordinates of (?0)2» are iid it is enough to check the marginal integrals
for finiteness. In particular it holds that

T log(1 + z2)
—————dx =log(4) < 0.
/ (1 + 22) z =log(4) < o0
Consequently
5
|Ep[log po(xo)]| < oc. (E.32)
* Third term: For the second term, let R = ||5>0|| and M = max |(20)3]. Then, almost
surely T

<R<VdAM = logM <logR <logM + %logd.
Consequently,
B, llog R] — B flog M]| < J logd.
Thus if we show E, [log M| < oo, then E,[log R] < oo as well, since both expectation only
differ up to a finite factor. Using the CDF F of (% )1 e.g. for (Z¢)1 it holds that

2
P(|(Zoh|l < 1) = F(t) - F(~t) = = arctant, ¢ >0.
s

Consequently, since (20)1, . . ., (Zo)q are iid, the CDF Fy; of M satisfies
9 d
Fy(t)=P(M <t)= < arctant) , t>0.
71'

Hence, the density fj; of M is given (for d > 2) as

0

d
fu(t) = aFM(t) =d (i) (arctan ¢)4~!

Now, by a integral splitting we find that

1
14¢2

o] 1 o]

E, [log M) = / log ¢ far (1)t = / log ¢ far (£)dt + / log(t) fur (. (E33)

0 0 1

By noting that for 0 < ¢, far(t) < Ct¢~! for some C' > 0 and
1

/ St (£)(— log(£))dt < / 191 (~ log(t))dt = —, >0,

0
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the first integrant of equation is finite using a = d. Fort > 1 arctan(t) < 7/2 and
E5

hence fi/(t) < C'3 =+ tg for some C’ > 0 and the second integral of equation |E.33|is finite
since
71
t
/ o8 )dt=1<oo.
1412

It follows that E,, [log M] is finite.
* Second term: Recall that
palr) = [ mlre)do(6) =11 [ po(r0)da®).
gd-1 gd-1
Since for = 70 with 8 = (61, ...,0,), with 6? < 1 and using the fact that
d
11;[1 (14 r292

we conclude

d 1
HW 1—|—r2 - md(1 + r2)d’

=1

<.

Therefore,
i1 1 it pd—1
B ST = Oy
pr(r) > T2 S*1 Cd(1+T2)d
Hence,
logpr(r) > log Cq+ (d — 1)logr — dlog(1 + r?),
which yields
Ep[long(HgOH)] > log Cy + (d — 1)E,[log R] — dE, log(1 + R?)]. (E.34)

d
For the third term in equation|E.34|it holds that R? = > (?0)3 Now for M < 1 we have
i=1
since R < vdM < +/d that log(1+ R?) < log(1 + \/&) is independent of R. For M > 1,
log(1 + R?) < log(1 + dM?) < log(dM? + dM?) = log(2d) + 2log(M). Since we
already showed that IE [log R] is finite, we conclude that the lower bound in equation[E.34]
is finite. For the upper bound, note that

1

po(r@) < —a Vr > 0.

Thus,
1
pr(r) < rf =[S = Cyrd!
™
for some Cy > 0. So
logpr(r) <logCyq+ (d—1)logr.

And finally,
Ep[logr(R)] <logCy + (d — 1)E,[log R] < oo

since E,[log R] < oo

* Fourth term: Finite since volume of the finite dimensional hypersphere.
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F BACKWARD DIFFUSION

This section is devoted to the derivation of the reverse SDE and ODE of our proposed MSGM in It
and Stratonovich form.

Proposition F.1. (Backward SDE) Let the skew-symmetry assumption[Al|hold. Then, the Ité form
of the reverse SDE associated to the forward SDE|3.1|is given by the SDE

dz, = L(V-3)(z)dt + G(2)G(,) TV Iogpr_i(zo)dt + G(z,)dB..  (Fl)

In the Stratonovich form, it reads:

dz, = G(z,) (G(Etwvmg pr—i(my)dt + odgt) . (F2)

Proof. From|Anderson| (1982)); [Song et al| (2021)) and the Itd forward SDE (see Lemma [D.1.2)), we
know that the It6 reverse SDE with negative ds writes

dzy, = LV X)(Z,)ds— (V- X)(Z,)ds — G(T)G(x,)TV logp,(z ;) ds

+G(7,)dB,, (E3)

—

Py
= LV Z)(z,)ds — G(x,)G(x,)VIogps(,)ds + G(z,)dB,. (F4)
Replacing the decreasing s € [0,7] by s = T — t with increasing ¢ € [0, 7] and using another
—
Brownian motion B, we obtain the [td backward SDE with positive dt
+—
dz, = L(V-Z)(z,)dt+G(x,)G(x,)VIogpr_i(x,)dt + G(z,)dB;.  (ES5)

Then, Lemma [D.T.T] and the standard Stratonovich-to-It6 formula (e.g. [Kunital [1997) yields the
Stratonovich form of the backward SDE:

dz, = —1d(G(@,), B.) + 5(V - 2)(@,)dt + G()G(,) TV log pr () dt
+G(z,)o d-(étv F6)
— LV D) (E)dt + LV 3)(5)dt

+G(Zy) (G(Et)Twong_t(Et)dt n odﬁt) : (F7)
= G(z,) (G(Et)Twongt(a)dt + odgt) . (F.8)
O

Proposition F.2. (Backward probability flow ODE) Let the skew-symmetry assumption|Al| hold.
Then, the reverse probability flow associated to the forward SDE[3.1]is given by the ODE

dx
7; = 1G(%,)G(,) TV log pr—i(T:). (F9)
Proof. From [Song et al.| (2021)) and the 1t6 forward SDE (see Lemmal[D.1.2), we know that the
reverse probability flow writes with negative ds
dz, = L(V-2)(z,)ds— (V- 2)(z,)ds — 1G(,)G(z,)TV logp,(z,)dt, (F.10)
= —1G(%,)G(z,) TV logp,(z,)dt. (F11)
Replacing the decreasing s € [0,7] by s = T — t with increasing ¢ € [0,7] and using another
—
Brownian motion B, we obtain the Itd6 backward SDE with positive dt

—
dmt 1 —

at 1G(%:)G(:) TV log pr_i(xy). (F12)
O
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G PROOF OF THEOREM [3.4.T} EQUIVALENCE BETWEEN ELBO AND SCORE
MATCHING

This appendix derives a score-matching-based ELBO for MSGM training. In this work, we focus on
the simple forward multiplicative SDE equation [3.1] Nevertheless, we here derive a slightly more
general theorem, where we include a possibly non-zero Stratonovich drift fg.

G.1 STATEMENT OF THE THEOREM

Theorem G.1.1. Let us consider the forward SDE

(T, = f5(@4)ds + G(z.) o dB,, G.1)
where assumption @ holds. Then, we have
po(x]0) > Ex(x|0), (G.2)
with the following ELBO

Eoc(z|0) = E[long(ET)ﬁo:m} (G.3)

T
‘/o Eg, [ém(zs,sw 1V (G(2,)ag(Zs,5)) — fs(2)

30 = w] ds.

Proof. Here, we review the work of [Huang et al| (2021) on SGM and generalize some
of their results to derive an ELBO and justify score matching for MSGM. Note that
Benton et al.|(2024); Ren et al.|(2025) proposes a very general SGM framework with associated
ELBO and score matching losses. The MSGM ELBO and thus the above theorem can be understood
as a particular case of their work. The explicit dependence in 6 is omitted for readability.

G.2 NOTATIONS CORRESPONDENCE

The forward and backward processes are denote Y, and X, in Huang et al.|(2021) and 5,38 and <a_/:t in
this paper. The forward Itd equation of Huang et al.|(2021]) is denoted:

dY, = f(Ys,s)ds + g(Ys, s)dBs. (G.4)

Lemma|[D.T.T|gives the forward Itc equation of MSGM. It yields the following notation correspon-
dence:

g(z,s) = G(z), (G.5)
D(xz) = 39(x)g(2)T = ;X(z), (G.6)
fle) = 3(V-2)(x)+ fs(z). (G.7)

And the backward equation is :
4%, = p(ie,, )dt + G(,, t)dB,, (G.8)

with a drift

p(x,t) = —f(z) +2(V - D) (z) + 2D(z)V log pr—i(z), (G.9)
= —fs(z) + (V- 2)T(x) + X(x)Vlogpr_i(z), (G.10)

where we would arrive at the approximate backward SDE of Figure[T]if we replace V log pr—¢ (;t)

by se(gt, T — t) also parametrized as ag = G sg. We note that in our case, fg = 0, the drift reads
n= %(V - 3T + XV log pr—4, and the SDE simplifies with Stratonovich notations equation

39



Under review as a conference paper at ICLR 2026

G.3 MARGINAL DENSITY FROM FEYNMAN-KAC REPRESENTATION

The Appendix D of [Huang et al.|(2021) treats the general case of multiplicative noise. It states that

i T
po(z) = E |pr(@r)exp (/ (V.H(ES,Ts)+v-;(v.2)T(§S,Ts))ds> ;Om],
0
(G.11)
= E|pr acT exp( / V-(p— % ))(zs,T—s)ds> zozw], (G.12)
where
de, = —p(x,,T —s)ds+G(z,, T — s)dB., (G.13)
ﬂ(ﬂ),t) = H(xvt)f(v'z)-r(w)’ (G14)

and B/, is a Brownian motion.
Remark 3. In our case, fi(xz,t) = p(x,t) — (V- X)T(x) = X(x)Viog pr—i(z) — 1(V- )T ().

Remark 4. Note that i — p = —(V - X)T = —(V - X)7 is twice the Ito to Stratonovich correction
of the backward SDE equation|[G.8|(see LemmalD.I.2). It is expected since this SDE can be reversed
in time once written with Stratonovich notations equation (Kunita| |1997). Then, changing back
Jfrom Stratonovich to Ito notations but with a different sign in front of the drift, we obtain the forward

SDE equation verified by 25 including twice the It to Stratonovich correction.

G.4 CHANGE OF MEASURE AND JENSEN’S INEQUALITY

From the Feynman-Kac representation equation [G.12]and Jensen’s inequality, we obtain an ELBO as
in|Huang et al.[(2021)).

Let (£2, F,P) be the underlying probability space for which B’ is a Brownian motion. Suppose Q is
another probability measure on ({2, F) equivalent to IP (i.e., they have the same measure zero sets).
We can hence apply the change-of-measure

dpP
po(x) = E deT(zT)exp< / V(p—3(V-2)7 )(zs,T—s)d8> Zo=xz| (G.15)
Then, we apply Jensen’s inequality:
dP 1 — —
log po(x) > log@ + logpr( scT V (b —5(V-2))(xs, T — s5)ds|xo = x
—£oo
(G.16)

Compared toHuang et al.[(2021), we have the additional term —%(V - X)T, that is, —%(V - 3T

G.5 GIRSANOV THEOREM

Huang et al.|(2021)) apply the Girsanov theorem to the following forward SDE equation (17) of [ Huang
et al.| (2021)):

dz, = (—p + Ga)ds + GdB,, (G.17)

since the Itd to Stratonovich correction §(p — 1) = 3(V - X)T is zero in [Huang et al.| (2021).
However, it is not the case in MSGM and here we use the Girsanov theorem to this forward SDE
instead:

dz, = (—fn + Ga)ds + GdB,. (G.18)
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The Girsanov theorem (Oksendal, |1998, Theorem 8.6.3) states the following. Let Bbe an Ito process
solving

dB, = —a(w,s)ds + dB’, (G.19)

for w € {2 and BO = 0 where a satisfies the Novikov’s condition. Then B is a Brownian motion

with respect to Q and :
T T
B[ aws)-dB -1 [ a3
0 0

Pl ]
ro==x
T
= -3 [ B [late. Bz = o] as G2
0

2o ==/, (G20)

E {log 3@

since T+ fOT a(w, s) - dB’, is a martingale and thus E [fOT a(w,s) - ng] = 0 (Oksendal, |1998
Theorem 3.2.1).

G.6 ELBO EVALUATION

Equation[G.2T]enable us to evaluate the ELBO £°° given by equation[G.16] To evaluate the divergence
term, we note that:

(-4 B)@T—s) = —fs(@)+ 3V D) (@) + S@)so(.s) - (V- H)(a),
(G.22)
= —fs(x) + G(x)ag(x, s). (G.23)

Then, the ELBO simplifies to:

£%) = E [log % Zo = a:} +E [1ong(£T)|5:’0 = :c} (G.24)
+/OTIE35 v (- 3(V-2))|z = w} ds,
- E [1og pT(z;) Zo = w} (G.25)
—/OT Eg Lao(@e 93 + V- (G(Zo)as(Ea,s) — Fs(@2))|Z0 = m} ds

We recall that in our case, fs cancels out. The first term E {log pT(zT) ‘ 5_50 = a:} is a constant w.r.t.

to 6. So, if when maximizing the ELBDO, this term has no effect on the optimization procedure.
Therefore, even with our multiplicative noise, the minimization of the ELBO corresponds precisely to
Implicit Score Matching (ISM), which is itself equivalent to Explicit Score Matching (ESM), Sliced
Score Matching (SSM) and Denoising Score Matching (DSM) (Huang et al.} 202T).

G.7 FroM ELBO TO OUR SSM LOSS

Here we show how to derive our practical SSM loss equation [3.14] from Theorem [3.4.]] We assume
the skew-symmetry condition[AT]and zero Stratonovich drift, i.e. f; = 0. The theorem states the

p()(w0|0) 2 goo(ilﬁ()|0) = C(ZB()) - »Coc(m0|9) (G26)

with C being a constant with respect to the parameters 6 to be learned. More precisely,

Clxzo) = E{long(zT)ﬁozwo}, (G.27)

T — — — —
Loo(@ol0) = /Eﬁ [§||ae(msa5)||2+v‘(G(ﬂfs)ae(ws,S)fs(ws))

s
rog= .’130:| ds.

(G.28)
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Then, we average over the data x( to obtain the following lower bound for the likelihood of the
dataset:

Ewopo(sco|0) 2 Emogoo(ilidg) = EwOC(:co) — Ewoﬁoo(ﬂ)dg). (G29)

Our objective is to find the neural network parameters @, that try to maximize the likelihood
of the data set, Ey,po(zo|@). Since E,,C(xo) is a constant with respect to 6, we maximize
—Ez, Loo(20]0). Let us explicit the two terms above with the Hutchinson trick, Ey  gaa(a)[VVT] =

1, (Song etal} 2020)

Eg,C(xo) = Eg, [long(ET)}, (G.30)

T —
Balon(enl®) = [ By [Hao@. o)l + V- (@@ )a0(@..s) - f5(2.)] ds

(G31)

T — — — 1
- T/ E [gnae(ws,s)H? +v-(G(ms)a9(ws,s))] —ds, (G.32)

0

= TE.aponEy [Slao(@.,9)? + V- (G(z.)ao(@s,5))| (G.33)
= TE,apnBy, |la0(s )2 + V- (EyonaaaVVTIG(Z a0 (., 9))] |
(G.34)
= TEsypo,rEz Evarad() { lag(Z s, s)|? + (V'V)(G(zs)ae(zms))"’} .
(G.35)
= TLssm(0). (G.36)

Therefore, maximizing the ELBO, E, Ex (20]0) = Eg, C(20) — Bz, Loo(20]0), is equivalent to
minimizing our practical score-matching loss, Lssm(0)

G.8 REMARK ON THE SCORE PARAMETRIZATION

Following [Huang et al] (2021)), we directly model G(;)TV log ps(x) by a neural network ag(x, s).
If needed, the projected score, V| log ps, can be retrieved directly from ag as shown below. Note
that the full score,

Vlogps = V1 logps + (" - V) log ps, (G.37)
involves a radial term, (™ - V) log p, that cannot be directly estimated in MSGM.
Proposition G.1. We assume that assumptions[Al|and @ hold, and that we have an approximation,

ag, of the scaled score and an orthonormal basis us (), . . ., ugq(x) of T+, that we concatenate in
U(x) = [uz(x),...,uq(x)] € R, Then,
[UT ()X (x)U(x)] 'UT (x)G(x)ae(x, s). (G.38)

approximates the projected score
UT(x)V logps(x). (G.39)

Proof. Since R? = Rx" @ xt, we have I; = 2" ()T + U(z)UT(z). Using X(x)z" = 0, we
obtain

UT(z)G(xz)ag(z,s) ~ UT(x)G(x)G(x)TVlogps(x), (G.40)
= UT(x)X(x)[z"(«")T+U (2)UT (z)|Viogps(x), (G.41)
= UT(x)X(x)U(x)UT(x)V logps(x), (G.42)
= UT(@)X(2)U(z)UT(2)V L logps(z). (G.43)
UT(z)X(x)U(x) € RE-DX(@=1) jg fyll rank, so
UT(x)V | logps(x) ~[UT(x) X (x)U(x)] U (z)G(x)ag(x, s). (G.44)
O
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It is also possible to model the score, V log ps(x) directly by a neural network, sg(x, s) using the
following score-matching loss:

Lssm(0) = Escvo Bz Evarad(a) [%Ilae(i’s,s)\\Q + (V'V)(G(zs)ao(zm8)—fs(£s))'v} ;

(G.45)

= EeuonEy Everaaca) |3150(@0, 9% 5 ) + (V- VI(B(@.)s0(es5) = £5(3.)) V)| ds.

However, for any o € R, Lssm(0)(sg) = Lssm(0)(sg + ax™), i.e. our loss function is insensible to
the radial component of the score (™ - V) log ps. Therefore, our MSGM framework does not provide
estimation for the radial score (x" - V) log ps. Moreover, the optimization problem parametrized by
sg is ill-defined, and the loss should probably be regularized as follows:

Li(0) = Lssm(0) + VEsnuo,mEg [(x-s0)?] , (G47)

with v > 0 large, says v = 106.

G.9 GIRSANOV THEOREM IN THE TRANSPORT NOISE LITERATURE

Following the work done by Huang et al.|(2021)) for additive noise, we have relied on the Girsanov
theorem (Oksendal, |1998)) to prove the equivalence between score matching and ELBO maximization
for MSGM. Girsanov theorem is widely used, we may cite here its recent uses in the transport noise
literature. In a Bayesian context, |Cotter et al.| (2020a}; 2023)); \Gonzalez et al.| (2025); |Singh et al.
(2025) introduce nudging in their particle filter. Also used with other type of noises, nudging biases
the noise to make the solution closer to the observations. Similarly, in our case, the weighted score,

pul
ag(x;, T — t), biases the noise, dB, /dt, in our backward SDE to make its solution closer to the
forward SDE solution (see equation [3.12)). This noise change is the core of Girsanov theorem (see
equation [G.19). Resseguier| (2023)) also proposed to fit a parametric model for the transport noise by
maximum likelihood estimation.

H COMPARISON WITH DIFFUSIONS ON RIEMANNIAN MANIFOLDS

This appendix describes the similarities between MSGM on R? and SGMs on manifolds. To introduce
the subject, we first recall some theoretical elements related to Riemannian manifolds. The link with
SGMs on manifolds also suggests a particular neural network architecture that we exploit in this
work.

H.1 RIEMANNIAN MANIFOLDS AND DIFFERENTIATION

This section is devoted to a brief introduction to Riemannian manifolds and the associated differential
calculus. For a more comprehensive discussion, we refer to [Lee| (2018). Let M be a smooth n-
dimensional embedded submanifold of R%, where n < d. For any x € M we denote by T, M the
tangential (linear) space of M at . We denote by ¢g a Riemannian metric on M, which assigns to
each € M an inner product

o : TyM X Ty M — R,

In the case of a smooth embedded manifold in the Euclidean space, the induced metric is given by
9z (u,v) = (u, v)gn, Vu,v € T, M.

This makes (M, g) a Riemannian manifold. Let {e("), ... e(™} be an orthonormal basis of T), M.
Then, the orthogonal projection onto 7, M is the linear operator P, : R? — T}, M that satisfies

n

— ; _ — (1) ()
Po(s) = arg g, 10 = wlhs = 3, e

While the concept of Riemannian gradients can be derived for general manifolds, here we limit
ourselves to the simpler presentation of embedded manifolds in the Euclidean space. In this setup,
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the Riemannian manifold can be defined as the classical gradient projected to the tangential space. In
particular, for f : R? — R smooth, its Riemannian gradient can be computed as

Vmf(x) = P(Vf(z)),

where V f(x) is the Euclidean gradient. Furthermore, we want to define the Riemannian divergence
in this framework. For a tangent vector field f : M — RY with f(z) € T, M, the Riemannian

divergence is given as
n

leMf(w) = Z(ae(i)f(x)v e(i)>7
i=1
where 0, f is the Euclidean directional derivative. Finally, the Laplace-Beltrami operator A p, can

be defined as
Amf =divm(Vmf),
which generalizes the Laplacian to M.
In the special case that M = rS%1 foraradiusr > Othenn = d — 1 and
ToM =TS = {v e R? | (v,2) = 0},

and P,(v) = v — 2 (v, @)x. Since &" = £ we obtain P, (v) = (I — «"(x™)T)v and as a result

Vaf(@) = Po(Vf(@) = (I - 2" (@) )V f(z) = V. f(=). (H.1)
Regarding the Riemannian divergence, we note that ", e(!), ..., e("™) defines an orthonormal basis
of R%. By Lemma

V- f@) = (@ V)@ f(@)+ V. - f(@).
For f(x) € T, M, we have f(x) - £ = 0. Thus:
Vi -f(x) =V -f(z)— (" - V){f(z) -2") =V - f(x).

=0

Differentiating the tangency condition f () - ™ = 0 along x" leads
0= 0pn(f(x) - ") = (Ognf(x), ") + (f(x), Ognz™).

Since Oznx™ = 0, we conclude that (Oz-f(x),x™) = 0. Finally, expanding V - f(x) in
x", e .. e leads to

n

Vi f@) =V -f(@) =) (O f(x),e?) + (Opnf(x),2") = divpaf(z). (H.2)
i—1 T

In our setting Im(X(x)) = =t = T, M. Hence, the right-hand side of the Fokker-Planck equa-
tion[3.4]

divp (Z(2)V o f () = VL - (Z(2)VLf()), (H.3)

generalizes the notion of a divergence-form operator to the manifold setup.

H.2 CONDITIONAL DIFFUSIONS ON SCALED d-SPHERES

Several authors have recently developed SGM on Riemannian  manifolds
(De Bortoli et al.| [2022} [Huang et al., 2022; Benton et al.,[2024) in order to generate data ly-
ing on a particular manifold. Clearly different, our goal is more classical: generating data in RY,

However, each solution path of our forward and backward SDE lies on its scaled d-sphere ||z [|S?~L.
Clearly, d-spheres are particular cases of Riemannian manifolds and possibly the most studied.

De Bortoli et al.[(2022)) describes diffusions of Z in the d-sphere S%~1. The simplest one involves a
Brownian motion on the d-sphere that converges to the uniform distribution on the d-sphere, p7 .
Unfortunately, this appealing proposal does not directly apply to our framework: the Brownian

n
motion on the d-sphere is not a solution of our forward SDE of z . Indeed, in general, there exists
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Z €S9 such that X(x") = S°¢_ (GFa&™)(GFa™)T # Igu-1. So, the Fokker-Planck equation
of De Bortoli et al.[(2022)),

0

%pn(wn) = divga-1(Vga1p" (")), Va" e Sd_l, (H.4)
and our Fokker-Planck equation for the direction,
0
%p"(w") = divge—1 (X (x")Vga1p" (")), Va" € sé-1, (H.5)

do not coincide. However, the analyses from the SGM-on-manifold community on the finite-time
distribution, its score, approximations, and score-matching losses choices could certainly facilities
the MSGM training process in the future.

In our case, the norm of solution being constant along path, we can write both the forward and the
backward equations of the direction on the unit d-sphere from equation [3.1]and equation[3.12

da;, = G(zf)odﬁt, (H.6)
n 1 n by
dz, = HG@) (G@)TVlong_t (N2l ) at + odBt) : (H7)
Lt
n n n hay
= o) (G (15V L tospre (1515 )) e +odBy) . i)

We note that |||V = Vga—1 = O is the Riemannian gradient on the scaled d-sphere ||z||S¢~!.
n
Therefore, using p®, the density of the couple of variables (|||, =, ) € Rt x S¢-1,

n 0 n
|zl Vo togpr—s (IZdlZ) = 5o logpri (I2:l2)) (H.9)
a n n _
= o log (5, (1)1, ) iz (H.10)
£r
0 n «~n «—n — — 11—
= sotog (o (&0 [12/1) pry (120 N2l
(H.11)
= 2 oy (= 1) (H.12)
oxn AN
0 n «—n —
= sclogpi, (/| 170l (H.13)
n
= Vgiilogph_, (Et |||‘50||) (H.14)
and finally
7 n n n <
dz, = G(Et)(e(zt)wsd_llogpg_t (Et |||§o|)dt+odBt>. (H.15)
In contrast, forward and backward SDEs of |De Bortoli et al.[|(2022) read
n ‘)Sdil
de, = dB, |, (H.16)
n n Hsdil
dT, = Vgilogph_, (Et)dterBt , (H.17)

_>Sd71 (_Sdfl
where B, and B,  are Brownian motions on the d-sphere. They can be defined from Stroock’s
representation (Hsul 2002, Example 3.3.2) as

Sd71 n n
dB, = (I,—(,)@)7)odB,, (H.18)
<84t n n —
dB, = (I;— (%, )(x,)T)0dB,. (H.19)
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The first main difference with MSGM is that the projection on the tangent plane, (I; — (x™)(x™)7),

(quadratic in ™) is replaced in our approach by G(E:) (linear in ™). Accordingly the noise
(conditional) covariance, (I; — (z")(z™)T)? = (I — (x™)(x™)T) (projection property), is replaced
by G(z, )G( o,

x, )T = X(x,). To make our diffusion coincide with equation , we would have
to consider

G(z) = ||z||(La — =" (z")7), (H.20)
which is Lipchitz continuous but nonlinear. As such, the noise covariance would be
X(x) = ||’ I; — zxT. (H21)

In general, we can hardly expect such a simple form from MSGM noise covariance. However, for the
random tensor equation [6.1] we can show (see equation [I.T0) that:

QEX () = ||z ||* Ty — xxT. (H.22)

In addition, our score involved in the backward SDE equation depends on the norm || z ||. The
norm ||| = ||Zo| appears as a covariable — with prior distribution p| | — for the diffusion on the
unit d-sphere. This is another major difference of our approach compared to SGM on manifolds.
Besides, from this point of view, we can better understand how the direction and magnitude are
re-coupled during MSGM generation. Along the reverse diffusion, the conditional score direction
[H.14] will focus along some orientations, counterbalancing the direction equiprobability of the latent
space, i.e. reversing the "whitening" of the forward process. On different scaled d-sphere ||zo||S?~*,
the conditional score direction will be oriented differently, pushing along some orientations on some
spheres and along other directions on spheres of larger radius. Accordingly, along the backward
diffusion, the directions tend to align differently on different hypershperes. The distribution of
direction become more and more radius-dependent.

If data samples 20 are snapshots of a conservative dynamical system, all data points probably have
the similar energy E = |||, i.e. Var(E)/E[E]? is small. All data points are on closed scaled
d-spheres v/ E S~ and our approach becomes even closer to De Bortoli et al.| (2022).

H.3 LINK WITH NEURAL NETWORK ARCHITECTURE
Form equation [H.T4] we also note that
— — «—n —no
G(z) Viogpri (2:) = G(&,) Veuilogpt_, (z/ |llzoll),  (H23)
justifying our neural network spherical architecture equation [L.33]

-
2] «n

wt710g||§t||E,T—t>. (H.24)

G(z,)Viogpr_i(,) ~ ag(,, T — t) = ag (IIH |
Ttlle

I ANALYTIC ILLUSTRATIONS ON SIMPLIFIED CASES

1.1 THE TWO-DIMENSIONAL CASE

We note here that for d = 2, we can find an analytic solution for our multiplicative forward SDE.
Moreover, it corresponds to the Brownian motion on the circle.

Let us recall this forward SDE:

K Sk K k
A3 (1) = G(B(t) 0 dB, = 3 G*F(t) 0 dB, = <Z G" o dﬁt) z(), 1)
k=1 k=1
In dimension 2,
— — -1
de(t) = aJx(t) odB,, (1.2)
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= z 0 -1
where x = il ceR? J= is the Z -rotation.
To 1 0 2
— 7*) -1
d (il) -« ( ;”2) odB,, (1.3)
X2 X1
c
Then, in the complex plane, T = 21 + izg € C, with 7 = y/—1 and we have:
c c =1
d7 (t) = aif odB,, (14)
since
— — — — -1 — — -1
dzy +idzy = ai(x1 +ida) 0odB, = a(—x2 +ix1) 0 dB,. (1.5)
The solution is the Brownian motion on the circle:
c c -1
z (t)=7 (0)exp(aiB,), (16)
ie.
) 1 1
N o
2) = R(aB,)3(0)= [ @B —sin(aB ) 2, (17)
sin(aB,) cos(aB,)
ie.
— — -1 -1
21(t) = 21(0)cos(aB,) — z2(0)sin(aB,), (1.8)
1 1
Zo(t) = Z1(0)sin(aB,) + 72(0)cos(aB,). 19)

The key element of the proof was the possibility to write the forward diffusion with a single skew-
symmetric matrix in equation|[[.2] Below we generalize this idea to larger dimension d > 2.

[.2 TENSOR BUILT FROM A SINGLE SKEW-SYMMETRIC MATRIX
Here we assume that whole tensor G is built from the same dense skew-symmetric matrix G i.e.
G'=G', Vke{l,...,d}, (1.10)

with G* a skew-symmetric matrix. As explained in Appendix [K221] this tensor respect the condition
[AT]but not the[AZ] Nevertheless, this case and its analytic solution may be insightful.

1.2.1 MATRIX EXPONENTIAL

Here the full Brownian matrix Z can be simply factorized as

d N d N
Z, =Y GMB)r =G' Y (B (L11)
k=1 k=1
It has the same distribution than
—
Z' =VdG'B,, (1.12)

!
with B another single Brownian motion. The forward diffusion simplify to

%, = Vd G'Z, 0 dB,, (113)

with solution
N
T, = exp(Z;)zo = exp (\/g GlB’S) o, (1.14)

since Z/, and dZ! commute.
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[.2.2 DIAGONALIZATION IN THE COMPLEX PLANE
G'! has pure imaginary eigenvalues and can be diagonalized in C on an orthonormal basis
G' =Uc(iNUE, (L.15)

with Uc a complex unitary matrix, A a real diagonal matrix, and the superscript H denotes the
conjugate transpose. Then, the solution can be easily evaluate as follow

Z. =Ucexp <i\/& Afag) U2, (L16)

For an even dimension d, and for all j € {1,...,d/2}, there exists \; € R such that
(UHZ )21 = exp (i\/& AJE;) (U8 Zo)2j-1, (1.17)
UEZ,)y; = exp (—NE Aj§;> (UHZ ). (L18)

For an odd dimension d, G has at least one zero eigenvalue. Without loss of generality, we consider
Agq=0andforall j € {1,...,(d—1)/2}, there exists \; € R such that

—
(Ug;s)Zj—l = exp <Z\/g )\]Bg) (ngo)gj_l, (119)
(ngs)gj = exp (—Z\/g )\]§;> (ngo)gj, (120)
UEZ)y = (UEZo)a 1.21)

1.2.3 REAL SOLUTION WITH SINE AND COSINE

The diagonalization matrix, U, is complex but we can find a real unitary matrix, Ug, to make
G block diagonal, and then expressing the solution with cosinus and sinus as in equation [[.8]and

equation[[.9

— —

(U]lgzs)gj_l = COS (\/a A]B;) (Uﬂgzo)gj_l — sin (\/a A]B:> (Uﬂggo)gj, (122)
— —

(Uﬂgzs)gj = sin (\/& )\JB;) (U&§0)2j71 + cos (\/& )\ng> (Uﬂgzo)gj. (123)

For an odd dimension d, the real solution reads

— —
(U]}Ezs)gjfl = COS <\/a )‘JB;,‘) (Uﬂgzo)gjfl — sin (\/& )\]B/S> (Uﬂgzo)z‘j, (124)
— —
(Uﬂgzs)gj = sin <\/g )\JB;> (UHEZQ)Qj_l —+ cos (\/& A]Bg> (U]{{zg)zj, (125)
Ulz)e = (Uldo)a (1.26)

Figure [B]illustrates the solution for d = 4 with 20000 realizations of zT at large time 7" = 100, with
A1 = 1, = 10, 50 = (1,1,1,1), and Ug = I,. A rotation-invariant distribution, p.., would
induce rotation-invariant marginals and hence point cloud projections appearing rotation-invariant.
This is clearly not the case here. This counter example shows that low-rank tensors as defined in
equation [[.T0]cannot guaranty rotation-invariant latent distribution, and thus prevent the use of our
simple eCDF-based sampling procedure.

Figure[7)illustrates the latent vector support for a random initial condition 5;0 =
N((1,1,1,1),0.0114). The supporting manifold is not one-dimensional anymore, but still depend

) ) )

on the initial direction distribution, pyj.
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Figure 5: Projection of samples, zT, sketching the support of the invariant measure, p.., for a

low-rank tensor d=4and o = (1,1,1,1). The top plot is in space (z1, 22, x3), the bottom
plots are, form left to right, in space (z1, ©2), (21, x3), (21, 24), and (x4, z3).
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Moreover, as expected from the expression above, the initial norm, |||, scales the one-dimensional
manifold supporting the invariant measure (not shown) and the initial direction, «, has an influence

at large time. Figure[6]shows the same example with 2o = (v/2,v/2,0,0). The initial norm is the
same but the initial direction is different. Therefore, the limit distribution, p., if it exists does depend

n
on the initial direction, 30, making the latent sampling intractable.

1
>
(0]
-1
2
-2 0
0 v
> -2
A7
2] 21 21 21
< o] < o R o < o
27 ) ' -2 . . -2 . ; —24 i .
-2 0 2 -2 0 2 -2 0 2 -2 0 2
X1 X1 X1 Xa

Figure 6: Projection of samples, BT, sketching the support of the invariant measure, po,, for a

low-rank tensor d=4and o = (v/2,4/2,0,0). The top plot is in space (1, x2, x3), the
bottom plots are, form left to right, in space (21, x2), (x1, z3), (21, x4), and (x4, 3).
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X 0 < x 07
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Figure 7: Projection of samples, 7, sketching the support of the invariant measure, p.,, for a
low-rank tensor[L.10| d = 4 and o = A'((1,1,1,1),0.0114). The top plot is in space (1, x2, z3),
the bottom plots are, form left to right, in space (z1, z2), (21, x3), (1, 24), and (x4, z3).
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1.3 NON-COMMUTATIVITY IN THE GENERAL CASE

For a general tensor G in dimension d > 2 , it is temping to look for a solution 55 of the forward
SDE . .
des =odZx,

—
of the form exp(Zs)E;)O with Z = Zzzl G*(By)i. Z, being skew-symmetric, exp(Z,) is unitary
and such a solution would be reminiscent of the rotation form of equation|[.6land equation|[[.T6]derived
above. However, exp(Zs)E;o is not a solution of equationin general, since dZ;Zs # Z,dZ;.

J RANK AND SKEW-SYMMETRY CONDITIONS FOR RANDOM TENSOR (&

In this appendix, we treat the case of random tensor G as defined by equation[6.1] We will show that
this tensor respects both assumptions [AT]and[AZ] almost surely. Then, we will discuss the speed of
contraction of the Fokker-Planck equation with this tensor.

J.1 PROOF OF THE RANK CONDITION

Proposition J.1. Let M* € R%? be iid random matrices with entries drawn independently from
N(0,1). Define the skew-symmetric matrices G* = L(M* — (M*)T) and for x € R%\ {0} define
the (random) matrix

G(z) = [G'z,Gx,...,Gx] ¢ R,
Then, almost surely rank(G(z)) = d — 1.

Proof. Let x # 0. Let M be a random standard Gaussian matrix. Then, let D = M — M. Then,
D is Gaussian matrix with entries drawn from A/ (0, 2), in particular

E[D;jDye) = E[(M;j — Myj)(Mye — Myy)] = 2(0in050 — 0300k )- Jd.1

Consequently,
E[(M — MTxxT(MT™ — M)] = —E[Dzx" D). J.2)
Now, for the covariance structure it holds

— (E[Dzz™ D)), = E[(Dz);(Dz)y], 4.3)

d
= > ElDijz;Dyexe], (J.4)
j=11¢=1
d d
=> > a;xE[Di; Dy, (1.5)
j=1¢=1
d d
= 222%“(&%%’@ — 0400k, (J.6)
j=1¢=1
d d d d
=200 > Y wiwebie—2Y Y xebidjn, 1.7
j=1+¢=1 j=1+¢=1
= 26 ||z||* — 222k (J.8)

Hence E[Dxx™ D] = 2(||||I; — zxT). Consequently for any k = 1,...,d it holds that
1 ) 1
E[(G*z)(GFz)T] = XIE[(M’C — (M")NzxT(MF)T — M")]| = 5(\|;c||21d —zz"). (1.9
As a result, the matrix G(z) has columns G*z w N(0, V) with

V= V(z) = ES(x) %(||ac||21d ), (1.10)
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of rank d — 1. Therefore, ¥'(z) = G(x)G(x)T ~ Wy(V (), d) is a Wishart matrix.

Let K = K (x) be a matrix
K = [Kla"'aKd—l]a (Jll)

with column vectors K; forming an orthonormal basis of the hyperplane «-. Then by construction,
we have

B ||2KVK . (.12)
This means, that
2 KG(x) = (2ZKG's.. (2KG), Z2KG'z N0 1) (4.13)
Therefore,
ol V2 V2 V2 T
EEDe) (2K) = (5K6@) (;5KG@)" ~Wii(Lir.d), (1.14)

is a Wishart matrix, in particular W, (C, n) denotes the Wishart distribution with n degrees of freedom.
In the case n > p, such matrix is invertible almost surely (Muirhead}, 2009, Theorem 3.1.4). In our
case n = d > p = d — 1 thus almost surely

_ V2 .
rank (HmHKG( )) = rank ((HmHKG( )) ) =d—1 (J.15)
Now, since G(x)Tx = 0 we obtain almost surely that
d—1=rank (H 2 KG( )) < rank(G(z)) < d — 1, (1.16)
which yields the claim.
O

J.2 TENSOR RENORMALIZATION

In practice, we renormalize the tensor G as follows:

\[
”G”2 G with G =3(MF, — MF,). (J.17)

The normalization ensures that the trace of matrix defining the Itd term of our forward SDE —i.e. the
term driving the exponential decreases of E , (see the forward 1td SDE equation —is

tr (; ZGka> = —tr <; ZGk(Gk)T> =-3> IGH3 = -1IG[3 = —3d, (.18)
k k k

similarly to the trace of the matrix defining the It6 term of classical Ornstein Uhlenbeck forward SDE

tr (—1I4) = —d. J.19)
This normalization helps to better control the speed of convergence of the forward SDE without

changing its skew-symmetry nor its rank.

J.3 MEAN SPEED OF CONVERGENCE WITH RENORMALIZED TENSOR

Note that in this case, for (z,y) € S = {(z,y) € S x S¥ !z Ly},

d
E|G(z)y|* = yEX(z)y = y"E(Y_(G*z)(G*z))y = d(ll-’BII Iy —zxT)y = 5. (1.20)
k=1

So, we can expect exponential convergence of the Fokker-Planck equation with the speed

ﬁ 1
Ela(G,d)] = (d - 1)E i IGT(®)y* = (d — DE|GT (20)yol* = Zdld=1). @2
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Therefore, the convergence gets faster when the dimension increases.

However, the tensor G is normalized (see equation [J.17), so the evaluation of the convergence speed
is modified. We note first that:

~ ~ d d
E|GI* = dE|G'|* = JE[M" - (M)T|* =3 Z(E<Mi1j)2 —EM;;Mj;),  (.22)
ij
d 2 Lo
= 3 Z(l = 053) = 5d°(d = 1). (1.23)
ij
So, we obtain an estimate by Cauchy-Schwartz and Jensen’s inequality
Vd d =
E|Gx)y|* = E|— G@)y|*=E | —=—|G(x)y|?|, (J.24)
el G|
d A 2
< E|——|E|G(2)y]’, (1.25)
Gl
< —=—E|G(z)yl, (1.26)
E|G]*
d/2
= — .27
TEa-12 (1.27)
1
— 2
— (1.28)
and finally we obtain the following bound
Ea(G,d) < (d — DE||GT(zo)yol?* = 1. (1.29)

K GOING BEYOND THE RANK CONDITION FOR MSGM SCALABILITY

The dense tensor of Appendix [JJimposes a computational complexity as O(d?). To scale up the
method, we shall consider sparse tensor G. However, the rank condition makes it difficult to find
sparse tensors. Therefore, we here open the discussions to a weaker set of assumptions.

K.1 WEAKER ASSUMPTIONS

We recall here the two main assumptions of the paper
Skew-symmetry : For any k € {1,...,d}, the matrix G* = (Gﬁj)m is skew-symmetric. (A1)
Rank condition : For any € R\ {0}, rank(G(x)) = d — 1. (A2)

Note that the Fokker-Planck equation [3.4] Proposition[F2} Proposition [F.I] and Theorem [3.4.1]re-
quire only the assumption[AT] So, the backward SDE, ODE and score-matching loss are general
enough and do not prevent the use of sparse tensor G. In contrast, our current proof of the asymptotic
results Theorem 31,11 Theorem [D.4.1] and Theorem 3.3 T]rely on the restrictive assumption[A2] and
unfortunately, it seems difficult to find a sparse tensor G matching this assumption.

K.1.1 RANK CONDITION ALMOST EVERYWHERE

Therefore, we discuss here a weaker set of assumptions where the noise rank condition[A2]is verified
for almost all z € R? only. This set of assumptions will yield a definition of a sparse tensor in
Appendix [K:2.2] providing satisfactory numerical results in practice.

Skew-symmetry : For any k € {1,...,d}, the matrix G¥ = (Gﬁj)i,j is skew-symmetric. (A1)
Rank condition almost everywhere: For almost all € R?, rank(G(z)) = d — 1. (A3)

The assumptionmeans the set Ag = {x € R%G(x)) < d — 1} has zero Lebesgue measure, i.e.
/ A dxz = 0. Obviously, the assumption [A2{implies the assumption
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The right-hand side of the Fokker-Planck equation [3.4]is a function of V | p~, only. Hence, under the
weaker assumptions[AT|and [A3] rotational invariant distributions are still invariant measures of the
Fokker-Planck equation. Following the proof of Theorem[D.2.1] we saw that the invariant density
is characterized by ||G(z)TV | po ()| = 0 almost surely. So, if G(z) has rank d — 1 for almost
all & with respect to the Lebesgue measure, then this requires V| poo () = 0 almost everywhere.
Therefore, the invariant measures of Fokker-Planck equation 3.4 must be rotational invariant almost
everywhere.

However, the existence and uniqueness of a classical solution (Lemma[D.4.T)) and the convergence
guaranties to the invariant distribution (Theorem[D.4.T) need more careful analysis. We only sketch
some challenges involved, the full analysis will be carried out in a follow up work.

If the diffusion process enters the area of points x, such that rank(G(x)) < d — 1, one has to make
sure that the Diffusion process is not trapped in such an area, even if it has a measure zero. In
particular, let D C S?~! be defined as

D = {z" € $%! | rank(G(z")) < d — 1}.

n
Then, we call D a trap set. If the process 25 once ever entering D with positive probability, it cannot
leave D again, i.e.

P(z, € D, Vs > so|@., € D) > 0.

Hence, in this case, convergence to the correct invariant measure has to ensure that the trap set
is not invariant under the diffusion-controlled dynamic. Such a analysis then sufficiently can be
implied by Hormander / bracket-generating conditions, i.e. hypoellipticity analysis. Based on this, the
asymptotic results Theorem 3.1l Theorem [D.4.1] and Theorem B3 Tmust be adapted. In this case
we expect the convergence rate to the invariant distribution to be slower compared to the exponential
convergence rate obtained in the case of strong rank condition, see also Appendix [K:3]for a related
discussion.

Although a detailed analysis of this research question is out of the scope of the current manuscript, we
want to stress its relevance related to the scalability of the proposed method for the high-dimensional
case. The standard construction via a random dense tensor G poses scalability problems. On the
other side, sparse tensors provide a tool to enable such scalability provided that they satisfy the
(weaker) rank conditions. While the non-local sparse tensor discussed in Appendix [K:2.3] satisfy
the strong rank condition, the local sparse tensors from Appendix [K:2.2]only satisfy the weak rank
conditions. Still, the latter have been applied in our numerical investigation for the high-dimensional
test cases with Particle Image Velocimetry measurements as discussed in Appendix [M.7] yielding first
very promising results.

K.1.2 ITO TERM RANK CONDITION

Now, we discuss another weaker set of assumptions where the noise rank condition [A2]is replaced by
an It6 drift rank condition. Although attractive, a detailed analysis in Appendix will lead us to
consider this set of assumptions as insufficient for the MSGM sampling procedure.

Skew-symmetry : For any k € {1,...,d}, the matrix G* = (Gﬁj)iyj is skew-symmetric. (A1)
d

1
It6 term rank condition : the matrix S := 3 Z(Gk)(Gk)T is full rank (A4)
k=1

From Lemma[D.T.Il we note that S = —VV - X. LemmalD.1.2] gives the 1td forward diffusion
which can be expressed with S. The assumption[A2]is not needed for these lemmas. These results
are true as long as the assumption [AT]is verified. Taking the expectation of the Itd diffusion, we get:

iEzs = SEx,. (K.1)
ds

Instead of controlling the convergence of the full distribution ps, the assumption [A4] controls the
convergence of the mean only. It leads to the following property justifying our assumption choice.

Proposition K.1.1. Let the assumption[Al| holds. Then, the following assertions are equivalent

e The assumption[Ad)holds.
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.« E[@,|zo] — 0.
S— 00
o Var[z,|zo] — ||Zol%
S§—00

Proof. S is positive semi-definite, so it is diagonalizable in an orthonormal basis, and from equa-
tion , ]E;c)S — 0 if and only if S is positive definite, i.e. the assumption is verified.

S§— 00

Besides, by assumption the norm ||, || is conserved along the diffusion, so

Var[z| Zol= |1, [* — IE[z|zo] | = [|@o||* — B[] zo]| (K2)
which converges to ||§0H2 if and only if ]E[?sﬁo] — 0. O
§— 00

We highlight the fact that the assumption [A4] is weaker than the assumption as stated
by Proposition[KI.2} It is actually a strictly weaker assumption since the tensors defined in

Appendix [K:2:1]and Appendix respect assumption [A4]but not assumption[AZ}
Proposition K.1.2. Let the assumption[AI|holds. Then, the assumption[A2]implies the assumption

A4
Proof. 1f the assumptionholds, then, Theorem B3 dlimplies that @ i>0 Too = ||§OO||§ZO
S—>

. L on L L=
The asymptotic latent direction, x ., is independent of the initial condition x( and has zero mean.
Therefore,

E[&,|Z0] = E[€ oo| Z0] = B[ Z oo | Z oo [T 0] = | Z0[|[E[Z o [€0] = |Z0[|E[Z] =0, (K3)
and by Proposition [K:I.1] the assumption[A4]holds. O

K.2 SPARSE TENSORS

Here we propose several possible choices of sparse tensors.

First, we will consider a simple low-rank tensor in Appendix [K:2.T]and show that it makes the latent
distribution untractable. Then, we will introduce a sparse local tensor in Appendix [K.2.2] which
is adapted to MSGM and leads to good generative skills in practice. Finally, we propose a sparse
nonlocal tensor in Appendix [K:2:3|that involves more Brownian motions but meets the original

assumptions [AT] and [A2] of our paper.

K.2.1 LOW-RANK TENSOR

A simple choice of tensor with d?> = O(d?) non-zero coefficients would be to take d times the same
dense random skew-symmetric matrix G' i.e.

G, = Gi;=3M};,-M],), (K.4)
M % N(0,1). (K.5)

Appendix [2] provides an analytic solution for the forward diffusion in this case. Such a solution
would be a strong advantage for our learning procedure, bypassing the need for numerical integration
of the forward diffusion, and enabling denoising score matching instead of sliced score matching.
However, Proposition[K:2.T|below shows that there is a rank deficiency, probably inducing the
existence of non-rotation-invariant latent distribution, p., preventing MSGM sampling in practice.
Indeed, numerically illustrated in dimension d = 4, the analytic solution of Appendix [[.2]shows a
latent distribution intractable in practice. The latent distribution is not rotation-invariant and does
depends on the initial direction distribution, p{. It seems to be a direct consequence of the rank
deficiency.

We conclude that low-rank tensors as in equation [K:4]is not a suitable choice for MSGM. oreover, it
suggests that assumptions [AT]and[A4]as in Appendix are not sufficient for MSGM.
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Proposition K.2.1. If G is defined from equation and equation [K.5| then, for any x € R,
rank(G(x)) < 1. Assumption |Al|is verified, assumptions |A2| and |A3| are not for d > 3, and

assumption [A4)is verified almost surely if and only if the dimension d if even. Moreover, we have

S =4GY (G and ES = 1V,

Proof. The tensor defined by equation|[K:4]and equation [K:5]obviously matches the skew-symmetric
condition [ATl

For odd dimension d, G - like all skew-symmetric matrix — is singular. Thus S is singular and even
the weak condition[Adlis not satisfied.

For even d the polynomial p: R¥4 — R, M +~ det(4(M — M "), which is non-zero since

there exists invertible skew-symmetric matrices. As a non-zero polynomial, the set { M € R% |
det(M — M ")} forms a proper algebraic variety with zero Lebesgue measure. Hence, since the
Gaussian distribution is absolutely continuous w.r.t. to the Lebesgue measure, it holds

P(det(G") = 0) = 0, (K.6)
and so G is invertible with full rank with probability 1. Thus
d
S= §Gl(Gl)T. (K.7)

is positive definite. Therefore, [A4]is verified for even dimension d.

However, for any d > 3, neither conditions [A2] nor condition [A3]is satisfied. Indeed, for any
x € RN\{0}, rank(G(z)) =rank[G'z, ..., G'x] < 1. This is expected since the diffusion involves
a single Brownian motion (see Appendix [[.2).

Since the entries in M ! are independent standard normal Gaussian, we have V(G}’ j) = %(V(MZ1 j) +

ij

d
V(Mjl,z’) = % Then, [G'(G") ], = ZlGl G,lﬂj. Hence for i = k
j:

d
1 d-1
E[GY(G) ] = D _EGL)*1=)_5="5"
i=1 i
since Gj; = 0. Fori # k, G}; and G ; involve independent entries of M, leading to E[G;G}.;] = 0.
As a consequence
d(d—1)

I, e R%4,
1 €

E[S] = $E[G'(G")'] =

K.2.2 LOCAL SPARSE TENSOR

Let us define a tensor with only 2d = O(d) non-zero coefficients.

1 ifi=j—1[d =k

0 otherwise.

with [d] stands for modulo d. It is built from a subset of the canonical basis of skew-symmetric
matrices, keeping only d matrices with most non-zero values close to the diagonal. It ensures a strong
sparsity and a local structure for x — G*x.

The skew-symmetry assumption [AT]is obviously fulfilled from the definition[K.8] However, the strict
rank condition assumption[A2]is not in general. Fortunately, the assumptions [A3]and [A4]still hold. In
particular, the Itd6 term matrix simplifies as shown by the following proposition.

We implemented this version of sparse tensor. For small dimension applications in Appendix [M.6.2]
and Appendix [M.6.1] it has been found to provide numerical results as good as the dense tensor im-
plementation (see Figures[29)and [£3). For large dimension applications, dense tensor can complicate
or even prevent MSGM applications. There, we obtained satisfactory results with local sparse tensor

(see Figure[d9]in Appendix [M.6.2).
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Proposition K.2.2. If G is defined from equation@ then, for any x € (R\{0})¢, rank(G(x)) =
d — 1 Moreover, we have S = I; and the assumptions[Al) [A3] and[A4 are verified.

Proof. Forany x € (R\{0})%, we have

To 0 0 —xq
—r1 X3 0 0
G(z) =[G'z,....GZz]=| 0 —ao . : . (K.9)
0 0 ce —Td—1 T

To simplify notations, all the indices in this proof will be defined modulo d. For instance, x;; for
1 = d stands for x.
For any y € R, G(z)"y = 0 (€ RY) if and only if, for all i < d, z;411y; — 7;yi41 = 0 and

x

Yir1 = m“ ;. Finally,

i—1 Tq ZT;
yi = T2 2y = oy, (K.10)
x; x
Therefore, y € Rax. Reciprocally, we can verify that Re C Ker(G(x)). We conclude that
rank(G(z)) = d — dim(Ker(G(z))) = d — 1.
To evaluate the matrix S, we note that
GF =erej  —exr1€e], (K.11)

with (e ) the canonical basis of RZ. Then,
1

S = 52 =G (K.12)
1 d
= —52(%6;“—6“18{)2, (K.13)
k=1
1 d
= 52 (0—erej—errief, +0), (K.14)
k=1
1
= STatla), (K.15)
= I (K.16)
O

K.2.3 NON-LOCAL SPARSE TENSOR

We also propose another tensor with d(d — 1)

, 1 ifi —k'[d =j
Gif { —1 ifi=j—k[d]
0 otherwise.

1<Za]7k<da

) 1<k/<|’d51‘|,

O(d?) non-zero coefficients.
k
k

(K.17)

where [%} is the least integer greater than or equal to %. It is the canonical basis for skew-

. . . . ’
symmetric matrices. It ensures a relative sparsity and encodes a non-local structure for x — G** x.

Here, the sparse tensor G is of size d x d X d(d —1)/2 instead of d x d x d. Our theoretical framework
differs slightly. The forward diffusion involves d(d — 1)/2 one-dimensional Brownian motions.
Consequently, the neural network, ag(x, s), approximating the scaled score, G(x)V log ps(x),
has d(d — 1)/2 coefficients. The size of the neural network parameters @ can increase and may
complicate the training procedure. An alternative could be to work with a neural network, sg(x, ),
which approximates the true score, V log ps(x), having d coefficients only.

This choice of tensor meets all the assumptions, including[AT]and [A2]as proofed below. However,
because of the additional implementation complexity mentioned above, we postpone its numerical
evaluation to MSGM for future work.
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Proposition K.2.3. If G is defined from equation then, for any x € R1\{0}, rank(G(z)) =
d — 1 Moreover, we have S = I,; and the assumptions[Al} [A2] [A3] and[A4)are verified.

Proof. For any € R?\{0}, we have
G(z) =[G 'z,... .G T g (K.18)

We already know that Im(G(z)) C = since zTG(x) = 0. Now we assume that y € z, and we
define

Q=

B (yxT—zxyT). (K.19)

Applying on x, we get:

1
Qx= W(yuwutwy-m) =y. (K.20)

Besides, (Gk*kl )i,k is the canonical basis of skew-symmetric matrices and @ is skew-symmetric so
. d(d—1)
there exists « € R™ 2 such that

M54 d
Q= > > oG (K.21)
k=1 k=1
and thus
[45471 4
y=Qx = Z Z i GPF 2=G(x)ac Im(G(x)). (K.22)
k=1 k=1

We conclude that Im(G(z)) = =+ and rank(G(z)) = d — 1.
To evaluate the matrix S, we note that

GH =ere . —€kikef, (K.23)
with (ey,). the canonical basis of R?, and defining again all the indices modulo d.

[+ 4

5 = —% SN, (K.24)

k'=1 k=1
1(012;lw d 2
= -3 S (enelp—errwel)” (K.25)
k'=1 k=1
Miex
= -3 S it (0—erel—erpwely +0), (K.26)
k'=1
1
= i(Id—f—Id), (K.27)
= I, (K.28)

K.3 DISCUSSION ABOUT LOCAL AND NON LOCAL STRUCTURE

The random tensor of Appendix [J]and the large sparse tensor of Appendix [K:2.3]may be interpreted
as non-local since  — G*a changes coefficients x; of 2 which are not sorted next to each other in
a. For large dimension d, we believe that this can accelerate the convergence in comparison with
local tensors, like the sparse tensor of Appendix [K:2.2)or a discretized version of transport noise
SPDEs. Indeed, for local dynamics the randomness may take time to spread by going from one
coefficient to the next whereas in non-local dynamics the randomness can spread directly in the whole
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state space at each time step. Our preliminary numerical results (not shown) seems to confirm this
intuition. oreover, the stronger theoretical properties of those non-local tensors — rank condition [AZ]
and thus exponential convergence of the distribution — also tends to confirm our conjecture. However,
diffusion models in large dimension strongly rely on the powerful skills of convolutional neural
networks (CNN), which have — up to attention layers — an intrinsic local structures. Accordingly, it
may be difficult for a CNN to learn how to denoise a non-local noising process. More theoretical and
experimental works would be needed to confirm this intuition. This is out of the scope of this already
lengthy paper and is currently under investigation by the authors.

L. NUMERICAL SCHEME

L.1 NUMERICAL INTEGRATION OF SDES

L.1.1 STOCHASTIC RUNGE-KUTTA METHOD FOR STRATONOVICH SDES

We consider the Stratonovich stochastic differential equation (SDE):
diBt = fs(t,:ct) dt—l—é(t,:}:t) Odng7 (Ll)
where fg : R X R? — R? is the drift, G : R x R? — R¥*™ ig the diffusion term, and B; is an

d-dimensional Wiener process.

The following Runge-Kutta (RK) method (Kloeden et al., [ 1992) approximates the solution x,, 1 ~
@(tn41) over the interval [t,, t,1], with time step At = ¢, 1 — t,, and Wiener increment AB,, =

tny1 Btn'

Kl == fS(tnamn) At+é(t7z7mn) ABny (LZ)
A K ~ A K
K, = fs (tn+;7wn+21> At+G<tn+2t,azn+2l> AB,, (L.3)
K; = fs (tn+A2t7:cn+I§2> At+é<tn+A2t,a:n+I§2) AB,, (L.4)
Ky = fs(tn + At,x, + K3) At + G(t, + At,x, + K3) AB,,, (L.5)
1
Tp+1 =w7L+*(K1+2K2+2K3+K4). (L6)

6

This method leverages the structure of Stratonovich SDEs and their differential geometry properties.
It is particularly well-suited to our SDE equation [3.T] with skew-symmetric noise and no Stratonovich
drift.

L.1.2 RENORMALISATION

Both our forward SDE equation 3.1 and backward SDE equation [2.2] preserve the solution norm
||+ ||. However, even the above Runge Kutta discretization can break this symmetry. To enforce it
numerically, we normalize after each time step.

The final integration scheme is summarized in Algorithm 2} Here, we highlight the differences
compared to the classical RK4 in color. Note that the optional of normalization in line 10 of the
Algorithm is relevant only for MSGM but not for SGM.

L.2 SCHEDULING

In order to enable both a sufficient statistical convergence of the forward SDE at time s = 7" and a
convenient time step, we implemented a time scheduling for both SGM and MSGM. We first recall
the basic principle of scheduling in continuous time, then propose a method for MSGM, and finally
discuss the theoretical consequences.
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Algorithm 2: SRK4 for conservative Stratonovich SDEs with renormalization.

Input: Inte%ration time 7', number of time step N, initial condition x, drift fg, diffusion G

1: At + Ny {Time step}

2: forn =0to N7 — 1do

3 AB, ~N(0,At I,) { Wiener increment}

4 t, < nAt )

5 Kl — .fS(tn; mn) At + G(tm .’E”,) A-BN’II,

6: Ko fs(tn+ 55 @+ 51) AL + G(t, + 5z, + 1) AB,

7 Kz fs(ta+ 55 @ + B2) At + G(t, + 55 @, + 52) AB,

8: Ky fs(tn + Aty, x, + K3) At + G(t, + Aty, x, + K3) AB,

9 @pi1 ¢ Tn + 5 (K +2Ks + 2K5 + Ky) {Classical RK4 blend}

10 @, — ” |~|w()H H Tpa1 {Optional step : Enforce ||@,11] = ||zo|])}
Tn+1

11: end for

12: return Ty, { Approximation of xr}

L.2.1 USUAL SCHEDULING

In continuous time (Song et al.,2021), a convenient way is to make a change of variable, replacing
the time s by

2(s) = /OS g*(s')ds’. (L.7)
with
g*(s) = %ﬂ(S) = % (Bm + (B — Bm)%) : (L.8)

and Bar > B > 0. We first describe the hyperparameters values chosen in our numerical experiments
and then explain how scheduling affects SGM and MSGM theories.

Since we built our code from an existing one (https://github.com/CW-Huang/
sdeflow-1ightlHuang et al.|(2021)), by default we choose the values provided there for SGM
scheduling: 3,, = 0.1 and 5); = 20. We expect these values to be already finely tuned and we have
verified that this couple of values gives indeed better results than many other choices (not shown).
We believe that these default values of the SGM hyperparameters enable a fair comparison to MSGM.
For some test cases, we found another SGM scheduling that works better and we use it instead. All
scheduling hyperparameters are provided in the tables summarizing test cases in Appendix [M]

For small time s, the time remapping is linear : g?(s) ~ 1 Bm and z(s) ~ 1 Bms whereas for
S—> S—r

large time, g2(s) ~ %/B ' and using the Taylor expansion around 7', yielding
55—

2(8)=2(T)+ 2 (t)(s—=T)+o(s—T),

we find that
1 1 s
z(s) = 3 (ﬁm + 5(51\/[ - 5m)T> s, (L.9)
1 + Bm
= 3 (WT + B (s — T)) + ng(s -T), (L.10)
Bar + Bm
1 b L1

As such, SGM forward and backward SDEs become:
—
dﬂ_v)s = —g2(s)5;)5ds—|— \/ﬁg(s)st, (L.12)

-
(T — t)xdt +V2g(T — t) (ag(T —t, ) dt + odBt) , (L.13)

—
dl‘t

61


https://github.com/CW-Huang/sdeflow-light
https://github.com/CW-Huang/sdeflow-light

Under review as a conference paper at ICLR 2026

where ag (T —t, @) approximates v/2g(T —t)V log pr_ (). The backward SDE can be integrated
with the Stochastic Runge-Kutta Algorithm [2] where

Fs(t, @) = g*(T — )@ +V2(T — D)ap(T — t. @) and G(t, T) = V29(T —1). (L.14)
L.2.2 SCHEDULING FOR MSGM
We propose a similar scheduling for MSGM. Scheduled forward and backward SDEs write:
—
dz, = g(s)G(z,)odB,, (L.15)
—
de, = g(T —1)G(z,) (ag(T —t,@y)dt + odBt) , (L.16)
where ag (T — t, Et) approximates g(7T" — t)G(Et)TV log pr—¢ (). Numerically, following Algo-
rithm 2] we can integrate the forward SDE with
fs(s.2,) =0 and G(s, @) = g(s)G(,), (L.17)
and the backward SDE with
Fs(t,zy) = g(T — )G(,)ag(T —t,xy) and G(t, @) = g(T — )G(zy).  (L.18)
L.2.3 THEORETICAL RESULTS

We can verify that our theoretical results remain under this time scheduling. The new Fokker-Planck
equation is

0
aaPs = V.- (%gz(s)E(a:)VLps(x)) . (L.19)
which can be rewritten as
0
%pg = V. (3Z(@)V.ipi(z)). (L.20)
P = Das)- (L.21)

Besides, for 0 < s’ < z(T) for Sar > B, Taylor expansion at s, = %T yields

76777,T + \/ﬂ?%’LTQ + 4T(ﬂM - ﬂm)z

) = A (L.22)
S T+ 2(f—s) (1+ 0 (1)), (L23)

BM s'—s(
— T (L.24)

Therefore, from the convergence of pJ (already proofed) we have the convergence of p, = pz “1(s)"
The rate of convergence is still exponential:

s = PoollFzmay = IPL-1 (o) = PoollFzqmay, (L.25)
< P o) — Poollizray exp(—a(G, d) 27 (s)), (L.26)
= llpo — Pocllfe s exp (~(G, d)T) (L27)

(8 (St ) )
(=280 (-2l (10 o, ).

Besides the ELBO remains valid :

po(x) 2 Eac(x) = E {logpo(zT)Bo = w} (L.28)

L s

- [ & [;nae(zmu? V- (9(5)G(Z)ao(
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L.3 LOSS EVALUATION

Following the existing code (https://github.com/CW-Huang/sdeflow-1ightjHuang
et al.[(2021)), we sample final integration time s of the forward SDEs uniformly on [te, 7| with T = 1
with ¢, small. According to Theorem [3.4.1] we consider the following SSM loss:

Lssm(0) = E;OESNM[tC,T]]E;S‘;O By, ~Rad(d) Lssm (5, T, 9G, ag, , vs), (L.29)
with
Lssm(s,x,9G, ag,,v) = %Hag(ac, $)I?+ (v-V)(9(s)G(x)ag(x, s)) - v, (L.30)

. .. — .
where [E is the averaged over the generated samples. Each training sample x of a batch is chosen
randomly among the train set. For each of them, we sample one time s, one solution zs, and one
slicing direction v, ~ Rad(d).

For SGM, we take G = v/2 in the above expressions and following Song et al. (2021), the solution
Z , of the SGM scheduled forward SDE equation is

z, = exp(—%z(s))zo + /1= exp(—2(s)) Z oo, (L.31)
where z(s) := [ g?(s')ds’ is given by equation Z is chosen randomly among the train set and
Zoo ~ N(0,1,).

Unfortunately, to evaluate the MSGM loss, we cannot apply the same methodology, since, for d > 2
we are not aware of an analytic expression for the solution of the MSGM forward SDE, neither

with nor without scheduling (equation[L.T5]and equation 3.1 respectively). We integrate that SDE
numerically with the stochastic Runge-Kutta method with renormalization (see Appendix [L.T.T]and
h

Appendix|L.1.2)). Through this integration, we have to compute the solution 55 . for many time steps
sk := kT /Ny € [0,T]. Instead of sampling a random continuous time s ~ U([t., T]), we choose a
random discrete time as follow

s~ U(I(te,T)) with I(t,T) = {splsg = kx—, k€ {1,...,No}, s > t}.  (L32)

The numerical integration of the forward SDE implies a larger computational cost compared to
SGM. Therefore, as explained in Appendix [M.3] for fair comparisons between SGM and MSGM, the
number of ADAMS iterations will be smaller.

For two-dimensional test cases, we could have used the analytic example of Appendix|[I|to integrate
the forward MSGM SDE. However, we prefer to propose and analyze an algorithm that is not tied to
the dimension 2. So, we perform all our numerical experiments with the same algorithm whatever
the dimension. SGM forward equation is integrated analytically, whereas the MSGM is integrated
numerically.

L.4 NEURAL NETWORK ARCHITECTURE

L.4.1 SPHERICAL DECOMPOSITION AS AN INPUT LAYER

In line with our spherical decomposition equation we add a fixed input layer to the network used
in MSGM:

ag(w,s) = a (/|| log |all..s), with || := |z] +e. (L.33)
The geometrical interpretation of Appendix also suggests that form.
For SGM, if not stated otherwise, we use a default architecture:
ag(x,s) = ag(x, s). (L.34)

L.5

L.4.1 NETWORK ARCHITECTURE FOR LOW-DIMENSIONAL TEST CASES (MLP)

Following the existing code (https://github.com/CW-Huang/sdeflow-1ight)Huang
et al.[(2021))), we parameterize the vector field ag : RYx R—R%(d=dord+ 1) with a 4-layer
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MLP conditioned on an index ¢ € R by concatenation. Let i/ = 128 be the hidden width. For input
x € R?, we form hg = [z;t] € R and compute
hi = SWiSh(Wlho + bl), Wi € RHX(J+1),
hy = swish(Wyhy + bs), W, e REXH
hsz = swish(W3hy + b3), W3 € REXH
y = Wihs + by, W, € R,
with (swish(z)); = z; 0(2;) and o the logistic sigmoid. We set ag(x,t) = y € RY. No residual

connections, normalization, or dropout are used. Table[T|summarizes the hyperparameters of this
default architecture.

Table 1: MLP architecture hyperparameters.

Hyperparameter Value

Input dimension d=dord+1
Index dimension 1

Hidden width 128

Depth 3 hidden layers
Activation Swish (z — zo(x))
Output dimension d

Output layer Linear

Residual connections None

Normalization / Dropout  None

L.4.2 NETWORK ARCHITECTURE FOR HIGH-DIMENSIONAL TEST CASES (UNET FOR 32 x 32
VORTICITY FIELDS)

For high-dimensional experiments of Appendix [M.6.2] we model the score field a,(x, t) using a 2D
UNet operating on images @’ of size H x W representing vorticity snapshots (H = W = 16 or 32).
Some part of our algorithm was built for vectors rather than images. So depending on the portion of
the algorithm, images 2’ € R *H*W are reshaped into vectors € R? with d = HW or vectors
are reshaped as a one—channel images &’ € R1*H>*W,

Optional spherical premodule. When enabled, we apply the spherical decomposition of
Appendix [C4:T}

(z?,log ||z||.) = NormalizeLogRadius(z), T = ﬁ
Ll

The normalized field ! is passed to the UNet, while log ||« || is embedded through a small MLP and

added to the temporal embedding, giving a conditioning mechanism analogous to the time embedding

of diffusion models.

UNet backbone. The core architecture follows the DDPM UNet of |Dhariwal & Nichol| (2021): a
fully convolutional encoder—decoder with skip connections, residual blocks, and optional attention at
intermediate resolutions. We use one input channel and one output channel (vorticity). Let Cy denote
the base width. The feature width at resolution level k is Cym;, where (Y is the base channel width
and my, is the channel multiplier.

The UNet receives («, t) (and optionally log ||z ||c) and computes:
ag(z,t) = UNetg(reshape(z), Emb(t) + Embiog (log||z|l)) ,
followed by flattening back to dimension d if needed.

This UNet is used as a drop-in replacement for the small-dimensional MLP of Appendix|[C:4.1]
enabling MSGM/SGM to scale to image-like vorticity fields up to dimension d = 1024.
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Table 2: UNet architecture hyperparameters.

Component Setting

Input / output channels 1

Input resolution H =W € {16,32}

Base channels width Cj 32

Channel multipliers (1,2, 4)

Residual blocks per stage 2

Attention resolutions 8 x 8 and 4 x 4 (for 16 x 16 input)
Activation SiLU

Time embedding sinusoidal + MLP

Log-norm conditioning optional MLP added to time embedding
Dropout 0

Upsampling / downsampling  convolutional

Output 1-channel vorticity field

M DETAILS ABOUT OUR NUMERICAL EXPERIMENTS

We will show that — for comparable training time — MSGM can generate distribution of better quality
than SGM when data distribution tails are heavy or close to being heavy. For distributions with lighter
tails such as Gaussian ones, SGM and MSGM produce similar results, except for a small number of
backward time steps where SGM can become unstable. MSGM is more robust in this aspect.

Our code can be found here: https://anonymous.4open.science/r/
MSGM-submission—6E1E| and the preprocessed vorticity data we used in Appendix
can be found here: https://anonymous.4open.science/r/MSGM-data—-6E64.

M.1 TEST CASES

We will illustrate MSGM and compare it to SGM through different test cases. We first consider four
examples sampled from known distributions: the Swiss roll, a multidimensional Gaussian distribution,
and the multidimensional Cauchy distribution with and without correlations. Then, we will address
the experimental fluid dynamics data. For each test case, a table summarizes the nominal parameters
used in the experiments (see tables [3| ] 5] [6] and [7). All are performed on CPU. In addition, we
additional cover a high-dimensional application with imagine processing, see section Appendix [M.7]
with a GPU A40 NVL with 48 Go of VRAM.

M.2 DATA PREPROCESSING

The data set and distribution are centered before processing. For SGM, data sets are renormalized,
component by component, by their estimated standard deviations. This preconditioning can signifi-
cantly reduce the number of conditioning of the covariance of the data set, and therefore facilitate the
SGM (Guth et al} 2022). Generated data are then re-scaled for plots and other post-processings. For
MSGM, it is not necessary and may even be counterproductive for conservative dynamical systems.
In fact, it changes the definition of energy || 30 ||%. The modified energy has no physical meaning. It
may have a very different distribution, possibly much less relevant for the data structure. So, we do
not renormalize the data set before training MSGM.

M.3 COMPARISON STRATEGY
We will perform different qualitative visual comparisons with pairplots and quantitative assessment

with Maximum Mean Discrepancy (MMD) (Gretton et al., 2012). Given two ensembles X = (z(*)) €
R)N and Y = (y@) € (R)N samples of random variables X and Y respectively, we define
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Table 3: Swiss roll test case: parameters of the nominal numerical experiments.

Parameter SGM MSGM
Dimension d 2 2
Number of used training data points (M) 220 x 256 220 % 256
Number of test data points 10* 10*
Reference number of ADAMS steps 220 220
Number of ADAMS steps (Niter) 220 220
CPU time / ADAMS steps (in ms) 4 3
Batch size 256 256
Number of time steps (forward) N% 1 16
Number of time steps (backward) N%,’« 16 16
61nin 0.1 0.1
Bmax 20 20
te 1073 1073
Learning rate 1073 1073
Neural network architecture default spherical (equation [L.33))
MD (MMD(train)= 0.9 x 10~2) 1.9 x 1072 0.9 x 1072
MMD(z, y) as:
1 X
MMD2(X, Y) = w2 Z (k(:l:(’), x(J)) _ Qk(m‘(z), y(J)) + k(y(2)7y(3))) , (M.1)
ij=1
k(u,v) = exp(—|u—v|?). M.2)

If X' is the test set and X9¢™ our generated ensemble, MMD (X'**!, X&) is a metric of the precision
of our generated ensemble and hence our Al generative algorithm. A small MMD means close distribu-
tions. However, MMD is a relative metric. So we compare MMD (X', Xg\ 1), MMD (X' X3¢ 1)
and MMD (X', X'rin) where X§, and X§jgsy are generated from SGM and MSGM respectively,
and X" jg the train set. MMD(X's!, X"} provides a reference MMD, encoding in particular
possible distribution shifts between the train and the test sets.

The numerical integration of the MSGM forward SDE is an additional significant computational cost
compared to SGM, and hence a slower training procedure. This cost scales linearly in N7 due to
the "for" loop in time. Empirically, it appears to scale as ¢ = v/d N, /2% (not shown), probably due
to the vectorized d x d x d tensor products involved in each integration time step. In most of the
numerical experiments below, N; = 2% and thus ¢ = v/d. The SGM iteration steps are ¢ times faster
than the MSGM iteration steps. Consequently, the number of iterations for the SGM is max(1, [{])
times larger than the number of iterations for the MSGM. As such, we can compare the results of
SGM and MSGM at a similar training cost. By convention, we take the number of iterations for SGM
as a reference and refer to it as the reference number of iterations. Summary tables 3] @} 5} [6] and
provide the values for the reference number of iterations, the true number of iterations, and the
execution time per ADAMS step.

M.4 SWISS ROLL

We first illustrate our method with the Swiss roll distribution. It is a simple two-dimensional
distribution: https://homepages.ecs.vuw.ac.nz/~marslast/Code/Ché6/1lle.py.
Its curved shape makes it difficult to grasp by linear Gaussian approaches. Both MSGM and SGM
mimic the Swiss roll distribution well, as illustrated by the pairplot [§] However, the diffusion
distribution p, differs from Figure[9|to Figure [0} In particular, latent distributions are completely
different. Figure|l 1|illustrates the convergence of the SGM and MSGM approaches as a function of
the reference number of ADAMS iterations and as a function of number of time steps for integrating
the backward SDE. The precision of each sampler is quantified through MMD and the confidence
intervals of MMD are estimated from the samples of 10 MMD.
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Figure 8: Pair plots of generated data (orange dots) compared to ground truth data (blue dots) with
the SGM (left) and MSGM (right) for Swissroll data. On the diagonal, log-histogram of ground truth
data (continuous blue line) and logarithm of the pdf KDE estimation of generated data (orange line)
are superimposed.

Figure 9: Evolution of the solution log-pdf log(ps (21, z2)) of SGM forward SDE (top) and backward
SDE (bottom) for Swiss roll data.

Figure 10: Evolution of the solution log-pdf log(ps(z1,x2)) of MSGM forward SDE (top) and
backward SDE (bottom) for Swiss roll data.
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Figure 11: Convergence of MMD (mean and 80% confidence interval) for Swiss roll distribution as a
function of reference number of ADAMS iterations (left) and as a function of number of time steps
for integrating the backward SDE (right).
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Figure 12: Pair plots of generated data (orange dots) compared to ground truth data (blue dots) with
the SGM (left) and MSGM (right) with 8 time steps backward for a vector of 4 correlated Gaussian
variables, among 16 correlated Gaussian variables used for training. On the diagonal, log-histogram
of ground truth data (continuous blue line), and logarithm of the pdf KDE estimation of generated
data (orange line) are superimposed.

M.4.1

M.5 ANISOTROPIC GAUSSIAN DISTRIBUTION

Table 4: Gaussian test case: parameters of the nominal numerical experiments.

Parameter SGM MSGM
Dimension d 16 16
Number of used training data points (M) 1048576 x 256 262144 x 256
Number of test data points 104 104
Reference number of ADAMS steps 220 220
Number of ADAMS steps (Niier) 220 = 1048576 262144
CPU time / ADAMS steps (in ms) 3 23
Batch size 256 256
Number of time steps (forward) N% 1 16
Number of time steps (backward) N2 16 16

Bin 0.1 0.1
Brmax 20 20

te 1073 1073
Learning rate 1073 1073
Neural network architecture default spherical (equation m
MD (MMD(train)=1.5 x 10~2) 11 x 1072 2.5 x 1072

For a complete numerical analysis, we compare SGM and MSGM on correlated Gaussian data
xo ~ N (0, AAT), with a fixed matrix, A, initialized with i.i.d. coefficients A; ;~N(0,1). For 32
time steps backward, the pairplots in Figures[T2] [I3] and[T4] present similar generative skills, but for
8 or 16 time steps backward, only MSGM gives good results. For 8 time steps backwards, MSGM
still provides a good distribution, whereas the SGM backward SDE completely diverges. Figures[T5]
[16] and [I7]also highlight this and show that the converged dynamics of the pdf p, differs between
SGM and MSGM.  Figure[T§]also confirms that MSGM converges faster with the number of time
steps, and is generally more stable.
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Figure 13: Pair plots of generated data (orange dots) compared to ground truth data (blue dots) with
the SGM (left) and MSGM (right) with 16 time steps backward for a vector of 4 correlated Gaussian
variables, among 16 correlated Gaussian variables used for training. On the diagonal, log-histogram
of ground truth data (continuous blue line), and logarithm of the pdf KDE estimation of generated
data (orange line) are superimposed.
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Figure 14: Pair plots of generated data (orange dots) compared to ground truth data (blue dots) with
the SGM (left) and MSGM (right) with 32 time steps backward for a vector of 4 correlated Gaussian
variables, among 16 correlated Gaussian variables used for training. On the diagonal, log-histogram
of ground truth data (continuous blue line), and logarithm of the pdf KDE estimation of generated
data (orange line) are superimposed.
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Figure 15: Evolution of the solution log-pdf log(ps (1, 22)) of SGM forward SDE (top) and backward
SDE (bottom, with 8 time steps) for Gaussian data.
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Figure 16: Evolution of the solution log-pdf log(ps (1, 22)) of SGM forward SDE (top) and backward
SDE (bottom, with 32 time steps) for Gaussian data.
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Figure 17: Evolution of the solution log-pdf log(ps(z1,x2)) of MSGM forward SDE (top) and
backward SDE (bottom, with 16 time steps) for Gaussian data.
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Figure 18: Convergence of MMD (mean and 80% confidence interval) for the Gaussian data as
a function of number of time steps for integrating the backward SDE N (top), as a function of
reference number of ADAMS iterations (middle) for N%,l = 8 (left) and Nél = 32 (right), and as a
function of dimension (bottom) for Nél = 8 (left) and N;l} = 32 (right).
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M.6 MULTIVARIATE CAUCHY DISTRIBUTION

Cauchy distributions are worst-case heavy-tail distributions in the sense that they do not have finite
moments. Still, they appear in applications of hydrology, e.g. annual maximum one-day rainfalls and
river discharges. Consequently, we analyze the expressivity of MSGM in this extreme case. Note that
due to the absence of finite moments, convergence in common metrics such as Wasserstein-p or total
variation is not well defined.

M.6.1 VECTOR OF INDEPENDENT CAUCHY VARIABLES

Table 5: Vector of independent Cauchy variables: parameters of the nominal numerical experiments.

Parameter SGM MSGM
Dimension d 2 2
Number of used training data points (M) 220 % 256 209715 x 256
Number of test data points 10° 10°
Reference number of ADAMS steps 220 220
Number of ADAMS steps (Niter) 220 = 1048576 209715
CPU time / ADAMS steps (in ms) 3 27
Batch size 256 256
Number of time steps (forward) N% 1 64
Number of time steps (backward) N% 128 128
Bmin 0.1 0.1
Prmax 20 0.4

te 1073 1073
Learning rate 1073 1073
Neural network architecture default spherical (equationm
MD (MMD(train)=2.8 x 10~3) 7.5 %1073 3.3x1073

We first illustrate our method with a vector of independent Cauchy variables: xg = xc, with ¢,
defined by equation with scale parameter 7 = 1/50. As expected, Figure[I9)and Figure 20]
confirm that SGM does not reproduce fat tails unlike MSGM. oreover, SGM misaligns the far data
points that have the coordinate 1 < —3. An explanation of the superior skills is the similarity
between the data distribution and the latent distribution in MSGM: a property not shared by SGM, as
illustrated in Figures 21| and

Figure[I9]compares MSGM with fast scheduling (3,, = 0.1, Sy = 0.4) and a neural network
architecture based on spherical decomposition equation [L.33] with SGM with default scheduling
(Bm = 0.1, By = 20) and default neural network architecture. For a fair comparison of MSGM,
we complement our numerical analysis with Figures we test SGM with fast and default
schedulings, and with both spherical-decomposition-based and default network architectures. This
fast scheduling seems not adapted to SGM, making the sample generation highly inaccurate in
the pairplot of Figure[24] In contrast, the network architecture with spherical decomposition does
improve the SGM sampling procedure, especially for distribution tails. However, even with this
architecture, SGM remains less efficient than MSGM. First, the estimated tail is less clean. Secondly,
the samples generated far are not properly aligned with the test samples, especially for zo < —3.
Third, outside the x1 and x5 axes, SGM generates too few samples close to the origin (say points
with [[z[|1 > 2 and [z([1 <2).

For Cauchy distributions, we still compare MMD values. However, it is not well defined mathe-
matically and is hardly relevant numerically. Indeed, the Gaussian kernel structure of the MMD is
probably not adapted to samples that are so far from each other. In our experiments, we used 10*
samples to compute an approximate MMD. Other quantities of interest can also be utilized, such
as the survival function ¢t — P(||x| > R), illustrated in Figure[20] As expected MSGM clearly
outperforms SGM on this metric. Indeed by construction our learning method is robust in terms of
the radial distribution | || obtained directly from the data and not after the noising process. This is
valid since the norm distribution does not change in time due to equation
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Figure 19: Pair plots of generated data (orange dots) compared to ground truth data (blue dots) with
the SGM (left) and MSGM (right) for a vector of two independent Cauchy variables. On the diagonal,
log-histogram of ground truth data (continuous blue line), theoretical log-pdf (dashed blue line), and
logarithm of the pdf KDE estimation of generated data (orange line) are superimposed.
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Figure 20: Survival function of generated data (orange line) compared to ground truth data (blue line)
with the SGM (left) and MSGM (right) for a vector of two independent Cauchy variables.
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Figure 21: Evolution of the solution log-pdf log(ps(x1,z2)) of MSGM forward SDE (top) and
backward SDE (bottom) for a vector of two independent Cauchy variables, with fast scheduling:
Bm = 0.1, By = 0.4 and our neural network architecture based on spherical decomposition

equation|L.33]

73



Under review as a conference paper at ICLR 2026

i=0 i=8 i=16 i=24 i=32 i=40 i=48 i=56 i=64

Figure 22: Evolution of the solution log-pdf log(ps(x1, x2)) of SGM forward SDE (top) and backward
SDE (bottom) for a vector of two independent Cauchy variables, with default scheduling: 5, = 0.1,
Bar = 20 and default neural network architecture.
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Figure 23: Generated data (orange lines and dots) compared to ground truth data (blue lines and dots)
with the MSGM (top left corner) and the SGM (bottom) for two-dimensional Cauchy distribution.
SGM plots correspond to a default scheduling: 3, = 0.1, 83y = 20. Left plots correspond to our
neural network architecture based on spherical decomposition equation[L.33] whereas the right plot
correspond to default neural network architecture. On the diagonal, log-histogram of ground truth
data (continuous blue line), theoretical log-pdf (dashed blue line), and logarithm of the pdf KDE
estimation of generated data (orange line) are superimposed.
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Figure 24: Generated data (orange lines and dots) compared to ground truth data (blue lines and
dots) with the SGM for two-dimensional Cauchy distribution. Plots correspond to a fast scheduling:
Bm = 0.1, By = 0.4. The left plot corresponds to our neural network architecture based on spherical
decomposition equation [C.33] whereas right plot corresponds to default neural network architecture.
On the diagonal, log-histogram of ground truth data (continuous blue line), theoretical log-pdf (dashed
blue line), and logarithm of the pdf KDE estimation of generated data (orange line) are superimposed.

i=0 i=8 i=16 i=24 i=32 i=40 i=48 i=56 i=64

Figure 25: Evolution of the solution log-pdf log(ps (1, 22)) of SGM forward SDE (top) and backward
SDE (bottom) for a vector of two independent Cauchy variables, with default scheduling: £, = 0.1,
Bar = 20 and our neural network architecture based on spherical decomposition equation@
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Figure 26: Evolution of the solution log-pdf log(ps (1, 22)) of SGM forward SDE (top) and backward
SDE (bottom) for a vector of two independent Cauchy variables, with fast scheduling: 3, = 0.1,
Bar = 0.4 and default neural network architecture.
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Figure 27: Evolution of the solution log-pdf log(ps(x1, x2)) of SGM forward SDE (top) and backward
SDE (bottom) for a vector of two independent Cauchy variables, with fast scheduling: 5, = 0.1,
Bar = 0.4 and our neural network architecture based on spherical decomposition equation@
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Figure 28: Survival function of generated data (orange line) compared to ground truth data (blue line)
with the SGM (left) and MSGM (right) for a vector of 4 correlated Cauchy variables.

M.6.2 VECTOR OF CORRELATED CAUCHY VARIABLES

Table 6: Vector of correlated Cauchy variables: parameters of the nominal numerical experiments.

Parameter SGM MSGM
Dimension d 4 4
Number of used training data points (M) 220 x 256 220 % 256
Number of test data points 10° 10°
Reference number of ADAMS steps 220 220
Number of ADAMS steps (Niier) 220 220
CPU time / ADAMS steps (in ms) 3 45
Batch size 256 256
Number of time steps (forward) Niﬁ 1 128
Number of time steps (backward) N%,l 128 128
Brmin 0.1 0.01
Brmax 20 1

te 104 104
Learning rate 1073 1073
Neural network architecture default spherical (equationm
MD (MMD(train)=3.5 x 1073) 11.2 x 1073 5.2 x 1073

To address dimensionality issues, we consider the correlated Cauchy variables already presented
in Section In terms of survival function, MSGM is as expected more accurate than SGM (see

Figure[28).
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Figure 29: Generated data (orange lines and dots) compared to ground truth data (blue lines and
dots) with the MSGM (top) with dense tensor G (top left corner), with sparse local tensor G
(top right corner), and the SGM (bottom) for a vector of 4 correlated Cauchy variables. SGM
correspond to a default scheduling: 3, = 0.1, Bar = 20. Left and top plots correspond to our neural
network architecture based on spherical decomposition equation[L.33] whereas the right bottom plot
corresponds to default neural network architecture. On the diagonal, log-histogram of ground truth
data (continuous blue line), and logarithm of the pdf KDE estimation of generated data (orange line)
are superimposed.

As for independent Cauchy variables, we present complementary numerical experiments with different
scheduling and different neural network architectures in Figures 29]and 30} Figures[3T}{35unveil the
corresponding diffusion dynamics from s = 0to s = T and from ¢ = 0 to t = T". Again, the neural
network architecture based on spherical decomposition significantly improves the SGM generative
skills but MSGM remains a more efficient sampler. Not all the branches of the star-like pdf are well
sampled and, outside the branches, the regions near the origin is not well sampled.

One can wonder if the poorer results of SGM would improve for a larger number of ADAMS
iterations. To answer this question, we run longer experiments with 22 = 16777216 ADAMS
iterations. Figures[36] 37} and [fa] show that MSGM slightly improves with an increasing number
of iterations, whereas SGM diverges. For a fair comparison, the MMD convergence Figure fa]is
expressed in terms of effective number of ADAMS iterations, i.e. we proportionally reduce the
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Figure 30: Generated data (orange lines and dots) compared to ground truth data (blue lines and dots)
with the SGM for a vector of 4 correlated Cauchy variables with a fast scheduling: 3, = 0.01, 8y =
1. The left plot corresponds to our neural network architecture based on spherical decomposition
equation [C.33] whereas the right plot corresponds to default neural network architecture. On the
diagonal, log-histogram of ground truth data (continuous blue line), and logarithm of the pdf KDE
estimation of generated data (orange line) are superimposed.
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Figure 31: Evolution of the solution log-pdf log(ps(z1,x3)) of MSGM forward SDE (top) and
backward SDE (bottom) for a vector of 4 correlated Cauchy variables, with fast scheduling: 53, =
0.01, Bps = 1 and our neural network architecture based on spherical decomposition equation@
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Figure 32: Evolution of the solution log-pdf log(ps(x1, x3)) of SGM forward SDE (top) and backward
SDE (bottom) for a vector of 4 correlated Cauchy variables, with default scheduling: 5, = 0.1,
Bar = 20 and default neural network architecture.
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Figure 33: Evolution of the solution log-pdf log(ps(x1, x3)) of SGM forward SDE (top) and backward
SDE (bottom) for a vector of 4 correlated Cauchy variables, with default scheduling: 5,, = 0.1,
Bnr = 20 and our neural network architecture based on spherical decomposition equation
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Figure 34: Evolution of the solution log-pdf log(ps(x1, x3)) of SGM forward SDE (top) and backward
SDE (bottom) for a vector of 4 correlated Cauchy variables, with fast scheduling: 5,, = 0.01, 8p; = 1
and default neural network architecture.
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Figure 35: Evolution of the solution log-pdf log(ps(x1, x3)) of SGM forward SDE (top) and backward
SDE (bottom) for a vector of 4 correlated Cauchy variables, with fast scheduling: 5,, = 0.01, 8y = 1
and our neural network architecture based on spherical decomposition equation@
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Figure 36: Pair plots of generated data (orange dots) compared to ground truth data (blue dots)
with the SGM (left) and MSGM (right) with 224 = 16777216 ADAMS iterations for a vector of 4
correlated Cauchy variables. On the diagonal, log-histogram of ground truth data (continuous blue
line), and logarithm of the pdf KDE estimation of generated data (orange line) are superimposed.
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Figure 37: Evolution of the solution log-pdf log(ps(x1, x3)) of SGM forward SDE (top) and backward
SDE (bottom, 224 = 16777216 ADAMS iterations and 2° = 512 time steps) for a vector of 4
correlated Cauchy variables, with default scheduling: 3,, = 0.1, S); = 20 and default neural
network architecture.

number of ADAMS iterations for MSGM in order to make the CPU training time of SGM and
MSGM similar (see Appendix [M3|for details). For SGM with very large number of iterations
(2% = 16777216), we use a larger number of time steps (2° = 512) for the backward SDE to prevent
all samples generated by SGM to diverge.

M.7 VORTICITY FIELD FROM PARTICLE IMAGE VELOCIMETRY MEASUREMENTS

Particle Image Velocimetry (PIV) is an experimental technique to measure velocity fields in flu-
ids by tracking the displacement of tracer particles between consecutive images illuminated with
lasers (Adrian & Westerweel, [2011)). We used two-dimensional, two-component (2D2C) PIV data
of Figure [38] which provide both in-plane velocity components. Here PIV is not time-resolved, i.e.
each velocity image is uncorrelated to the next. The flow observed is a benchmark configuration : a
wake flow at Reynolds number Re = 3900 created by a circular cylinder embedded in a mean stream
(Parnaudeau et al. [2008). We compute the two-dimensional curl of the velocity. Named vorticity, it
is presented in Figure[39]

M.6.1 LOW-DIMENSIONAL TEST CASE: VORTICITY EVALUATED ON SEVERAL SPATIAL POINTS

To reduce the dimension d of the data, we severely crop the vorticity images and subsample them
spatially, keeping only 4 x 4 pixels by images as illustrated by Figure 40} Once reshaped as a vector,
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Figure 38: 2D2C PIV velocity field: velocity component along x (left) and velocity component along
y (right).
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Figure 39: The full two-dimensional vorticity (left) and a zoom (right) of a PIV field
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Table 7: Low-dimensional vorticity test case: parameters of the nominal numerical experiments.

Parameter SGM MSGM
Dimension d 16 16
Number of used training data points (M) 219 = 1024 1024
Number of test data points 6476 6476
Reference number of ADAMS steps 220 220
Number of ADAMS steps (Niter) 220 = 1048576 262144
CPU time / ADAMS steps (in ms) 4 32
Batch size 256 256
Number of time steps (forward) N% 1 16
Number of time steps (backward) Nél 8 8
Bmin 0.025 0.025
ﬁmax 5 5

te 1074 2.5 x 107°
Learning rate 1073 1073
Neural network architecture default spherical (equation|L.33)
MD (MMD(train)=0.9 x 10~2) 1.5 x 1072 1.3 x 1072
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Figure 40: Spatial cropping and spatial subsampling of a vorticity field to obtain a data sample at low
dimension d = 16.

each small image represents a data point of dimension 16. If we choose a dimension d < 16, we just
keep the first d coefficients of the vector. For this experimental dataset, we investigate the influence
of the amount of data available for learning. Our default experiments will train the models with
210 = 1024 data points only.

As seen previously in Section [6.2] MSGM is more robust in low-data mode and better represents rare
events, as also confirmed by the survival function Figure I} We explain it by a latent distribution
close to the data distribution as illustrated in Figure 2]

For a fair numerical comparison, we also test SGM with and without our neural network architecture
based on spherical decomposition equation|[C:33]in Figures @3] 4] and[5] This architecture improves
the quality of the generated samples. However, tails are still underestimated and some regions of the
space remain clearly badly sampled. In contrast, MSGM samples fit well the data distribution both
with dense and with sparse tensor, G.

To complete the numerical study, we evaluated the MMD between generated samples and test samples
for different values of the reference number of ADAMS iterations, different number of time steps
to integrate the backward SDE, different dimension d, and different numbers of training data. The
convergence plots are visible in Figures[#6|and 7] Again, MMD may not be the best tool for studying

82



Under review as a conference paper at ICLR 2026

10° pr—— 10 prm—
@ 3
A A
X 10 X 10
g T
407 4072
o — test \'d — test
%) gen. n gen.
-3 3
10 10
10° 10' 10° 10"
R R

Figure 41: Survival function of generated data (orange line) compared to ground truth data (blue
line) with the SGM (left) and MSGM (right) trained on 1024 16-dimensional data points representing
PIV-based vorticity fields.
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Figure 42: Evolution of the solution log-pdf log(ps(x1,z3)) of MSGM forward SDE (top) and
backward SDE (bottom) for the vorticity images distribution, with nominal scheduling (3,, = 0.025,
B = 5.0) and our neural network architecture based on spherical decomposition equation

rare events. We can observe some tendencies, but definite conclusions may not be obtained from
those convergence plots. For a very small training set (2% = 64 data points), both SGM and MSGM
fail and MMDs are similarly large. The biggest MMD gap between SGM and MSGM appears to
be in the intermediate region: 20 = 1024 data points. As expected, this gap seems to increase with
dimension, even though this tendency is not fully clear for the plot. For small numbers of ADAMS
iterations or small numbers of time steps, MSGM seems much better than SGM. This is expected
since the MSGM latent space is already close to the data distribution. Without enough ADAMS
iterations, neither the MSGM nor the SGM samples accurately mimic the data distribution, and in
any case, it is better to let the optimization procedure run for a long enough time.

M.6.2 HIGH-DIMENSIONAL TEST CASE : VORTICITY IMAGE PROCESSING

To demonstrate that MSGM can address high-dimensional problems, we propose here an image
generator based on the sparse local tensor of Appendix [K:2.2]and the Unet detailed in Appendix [C.4.2]
. From the original high-resolution PIV-based vorticity images of Figure 39} we crop, subsample at
resolution 64 x 64, smooth and subsample again images them spatially, keeping 32 x 32 pixels by
images as illustrated by Figure[d8] Once reshaped as a vector, each small image represents a data
point of dimension 1024.

Figures [f9) and [50| present generated images with MSGM and SGM respectively. Table 8] summarizes
the parameters of our numerical experiment. The numerical evaluation of image generation skills of
MSGM is beyond the scope of this paper and we postpone this study to future work.

N SUMMARIZED COMPARISON OF MSGM AND SGM

This section is devoted to a brief comparison of these two concepts of generative modeling both from
theoretical and empirical point of views.
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Figure 43: Pair plots of generated data (orange dots) compared to ground truth data (blue dots) with
the MSGM with dense tensor G (top left), sparse local tensor G (top right), and SGM (bottom)
trained on 1024 16-dimensional data points representing PIV-based vorticity fields. Left and top
plots correspond to our neural network architecture based on spherical decomposition equation [C:33]
whereas the right bottom plot correspond to default neural network architecture. On the diagonal
log-histogram of ground truth data (blue line) and logarithm of the pdf KDE estimation of generated
data (orange line) are superimposed.
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Figure 44: Evolution of the solution log-pdf log(ps(x1, x3)) of SGM forward SDE (top) and backward
SDE (bottom) for the vorticity images distribution, with nominal scheduling (5,,, = 0.025, 5); = 5.0)
and default neural network architecture.
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Figure 45: Evolution of the solution log-pdf log(ps(x1, x3)) of SGM forward SDE (top) and backward
SDE (bottom) for the vorticity images distribution, with nominal scheduling (5,,, = 0.025, 5, = 5.0)
and our neural network architecture based on spherical decomposition equation @
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Figure 46: Convergence of MMD (mean and 80% confidence interval) for the vorticity images
distribution as a function of number of training data for (from left to right and from top to bottom)

dimension d = 2,4, 8, and 16.
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Figure 47: Convergence of MMD (mean and 80% confidence interval) for the vorticity images
distribution as a function of reference number of ADAMS iterations (top left), as a function of number
of time steps for integrating the backward SDE (top right), and as a function of dimension (bottom).
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Figure 48: Spatial cropping and subsampling (left), spatial smoothing (middle), and spatial sub-
sampling again (right) of a vorticity field to obtain a data sample at lower but still high dimension
d =1024.
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4666 Figure 49: 32 x 32 image generation from MSGM with forward (top) and backward diffusion
4667 (bottom) at time (from left to right) s =7 — ¢ = 0,0.25,and T' = 1.
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Figure 50: 32 x 32 image generation from SGM with forward (top) and backward diffusion (bottom)
at time (from left to right) s = T'— ¢ = 0,0.25, and 7" = 1. The apparent heteroskedasticity in the
diffusion is due to the data normalization (pixel-wise variance is larger on top and bottom boundaries).
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Table 8: High-dimensional vorticity test case: parameters of the nominal numerical experiments.

Parameter SGM MSGM
Dimension d 1024 1024
Number of used training data points (/) 5000 5000
Number of test data points 2500 2500
Reference number of ADAMS steps 10° 10°
Number of ADAMS steps (NViter) 10° 10°
GPU time / ADAMS steps (in ms) 410 590
Batch size 128 128
Number of time steps (forward) Njf 1 128
Number of time steps (backward) N2 2048 2048
ﬁmin 0.8 0.8
Bmax 160 160

te 8 x 1073 8 x 1073
Learning rate 10~* 10~*
Neural network architecture default spherical (equation |i :.33|D
MMD (MMD(train)=1.4 x 10~3) 2.4 %1073 3.2x 1073

Each strategy follows its own noising process, leading to different invariant distributions, i.e. Gaussian
for SGM and rotational invariant for MSGM. Both latent spaces are tractable, allowing for fast initial
sample generation for the reverse process. As a particular added on, the latent distribution of MSGM
allows for finite KL divergence when compared to heavy-tail distribution, e.g., as discussed and
motivated by Appendix[E.§] From the convergence speed, both dynamics allow for exponential
convergence to the invariant distribution, assuming the rank condition[A2]is satisfied for G. We will
conclude this section with a comparison discussion beyond the heavy tail case.

N.1 THEORETICAL ASPECTS

The latent space of MSGM is data aware, which ensures smaller KL-divergence of target distribution
and latent distribution compared to classical SGM, see Appendix[E]and Proposition[E:5.1] The
method allows for inductive bias based on physics in the design of G. For example, in the context of
transport noise, making the noising/denoising process more physically relevant. This topic is part of
future work by the authors and is briefly discussed in Section[Zl Moreover, the conservation of norm
in the denoising/backward process of MSGM serves as a stabilization tool, both for training and for
sampling stage. In particular, samples cannot diverge.

At first glance, MSGM offers drawbacks compared to SGM. First, we have to rely on SSM and
cannot apply DSM since we do not have access to an analytic score solution of the noising process.
Second, we have to rely on numerical integration in the training because of no available analytic
solution; see also the empirical discussion [N.2]below.

When it comes to scalability, as d — oo, the current theoretical analysis is not yet complete. The
current analysis is built on the (strong) rank-condition which can be verified in the case of dense
tensors; see Appendix[J]] This is a limit in terms of scalability due to the d? scaling of G. Here,
the sparse tensors discussed in Appendix [K]will serve as a solution when it comes to scalability.
However, in this context the rank condition has to be relaxed and new analysis is required as outlined

in Appendix [KI.1]
N.2 EMPIRICAL ASPECTS

SGM offers exact integration of the noising process, while MSGM relies on numerical integration.
Although this at first glance looks like a drawback in praxis, for most of our test cases, only a few
forward steps were needed in the training process, making the training traceable and comparable
to SGM training based on exact integration, while offering the same quality. For a more detailed
discussion, we refer to the fair comparison discussion in Appendix [M.3] As our current experiments
suggest, MSGM requires less data in training. From approximation theory, learning the score reduces
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to training on a support that is the hyper-sphere in R, with a conditioning variable log ||z € R.
In particular, the effective domain for learning a neuronal remains bounded in d. It may affect the
stability of the approximation using such an approximation class. Finally, the stabilization due to the
conservation of norm avoids divergence instabilities of SSM solvers for MSGM, when compared to
well known instabilities of SSM solvers for SGM.
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