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ABSTRACT

We introduce a new class of generative models based on multiplicative score-driven
diffusion. In contrast to classical diffusion models that rely on additive Gaussian
noise, our construction is driven by skew-symmetric multiplicative noise. It yields
conservative forward-backward dynamics inspired by the principles of physics.
We prove that the forward process converges exponentially fast to a tractable
non-Gaussian latent distribution, and we characterize this limit explicitly. A key
property of our diffusion is that it preserves the distribution of data norms, resulting
in a latent space that is inherently data-aware. Unlike the standard Gaussian prior,
this structure better adapts to heavy-tailed and anisotropic data, providing a closer
match between latent and observed distributions. On the algorithmic side, we
derive the reverse-time stochastic differential equation and associated probability
flow, and show that sliced score matching furnishes a consistent estimator for the
backward dynamics. This estimation procedure is equivalent to maximizing an
evidence lower bound (ELBO), bridging our framework with established variational
principles. Empirically, we demonstrate the advantages of our model in challenging
settings, including correlated Cauchy distributions and experimental fluid dynamics
images (d = 1024). Across these tasks, our approach more accurately captures
extreme events and tail behavior than classical diffusion models, particularly in the
low-data regime. Our results suggest that multiplicative conservative diffusions
open a principled alternative to current score-based generative models, with strong
potential for domains where rare but critical events dominate.

1 INTRODUCTION

athematically equivalent (Song et al., 2021), diffusion models and score-based generative models
demonstrate impressive skills and are among the current state-of-the-art for the generation of two-
and three-dimensional images. Unconditioned sampling scores can be easily modified to conditioned
sampling scores to address various inverse problems (Rybchuk et al., 2023; Rozet & Louppe, 2023;
Daras et al., 2024; Bao et al., 2025). However, both learning and inference come with significant
computational costs. In addition, even with large computational power, the generation of rare and
extreme events remains a difficult task (Li et al., 2024; Stamatelopoulos & Sapsis, 2025). Those
generative AI challenges may be more easily addressed by introducing physical-based inductive bias
in the fully-data-driven approaches. In this paper, we take inspiration from physics and its conservative
structure to build a multiplicative score-based generative model. It is inspired by transport noises in
fluid dynamics (Kraichnan, 1968; Brzeźniak et al., 1991; Klyatskin, 1994; Piterbarg & Ostrovskii,
1997; Mikulevicius & Rozovskii, 2004; Mémin, 2014; Holm, 2015; Resseguier et al., 2021; Zhen
et al., 2023) and, more generally, from slow-fast systems with multiplicative noise (Majda et al.,
1999; Franzke et al., 2005; Gottwald & Melbourne, 2013; Gottwald & Harlim, 2013). Transport noise
models may be understood as generative models based on stochastic fluid dynamics rather than fitted
neural networks. As other generative models, they suit particularly well to Bayesian inverse problems
(Cotter et al., 2020b;a; Resseguier et al., 2022; Dufée et al., 2022).

Here, we might address problems outside the scope of fluid dynamics, though keeping the conservative
structure of transport noise. The noising and denoising procedures that we propose maintain a part of
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the data information: the distribution of norm of the data point. The latent distribution is hence both
tractable and close to the data distribution. ore specifically, our contributions are the following.

New generative model paradigm: We introduce a new type of diffusion model where the noising
process is multiplicative. We call it a Multiplicative Score-based Generative Model (MSGM).
Involving random rotations around the origin, it greatly differs from previous diffusion models and
opens a new research path. The key aspects are summarized in Figure 1.

Deep theoretical analysis of MSGM: Assuming a skew-symmetric structure and a rank condition
for this noise, we proved several theoretical results, guiding the use of this new generative tool. The
first theorem provides the Fokker-Planck equation of forward diffusion and its invariant measures.
Then, we separately analyze the norm and direction of the diffusion. The norm is steady, whereas the
direction follows a similar multiplicative stochastic differential equation (SDE). Two other theorems
show that distributions of the direction and thus of the whole diffusion converge exponentially fast to
a white noise in the weak sense. Asymptotically, the norm and direction are independent, and the
latter is uniformly distributed over the d-sphere.

General algorithm for MSGM: We propose to estimate the scaled diffusion score by a neural
network using sliced score matching, and our last theorem shows that it is equivalent to maximizing
the ELBO. Sampling the non-Gaussian latent vectors reduces to a one-dimensional problem that we
address with eCDF. For the denoising process, both SDE and ordinary differential equation (ODE)
formulations are proposed.

Application to extremes in moderate dimension: We propose a numerical procedure to mimic
the heavy-tail distribution with MSGM. We add a first layer to the neural network to perform a
spherical decomposition with log-norm, and the latent distribution is characterized by the law of
the data log-norm. Compared numerically with a standard diffusion model, MSGM better mimics
multidimensional Cauchy distributions and measured fluid vorticity. The proximity between latent
and data distributions facilitates the forward and the backward diffusions, and implicitly encompasses
the correct distribution tail decays.

Application in high dimension: As a first step, we focus on MSGM scalability and design of sparse
underlying tensors in the diffusion. While the latter is not covered completely by the theoretical
analysis, our numerical experiments show promising image generation results.
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Figure 1: Illustration of multiplicative score-based generative modeling (ours) compared to additive
score-based generative modeling.
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2 ADDITIVE SCORE-BASED GENERATIVE MODEL

2.1 FORWARD AND BACKWARD SDES

Diffusion models or score-based generative models (SGM) can be expressed in continuous time with
stochastic differential equation (SDE) (Song et al., 2021). The forward SDE is

d
→
xs = −

→
xsds+

√
2d
→
Bs, (2.1)

where
→
xs ∈ Rd is distributed according to some density ps for s > 0, s 7→

→
Bs is d−dimensional

Brownian motion, and
→
x0 distributed according to the dataset of interest. It is an Ornstein-Uhlenbeck

process: the continuous-time version of a first-order autoregressive (AR) model and the distribution
ps convergences to a standard Gaussian density exponentially for s→∞, e.g. in total variation or
Wasserstein distance. We can then define for t ∈ [0, T ] the backward equation

d
←
xt =

←
xtdt+ 2∇ log pT−t(

←
xt)dt+

√
2d
←
Bt, (2.2)

with t 7→
←
Bs another d−dimensional Brownian motion and

←
x0 ∼ pT (identifying the density pT

with its distribution). Then for any s ∈ [0, T ],
←
xT−s and

→
xs have the same law ps. In practice, when

an approximate score ∇ log pT−t is available we initialize equation 2.2 with a standard Gaussian
distribution

←
x0 ∼ N (0, Id) and integrate the backward SDE from t = 0 to t = T (i.e. from s = T

to s = 0), ideally letting
←
xT become statistically similar to our dataset of interest.

2.2 A NEURAL NETWORK TO FIT THE SCORE

In practice, the score∇ log pT−t(x) is approximated by a surrogate model, sθ(x, T − t), e.g., a fitted
artificial neural network (ANN). Alternatively, one can work on aθ(x, T − t) =

√
2sθ(x, T − t)

(Huang et al., 2021). For large-dimensional problems, Song et al. (2020) proposes to learn this neural
network by Sliced Score Matching (SSM). Here, aθ is obtained by minimizing the loss function

LSGM
SSM (θ) =

∫ T

0

E→
xs

Ev∼Rad(d)

[
1
2∥aθ(

→
xs, s)∥2 + (v · ∇)((

√
2aθ(

→
xs, s)−

→
xs) · v)

]
ds. (2.3)

where ∥.∥ is the Euclidean norm, Rad(d) denotes the d-dimensional Rademacher distribution and
E→

xs
is the expectation along each path realization

→
xs. Appendix A details the most common score

matching losses and their link to the concept of the Evidence Lower Bound (ELBO).

3 MULTIPLICATIVE SCORE-BASED GENERATIVE MODEL

Rather than relying on additive SDE equation 2.1, we propose a multiplicative SDE and the associated
score-based generative model. Taking inspiration from physics, this approach introduces physical-
based inductive bias and yields tractable latent distributions closer to the dataset distribution. In
this section, we introduce our forward SDE based on skew-symmetric multiplicative noise, its
corresponding latents, and backward SDE and analyze the limit properties of the process distribution.
To share didactic similarities of the forward and backward processes as in the additive noise case, we
will keep the same notation for the forward process

→
xs and the backward process

←
xs, respectively.

3.1 FORWARD SDE

Instead of considering a forward SDE with additive noise, we rely on multiplicative noise model

d
→
xs = G(

→
xs) ◦ d

→
Bs, (3.1)

where d ⩾ 2, G : Rd → Rd×d is linear and ◦ stands for the Stratonovich notation. The readers
unfamiliar with this notation may interpret the Stratonovich noise s 7→ ◦d

→
Bs as a process with short

correlation time but respecting the usual rules of differential calculus – says the chain rule. The
discretized version of equation 3.1 – with an infinitely small time step ds – may also provide insight:

1
2 (
→
xs+ds −

→
xs−ds) = G(

→
xs)

1
2 (
→
Bs+ds −

→
Bs−ds). (3.2)
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For deeper understanding, Appendix B recalls some important notions of stochastic calculus, including
the Stratonovich notation and the relationship to Itô calculus. Let G be represented by a third-order

tensor [Gk
i,j ] ∈ Rd,d,d and define the random matrix Zs =

∑d
k=1 G

k(
→
Bs)k. Then, equation 3.1 can

be written more explicitly as:

d
→
xs =

d∑
k=1

(Gk→xs)(◦d
→
Bs)k =

d∑
k=1

Gk(◦d
→
Bs)k

→
xs = ◦dZs

→
xs ≈ 1

2 (Zs+ds −Zs−ds)
→
xs, (3.3)

where the time increments of the random matrix, ◦dZs ≈ 1
2 (Zs+ds −Zs−ds), are uncorrelated.

Additionally, we will impose two assumptions valid throughout the paper:

Skew-symmetry : For any k ∈ {1, . . . , d}, the matrix Gk = (Gk
i,j)i,j is skew-symmetric. (A1)

Rank condition : For any x ∈ Rd\{0}, rank(G(x)) = d− 1. (A2)

In particular equation 3.1 does not describe a geometric Brownian motion, as the noise term Zs

is not diagonal. It includes zeros on the diagonal due to the skew-symmetry of Gk. A geometric

Brownian motion would necessitates Zs = diag(
→
Bs). A strategy to obtain a tensor G that matches

assumptions A1 and A2 will be discussed in Section 6. By linearity, the skew-symmetry of all Gk

(assumption A1) implies the skew-symmetry of the whole multiplicative noise matrix ◦dZs. This
structure is inspired by transport noises in fluid dynamics (Kraichnan, 1968; Piterbarg & Ostrovskii,
1997; Resseguier et al., 2021). In this analogy,

→
xs would represent an image of temperature, advected

by an incompressible fluid flow. Incompressibility leads to the skew-symmetry of the advection
operator, and eventually to energy conservation of

→
xs. Here, we might address problems outside the

scope of fluid dynamics, though maintaining the noise skew-symmetry (assumption A1) and thus the
energy conservation, as discussed in Section 3.2.

With assumption A2, the noise spreads in a large space: Im(G(
→
xs)) =

→
x
⊥
s . It ensures sufficient

variability in the noising process and, in turn, a tractable distribution for
→
xT when T becomes large.

Theorem 3.1.1. Let the assumptions A1 and A2 hold. Then, the Fokker-Planck equation of equa-
tion 3.1 reads

∂

∂s
ps(x) = ∇⊥ ·

(
1
2Σ(x)∇⊥ps(x)

)
, x ∈ Rd, (3.4)

with conditional noise covariance Σ(x) := G(x)G(x)⊺ and∇⊥ denoting the orthogonal projection
of nabla ∇ on the tangent plane x⊥, i.e.

∇⊥ := (Id − xn(xn)⊺)∇, (3.5)

for xn := x/∥x∥ with x ∈ D := Rd \ {0} and 0 otherwise, the unit vector orthogonal to the
d-sphere. oreover, any stationary density p∞ of equation 3.4 is rotation-invariant on Rd.

The proof is detailed in Appendix D.2. In order to highlight the connection to diffusion mod-
els on Riemannian manifolds, we note that ∇⊥ is the Riemannian gradient on the unit d-sphere:
Sd−1 = {x ∈ Rd| ∥x∥ = 1}, see Appendix H.1. For a possible extension of the considered
diffusion equation 3.1 to the case of non-zero drift, we refer to section D.6.

3.2 DYNAMICS OF NORM AND DIRECTION

We now consider for any s ≥ 0 and
→
xs ̸= 0, the spherical decomposition

→
xs = ∥

→
xs∥

→
x

n

s with
→
x

n

s :=
→
xs/∥

→
xs∥ ∈ Sd−1. (3.6)

First, we note that the norm, ∥→xs∥, remains constant throughout the noising process. Indeed, the
skew-symmetry of ◦dZs implies that d

→
xs = ◦dZs

→
xs is orthogonal to

→
xs and hence:

d∥→xs∥2 = 2
→
xs · ◦d

→
xs = 0, ∀s ≥ 0. (3.7)

Consequently, ∥→xs∥ ≡ ∥
→
x0∥. The vector

→
xs moves randomly on ∥→x0∥Sd−1, the d-sphere of radius

∥→x0∥. Therefore, the distribution of the norms of the latent variable is exactly the distribution of

4
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the norms of the points of the dataset. We refer to Appendix D.3 for more details. This property
will have important consequences for our learning procedure and on the possibility of generating
extreme events. Indeed, the property of likely large norm events will be conserved along the diffusion.
In particular, the norm distribution is one-dimensional and we can rely on advanced techniques
available for this setup, without worrying about the curse of dimensionality. In practice, we will
fit the distribution of the log-norm, Flog |.|ϵ , with eCDF. We refer to Appendix C for details and an
overview of sampling from one-dimensional distributions.

We now focus on pns , the distribution of the direction,
→
x

n

s , in particular as s → ∞. For better
readability, we postpone the full discussion and the main theorems to Appendix D.4. Lemma D.4.1
introduces the Fokker-Planck equation of the direction on Sd−1 and its unique invariant measure,
pn∞. Then, Theorem D.4.2 shows the exponential convergence of the initial distribution pn0 to pn∞,
the uniform distribution on the unit sphere Sd−1. Consequently, since Sd−1 is compact, this implies
convergence in total variation of pns to pn∞ and convergence in distribution of

→
x

n

s to
→
x

n

∞ ∼ U(Sd−1).

3.3 NON-GAUSSIAN LATENT SPACE

In this section, we characterize the generally non-Gaussian latent distribution. Although this sounds
intractable at first glance, it will turn out that we can easily sample it.

In general, the latent space of MSGM is not Gaussian. It becomes Gaussian if and only if the
distribution of the squared norms of the dataset points has χ2 distributions with d degrees of freedom
(see Appendix E.2). This property differs from the usual SGM. SGM latent variables are Gaussian,
leading to χ2 distributions for the norms of the latent variables regardless of the data set. According
to Lafon et al. (2023), without a heavy tail distribution for the latent variables, it is unlikely that the
final samples will be generated with a heavy tail distribution, at least with variational autoencoders
(VAE). With our approach, the distribution of the norms of the latent variables has heavy tails if
and only if the distribution of the norms of dataset points has heavy tails. Therefore, we expect a
significant improvement from our method in generating extreme events. In fact, for heavy-tailed data
the KL divergence to the SGM latent distribution is infinite, whereas MSGM yields a finite value,
see Appendix E.6. ore generally, Appendix E.5 shows that the KL divergence from data to the latent
distribution is always smaller under MSGM than SGM. So, only few time steps may be sufficient to
integrate the forward and the backward MSGM diffusions. In any case, the MSGM latent vectors
are still white noise in the weak sense (see Appendix E.1). Moreover, the norm and direction are
independent from each other, which will drastically facilitate the sampling procedure. These results
hold for latent vectors x∞ ∼ p∞. In practice, integrations of forward and backward diffusions are
only possible over a finite time T . However, the following theorem states that the law of the solution,
→
xT , will become close to p∞ exponentially as fast as T → +∞. So, we can confidently rely on
finite-time integration.

Theorem 3.3.1. Let assumptions A1 and A2 hold. Let
→
x0 ∼ p0 ∈ C2(D) and let p|.| be the (radial)

density of ∥→x0∥. Then, the Fokker-Planck equation 3.4 has a unique solution ps ∈ C2(D) ∩ L2(D)
for all s > 0. Moreover, the Fokker-Planck equation has the stationary distribution

p∞(x) =
p|.| (∥x∥)
∥x∥d−1

1

|Sd−1|
. (3.8)

In particular, ∥→xs∥ and
→
x

n

s are asymptotically independent for s → +∞. oreover, there exists
α = α(G, d) > 0 such that

∥ps − p∞∥2L2(Rd) ≤ exp(−αs)∥p0 − p∞∥2L2(Rd). (3.9)

The proof and details on α are given in Appendix D.5 and a specific case is discussed in Appendix J.3.
The factor ∥x∥1−d in equation 3.8 is expected. Indeed, |S

d−1|
∥x∥1−d is the volume of the scaled d-sphere

∥x∥Sd−1, i.e. it corresponds to the uniform distribution on the scaled d-sphere ∥x∥Sd−1.

We will now consider the practical question on how to draw samples from the latent distribution
with density ρ∞ from equation 3.8. It is of product structure between the radial and the directional
component. So, we can sample the norm R∞ and the direction

→
x

n

∞ separately and multiply them. The

5
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norm R∞ can be sampled from an one-dimensional approximation of the data norm (see Appendix C)

and the direction
→
x

n

∞ is uniform. So, we can sample a
→
x
N
∞ ∼ N (0, Id) and set

→
x∞ = R∞

→
x

n

∞ with
→
x

n

∞ =
→
x
N
∞/∥→x

N
∞∥, R∞ = f̂(∥→x

N
∞∥), (3.10)

and f̂(r) := exp
(
F̂−1log |.|ϵ(Fχ2(d)(r

2))
)
− ϵ, ∀r > 0. (3.11)

If
→
x
N
∞ = 0, we set

→
x∞ = 0. Proposition E.3.2 shows that this procedure leads to samples with the

correct distribution, up to the approximation of the log-norm CDF F̂log |.|ϵ ≈ Flog |.|ϵ . oreover, the
direct map F̂log |.|ϵ can transform a latent vector,

→
xT , into a Gaussian one (see Appendix E.4). This

transformation may be useful for future applications like inverse problems or time evolution fittings.

3.4 REVERSE ODE/SDE AND SCORE MATCHING

From the Itô forward SDE (see Lemma D.1.2), we know that the Stratonovich reverse SDE writes

d
←
xt = G(

←
xt)

(
G(
←
xt)

⊺∇ log pT−t(
←
xt)dt+ ◦d

←
Bt

)
, (3.12)

and the reverse probability flow ODE is given as

d
←
xt

dt
= 1

2G(
←
xt)

(
G(
←
xt)

⊺∇ log pT−t(
←
xt)
)
. (3.13)

The corresponding derivations are formulated in Proposition F.1 and Proposition F.2 and are proven in
the appendix using Anderson (1982); Song et al. (2021). Following Huang et al. (2021), we directly
model G(

←
xt)

⊺∇ log pT−t(
←
xt) by a neural network aθ(

←
xt, T − t). Additionally, we incorporate a

spherical input layer, see Appendix L.4.1. We fit the parameters θ by sliced score matching (SSM)
(Song et al., 2020), because in the multiplicative case we do not have an analytic formula for the
conditional score ∇ log ps(

→
xs|
→
x0) and because of the better scalability of SSM to high-dimensional

problems that we would like to address in the future. To this end, we minimize the loss function:

LSSM(θ) = Es∼U [0,T ]E→xs
Ev∼Rad(d)

[
1
2∥aθ(

→
xs, s)∥2 + (v · ∇)(G(

→
xs)aθ(

→
xs, s)) · v

]
, (3.14)

where Rad(d) denotes the Rademacher distribution in Rd. The following theorem states that even
in our multiplicative case, score matching is equivalent to maximize the ELBO, E∞. In line with
Benton et al. (2024); Ren et al. (2025), this theorem generalizes the result of Huang et al. (2021) and
gives a theoretical justification for our score-matching loss equation 3.14. The derivation of this loss
from the ELBO below is detailed in Appendix G.7.

Theorem 3.4.1. Let assumption A1 holds. Then, there exists a constant C such that

p0(x) ⩾ E∞(x) := C −
∫ T

0

E→
xs

[
1
2∥aθ(

→
xs, s)∥2 +∇ · (G(

→
xs)aθ(

→
xs, s))

∣∣∣∣→x0 = x

]
ds. (3.15)

We proof this theorem in Appendix G. The first term C := E
[
log pT (

→
xT )

∣∣→x0 = x
]

is a constant
w.r.t. to θ. So, it has no effect on the optimization procedure. Therefore, even with our multiplicative
noise, the minimization of the ELBO corresponds precisely to Implicit Score Matching (ISM), which
is itself equivalent to explicit score matching (ESM), denoising score matching (DSM), and SSM
(Huang et al., 2021). Note that formally replacing G by

√
2, we get the SGM SSM loss. For an easier

numerical comparison in Section 6, we will also rely on SSM to train our baseline SGM.

4 WORKFLOW

Algorithm 1 summarizes the proposed MSGM procedure. Here we make use of color to highlight the
differences compared to SGM. For more details, we refer to Appendix L.
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Algorithm 1: MSGM (Multiplicative Score-Based Generative Model).

Input: tensor G, one-dimensional distribution model f̂γ , data {→x
m

0 }Mm=1, tϵ, time horizon T , time
steps Nf

T and N b
T , time scheduler g, score model aθ , initial ANN parameter θ0, iterations Niter

— Training stage —
1: γ∗ ← fit_distribution(f̂γ , {∥

→
x

m

0 ∥}Mm=1) {Fitting of f̂γ , see Appendix C}
2: for n = 0 to Niter − 1 do
3:

→
x0 ∼ 1

M

∑M
m=1 δ→x

m

0
{Random mini-batch from dataset}

4: s ∼ U(I(tϵ, T )) {Sample uniform gridded time}
5:

→
xs ← SRK4(s, ⌊ sT N

f
T ⌋,
→
x0, 0, gG) {Forward diffusion integration via Algorithm 2}

6: v ∼ Rad(d) {Slicing directions}
7: ℓ(θn)← LMSGM

SSM (s,
→
xs,G, gaθn ,v) {Score-matching loss, from equation 3.14}

8: θn+1 ← optimizer_update(θn, ℓ(θn)) {e.g. via ADAM}
9: end for

10: θ⋆ ← θNiter
{Set final ANN parameter}

— Generative sampling stage —
11:

←
x
N
0 ∼ N (0, Id), {Sample strong white noise}

12:
←
x0 = f̂γ∗

(
∥←x
N
0 ∥
) ←

x
N
0

∥←x
N
0 ∥

{Sample weak white noise, see equation 3.11}

13:
←
xT ← SRK4(T,N b

T ,
←
x0, gGaθ∗ , gG) {Reverse diffusion integration via Algorithm 2}

14: return γ∗, θ∗,
←
xT

5 RELATED WORKS

Combining machine learning and mechanistic approaches is now a common approach. We may cite
physics-informed neural networks (PINNs) (Raissi et al., 2019; Lu & Xu, 2024), physics-based prior
covariance (Beauchamp et al., 2025; Clarotto et al., 2024), deep augmentation (Holzschuh et al.,
2023; Fan et al., 2025), neural Galerkin (Lee & Carlberg, 2020; Chen et al., 2021; Romor et al.,
2023; Finzi et al., 2023; Bruna et al., 2024; Kim et al., 2022), and chaos from energy-based models
(Fournier & Pierfrancesco, 2025) among others. Here, we shall focus on score-based generative
models. Bastek et al. (2024) add the physical equations inside their score matching loss. Holzschuh
et al. (2023) fit a score to correct a backward physical equation but does not propose any generative
model. To denoise corrupted images, several authors (e.g. Zhou et al., 2014; Shan et al., 2022;
Guha & Acton, 2023) encode the multiplicative structure of speckle noise. Since this noise is not
correlated between pixels, this approach strongly differs from ours. Most of these works do not
deal with score or generative models. Guha & Acton (2023); Ren et al. (2025); Shetty et al. (2025)
do, but their framework simplifies to SGM by considering the pixel-wise logarithm of images. Guth
et al. (2022); Lempereur & Mallat (2024) encode a target multiscale structure (e.g. turbulence) by a
hierarchy of normalized wavelets conditioned by the larger scales. Chen & Vanden-Eijnden (2025)
adapt the noise to that multiscale structure in a stochastic interpolant context. Lobbe et al. (2023;
2025) replaced the Gaussian process involved in the transport-noise equations (Kraichnan, 1968;
Piterbarg & Ostrovskii, 1997; Resseguier et al., 2021) by a Shrodinger bridge (De Bortoli et al., 2021).
They inserted a SGM inside a transport noise dynamics, whereas we inserted a dynamics similar
to transport noise inside a SGM. Following general Bayesian approaches, some of the literature on
transport-noise relies on the Girsanov theorem to fit a drift modification or evaluate a likelihood
(Cotter et al., 2020a; Singh et al., 2025)(see Appendix G.9). By extending the ELBO of (Huang et al.,
2021) to SDEs inspired by transport noise, Theorem 3.4.1 justifies our fit of the backward SDE drift.

Several authors have recently proposed Langevin equations
(Arnaudon et al., 2019; Luesink & Street, 2025; Ayala et al., 2025) and SGM
(De Bortoli et al., 2022; Huang et al., 2022; Lou et al., 2023; Benton et al., 2024) on Rieman-
nian manifolds in order to generate data lying on a particular manifold. Clearly different, our goal is
more classical: generating data in Rd. In our work, neither data nor their noisy versions are restricted
to a single manifold. However, each solution path of our forward and backward SDE lies on its
particular Riemannian manifold, the scaled d-sphere ∥→x0∥Sd−1. De Bortoli et al. (2022) describes
diffusions and SGM in the d-sphere Sd−1. A detailed comparison is given in Appendix H.
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Regarding extremes generation, using variational autoencoders (VAE), Lafon et al. (2023) ar-
gue that Gaussian latent restricts the generated samples to light-tail distributions. Accord-
ingly, they propose to use fat-tailed latent distributions (see also Jaini et al. (2020); Huster
et al. (2021) for normalizing flows (NF) and generative adversarial models (GAN) respectively).
Yoon et al. (2023); Shariatian et al.; Pandey et al. (2024); Ren et al. (2025) proposed SGMs with ad
hoc heavy-tailed (Lévy and Student-t) latent distributions. Our approach automatically makes the
tails of the latent distribution fat when necessary. It learns it from the distribution of the data norm,
p|.|. Similarly, the diffusion proposed by Dharmakeerthi et al. (2025) adapt to data but through a
nonlinear drift and an additive noise. Li et al. (2024); Price et al. (2025); Stamatelopoulos & Sapsis
(2025) and references therein show that the usual SGM may correctly represent extremes, especially
in "interpolation mode", that is, when extremes lie on the interior of the dataset but have difficulties
with extremes lying on the dataset boundaries. Our numerical experiments in Section 6 suggest that
our method probably overcomes this limitation. To represent the directionality of extremes, many
authors decompose norms and directions of extreme events (Engelke et al., 2019; Palacios-Rodríguez
et al., 2020; Lafon et al., 2023; Naveau & Segers, 2024). Large-amplitude criterion (e.g. exceeding a
high threshold) or fat-tail model can be applied on the norm. Extreme directions may or may not
become asymptotically independent of their magnitude (Engelke et al., 2019; Lafon et al., 2023).
Build on random rotations, MSGM naturally suggests such a polar decomposition. The extreme
direction of the MSGM latent vector is asymptotically independent of its magnitude. However, the
direction of the reverse process does depend on the magnitude (see Appendix H.2).

6 EXPERIMENTS

For our numerical experiments, we choose to define a tensor Gk in a simple way. We sample d
random matrices, keep only their skew-symmetric parts, and normalize:

G =
√
d

∥G̃∥2
G̃ with G̃k

i,j =
1
2 (M

k
i,j −Mk

j,i) and Mk
i,j

iid∼ N (0, 1). (6.1)

In Appendix J we show that this random tensor G respects conditions A1 and A2 almost surely.
Appendix K proposes alternative tensor definitions with sparse structures that allow high-dimensional
applications. Following Appendix K.2.2, MSGM can generate images as in Appendix M.6.2. For the
test cases below, we also checked in Appendix M.6.2 and Appendix M.6.1 that the MSGM generation
skills are equivalent with these sparse and dense tensors. However, these sparse tensors do not match
the framework of Section 3.1 so we postpone the associated numerical evaluations to future works.

6.1 MULTIVARIATE CAUCHY DISTRIBUTION

We first illustrate our method with a vector of Cauchy variables, xCa, with scale parameter γ:

(xCa)i
iid∼ pCa with pCa(x) :=

γ/π

x2 + γ2
. (6.2)

It is an extreme case of fat-tailed distributions with a power-law tail: pCa(x) ∝ |x|−2 for large |x|.
Real problems often involve both correlation and dimensionality d > 2. So, we correlate Cauchy
variables, as x0 = AxCa, with a fixed matrix, A, initialized with i.i.d. coefficients Ai,j∼N (0, 1).
Figure 2 confirms that, for d = 4, SGM hardly reproduces fat tails and extreme directionality, unlike
MSGM. An explanation is the strong dissimilarity between the data distribution and the latent SGM
distribution; see Appendix E.5 and Appendix E.6. For a larger number of ADAMS iterations, MSGM
becomes more accurate, whereas SGM diverges (see Figure 4a). ore plots, numerical comparisons,
and experiments with variants of the state-of-the-art SGM can be found in Appendix M.6.1.

6.2 MEASURED VORTICITY FIELDS

We also test our algorithm on fluid dynamics experimental data: small images of vorticity fields.
These fields are two-dimensional curl of fluid velocity measured by Particle Image Velocimetry (PIV)
in wind tunnels. Vorticity quantifies the local rotation speed of fluid and is known to have point-
wise distributions with tails fatter than Gaussian ones (Wilczek & Friedrich, 2009). We focus on a
benchmark fluid flow: a wake flow at Reynolds number 3900 created by a circular cylinder embedded
in a mean stream (Parnaudeau et al., 2008). Each vorticity sample is evaluated at d = 16 spatial
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Figure 2: Pair plots of generated data (orange lines and dots) compared to ground truth data (blue
lines and dots) with the SGM (left) and MSGM (right) for a vector of 4 correlated Cauchy variables.
On the diagonal, log-histogram and logarithm of the pdf KDE estimation are superimposed.

Figure 3: Pair plots of generated data (orange lines and dots) compared to ground truth data (blue lines
and dots) with the SGM (left) and MSGM (right) trained on 1024 16-dimensional measured vorticity
fields. On the diagonal, log-histogram and logarithm of the pdf KDE estimation are superimposed.

points to ensure low dimensionality. We use limited training data (1024 data points) to make rare
events even more rare and learning more challenging. Appendix M.7 provides a deeper description
of this experimental dataset. Figure 3 highlights a larger concentration of points generated by SGM
in the center of the ground truth distribution. Accordingly, the tails of the marginals – i.e. the tails of
the vorticity point-wise distributions – are underestimated : SGM underestimates rare large vorticity
events. SGM performs better since the MSGM latent distribution – easy to learn – is much closer
to the data distribution than SGM latent distribution, as theoretically suggested by Appendix E.5
and experimentally verified in Appendix M.7. In particular, the MSGM latent distribution seems
to have Laplace tails and to be more accurate in the low-data regime (see Figure 4). Additional we
carried out high-dimensional experiments with d = 1024 in Appendix M.6.2 based on sparse tensor
G developed in Appendix K. More details on data, preprocessing, illustrations, and other numerical
experiments are given in Appendix M.

7 CONCLUSION AND DISCUSSION

We have proposed a new type of diffusion model with multiplicative noise. After a theoretical analysis
of this ansatz, an algorithm is specified to mimic fat-tailed distributions, surpassing SGM in this task.
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(a) Single MMD value for the correlated
Cauchy distribution (d = 4) as a function of
the number of effective ADAMS iterations.

(b) Mean and 80% CI of MMD for the vorticity measurements
distribution (d = 16) as a function of the number of training
samples.

Figure 4: Convergence behaviors of the Maximum Mean Discrepancy (MMD) for two different test
cases. 104 samples are used for each MMD evaluation.

At this point, limitations of the general MSGM framework may be difficult to know. We rather
discuss the limitations of the first numerical procedure applied in Section 6. First, the forward SDE
has to be integrated numerically since we do not know an analytic solution for large-rank tensors (see
Appendix I for the solution with low-rank tensors). It implies either a slower training or a reduced
number of iterations compared to SGM. oreover, we do not know of any analytic solution for the score
in finite time. This prevents the use of DSM and force us to use ISM or SSM, a less stable approach.
In the next future, we can hope that the active communities of generative models on symmetric
Riemannian manifolds and, more generally, of stochastic differential geometry could come up with
more efficient sampling algorithms and score evaluation procedures for our diffusions on d-spheres.
In addition, random matrix theory and free probabilities (Biane, 1997; Delyon & Yao, 2006; Demni,
2008; Lévy, 2008; Delyon, 2010; Demni & Hmidi, 2012; Cébron, 2014) may provide alternative
sampling methods and helpful results for large-dimension cases. Indeed, for some choices of G, the
semigroup of our forward SDE may be expressed as a unitary Brownian matrix, converging for large
dimensions to a free multiplicative Brownian matrix. Both theories could facilitate the sampling
and the score evaluation of the MSGM forward diffusion. oreover, a dense third-order tensor G
prevents image processing and other large-dimensional applications, related to, say, turbulent fluid
dynamics. In fact, dimensions d of such problems are very large – typically d = O(105) or more.
A dense tensor G as we use in our numerical experiments has d3 coefficients, and the memory and
computational costs would become prohibitive in these cases. To address this issue, Appendix K
proposes several sparse tensors and alternative to assumptions A1 and A2. Appendix M.6.2 shows
first MSGM generated images in dimension d = 1024. Furthermore, we are currently developing
physics-based sparse tensors G. Here, MSGM forward SDE is the spatial discretization of a stochastic
partial differential equation involving transport noises (Kraichnan, 1968; Piterbarg & Ostrovskii,
1997; Resseguier et al., 2021). We expect that the physical inductive bias will facilitate both inference
and learning, especially in low-data mode. Alternatively, the rank assumption A2 may be expressed
more simply with the algebraic properties of G, eventually producing simple examples of sparse and
efficient tensors.

In addition to the improvements discussed above, many paths remain to be explored. First, our
theoretical results could be generalized to other multiplicative diffusions. We have considered dense
linear maps x 7→ G(x) with Im(G(x)) = x⊥ for any x ̸= 0. We believe that sparse linear maps of
Appendix K and non-linear Lipchitz-continuous maps can yield similar theoretical results as long as
that image condition is fulfilled for almost every x ∈ Rd (see Appendix K.1). The non-linear case
would include in particular sphere-wise diffusions of De Bortoli et al. (2022) (see Appendix H.2).
Second, we could address dynamical system forecasting. With the Gaussianization of MSGM
latent vectors (see Appendix E.4) complex nonlinear dynamics could simplify to uncoupled one-
dimensional linear dynamics as in Arbabi & Sapsis (2022). A third path to explore involves Bayesian
inverse problems and data assimilation (Rozet & Louppe, 2023; Bao et al., 2025). Finally, our
analytic solution issue could be bypassed by a normalizing flow approach: spherical decomposition,
stochastic interpolants and flow along scaled d-spheres, taking inspiration from normalizing flow
along Riemannian manifolds (e.g., Gemici et al., 2016; Mathieu & Nickel, 2020; Wu et al., 2025).

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Ronald J Adrian and Jerry Westerweel. Particle image velocimetry. Number 30. Cambridge university
press, 2011.

Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

Hassan Arbabi and Themistoklis Sapsis. Generative stochastic modeling of strongly nonlinear flows
with non-gaussian statistics. SIAM/ASA Journal on Uncertainty Quantification, 10(2):555–583,
2022.

Alexis Arnaudon, Alessandro Barp, and So Takao. Irreversible langevin mcmc on lie groups. In
Geometric Science of Information: 4th International Conference, GSI 2019, Toulouse, France,
August 27–29, 2019, Proceedings 4, pp. 171–179. Springer, 2019.

Ludwig Arnold. Stochastic differential equations: theory and applications. Wiley, 1974.

Mario Ayala, Nicolas Dirr, Grigorios A Pavliotis, and Johannes Zimmer. Reversibility, covariance
and coarse-graining for langevin dynamics: On the choice of multiplicative noise. arXiv preprint
arXiv:2511.03347, 2025.

Feng Bao, Hristo G Chipilski, Siming Liang, Guannan Zhang, and Jeffrey S Whitaker. Nonlinear
ensemble filtering with diffusion models: Application to the surface quasigeostrophic dynamics.
Monthly Weather Review, 153(7):1155–1169, 2025.

Jan-Hendrik Bastek, WaiChing Sun, and Dennis M Kochmann. Physics-informed diffusion models.
arXiv preprint arXiv:2403.14404, 2024.

Maxime Beauchamp, Ronan Fablet, Simon Benaichouche, Pierre Tandeo, Nicolas Desassis, and
Bertrand Chapron. Neural variational data assimilation with uncertainty quantification using spde
priors. Artificial Intelligence for the Earth Systems, 4(3):240060, 2025.

Joe Benton, Yuyang Shi, Valentin De Bortoli, George Deligiannidis, and Arnaud Doucet. From
denoising diffusions to denoising markov models. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 86(2):286–301, 2024.

Philippe Biane. Free brownian motion, free stochastic calculus and random matrices. Free probability
theory (Waterloo, ON, 1995), 12:1–19, 1997.

Joan Bruna, Benjamin Peherstorfer, and Eric Vanden-Eijnden. Neural galerkin schemes with active
learning for high-dimensional evolution equations. Journal of Computational Physics, 496:112588,
2024.
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A LOSSES FOR SCORE MATCHING

This section presents some classical score-matching losses. In SGM backward SDE, the score
∇ log pT−t(x) is replaced by a fitted neural network sθ(x, T − t). This fitting is performed by
minimizing some losses, like denoising, implicit, or slicing score-matching losses. Alternatively, one
can work on aθ(x, T − t) =

√
2sθ(x, T − t) (Huang et al., 2021). It leads to this SGM backward

SDE:

d
←
xt =

←
xtdt+

√
2(aθ(x, T − t)dt+ d

←
Bt), (A.1)

A typical loss to learn this neural network is denoising score matching (DSM)

LDSM =

∫ T

0

1
2E→xs

∥aθ(
→
xs, s)−

√
2∇ log ps(

→
xs|
→
x0)∥2ds. (A.2)

where ∥.∥ is the Euclidian norm. By integration by part, we can show that DSM is equivalent to
Implicit Score Matching (ISM) (Hyvärinen & Dayan, 2005)

LISM =

∫ T

0

E→
xs

(
1
2∥aθ(

→
xs, s)∥2 +∇ · (

√
2aθ(

→
xs, s))

)
ds. (A.3)

A reference score ∇ log ps is not needed anymore. However, the divergence term may be untractable
for large-dimensional problems. Using the Hutchingson trick, Song et al. (2020) shows that this loss
is equivalent to a trackable version : the Sliced Score Matching (SSM)

LSSM =

∫ T

0

E→
xs

Ev∼N (0,Id)

(
1
2∥aθ(

→
xs, s)∥2 + (v · ∇)(

√
2aθ(

→
xs, s) · v)

)
ds. (A.4)

Score matching is equivalent to maximizing the Evidence Lower Bound (ELBO) both in discrete time
(Luo, 2022) and in continuous time (Huang et al., 2021). Indeed, denoting E∞ the ELBO, Huang
et al. (2021) shows that:

E∞(x) = E
[
log p0(

→
xT )

∣∣→x0 = x
]

−
∫ T

0

E→
xs

[
1
2∥aθ(

→
xs, s)∥2 +∇ · (

√
2aθ(

→
xs, s))

∣∣∣∣→x0 = x

]
ds.

(A.5)

The first term does not depends on the neural network parameters θ. The expectation of the second
term over x following the dataset distribution is LISM. So, maximizing the ELBO is equivalent to
minimize the ISM. Table 1 of Huang et al. (2021) summarizes the classical score matching losses.

B STOCHASTIC CALCULUS AND STRATONOVICH INTEGRALS

This appendix provides a concise overview of essential stochastic calculus concepts from Oksendal
(1998); Kunita (1997) relevant to our work, especially the Stratonovich interpretation of stochastic
differential equations (SDEs).
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B.1 ITÔ INTEGRALS AND SDES

Let (Ω,F ,P) be a probability space equipped with a filtration (Ft)t≥0 satisfying the usual conditions,
and let (Bt)t≥0 be a standard m-dimensional Brownian motion. Given an adapted process Xt ∈
Rd×m satisfying appropriate integrability conditions, the Itô integral of X with respect to B is
defined as the mean-square limit:∫ T

0

Xs dBs := lim
|Π|→0

∑
[ti,ti+1]∈Π

Xti(Bti+1
−Bti), (B.1)

where the sum is taken over a partition Π of [0, T ].

An SDE interpreted in the Itô sense reads:
dXt = f(Xt, t) dt+ G(Xt, t) dBt, (B.2)

where f : Rd × R+ → Rd is the drift, and G : Rd × R+ → Rd×m is the diffusion coefficient.

B.2 STRATONOVICH INTEGRALS AND CHAIN RULE

Unlike the Itô integral, the Stratonovich integral is defined using a symmetric discretization:∫ T

0

Xs ◦ dBs := lim
|Π|→0

∑
[ti,ti+1]∈Π

Xti +Xti+1

2
(Bti+1

−Bti). (B.3)

A Stratonovich SDE is written as:
dXt = fS(Xt, t) dt+ G(Xt, t) ◦ dBt. (B.4)

A key advantage of the Stratonovich formulation is that it satisfies the classical chain rule. For any
smooth function ϕ : Rd → R, we have:

dϕ(Xt) = ∇ϕ(Xt)
⊤fS(Xt, t) dt+∇ϕ(Xt)

⊤G(Xt, t) ◦ dBt. (B.5)

oreover, in multiscale deterministic or stochastic equations, if the fast component is a continuous
process with infinitesimal correlation time, the slow component generally converges to the solution
of another SDE. In this other SDE, the fast component is often replaced by a Stratonovich integral
(Arnold, 1974). Note that it is not always true for nonlinear dynamics (Gottwald & Melbourne, 2013;
Gottwald et al., 2015). Accordingly, the readers may interpret the Stratonovich noise s 7→ ◦dBs as a
formal representation of a process with a short correlation time that nevertheless respects the classical
rules of differential calculus, in particular, the chain rule.

B.3 CONVERSION BETWEEN ITÔ AND STRATONOVICH FORMS

Given a Stratonovich SDE, it is always possible to convert it to the equivalent Itô form:

dXt =

fS(Xt, t) +
1

2

m∑
j=1

Gj(Xt, t) · ∇Gj(Xt, t)

 dt+ G(Xt, t) dBt, (B.6)

where Gj(x, t) is the j-th column of the diffusion matrix G(x, t). The additional drift term arises
from the correction due to the non-zero quadratic variation of the noise.

B.4 FOKKER–PLANCK EQUATION

An Itô SDE of the form
dXt = f(Xt, t) dt+ G(Xt, t) dBt, (B.7)

induces a time-evolution equation for the probability density p(x, t) of Xt. This is known as the
Fokker–Planck equation, given by:

∂tp(x, t) = −∇ · (f(x, t) p(x, t)) +
1

2
∇ · (∇ · (Σ(x, t) p(x, t))

⊺
) , (B.8)

where Σ(x, t) := G(x, t)G(x, t)⊤ is the diffusion tensor. The Fokker–Planck equation describes
the deterministic evolution of the probability density associated with the stochastic process.
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C SAMPLING FROM 1D DISTRIBUTIONS

Let us denote by p|.| the distribution of the norms, ∥→xT ∥. In MSGM, it is also the distribution of
∥→x0∥ (see Proposition D.3.2). This distribution is arbitrary, but is a one-dimensional distribution. So,
it is straightforward to learn and sample from, e.g., using an empirical cumulative distribution function
(eCDF) (Cantelli, 1933; Glivenko, 1933; Tucker, 1959). Norms are positive and might be close to zero,
so in practice we work with a regularized log-norm: log ∥x∥ϵ := log(∥x∥+ ϵ) with ϵ small, typically

ϵ = 10−6. From a data set of the log-norms of M training samples, (log ∥→x
(i)

T ∥ϵ)i = (log ∥→x
(i)

0 ∥ϵ)i,
we define eCDF F̂log |.|ϵ as

F̂log |.|ϵ : R→ [0, 1], (C.1)

R 7→ 1

M

M∑
i=1

1
{R⩾log ∥→x

(i)

T ∥ϵ}
. (C.2)

Then, we approximate the distribution of the norms, plog |.|ϵ(R)dR, by the empirical one,
p̂log |.|ϵ(R)dR := F̂log |.|ϵ(dR). In particular, we can sample a new norm of latent variables, ∥→xT ∥,
from a uniform one-dimensional variable u ∼ U(0, 1) as follows

∥→xT ∥ = ∥
→
x0∥ = exp(log ∥→x0∥ϵ)− ϵ = exp

(
F̂−1log |.|ϵ(u)

)
− ϵ. (C.3)

eCDF is an efficient tool, but it cannot generalize the distribution p̂|.| outside the training set (∥→x
(i)

T ∥)i.
For better generalization, instead, one could use a one-dimensional kernel density estimation or fitting
of parametric distributions. In the case of one-dimensional distributions with fat tails, classical kernel
density estimation (KDE) suffers from bias in the tail estimation or peaks due to sparse data in the
tails. In that case, one could consider more robust approaches that, in general, do not require the
existence of moments of the target distribution Tokdar et al. (2024).

In this paper, we rely on the eCDF.

D THE FOKKER-PLANCK EQUATION AND ITS INVARIANT MEASURES

D.1 ITÔ FORM OF THE FORWARD SDE

Define the conditional noise covariance Σ(x) as

Σ(x) := G(x)G(x)⊺ = E[(d→xs)(d
→
xs)

⊺|→xs = x]. (D.1)

We begin with a lemma.

Lemma D.1.1. Let the skew-symmetry assumption A1 hold. Then,

1

2
∇ · (Σ(x)) =

1

2

d∑
k=1

(Gk)2x. (D.2)

Proof. Let us explicitly state the matrix divergence. For k = 1, . . . , d define Σk(x) = [Σk
ij(x)] :=

Gkxx⊺(Gk)⊺, then we decompose Σ as

Σ(x) := G(x)G⊺(x) =

d∑
k=1

Σk(x). (D.3)
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Then, taking the divergence of the j-th column of Σk(x), we obtain(
∇ ·
(
Σk(x)

))
j
= ∇ · [Σk(x)]:,j =

d∑
i=1

∂

∂xi
Σk

ij(x), (D.4)

=

d∑
i=1

∂

∂xi

d∑
p,q=1

Gk
ipxpxqG

k
jq, (D.5)

=

d∑
i,p,q=1

Gk
ip(δipxq + xpδiq)G

k
jq, (D.6)

=

d∑
p,q=1

Gk
ppxqG

k
jq +Gk

qpxpG
k
jq, (D.7)

= [tr(Gk)Gkx+Gk(Gkx)]j . (D.8)

By skew-symmetry trace(Gk) = 0 and consequently

∇ · (Σ(x)) =

d∑
k=1

(
∇ ·
(
Σk(x)

))
=

d∑
k=1

Gk(Gkx).

Lemma D.1.2. (Forward SDE - Itô) Let the skew-symmetry assumption equation A1 hold. Then,
the Itô form of the forward SDE equation 3.1 of

→
xs is given by

d
→
xs =

1
2 (∇ ·Σ)(

→
xs)ds+ G(

→
xs)d

→
Bs. (D.9)

Proof. Using the standard Stratonovich-to-Itô formula (e.g. Kunita, 1997), it holds

d
→
xs = 1

2d⟨G(
→
xs),

→
Bs⟩s + G(

→
xs)d

→
Bs, (D.10)

= 1
2

d∑
k=1

d⟨Gk→xs, (
→
Bs)k⟩s + G(

→
xs)d

→
Bs, (D.11)

= 1
2

d∑
k=1

(Gk)2
→
xsds+ G(

→
xs)d

→
Bs, (D.12)

= 1
2 (∇ ·Σ)(

→
xs)ds+ G(

→
xs)d

→
Bs, (D.13)

where the last equality comes from Lemma D.1.1.

D.2 FOKKER-PLANCK EQUATION AND THEOREM 3.1.1

Let
→
x0 ∼ p→

x0
with p→

x0
∈ C2(Rd) be twice continuously differentiable. Let ps denote the density

of the distribution of
→
xs. For each x ∈ Rd we define the normalized vector xn := x

∥x∥ for x ̸= 0

and 0 otherwise, which is orthogonal to the d-sphere Sd−1. Furthermore, let∇⊥ be the orthogonal
projection of the gradient∇ in the tangent plane x⊥ = TxSd−1, the tangent space on the Riemannian
manifold Sd−1 at the point x, defined for f ∈ C2(Rd) as

∇⊥f := ∇f − (xn · ∇f)xn. (D.14)

Lemma D.2.1. It holds for any smooth vector field f that

∇ · f = (xn · ∇)(xn · f) +∇⊥ · f. (D.15)

Proof. Let f be a smooth vector field, then

(xn(xn)⊺∇) · f =

d∑
i=1

d∑
j=1

xn
i x

n
j

∂

∂xj
fi =

d∑
i=1

(xn)i⟨xn,∇⟩fi = ⟨⟨xn,∇⟩f,xn⟩. (D.16)
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It holds for each j = 1, . . . , d that

[(xn · ∇)xn]j =

[(
d∑

i=1

(xn)i
∂

∂xi

)
x

∥x∥

]
j

= (xn)j
1

∥x∥
−

d∑
i=1

(xn)i
xi

∥x∥3
xj , (D.17)

= xj/∥x∥2 −

(
d∑

i=1

x2
i /∥x∥4

)
xj , (D.18)

= 0. (D.19)

Consequently,

(xn · ∇)(xn · f) = (xn · ∇)xn · f + (xn · ∇)f · xn = (xn · ∇)f · xn. (D.20)

Using the decomposition ∇ = xn(xn)⊺∇+ (I − xn(xn)⊺)∇ = xn(xn)⊺∇+∇⊥, equation D.16
and equation D.20 we conclude

∇ · f = (xn(xn)⊺∇+∇⊥) · f = (xn · ∇)f · xn +∇⊥ · f = (xn · ∇)(xn · f) +∇⊥ · f.

Define the conditional noise covariance Σ(x) as

Σ(x) := G(x)G(x)⊺ = E[(d→xs)(d
→
xs)

⊺|→xs = x]. (D.21)

We can now state and proof Theorem 3.1.1.
Theorem D.2.1. Let the assumptions A1 and A2 hold. Then, the Fokker-Planck equation of equa-
tion 3.1 reads {

∂
∂sps(x) = ∇⊥ ·

(
1
2Σ(x)∇⊥ps(x)

)
, x ∈ Rd,

p0 = p→
x0

. (D.22)

oreover, any stationary density p∞ of equation D.22 is rotation-invariant on Rd.

Proof. From the Itô SDE equation D.9, the Fokker-Planck equation describing the evolution of
(ps)s≥0 is given as

∂

∂s
ps = ∇ ·

(
−1

2
∇ · (Σ(x)) ps(x) +

1

2
∇ · (Σ(x)ps(x))

)
, (D.23)

= ∇ ·
(
−1

2
∇ · (Σ(x)) ps(x) +

1

2
∇ · (Σ(x)) ps(x) +

1
2Σ(x)∇ps(x)

)
, (D.24)

= ∇ ·
(
1
2Σ(x)∇ps(x)

)
. (D.25)

The skew-symmetry condition in assumption A1 implies for any x ∈ Rd that

((xn)⊺Σ(x))⊺ = Σ(x)xn =

d∑
k=1

Gkx∥x∥ (xn)⊺G⊺
kx

n︸ ︷︷ ︸
=0

= 0. (D.26)

Combining this with the result of equation D.16, it holds that

∇ · (Σ(x)∇ps(x)) = (xn · ∇)(xn ·Σ(x)∇ps(x)) +∇⊥ · (Σ(x)∇ps(x)). (D.27)

The decomposition ∇ = xn(xn)⊺∇ + (I − xn(xn)⊺)∇ = xn(xn)⊺∇ +∇⊥ and equation D.26
yields

∇⊥ · (Σ(x)∇ps(x)) = ∇⊥ · (Σ(x)∇⊥ps(x)) +∇⊥ · (Σ(x)xn(xn)⊺∇ps(x)), (D.28)
= ∇⊥ · (Σ(x)∇⊥ps(x)). (D.29)

Hence, by linearity
∂

∂s
ps = ∇⊥ · ( 12Σ(x)∇⊥ps(x)). (D.30)
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We shall now explore the set of possible invariant densities ρ∞ of the Fokker-Planck equation D.22.
We will show that ρ∞ is stationary if and only if it is rotation-invariant.

Let p∞ be rotation-invariant, i.e. ∇⊥p∞ = 0 then it is a stationary solution of the Fokker-Planck
equation. The set of rotation-invariant measures is not empty, e.g. containing the isotropic normal
distributions N (0, Id).

Conversely, let p∞ be a stationary solution of the Fokker-Planck equation, in particular

∇⊥ ·
(
1
2Σ(x)∇⊥p∞(x)

)
= 0. (D.31)

Integrating over the test function ϕ = p∞ gives a necessary condition for p∞ to be an invariant
measure:

0 = −
∫
Rd

p∞(x)∇⊥ · (Σ(x)∇⊥p∞(x)) dx, (D.32)

=

∫
Rd

∇⊥p∞(x)⊺Σ(x)∇⊥p∞(x)dx, (D.33)

=

∫
Rd

∥G⊺(x)∇⊥p∞(x)∥2︸ ︷︷ ︸
⩾0

dx. (D.34)

Hence, for a.e. x ∈ Rd it holds that ∇⊥p∞(x) ∈ ker(G⊺(x)). By assumption A2, this kernel has
dimension 1. Moreover, G⊺(x)x = 0 and by definition of ∇⊥ we have that ∇⊥p∞(x)⊥x. That
means

∇⊥p∞(x) ∈ ker(G⊺(x)) ∩ x⊥ = span{x} ∩ x⊥ = {0}. (D.35)
We conclude that∇⊥p∞(x) = 0 almost everywhere on Rd, i.e. the measure is rotation-invariant.

D.3 DISTRIBUTION OF THE NORMS

In this section, we see more precisely that the norm of the MSGM SDE solution remains constant
along the noising process whereas in SGM the norm dynamics is random with a mean going to

√
d

asymptotically.

D.3.1 NORM DYNAMICS IN SGM

The dynamics of the SGM diffusion norm is stochastic. The following proposition states that the
norm of the SGM latent concentrates around its mean,

√
d, for large dimension d.

Proposition D.3.1. If
→
xs is an Ornstein Uhlenbeck process then

E
[
∥→xs∥2

∣∣→x0

]
= e−2s∥→x0∥2 + (1− e−2s)d −→

s→∞
d. (D.36)

and

∥→xs∥2 = E
[
∥→xs∥2

∣∣→x0

]
+
√
d Is + e−sKs = d

(
1 +

1√
d

O
s→∞

(1)

)
, (D.37)

with both EK2
s and EI2s bounded for large time s and EI2s independent of the dimension d.

Proof. To get the dynamics of the squared norm mean in SGM, we can take the expectation of the
following Itô equation

d∥→xs∥2 = 2
→
xs · d

→
xs + d <

→
x⊺,
→
x>s= 2(∥→xs∥2 − d)ds+ 2

√
2
→
xs · d

→
Bs, ∀s ≥ 0. (D.38)

Thus,

E
[
∥→xs∥2

∣∣→x0

]
= e−2s∥→x0∥2 + (1− e−2s)d −→

s→∞
d. (D.39)

To obtain the full nom dynamics from equation D.38, we note that t → e−2s has finite variations.
Accordingly,

d(e−2s(∥→xs∥2 − d)) = 2
√
2e−2s

→
xs · d

→
Bs, (D.40)
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and a temporal integration and the analytic expression of the Ornstein Uhlenbeck process yields:

∥→xs∥2 = E
[
∥→xs∥2

∣∣→x0

]
+2
√
2

∫ s

0

e−2(s−s
′)→xs′ · d

→
Bs′ , (D.41)

= E
[
∥→xs∥2

∣∣→x0

]
+2
√
2e−s

→
x0 ·

∫ s

0

e−(s−s
′)d
→
Bs′

+2
√
2

∫ s

0

∫ s′

0

e−(2s−s
′−s′′)d

→
Bs′ · d

→
Bs′′ , (D.42)

= E
[
∥→xs∥2

∣∣→x0

]
+
√
d Is + e−sKs, (D.43)

with the martingales

Is =

√
8

d

∫ s

0

∫ s′

0

e−(2s−s
′−s′′)d

→
Bs′ · d

→
Bs′′ , (D.44)

Ks =
√
8
→
x0 ·

∫ s

0

e−(s−s
′)d
→
Bs′ . (D.45)

Ks corresponds to the martingale part of the Ornstein Uhlenbeck solution projected on
→
x0. It is well

known that EK2
s is bounded for large time s. EI2s may be less known and we shall evaluate it below:

EI2s =
8

d
e−4s E

(
d∑

p=1

∫ s

0

∫ s′

0

es
′+s′′d(

→
Bs′)p · d(

→
Bs′′)p

)
2, (D.46)

=
8

d
e−4s E

d∑
p1,p2=1

∫ s

0

∫ s′1

0

∫ s

0

∫ s′2

0

es
′
1+s′′1 s

′
2+s′′2 d(

→
Bs′1

)p1 · d(
→
Bs′′1

)p1d(
→
Bs′2

)p2 · d(
→
Bs′′2

)p2 ,

(D.47)

=
8

d
e−4s E

d∑
p1,p2=1

∫ s

0

∫ s′1

0

∫ s

0

∫ s′2

0

es
′
1+s′′1 +s′2+s′′2 δp1,p2δ(s

′
1 − s′2)δp1,p2δ(s

′′
1 − s′′2)ds

′
1ds
′′
1ds
′
2ds
′′
2 ,

(D.48)

= 8e−4s
∫ s

0

∫ s′

0

e2(s
′+s′′)ds′ds′′, (D.49)

= 4e−4s
∫ s

0

e2s
′
(e2s

′
− 1)ds′, (D.50)

= e−4s((e4s − 1) + 2(e2s − 1)), (D.51)
−→
s→∞

1. (D.52)

D.3.2 NORM DYNAMICS IN MSGM

For MSGM, the norm follows totally different dynamics. We recall that the skew-symmetry of ◦dZs

implies that d
→
xs = ◦dZs

→
xs is orthogonal to

→
xs and hence:

d∥→xs∥2 = 2
→
xs · ◦d

→
xs = 0, ∀s ≥ 0. (D.53)

Consequently,
→
xs moves randomly on ∥→x0∥Sd−1, the d-sphere of radius ∥→x0∥, and the increments

d
→
xs are tangent to the d-sphere. In particular, we obtain the following result.

Proposition D.3.2. Let the skew-symmetry assumption A1 hold. Let
→
x0 be a random variable. Then,

for all s ≥ 0 the distribution of ∥→xs∥ equals the distribution of ∥→x0∥.

Therefore, the distribution of the norms of the latent variable is exactly the distribution of the norms
of the points of the dataset. oreover,

→
xs ≡ 0 if and only if

→
x0 = 0. As a consequence, we can

exclude all points exactly equal to zero from a dataset, treat them aside, and hence consider, without
loss of generality, that

→
xT ̸= 0 almost surely.
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D.4 FOKKER-PLANCK EQUATION OF THE DIRECTION

This subsection is devoted to the analysis of the Fokker-Planck equation on the unit sphere Sd−1, i.e.
the distribution of

→
x

n

s , in particular as s→∞.

D.4.1 MAIN RESULTS ON THE DISTRIBUTION OF DIRECTIONS

We saw in Appendix D.3 that
→
xs moves randomly on the d-sphere of radius ∥→x0∥ and that the

increments, d
→
xs = G(

→
xs) ◦ d

→
Bs, are tangent to the d-sphere. If the rank condition, assumptionA2 is

verified, then the support of the noise distribution G(
→
xs) ◦ d

→
Bs coincides with the d− 1-dimensional

tangent space, i.e. it will likely explore all local directions around
→
xs. With time, the support of the

solution distribution will gradually cover the whole d-sphere, i.e. every direction
→
x

n

s will become
equiprobable. Lemma D.4.1 illustrates and precises this claim.
Lemma D.4.1. Let assumptions A1 and A2 hold. Let a initial density pn0 ∈ C2(Sd−1) and Σ(xn) :=
G(xn)G(xn)⊺. Then, the Fokker-Planck equation

∂

∂s
pns (x

n) = ∇⊥ ·
(
1
2Σ(xn)∇⊥pns (xn)

)
, xn ∈ Sd−1, (D.54)

has a unique density solution pns ∈ C2(Sd−1) for all s > 0. oreover, there is a unique invariant
measure pn∞ of that Fokker-Planck equation, i.e. the uniform distribution on the d-sphere U(Sd−1),
with density

pn∞(xn) :=
1

|Sd−1|
, ∀xn ∈ Sd−1, (D.55)

with |Sd−1| = 2πd/2/Γ
(
d
2

)
the volume of the d-sphere Sd−1 and Γ the gamma function.

Lemma D.4.1 is a consequence of Theorem 3.1.1 as shown in Appendix D.4.2. Note that in this case
∇⊥ = ∇Sd−1 is the Riemannian gradient on Sd−1, see Appendix H.1.

Given the unique invariant measure of Fokker-Planck equation formulated on Sd−1, we can also show
that we have exponential convergence of the initial distribution pn0 to pn∞, the uniform distribution on
the unit sphere Sd−1.
Theorem D.4.1. Let assumptions A1 and A2 hold. Then, there exists α = α(G, d) > 0 with

∥pns − pn∞∥2L2(Sd−1) ≤ exp(−αs)∥pn0 − pn∞∥2L2(Sd−1). (D.56)

The convergence rate α is given as

α(G, d) = (d− 1) min
(x,y)∈S

∥G⊺(x)y∥2, S = {(x,y) ∈ Sd−1 × Sd−1|x⊥y}. (D.57)

Consequently, since Sd−1 is compact this implies convergence in total variation of pns to pn∞ and
convergence in distribution of

→
x

n

s with
→
x

n

∞ ∼ U(Sd−1). The full proof is detailed in Appendix D.4.3.

D.4.2 PROOF OF LEMMA D.4.1

Proof. Existence and Uniqueness:
Consider L(pns ) = ∇⊥ ·

(
1
2Σ(x)∇⊥pns (x)

)
− ∂

∂sp
n
s (x). L is a parabolic type operator according to

Friedman (1964) since x 7→ Σ(x) is positive definite by assumption A2 on Sd−1. Indeed, for any
y ∈ TxSd−1 the tangential (linear) space of Sd−1 at x,

y⊺Σ(x)y = ∥G⊺(x)y∥2 ≥ 0. (D.58)

with equality if and only if G⊺(x)y = 0. Then, the rank condition A2 implies y = 0 as previously in
equation D.35. Consequently, the associated spatial operator L0 defined by

L0p
n
s = ∇⊥ ·

(
1
2Σ(x)∇⊥pns (x)

)
(D.59)

is an elliptic operator on Sd−1, a compact manifold without boundary such that the semi-group esL0

is strongly continuous on C2(Sd−1), s ≥ 0. As pn0 ∈ C2(Sd−1), according to chapter 1, proposition

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

1.1 in Taylor (2011) , there exists a unique solution pns ∈ C2(Sd−1), for s ∈ [0, T [ of equation D.54.
As the semigroup is well-defined for all s > 0, this extends the uniqueness of the solution to all
s > 0.

Invariant measure: Repeating the lines in the proof of Theorem 3.1.1 given in Appendix D.2 it
follows that pn∞ is rotation-invariant. The only rotation-invariant distribution on the d-sphere is the
uniform distribution.

D.4.3 PROOF OF THEOREM D.4.1 : LIMIT BEHAVIOR OF FOKKER-PLANCK EQUATION OF
THE DIRECTION

Theorem D.4.2. Let assumptions A1 and A2 hold. Then, there exists α = α(G, d) > 0 with

∥pns − pn∞∥2L2(Sd−1) ≤ exp(−αs)∥pn0 − pn∞∥2L2(Sd−1). (D.60)

The convergence rate α is given as

α(G, d) = (d− 1) min
(x,y)∈S

∥G⊺(x)y∥2, S = {(x,y) ∈ Sd−1 × Sd−1|x⊥y}. (D.61)

Proof. Let pns denoting the density of
→
x

n

s . Define ens = pns − pn∞ with pn∞ ≡ |Sd−1|−1 being the
uniform distribution on Sd−1. Then, by linearity of the Fokker-Planck equation, ent satisfies

∂te
n
t = ∇⊥ ·

(
1
2Σ(x)∇⊥ent (x)

)
. (D.62)

Since pns and pn∞ are densities on Sd−1, we have
∫
Sd−1 e

n
s dx = 0 for all s ≥ 0. Consequently, since

Sd−1 is a compact manifold without boundary, Poincaré inequality holds, i.e.

∥ent ∥2L2(Sd−1) ≤
1

d− 1
∥∇Sd−1ent ∥2L2(Sd−1), (D.63)

with
∇Sd−1ent (y)|y=x = ProjT

x,Sd−1
∇ent (y)

∣∣∣
y=x

= ∇⊥ent (x). (D.64)

Consequently, integration by part on Sd−1 leads to
1

2

d

dt
∥ent ∥2L2(Sd−1) =

∫
Sd−1

ent (x)∇⊥ ·
(
1
2Σ(x)∇⊥ent (x)

)
dx, (D.65)

= −
∫
Sd−1

∇⊥ent (x)⊺Σ(x)∇⊥ent (x)dx. (D.66)

We will now bound y⊺Σ(x)y⊺ from below for any y ∈ x⊥ and x ∈ Sd−1, in particular with a
bound independent of x. Since Σ(x) is symmetric, it is real diagonalizable with eigen-basis denoted
as v1(x), . . . ,vd(x) ∈ Rd and eigenvalues λ1(x), . . . , λd(x). By construction Σ(x)x = 0, hence
we can set vd(x) := x/∥x∥ and λd(x) ≡ 0. Moreover, by the rank condition A2, λi ̸= 0 for i ̸= d.
By orthonormality of the eigenvectors v1(x), . . . ,vd−1(x) then span the tangent plane x⊥ at x on
Sd−1. For any i = 1, . . . , d− 1, we have that

λi(x) = vi(x)
⊺Σ(x)vi(x) = ∥G⊺(x)vj(x)∥2 ≥ min

y∈x⊥
∥G⊺(x)y∥2

∥y∥2
. (D.67)

The polynomial (x,y) 7→ P (x,y) = ∥G⊺(x)y∥2 on the compact S = {(x,y) ∈ Sd−1 ×
Sd−1|x⊥y} attains its minimum P ∗, which from the rank condition satisfies P (x,y) ≥ P ∗ > 0 for
all (x,y) ∈ S. As a consequence λi(x) ≥ P ∗ for i = 1, . . . , d− 1 and x ∈ Sd−1, which implies for
all y ∈ x⊥ that

y⊺Σ(x)y = ∥G⊺(x)y∥2 ≥ P ∗∥y∥2. (D.68)
Therefore, combining equation D.63, equation D.64 and equation D.66, we obtain

1

2

d

dt
∥ent ∥2L2(Sd−1) ≤ −P

∗∥∇⊥ens ∥2L2(Sd−1) ≤ −P
∗(d− 1)∥ens ∥2L2(Sd−1). (D.69)

Then, by Gronwall for α = P ∗(d− 1) > 0, we conclude that

∥pns − pn∞∥2L2(Sd−1) = ∥e
n
s ∥2L2(Sd−1) ≤ ∥e

n
0∥2L2(Sd−1) exp(−αs). (D.70)
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D.5 PROOF OF THEOREM 3.3.1 : CONVERGENCE OF FOKKER-PLANCK EQUATION

This section is devoted to the analysis of the Fokker-Planck equation in the whole domain Rd. Due to
the fact that the norm of a point does not change in the SDE process as shown in equation 3.7 and the
fact that Σ(x) = 0 for x = 0, we exclude the origin in the analysis.

Theorem D.5.1. Let D = Rd\{0} for d > 1. Let assumptions A1 and A2 hold. Let
→
x0 ∼ p0 ∈ C2(D)

and let p|.| be the (radial) density of ∥→x0∥. Then, the Fokker-Planck equation

∂

∂s
ps(x) = ∇⊥ ·

(
1
2Σ(x)∇⊥ps(x)

)
, x ∈ D, (D.71)

has a unique solution ps ∈ C2(D) ∩ L2(D) for all s > 0. Moreover, the Fokker-Planck equation has
the stationary distribution

p∞(x) =
p|.| (∥x∥)
∥x∥d−1

1

|Sd−1|
. (D.72)

In particular, ∥→xs∥ and
→
x

n

s are asymptotically independent for s → +∞. oreover, there exists
α = α(G, d) > 0 such that

∥ps − p∞∥2L2(Rd) ≤ exp(−αs)∥p0 − p∞∥2L2(Rd).

The convergence rate α is given as

α(G, d) = (d− 1) min
(x,y)∈S

∥G⊺(x)y∥2, S = {(x,y) ∈ Sd−1 × Sd−1|x⊥y}. (D.73)

Proof. We will proof existence, uniqueness, regularity, invariant property and convergence separately.

Existence: Let p0(xn|∥→x0∥ = r) be the start value of the FP equation D.54 on Sd−1 of Lemma D.4.1.
This gives rise to a smooth unique density solution pns (x

n|∥→x0∥ = r) for s > 0 and any r > 0.
oreover, pns (x

n|∥→x0∥ = r) = pns (x
n|∥→xs∥ = r) since d∥→xs∥ = 0. Now define

ρs(x) = pns (x
n|∥→xs∥ = ∥x∥)p|.|(∥x∥)∥x∥1−d,

where we denote xn = x
∥x∥ . ρs is a density since∫

Rd

ρs(x) dx =

∫
Rd

pns (x
n||→xs| = ∥x∥)p|.|(∥x∥)∥x∥1−d dx, (D.74)

=

∫
R+

∫
Sd−1

pns (x
n|∥→xs∥ = r)p|.|(r)r

1−drd−1 dr dxn, (D.75)

=

∫
R+

∫
Sd−1

pns (x
n|∥→xs∥ = r)p|.|(r) dr dx

n, (D.76)

=

∫
R+

p|.|(r)

 ∫
Sd−1

pns (x
n|∥→xs∥ = r) dxn

 dr, (D.77)

= 1. (D.78)

We have ∇⊥ = 1
∥x∥∇Sd−1 and∇⊥ does not act on radial functions. Besides, Σ(x) := G(x)G(x)⊺

with G linear so Σ(x) = Σ(∥x∥ x
∥x∥ ) = ∥x∥

2Σ(xn). Hence

∇⊥ρs(x) = ∇⊥pns (xn|∥→xs∥ = ∥x∥)p|.|(∥x∥)∥x∥1−d, (D.79)

= p|.|(∥x∥)∥x∥1−d∇⊥pns (xn|∥→xs∥ = ∥x∥), (D.80)

= p|.|(∥x∥)∥x∥1−d
(

1

∥x∥
∇Sd−1

)
pns (x

n|∥→xs∥ = ∥x∥), (D.81)
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and

Σ(x)∇⊥ρs(x) = Σ(x)p|.|(∥x∥)∥x∥1−d
1

∥x∥
∇Sd−1pns (x

n|∥→xs∥ = ∥x∥), (D.82)

= ∥x∥2Σ(xn)p|.|(∥x∥)∥x∥1−d
1

∥x∥
∇Sd−1pns (x

n|∥→xs∥ = ∥x∥), (D.83)

= ∥x∥2p|.|(∥x∥)∥x∥1−d
1

∥x∥
Σ(xn)∇Sd−1pns (x

n|∥→xs∥ = ∥x∥) (D.84)

∇⊥ · (Σ(x)∇⊥ρs(x)) =
1

∥x∥
∇Sd−1 ·

(
∥x∥p|.|(∥x∥)∥x∥1−dΣ(xn)∇Sd−1pns (x

n|∥→xs∥ = ∥x∥)
)
,

(D.85)

= p|.|(∥x∥)∥x∥1−d∇Sd−1 ·
(
Σ(xn)∇Sd−1pns (x

n|∥→xs∥ = ∥x∥)
)
, (D.86)

= p|.|(∥x∥)∥x∥1−d2
∂

∂s
pns (x

n|∥→xs∥ = ∥x∥), (D.87)

= 2
∂

∂s

(
p|.|(∥x∥)∥x∥1−dpns (xn|∥→xs∥ = ∥x∥)

)
, (D.88)

= 2
∂

∂s
ρs(x), (D.89)

i.e. ∂
∂sρs(x) =

1
2∇⊥ · (Σ(x)∇⊥ρs(x)). Then, ρs solves the Fokker-Planck equation on Rd.

Uniqueness: Assume there exists another ρ̃ solving the FP on Rd verify
ρ̃s(x) = ρ1,s(x

n|∥x∥)ρ2,s(∥x∥).

Since d∥→xs∥ = 0, by marginalizing ρ̃s (integrating on Sd−1), we have the uniqueness of the radial
density ρ2,s(r) =

∫
Sd−1 ρ̃s(rx

n)dxn = p∥→xs∥
(r)r1−d = p|.|(r)r

1−d.

Since d∥→xs∥ = 0, we have ∂
∂sρ2,s(∥x∥) = 0. Therefore,

∂

∂s
ρ̃s(x) =

∂

∂s
(ρ1,s(x

n|∥x∥)ρ2,s(∥x∥)) , (D.90)

= ρ2,s(∥x∥)
∂

∂s
ρ1,s(x

n|∥x∥) + ρ1,s(x
n|∥x∥) ∂

∂s
ρ2,s(∥x∥), (D.91)

= ρ2,s(∥x∥)
∂

∂s
ρ1,s(x

n|∥x∥). (D.92)

In addition,

2
∂

∂s
ρ̃s(x) = ∇⊥ · (Σ(x)∇⊥ρ̃s(x)) , (D.93)

= ∇⊥ · (Σ(x)∇⊥ρ1,s(xn|∥x∥)ρ2,s(∥x∥)) , (D.94)

= ρ2,s(∥x∥)∥x∥2∇⊥ · (Σ(xn)∇⊥ρ1,s(xn|∥x∥)) , (D.95)
= ρ2,s(∥x∥)∇Sd−1 · (Σ(xn)∇Sd−1ρ1,s(x

n|∥x∥)) , (D.96)
and finally,

ρ2,s(∥x∥)
(
2
∂

∂s
ρ1,s(x

n|∥x∥)−∇Sd−1 · (Σ(xn)∇Sd−1ρ1,s(x
n|∥x∥))

)
= 0. (D.97)

Then, ρ1,s(xn|∥x∥) is a solution of the de Fokker-Planck equation on the sphere, for any x such that
∥x∥ ∈ A := {r ∈ R+|ρ2,s(r) > 0}. If ∥x∥ /∈ A, then ρ2,s(∥x∥) = 0 and

ρs(x) = pns (x
n|∥→xs∥ = ∥x∥)p|.|(∥x∥)∥x∥1−d.

For ∥x∥ ∈ A, then ρ2,s(∥x∥) ̸= 0 and ρ1,s(.|∥x∥) is solution of the Fokker Planck equa-
tion D.54. According to lemma D.4.1, the Fokker Planck equation D.54 has a unique density
solution pns (x

n|∥→x0∥ = ∥x∥). Hence, for any x such that p|.|(∥x∥) > 0, we have

ρs(x) = pns (x
n|∥→xs∥ = ∥x∥)p|.|(∥x∥)∥x∥1−d.
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It is true for any x. So, ρs(x) is the unique solution of the Fokker Planck in Rd.

Regularity: By definition of the marginal density, we have

p|·|(r) :=

∫
Sd−1

p0(Φ(r,θ))r
d−1 dθ = rd−1

∫
Sd−1

p0(Φ(r,θ)) dθ.

with Φ(r,θ) = rθ. According to the assumption
→
x0 ∼ p0 ∈ C2(Rd \ {0}) and compactness of Sd−1,

one can conclude that p|.| ∈ C2([0,∞[).

Since p0(x
n|∥→x0∥ = r) is C2, we have that pns (x

n | |→xs| = r) is smooth by Lemma D.4.1 for any
s > 0. Consequently, ρs(x) is smooth on D for any s > 0.

Invariant distribution: The distribution

p∞(x) =
p|.| (∥x∥)
∥x∥d−1

1

|Sd−1|
.

is radial function in ∥x∥. The operator∇⊥ does not act on radial functions and 1
|Sd−1| is in the kernel

of∇⊥ such that ∇⊥( 1
|Sd−1| ) = 0. Hence

∂

∂s
p∞(x) = ∇⊥ ·

(
1
2Σ(x)∇⊥p∞(x)

)
, x ∈ D, (D.98)

= ∇⊥ ·
(

1
2Σ(x)∇⊥

(
p|.| (∥x∥)
∥x∥d−1

1

|Sd−1|

))
, (D.99)

= ∇⊥ ·
(

1
2

p|.| (∥x∥)
∥x∥d−1

Σ(x)∇⊥
(

1

|Sd−1|

))
, (D.100)

= 0. (D.101)

Therefore, the Fokker-Planck distribution p∞ is the stationary . In addition , p∞ is a density since

∫
Rd

p∞(x) dx =

∫
Rd

p|.| (∥x∥)
∥x∥d−1

1

|Sd−1|
dx, (D.102)

=

∫
R+

∫
Sd−1

p|.| (r)

rd−1
1

|Sd−1|
rd−1 dr dxn, (D.103)

=

∫
R+

∫
Sd−1

p|.| (r)
1

|Sd−1|
dr dxn, (D.104)

=

∫
R+

p|.|(r) dr

∫
Sd−1

1

|Sd−1|
dxn, (D.105)

= 1. (D.106)
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Convergence: Hence, we obtain for ps = ρs that, we can bound the speed of convergence

∥ps − p∞∥2L2(Rd) =

∫
Rd

∣∣∣∣pns (xn | |→xs| = ∥x∥)p|.|(∥x∥)∥x∥1−d −
p|.| (∥x∥)
∥x∥d−1

1

|Sd−1|

∣∣∣∣2 dx,

(D.107)

=

∫
Rd

∣∣∣∣pns (xn | |→xs| = ∥x∥)−
1

|Sd−1|

∣∣∣∣2 p|.|(∥x∥)2

∥x∥2d−2
dx, (D.108)

=

∫
R+

 ∫
Sd−1

∣∣∣∣ps(θ | |→xs| = r)− 1

|Sd−1|

∣∣∣∣2 dθ

 p|.|(r)
2

rd−1
dr, (D.109)

=

∫
R+

( ∥∥∥∥ps( · | |→xs| = r)− 1

|Sd−1|

∥∥∥∥2
L2(Sd−1)

)
p|.|(r)

2

rd−1
dr, (D.110)

≤ exp(−αs)
∫
R+

( ∥∥∥∥p0(θ | ∥→x0∥ = r)− 1

|Sd−1|

∥∥∥∥2
L2(Sd−1)

)
p|.|(r)

2

rd−1
dr,

(D.111)

= exp(−αs)
∫
Rd

∣∣∣∣p0(xn|∥→x0∥ = ∥x∥)−
1

|Sd−1|

∣∣∣∣2 p|.|(∥x∥)2

∥x∥2d−2
dx, (D.112)

= exp(−αs)
∫
Rd

∣∣∣∣p0(xn|∥→x0∥ = ∥x∥)p|.|(∥x∥)∥x∥1−d −
p|.| (∥x∥)
∥x∥d−1

1

|Sd−1|

∣∣∣∣2 dx,

(D.113)

= exp(−αs)∥p0 − p∞∥2L2(Rd), (D.114)

where in the inequality we used Theorem D.4.2. The upper bound is finite since p∞ ∈ L2(Rd). In

order to see this, we will show that the function p|·|(r)r
1−d
2 is in L2(0,∞). Recall that

p|·|(r) :=

∫
Sd−1

p0(Φ(r,θ))r
d−1 dθ = rd−1

∫
Sd−1

p0(Φ(r,θ)) dθ.

Then, application of Jensen inequality leads∫
R+

p|·|(r)
2r1−d dr =

∫
R+

rd−1
∫

Sd−1

p0(Φ(r,θ)) dθ

2

r1−d dr, (D.115)

=

∫
R+

 ∫
Sd−1

p0(Φ(r,θ)) dθ

2

rd−1 dr, (D.116)

≤ |Sd−1|
∫
R+

∫
Sd−1

p0(Φ(r,θ))
2rd−1 dθ dr, (D.117)

= |Sd−1|∥p0∥2L2(Rd). (D.118)
Consequently,

∥p∞∥2L2(Rd) =

∥∥∥∥p|.| (∥x∥)∥x∥d−1
1

|Sd−1|

∥∥∥∥2
L2(Rd)

, (D.119)

=
1

|Sd−1|2

∫
Sd−1

∫
R+

p|.|(r)
2

rd−1
drdθ ≤ 1

|Sd−1|
∥p0∥2L2(Rd) <∞. (D.120)
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D.6 BEYOND PURE STRATONOVICH NOISE

A possible extension to the described diffusion in equation 3.1 would be to add a drift term, i.e.
considering

d
→
xs = A

→
xsds+ G(

→
xs) ◦ d

→
Bs,

with a skew-symmetric matrix A ∈ Rd,d. Then, the associated Fokker-Planck equations will
additional involve an advection term (Ax) · ∇⊥ps, which can be used to improve the speed of
convergence of the dynamics.

E LATENT DISTRIBUTION

The latent vectors
→
x∞ ∼ p∞ of additive SGM are Gaussian white noises. This is not the case for

MSGM in general. This appendix will elaborate on this point. First, we will show that MSGM latent
vectors are white noise in the weak sense. Then, we will discuss the conditions for these latent vectors
to be Gaussian, how to sample them, and how to transform map them to another latent space which
is Gaussian. We also show that the MSGM latent distribution is always closer than the SGM latent
distribution to the data distribution. Finally, we focus on the case of Cauchy data distribution, where
SGM leads to singularity, unlike MSGM.

E.1 THE INVARIANT MEASURES DEFINE WHITE NOISES IN THE WEAK SENSE

In additive SGM, latent vectors
→
x∞ ∼ p∞ are Gaussian white noise in the strong sense, i.e. for any

i ̸= j, the coordinates (
→
x∞)i and (

→
x∞)j are centered, independent, and identically distributed. In

contrast, the latent vectors of MSGM are white noises in the weak sense, as stated by the following
proposition. For any i ̸= j, the coordinates (

→
x∞)i and (

→
x∞)j are uncorrelated but neither Gaussian

nor independent, in general.

Proposition E.1.1. Let the assumptions A1 and A2 hold, E∥→x∞∥2 < +∞, and p∞ be a stationary
density of the Fokker-Planck equation D.22. Then,

→
x∞ ∼ p∞ is a white noise in the weak sense,

i.e. E→x∞ = 0, E(→x∞)2i < +∞ independent of i, and E(→x∞)i(
→
x∞)j = 0,∀i, j ∈ {1, . . . , d} with

i ̸= j.

Proof. From Theorem D.2.1, p∞ is rotation-variant. So there exist a function h : R+ → R+ such
that for any x ∈ Rd, p∞(x) = h(∥x∥) . Then,

E(→x∞)i =

∫
Rd

xih(∥x∥)dx =

∫
Rd−1

(∫
R
xih(∥x∥)dxi

)
Πk ̸=idxk = 0, (E.1)

since the function xi → xih(∥x∥) is even.

Similarly, for i ̸= j in {1, . . . , d}

E(→x∞)i(
→
x∞)j =

∫
Rd

xixjh(∥x∥)dx, (E.2)

=

∫
Rd−1

xj

(∫
R
xih(∥x∥)dxi

)
︸ ︷︷ ︸

=0

Πk ̸=idxk, (E.3)

= 0. (E.4)

oreover, for i in {1, . . . , d}, we have

+∞ > E∥→x∞∥2, (E.5)

= E
d∑

i=1

(
→
x∞)2i , (E.6)

⩾ E(→x∞)2i , (E.7)

=

∫
Rd−1

(∫
R
x2
ih(∥x∥)dxi

)
Πk ̸=idxk, (E.8)
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which does not depends of i.

Remark 1. Since E(→x∞)2i does not depend on i, we can easily evaluate it from Theorem 3.3.1 and
Proposition D.3.2

E(→x∞)2i =
1

d
E∥→x∞∥2 = lim

s→+∞

1

d
E∥→xs∥2 =

1

d
E∥→x0∥2, (E.9)

and thus

E(→x∞
→
x

⊺

∞) =
1

d
E∥→x0∥2Id. (E.10)

Therefore, monitoring the covariance of
→
xT and its distance to 1

dE∥
→
x0∥2Id are convenient proxies

of the forward SDE convergence.

E.2 CONDITION OF GAUSSIANITY FOR THE LATENT VECTOR

Proposition E.2.1. Let assumptions A1 and A2 hold and p|.|2 be the density of ∥→x0∥2. Then, the
latent distribution p∞ is Gaussian if and only if p|.|2 is a scaled χ2 distribution with d degrees of
freedom, denoted α2χ2

d with α ⩾ 0.

Proof. From Theorem D.2.1, we know that p∞ is rotation invariant, i.e. it is a function of ∥x∥.
If this distribution is Gaussian, it has to be of the form N (0, α2Id) with α ⩾ 0. Then, ∥→x0∥2 =
∥x∞∥2 ∼ α2χ2

d. Reciprocally, if there exists α ⩾ 0 such that p|.|2 = α2χ2
d then p|.| = αχd, where

we denote by αχd the distribution of a positive random variable X =
√
α2R such that R ∼ χ2

d.
From Theorem 3.3.1, we know that

p∞(x) = p|.|(∥x∥)
∥x∥1−d

|Sd−1|
= pαχd

(∥x∥)∥x∥
1−d

|Sd−1|
. (E.11)

It is the distribution N (0, α2Id) written in spherical form. So, the latent distribution p∞ is Gaussian.

Remark 2. Isotropic Gaussian data
→
x0 ∼ N (0, α2Id) will hence leads to Gaussian latent space.

But the contrapositive is not true. To see this, let us consider a general spherical decomposition of
the data distribution p0 :

p0(x) = p⊗
(
∥x∥, x

∥x∥

)
∥x∥1−d = p|.|(∥x∥)pn0

(
x

∥x∥

∣∣∣∣∥x∥) ∥x∥1−d. (E.12)

The latent distribution would be Gaussian as long as the distribution of norn is p|.| = pαχd
. But the

conditional distribution of direction can be any valid conditional distribution on the d-sphere. For
instance,

pn0

(
x

∥x∥

∣∣∣∣∥x∥) = δ

(
x

∥x∥
− e(1)

)
, with e(1) = (1, 0, . . . , 0), (E.13)

is a valid candidate even though p0 is not Gaussian (since its support is R+ × {0}d−1).

E.3 A TRACTABLE ALGORITHM TO SAMPLE LATENT VECTORS

With the following proposition, if we know the distribution of norms, p|.|, we can sample latent
vectors from p∞.

Proposition E.3.1. Let
←
x
N
0 ∼ N (0, Id) and

←
x0 = F−1

(←
x
N
0

)
with F−1(x) := f(∥x∥) x

∥x∥ if
x ̸= 0 and 0 otherwise,

f(r) := F−1|.| (Fχ2(d)(r
2)), ∀r > 0, (E.14)

for the generalized inverse CDF F−1|.| of p|.| and Fχ2 is the CDF of the χ2 distribution with d degrees

of freedom. Then
←
x0 ∼ p∞.
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Proof. Since
←
x
N
0 ∼ N (0, Id), we know that ∥←x

N
0 ∥2 ∼ χ2

d−1, i.e. Fχ2(∥←x
N
0 ∥2) ∼ U(0, 1) and

then R := f(∥←x
N
0 ∥) = F−1|.|

(
Fχ2

(
∥←x
N
0 ∥2

))
∼ p|.|. In addition, the normalized vector is

←
x
N
0

∥←x
N
0 ∥
∼ U(Sd−1). The norm ∥←x

N
0 ∥ and the direction

←
x
N
0

∥←x
N
0 ∥

are independent. Therefore, R and
←
x
N
0

∥←x
N
0 ∥

are also independent. We can conclude that
←
x0 = R

←
x
N
0

∥←x
N
0 ∥

follows the correct distribution.

In practice, we do not exactly know the distribution of the data norm p|.|. So, we do not have
access to F|.| or f . Instead, we approximate the distribution of log ∥→x0∥ϵ with ∥x∥ϵ := ∥x∥ + ϵ,
denoted plog |.|ϵ , by a model p̂log |.|ϵ , or equivalently Flog |.|ϵ by a model F̂log |.|ϵ (see Appendix C).
We perform a similar sampling procedure for the latent vectors, replacing F by our approximation.
We obtain samples of an approximate latent distribution p̂∞, as stated by Proposition E.3.2.

Proposition E.3.2. Let
←
x
N
0 ∼ N (0, Id) and

←
x0 = F̂−1

(←
x
N
0

)
with F̂−1(x) := f̂(∥x∥) x

∥x∥ if
x ̸= 0 and 0 otherwise,

f̂(r) := exp
(
F̂−1log |.|ϵ(Fχ2(d)(r

2))
)
− ϵ, ∀r > 0, (E.15)

for the generalized inverse of the approximated CDF F̂−1log |.|ϵ associated to the approximated PDF

p̂log |.|ϵ , and Fχ2 is the CDF of the χ2 distribution with d degrees of freedom. Then
←
x0 ∼ p̂∞, where

p̂∞ is the empirical approximation of p∞, that is p̂∞(x) := p̂log |.|ϵ(log ∥x∥ϵ)
∥x∥1−d

|Sd−1| ,∀x ∈ Rd.

Proof. We can follow the same proof that for Proposition E.3.1 replacing F|.|, f , p|.|, and p∞ by
F̂log |.|ϵ , f̂ , p̂log |.|ϵ , and p̂∞ respectively.

E.4 GAUSSIANIZATION OF THE LATENT VECTORS

If needed, we can easily build a second latent space with standard Gaussian vectors. As stated by the

following proposition, for any (non-Gaussian) latent vector
→
xT , we can create a Gaussian vector

→
x
N
T

→
x
N
T = RT

→
x

n

T , with
→
x

n

T =
→
xT /∥

→
xT ∥, and RT = f̂−1(∥→xT ∥). (E.16)

If
→
xT is zero, we just set

→
x
N
T to zero.

Proposition E.4.1. Let
→
xT ∼ p̂∞, where p̂∞ is the empirical approximation of p∞, that is p̂∞(x) :=

p̂log |.|ϵ(log ∥x∥ϵ)
∥x∥1−d

|Sd−1| ,∀x ∈ Rd, and
→
x
N
T = F̂

(→
xT

)
with F̂ (x) := f̂−1(∥x∥) x

∥x∥ if x ̸= 0

and 0 otherwise,

f̂−1(r) =
√

(F−1χ2 (F̂log |.|ϵ(r)), ∀r > 0, (E.17)

for the approximated CDF F̂log |.|ϵ associated to the approximated PDF p̂log |.|ϵ , and Fχ2 is the CDF

of the χ2 distribution with d degrees of freedom. Then
→
x
N
T ∼ N (0, Id).

Proof. We can follow the same proof that for Proposition E.3.1 replacing F−1|.| , f , χ2, N (0, Id), p|.|,

and p∞ by F̂log |.|ϵ , f̂−1, p̂log |.|ϵ , p̂∞, χ2, and N (0, Id) respectively.

E.5 A SHORTER DISTANCE BETWEEN LATENT AND DATA DISTRIBUTION

The following result states, that the latent space of MSGM is closer to the data distribution compared
to the SGM latent distribution in KL-divergence.
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Proposition E.5.1. Let the assumptions A1 and A2 hold, p|.|2 be the density of ∥→x0∥2, p∞ and
pN∞ = N (0, Id) be the MSGM and the SGM latent distributions respectively, then

DKL(p∞∥p0) ⩽ DKL(p
N
∞∥p0), (E.18)

with equality if and only if p|.|2 is a χ2 distribution with d degrees of freedom.

Proof. We recall that the MSGM latent pdf is

p∞(x) =
p|.| (∥x∥)
∥x∥d−1

1

|Sd−1|
. (E.19)

and the data distribution reads

p0(x) =
p|.| (∥x∥)
∥x∥d−1

p0(x
n|∥→x0∥ = ∥x∥). (E.20)

Let denotes pχ2
d

the χ2 distribution with d degrees of freedom

pLN0 (x) =
pχ2

d
(∥x∥)

∥x∥d−1
p0(x

n|∥→x0∥ = ∥x∥). (E.21)

It is the distribution of
→
x
LN
0 = F

(→
x0

)
with F (x) := f−1(∥x∥) x

∥x∥ if x ̸= 0 and 0 otherwise, and

f−1(r) =
√

(F−1χ2 (F|.|(r)), ∀r > 0, (E.22)

and F|.|(R) =
∫ R

0
p|.|(r)dr the cdf associated to p|.|.

We have

0 ⩽ DKL(p0∥pLN0 ), (E.23)

=

∫
p0(x) log

p0
pLN0

dx, (E.24)

=

∫
p0(x) log

p|.| (∥x∥)
pχ2

d
(∥x∥)

dx, (E.25)

=

∫
p0(x) log

p|.| (∥x∥)
∥x∥d−1|Sd−1|

∥x∥d−1|Sd−1|
pχ2

d
(∥x∥)

dx, (E.26)

=

∫
p0(x) log

p∞(x)

pN∞(x)
dx, (E.27)

=

∫
p0(x) log

p0(x)

pN∞(x)

p∞(x)

p0(x)
dx, (E.28)

=

∫
p0(x) log

p0(x)

pN∞(x)
dx−

∫
p0(x) log

p0(x)

p∞(x)
dx, (E.29)

= DKL(p0∥pN∞)−DKL(p0∥p∞), (E.30)

with equality if and only if p0 = pLN0 i.e. p|.| = pχ2
d
.

E.6 RELEVANCE OF MSGM LATENT SPACE FOR HEAVY-TAIL DISTRIBUTIONS.

This appendix provides an analysis of why the latent space of MSGM is better suited to heavy-
tailed data distribution as compared to the latent space of SGM. This subsection can be viewed
as an extension of Proposition E.5.1. In particular the derived inequality in Proposition E.5.1
becomes meaning less if both sides are not finite. However, as we will see for example of heavy tail
distribution such as the (product) Cauchy distribution, this is not the case. To this end we will show
in Appendix E.6.1 that we KL divergence of data distribution and SGM latent space is not finite and
that it is finite for the data distribution and the MSGM latent space in Appendix E.6.2.

We note that the analysis can be extended to a broader class of heavy tailed distributions and more
general SGM latent spaces such as general Gaussian distributions.
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E.6.1 INFINITE KL DIVERGENCE BETWEEN CAUCHY DISTRIBUTION AND STANDARD
GAUSSIAN

Let ϕ(x) = 1√
2π

e−x
2/2 be the density of the standard GaussianN (0, I), and let p0(x) =

d∏
i=1

1
π(1+x2

i )

be the product density of univariate Cauchy distributions. Then, the following holds.

Lemma E.6.1.
DKL(p0∥ϕ) =∞.

Proof. Let L > 1 and define the set

M = {x ∈ Rd | x1 ≥ L, |xj | ≤ 1, j = 2, . . . , d}.

Then for x ∈M and C := 1
πd2d−1

p0(x) =

d∏
i=1

1

π(1 + x2
i )
≥ 1

πd
· 1

1 + x2
1

·
d∏

i=2

1

1 + 1
=

1

πd2d−1
· 1

1 + x2
1

= C
1

1 + x2
1

.

Moreover, for any x ∈ Rd, it holds that

ϕ(x) = (2π)−d/2e
−(x2

1+
d∑

i=2
x2
i )/2 ≤ (2π)−d/2e−x

2
1/2.

Consequently, for L large enough,

p0(x) log
p0(x)

ϕ(x)
≥ x2

1

2
+O(log x1),

where O refers to Landau-symbol of big-O notation. Together, for x ∈M and L large enough, there
exists C > 0 such that

p0(x) log
p0(x)

ϕ(x)
≥ C

1 + x2
1

x2
1

4
≥ C > 0.

Consequently,

∫
M

p0(x) log
p0(x)

ϕ(x)
dx ≥

∞∫
T

∫ · · · ∫
|xj |≤1,j≥2

Cdx2 · · · dxd

 dx1 =∞.

By Lebesgue decomposition, we conclude DKL(p0∥ϕ) =∞.

E.6.2 FINITE KL DIVERGENCE BETWEEN CAUCHY DISTRIBUTION AND ITS RELATED ρ∞

Let d ≥ 2 and again consider the product of Cauchy densities

p0(x) =

d∏
i=1

1

π(1 + x2
i )
.

Let x0 ∼ p0 and let pR be the density of R = ∥→x0∥. Then, motivated by our latent space distribution
equation 3.8, consider the density

p∞(x) =
pR(∥x∥)

∥x∥d−1|Sd−1|
, x ∈ Rd \ {0}, (E.31)

Then, the following holds

Lemma E.6.2.
DKL(p0 ∥ p∞) <∞.
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Proof. It holds that

log
p0(x)

p∞(x)
= log p0(x)− log pR(∥x∥) + (d− 1) log ∥x∥+ log |Sd−1|.

Hence,

DKL(p0∥p∞) = Ep[log p0(
→
x0)]− Ep[log pR(∥

→
x0∥)] + (d− 1)Ep[log ∥

→
x0∥] + log |Sd−1|,

where Ep denotes the expectation with respect to the probability measure p0dx. We will show, that
each term separately is finite. We start with the first term, followed by the the third. The finiteness of
the second term turns out to be a consequence of the finiteness of the second term.

• First term:It holds that

log p0(
→
x0) = −d log π −

d∑
i=1

log(1 + (
→
x0)

2
i )

for
→
x0 ∼ p0. Since coordinates of (

→
x0)i are iid it is enough to check the marginal integrals

for finiteness. In particular it holds that
∞∫
−∞

log(1 + x2)

π(1 + x2)
dx = log(4) <∞.

Consequently
|Ep[log p0(

→
x0)]| <∞. (E.32)

• Third term: For the second term, let R = ∥→x0∥ and M = max
i=1,...,d

|(→x0)i|. Then, almost

surely

≤ R ≤
√
dM ⇒ logM ≤ logR ≤ logM +

1

2
log d.

Consequently,

|Ep[logR]− Ep[logM ]| ≤ 1

2
log d.

Thus if we show Ep[logM ] <∞, then Ep[logR] <∞ as well, since both expectation only
differ up to a finite factor. Using the CDF F of (

→
x0)1 e.g. for (

→
x0)1 it holds that

P(∥(→x0)1∥ ≤ t) = F (t)− F (−t) = 2

π
arctan t, t ≥ 0.

Consequently, since (
→
x0)1, . . . , (

→
x0)d are iid, the CDF FM of M satisfies

FM (t) = P(M ≤ t) =

(
2

π
arctan t

)d

, t ≥ 0.

Hence, the density fM of M is given (for d ≥ 2) as

fM (t) =
∂

∂t
FM (t) = d

(
2

π

)d

(arctan t)d−1
1

1 + t2
.

Now, by a integral splitting we find that

Ep[logM ] =

∞∫
0

log tfM (t)dt =

1∫
0

log tfM (t)dt+

∞∫
1

log(t)fM (t)dt. (E.33)

By noting that for 0 ≤ t, fM (t) ≤ Ctd−1 for some C > 0 and

1∫
0

fM (t)(− log(t))dt ⩽

1∫
0

ta−1(− log(t))dt =
1

a2
, a > 0,
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the first integrant of equation E.33 is finite using a = d. For t ≥ 1 arctan(t) ≤ π/2 and
hence fM (t) ≤ C ′ 1

1+t2 for some C ′ > 0 and the second integral of equation E.33 is finite
since

∞∫
1

log(t)

1 + t2
dt = 1 <∞.

It follows that Ep[logM ] is finite.

• Second term: Recall that

pR(r) =

∫
Sd−1

p0(rθ)r
d−1dσ(θ) = rd−1

∫
Sd−1

p0(rθ)dσ(θ).

Since for x = rθ with θ = (θ1, . . . , θd), with θ2i ≤ 1 and using the fact that

p0(rθ) =

d∏
i=1

1

π(1 + r2θ2i )

we conclude

p0(rθ) ≥
d∏

i=1

1

π(1 + r2)
=

1

πd(1 + r2)d
.

Therefore,

pR(r) ≥ rd−1
1

πd(1 + r2)d
· |Sd−1| =: Cd

rd−1

(1 + r2)d
.

Hence,
log pR(r) ≥ logCd + (d− 1) log r − d log(1 + r2),

which yields

Ep[log pR(∥
→
x0∥)] ≥ logCd + (d− 1)Ep[logR]− dEp log(1 +R2)]. (E.34)

For the third term in equation E.34 it holds that R2 =
d∑

i=1

(
→
x0)

2
i . Now for M ≤ 1 we have

since R ≤
√
dM ≤

√
d that log(1 +R2) ≤ log(1 +

√
d) is independent of R. For M ≥ 1,

log(1 + R2) ≤ log(1 + dM2) ≤ log(dM2 + dM2) = log(2d) + 2 log(M). Since we
already showed that Ep[logR] is finite, we conclude that the lower bound in equation E.34
is finite. For the upper bound, note that

p0(rθ) ≤
1

πd
, ∀r > 0.

Thus,

pR(r) ≤ rd−1
1

πd
|Sd−1| =: Cdr

d−1

for some Cd > 0. So
log pR(r) ≤ logCd + (d− 1) log r.

And finally,
Ep[logR(R)] ≤ logCd + (d− 1)Ep[logR] <∞

since Ep[logR] <∞

• Fourth term: Finite since volume of the finite dimensional hypersphere.
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F BACKWARD DIFFUSION

This section is devoted to the derivation of the reverse SDE and ODE of our proposed MSGM in Itô
and Stratonovich form.
Proposition F.1. (Backward SDE) Let the skew-symmetry assumption A1 hold. Then, the Itô form
of the reverse SDE associated to the forward SDE 3.1 is given by the SDE

d
←
xt = 1

2 (∇ ·Σ)(
←
xt)dt+ G(

←
xt)G(

←
xt)

⊺∇ log pT−t(
←
xt)dt+ G(

←
xt)d

←
Bt. (F.1)

In the Stratonovich form, it reads:

d
←
xt = G(

←
xt)

(
G(
←
xt)

⊺∇ log pT−t(
←
xt)dt+ ◦d

←
Bt

)
. (F.2)

Proof. From Anderson (1982); Song et al. (2021) and the Itô forward SDE (see Lemma D.1.2), we
know that the Itô reverse SDE with negative ds writes

d
←
xs = 1

2 (∇ ·Σ)(
←
xs)ds− (∇ ·Σ)(

←
xs)ds−G(

←
xs)G(

←
xs)

⊺∇ log ps(
←
xs)ds

+G(
←
xs)d

←
B
′

s, (F.3)

= − 1
2 (∇ ·Σ)(

←
xs)ds−G(

←
xs)G(

←
xs)

⊺∇ log ps(
←
xs)ds+ G(

←
xs)d

←
B
′

s. (F.4)

Replacing the decreasing s ∈ [0, T ] by s = T − t with increasing t ∈ [0, T ] and using another

Brownian motion
←
B, we obtain the Itô backward SDE with positive dt

d
←
xt = 1

2 (∇ ·Σ)(
←
xt)dt+ G(

←
xt)G(

←
xt)

⊺∇ log pT−t(
←
xt)dt+ G(

←
xt)d

←
Bt. (F.5)

Then, Lemma D.1.1 and the standard Stratonovich-to-Itô formula (e.g. Kunita, 1997) yields the
Stratonovich form of the backward SDE:

d
←
xt = − 1

2d⟨G(
←
xt),

←
Bt⟩t + 1

2 (∇ ·Σ)(
←
xt)dt+ G(

←
xt)G(

←
xt)

⊺∇ log pT−t(
←
xt)dt

+ G(
←
xt) ◦ d

←
Bt, (F.6)

= − 1
2 (∇ ·Σ)(

←
xt)dt+

1
2 (∇ ·Σ)(

←
xt)dt

+ G(
←
xt)

(
G(
←
xt)

⊺∇ log pT−t(
←
xt)dt+ ◦d

←
Bt

)
, (F.7)

= G(
←
xt)

(
G(
←
xt)

⊺∇ log pT−t(
←
xt)dt+ ◦d

←
Bt

)
. (F.8)

Proposition F.2. (Backward probability flow ODE) Let the skew-symmetry assumption A1 hold.
Then, the reverse probability flow associated to the forward SDE 3.1 is given by the ODE

d
←
xt

dt
= 1

2G(
←
xt)G(

←
xt)

⊺∇ log pT−t(
←
xt). (F.9)

Proof. From Song et al. (2021) and the Itô forward SDE (see Lemma D.1.2), we know that the
reverse probability flow writes with negative ds

d
←
xs = 1

2 (∇ ·Σ)(
←
xs)ds− 1

2 (∇ ·Σ)(
←
xs)ds− 1

2G(
←
xs)G(

←
xs)

⊺∇ log ps(
←
xs)dt, (F.10)

= − 1
2G(

←
xs)G(

←
xs)

⊺∇ log ps(
←
xs)dt. (F.11)

Replacing the decreasing s ∈ [0, T ] by s = T − t with increasing t ∈ [0, T ] and using another

Brownian motion
←
B, we obtain the Itô backward SDE with positive dt

d
←
xt

dt
= 1

2G(
←
xt)G(

←
xt)

⊺∇ log pT−t(
←
xt). (F.12)
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G PROOF OF THEOREM 3.4.1: EQUIVALENCE BETWEEN ELBO AND SCORE
MATCHING

This appendix derives a score-matching-based ELBO for MSGM training. In this work, we focus on
the simple forward multiplicative SDE equation 3.1. Nevertheless, we here derive a slightly more
general theorem, where we include a possibly non-zero Stratonovich drift fS .

G.1 STATEMENT OF THE THEOREM

Theorem G.1.1. Let us consider the forward SDE

d
→
xs = fS(

→
xs)ds+ G(

→
xs) ◦ d

→
Bs, (G.1)

where assumption A1 holds. Then, we have

p0(x|θ) ⩾ E∞(x|θ), (G.2)

with the following ELBO

E∞(x|θ) := E
[
log pT (

→
xT )

∣∣→x0 = x
]

(G.3)

−
∫ T

0

E→
xs

[
1
2∥aθ(

→
xs, s)∥2 +∇ · (G(

→
xs)aθ(

→
xs, s))− fS(

→
xs)

∣∣∣∣→x0 = x

]
ds.

Proof. Here, we review the work of Huang et al. (2021) on SGM and generalize some
of their results to derive an ELBO and justify score matching for MSGM. Note that
Benton et al. (2024); Ren et al. (2025) proposes a very general SGM framework with associated
ELBO and score matching losses. The MSGM ELBO and thus the above theorem can be understood
as a particular case of their work. The explicit dependence in θ is omitted for readability.

G.2 NOTATIONS CORRESPONDENCE

The forward and backward processes are denote Ys and Xt in Huang et al. (2021) and
→
xs and

←
xt in

this paper. The forward Itō equation of Huang et al. (2021) is denoted:

dYs = f(Ys, s)ds+ g(Ys, s)dB̂s. (G.4)

Lemma D.1.1 gives the forward Itō equation of MSGM. It yields the following notation correspon-
dence:

g(x, s) = G(x), (G.5)
D(x) = 1

2g(x)g(x)
⊺ = 1

2Σ(x), (G.6)

f(x) = 1
2 (∇ ·Σ)⊺(x) + fS(x). (G.7)

And the backward equation is :

d
←
xt = µ(

←
xt, t)dt+ G(

←
xt, t)d

←
Bt, (G.8)

with a drift

µ(x, t) = −f(x) + 2(∇ ·D)⊺(x) + 2D(x)∇ log pT−t(x), (G.9)

= −fS(x) +
1
2 (∇ ·Σ)⊺(x) +Σ(x)∇ log pT−t(x), (G.10)

where we would arrive at the approximate backward SDE of Figure 1 if we replace ∇ log pT−t(
←
xt)

by sθ(
←
xt, T − t) also parametrized as aθ = G⊺sθ . We note that in our case, fS = 0, the drift reads

µ = 1
2 (∇ ·Σ)⊺ +Σ∇ log pT−t, and the SDE simplifies with Stratonovich notations equation 3.12.
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G.3 MARGINAL DENSITY FROM FEYNMAN-KAC REPRESENTATION

The Appendix D of Huang et al. (2021) treats the general case of multiplicative noise. It states that

p0(x) = E

[
pT (
→
xT ) exp

(∫ T

0

(−∇ · µ(→xs, T − s) +∇ · 12 (∇ ·Σ)⊺(
→
xs, T − s))ds

)∣∣∣∣→x0 = x

]
,

(G.11)

= E

[
pT (
→
xT ) exp

(
−
∫ T

0

∇ · (µ− 1
2 (∇ ·Σ)⊺)(

→
xs, T − s)ds

)∣∣∣∣→x0 = x

]
, (G.12)

where

d
→
xs = −µ̃(→xs, T − s)ds+ G(

→
xs, T − s)dB′s, (G.13)

µ̃(x, t) = µ(x, t)− (∇ ·Σ)⊺(x), (G.14)

and B′s is a Brownian motion.

Remark 3. In our case, µ̃(x, t) = µ(x, t)− (∇·Σ)⊺(x) = Σ(x)∇ log pT−t(x)− 1
2 (∇·Σ)⊺(x).

Remark 4. Note that µ̃− µ = −(∇ ·Σ)⊺ = −(∇ ·Σ)⊺ is twice the Itō to Stratonovich correction
of the backward SDE equation G.8 (see Lemma D.1.2). It is expected since this SDE can be reversed
in time once written with Stratonovich notations equation 3.12 (Kunita, 1997). Then, changing back
from Stratonovich to Itō notations but with a different sign in front of the drift, we obtain the forward
SDE equation G.14 verified by

→
xs including twice the Itō to Stratonovich correction.

G.4 CHANGE OF MEASURE AND JENSEN’S INEQUALITY

From the Feynman-Kac representation equation G.12 and Jensen’s inequality, we obtain an ELBO as
in Huang et al. (2021).

Let (Ω,F ,P) be the underlying probability space for which B′ is a Brownian motion. Suppose Q is
another probability measure on (Ω,F) equivalent to P (i.e., they have the same measure zero sets).
We can hence apply the change-of-measure

p0(x) = E

[
dP
dQ

pT (
→
xT ) exp

(
−
∫ T

0

∇ · (µ− 1
2 (∇ ·Σ)⊺)(

→
xs, T − s)ds

)∣∣∣∣→x0 = x

]
(G.15)

Then, we apply Jensen’s inequality:

log p0(x) ⩾ E

[
log

dP
dQ

+ log pT (
→
xT )−

∫ T

0

∇ · (µ− 1
2 (∇ ·Σ)⊺)(

→
xs, T − s)ds

∣∣∣∣→x0 = x

]
︸ ︷︷ ︸

=E∞

..

(G.16)

Compared to Huang et al. (2021), we have the additional term − 1
2 (∇ ·Σ)⊺, that is, − 1

2 (∇ ·Σ)⊺.

G.5 GIRSANOV THEOREM

Huang et al. (2021) apply the Girsanov theorem to the following forward SDE equation (17) of Huang
et al. (2021)):

d
→
xs = (−µ+ Ga)ds+ GdB̂s, (G.17)

since the Itō to Stratonovich correction 1
2 (µ − µ̃) = 1

2 (∇ · Σ)⊺ is zero in Huang et al. (2021).
However, it is not the case in MSGM and here we use the Girsanov theorem to this forward SDE
instead:

d
→
xs = (−µ̃+ Ga)ds+ GdB̂s. (G.18)

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

The Girsanov theorem (Oksendal, 1998, Theorem 8.6.3) states the following. Let B̂ be an Itō process
solving

dB̂s = −a(ω, s)ds+ dB′
s, (G.19)

for ω ∈ Ω and B̂0 = 0 where a satisfies the Novikov’s condition. Then B̂ is a Brownian motion
with respect to Q and :

E
[
log

dP
dQ

∣∣∣∣→x0 = x

]
= E

[∫ T

0

a(ω, s) · dB′s − 1
2

∫ T

0

∥a(ω, s)∥22ds
∣∣∣∣→x0 = x

]
, (G.20)

= − 1
2

∫ T

0

E→
xs

[
∥a(ω, s)∥22

∣∣→x0 = x
]
ds, (G.21)

since T 7→
∫ T

0
a(ω, s) · dB′s is a martingale and thus E

[∫ T

0
a(ω, s) · dB′s

]
= 0 (Oksendal, 1998,

Theorem 3.2.1).

G.6 ELBO EVALUATION

Equation G.21 enable us to evaluate the ELBO E∞ given by equation G.16. To evaluate the divergence
term, we note that:

(µ− 1
2 (∇ ·Σ)⊺)(x, T − s) = −fS(x) +

1
2 (∇ ·Σ)⊺(x) +Σ(x)sθ(x, s)− 1

2 (∇ ·Σ)⊺(x),

(G.22)
= −fS(x) + G(x)aθ(x, s). (G.23)

Then, the ELBO simplifies to:

E∞(x) = E
[
log

dP
dQ

∣∣∣∣→x0 = x

]
+ E

[
log pT (

→
xT )

∣∣→x0 = x
]

(G.24)

+

∫ T

0

E→
xs

[
−∇ · (µ− 1

2 (∇ ·Σ)⊺)

∣∣∣∣→x0 = x

]
ds,

= E
[
log pT (

→
xT )

∣∣→x0 = x
]

(G.25)

−
∫ T

0

E→
xs

[
1
2∥aθ(

→
xs, s)∥22 +∇ · (G(

→
xs)aθ(

→
xs, s)− fS(

→
xs))

∣∣∣∣→x0 = x

]
ds.

We recall that in our case, fS cancels out. The first term E
[
log pT (

→
xT )

∣∣→x0 = x
]

is a constant w.r.t.
to θ. So, if when maximizing the ELBDO, this term has no effect on the optimization procedure.
Therefore, even with our multiplicative noise, the minimization of the ELBO corresponds precisely to
Implicit Score Matching (ISM), which is itself equivalent to Explicit Score Matching (ESM), Sliced
Score Matching (SSM) and Denoising Score Matching (DSM) (Huang et al., 2021).

G.7 FROM ELBO TO OUR SSM LOSS

Here we show how to derive our practical SSM loss equation 3.14 from Theorem 3.4.1. We assume
the skew-symmetry condition A1 and zero Stratonovich drift, i.e. fs = 0. The theorem states the

p0(x0|θ) ⩾ E∞(x0|θ) := C(x0)− L∞(x0|θ) (G.26)

with C being a constant with respect to the parameters θ to be learned. More precisely,

C(x0) = E
[
log pT (

→
xT )

∣∣→x0 = x0

]
, (G.27)

L∞(x0|θ) =

∫ T

0

E→
xs

[
1
2∥aθ(

→
xs, s)∥2 +∇ · (G(

→
xs)aθ(

→
xs, s)− fS(

→
xs))

∣∣∣∣→x0 = x0

]
ds.

(G.28)
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Then, we average over the data x0 to obtain the following lower bound for the likelihood of the
dataset:

Ex0p0(x0|θ) ⩾ Ex0E∞(x0|θ) = Ex0C(x0)− Ex0L∞(x0|θ). (G.29)

Our objective is to find the neural network parameters θ, that try to maximize the likelihood
of the data set, Ex0

p0(x0|θ). Since Ex0
C(x0) is a constant with respect to θ, we maximize

−Ex0
L∞(x0|θ). Let us explicit the two terms above with the Hutchinson trick, Ev∼Rad(d)[vv

⊺] =
Id (Song et al., 2020)

Ex0C(x0) = ExT

[
log pT (

→
xT )

]
, (G.30)

Ex0
L∞(x0|θ) =

∫ T

0

E→
xs

[
1
2∥aθ(

→
xs, s)∥2 +∇ · (G(

→
xs)aθ(

→
xs, s)− fS(

→
xs))

]
ds,

(G.31)

= T

∫ T

0

E→
xs

[
1
2∥aθ(

→
xs, s)∥2 +∇ · (G(

→
xs)aθ(

→
xs, s))

] 1

T
ds, (G.32)

= TEs∼U [0,T ]E→xs

[
1
2∥aθ(

→
xs, s)∥2 +∇ · (G(

→
xs)aθ(

→
xs, s))

]
, (G.33)

= TEs∼U [0,T ]E→xs

[
1
2∥aθ(

→
xs, s)∥2 +∇ · (Ev∼Rad(d)[vv

⊺]G(
→
xs)aθ(

→
xs, s))

]
,

(G.34)

= TEs∼U [0,T ]E→xs
Ev∼Rad(d)

[
1
2∥aθ(

→
xs, s)∥2 + (v·∇)(G(

→
xs)aθ(

→
xs, s))·v

]
.

(G.35)
= TLSSM(θ). (G.36)

Therefore, maximizing the ELBO, Ex0
E∞(x0|θ) = Ex0

C(x0) − Ex0
L∞(x0|θ), is equivalent to

minimizing our practical score-matching loss, LSSM(θ).

G.8 REMARK ON THE SCORE PARAMETRIZATION

Following Huang et al. (2021), we directly model G(
←
xt)

⊺∇ log ps(x) by a neural network aθ(x, s).
If needed, the projected score, ∇⊥ log ps, can be retrieved directly from aθ as shown below. Note
that the full score,

∇ log ps = ∇⊥ log ps + (xn · ∇) log ps, (G.37)

involves a radial term, (xn · ∇) log ps that cannot be directly estimated in MSGM.
Proposition G.1. We assume that assumptions A1 and A2 hold, and that we have an approximation,
aθ, of the scaled score and an orthonormal basis u2(x), . . . ,ud(x) of x⊥, that we concatenate in
U(x) = [u2(x), . . . ,ud(x)] ∈ Rd×(d−1). Then,

[U⊺(x)Σ(x)U(x)]−1U⊺(x)G(x)aθ(x, s). (G.38)

approximates the projected score

U⊺(x)∇⊥ log ps(x). (G.39)

Proof. Since Rd = Rxn
⊥
⊕ x⊥, we have Id = xn(xn)⊺ +U(x)U⊺(x). Using Σ(x)xn = 0, we

obtain

U⊺(x)G(x)aθ(x, s) ≈ U⊺(x)G(x)G(x)⊺∇ log ps(x), (G.40)
= U⊺(x)Σ(x)[xn(xn)⊺+U(x)U⊺(x)]∇ log ps(x), (G.41)
= U⊺(x)Σ(x)U(x)U⊺(x)∇ log ps(x), (G.42)
= U⊺(x)Σ(x)U(x)U⊺(x)∇⊥ log ps(x). (G.43)

U⊺(x)Σ(x)U(x) ∈ R(d−1)×(d−1) is full rank, so

U⊺(x)∇⊥ log ps(x) ≈[U⊺(x)Σ(x)U(x)]−1U⊺(x)G(x)aθ(x, s). (G.44)
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It is also possible to model the score, ∇ log ps(x) directly by a neural network, sθ(x, s) using the
following score-matching loss:

LSSM(θ) = Es∼U [0,T ]E→xs
Ev∼Rad(d)

[
1
2∥aθ(

→
xs, s)∥2 + (v·∇)(G(

→
xs)aθ(

→
xs, s)−fS(

→
xs))·v

]
,

(G.45)

= Es∼U [0,T ]E→xs
Ev∼Rad(d)

[
1
2∥sθ(

→
xs, s)∥2Σ(

→
xs)

+ (v · ∇)(Σ(
→
xs)sθ(

→
xs, s)− fS(

→
xs)) · v)

]
ds.

(G.46)

However, for any α ∈ R,LSSM(θ)(sθ) = LSSM(θ)(sθ + αxn), i.e. our loss function is insensible to
the radial component of the score (xn ·∇) log ps. Therefore, our MSGM framework does not provide
estimation for the radial score (xn · ∇) log ps. Moreover, the optimization problem parametrized by
sθ is ill-defined, and the loss should probably be regularized as follows:

Lreg
SSM(θ) = LSSM(θ) + γEs∼U [0,T ]E→xs

[
(x·sθ)2

]
, (G.47)

with γ > 0 large, says γ = 106.

G.9 GIRSANOV THEOREM IN THE TRANSPORT NOISE LITERATURE

Following the work done by Huang et al. (2021) for additive noise, we have relied on the Girsanov
theorem (Oksendal, 1998) to prove the equivalence between score matching and ELBO maximization
for MSGM. Girsanov theorem is widely used, we may cite here its recent uses in the transport noise
literature. In a Bayesian context, Cotter et al. (2020a; 2023); González et al. (2025); Singh et al.
(2025) introduce nudging in their particle filter. Also used with other type of noises, nudging biases
the noise to make the solution closer to the observations. Similarly, in our case, the weighted score,

aθ(
←
xt, T − t), biases the noise, d

←
Bt/dt, in our backward SDE to make its solution closer to the

forward SDE solution (see equation 3.12). This noise change is the core of Girsanov theorem (see
equation G.19). Resseguier (2023) also proposed to fit a parametric model for the transport noise by
maximum likelihood estimation.

H COMPARISON WITH DIFFUSIONS ON RIEMANNIAN MANIFOLDS

This appendix describes the similarities between MSGM on Rd and SGMs on manifolds. To introduce
the subject, we first recall some theoretical elements related to Riemannian manifolds. The link with
SGMs on manifolds also suggests a particular neural network architecture that we exploit in this
work.

H.1 RIEMANNIAN MANIFOLDS AND DIFFERENTIATION

This section is devoted to a brief introduction to Riemannian manifolds and the associated differential
calculus. For a more comprehensive discussion, we refer to Lee (2018). LetM be a smooth n-
dimensional embedded submanifold of Rd, where n ≤ d. For any x ∈M we denote by TxM the
tangential (linear) space ofM at x. We denote by g a Riemannian metric onM, which assigns to
each x ∈M an inner product

gx : TxM× TxM→ R.
In the case of a smooth embedded manifold in the Euclidean space, the induced metric is given by

gx(u, v) = ⟨u, v⟩Rn , ∀u, v ∈ TxM.

This makes (M, g) a Riemannian manifold. Let {e(1), . . . , e(n)} be an orthonormal basis of TxM.
Then, the orthogonal projection onto TxM is the linear operator Px : Rd → TxM that satisfies

Px(v) = arg min
w∈TxM

∥v − w∥Rd =

n∑
i=1

⟨v, e(i)⟩e(i).

While the concept of Riemannian gradients can be derived for general manifolds, here we limit
ourselves to the simpler presentation of embedded manifolds in the Euclidean space. In this setup,
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the Riemannian manifold can be defined as the classical gradient projected to the tangential space. In
particular, for f : Rd → R smooth, its Riemannian gradient can be computed as

∇Mf(x) = Px(∇f(x)),

where∇f(x) is the Euclidean gradient. Furthermore, we want to define the Riemannian divergence
in this framework. For a tangent vector field f : M → Rd with f(x) ∈ TxM, the Riemannian
divergence is given as

divMf(x) =

n∑
i=1

⟨∂e(i)f(x), e(i)⟩,

where ∂e(i)f is the Euclidean directional derivative. Finally, the Laplace-Beltrami operator ∆M can
be defined as

∆Mf = divM(∇Mf),

which generalizes the Laplacian toM.

In the special case thatM = rSd−1, for a radius r > 0 then n = d− 1 and

TxM = TxrSd−1 = {v ∈ Rd | ⟨v,x⟩ = 0},

and Px(v) = v − 1
r2 ⟨v,x⟩x. Since xn = x

r we obtain Px(v) = (I − xn(xn)⊺)v and as a result

∇Mf(x) = Px(∇f(x)) = (I − xn(xn)⊺)∇f(x) = ∇⊥f(x). (H.1)

Regarding the Riemannian divergence, we note that xn, e(1), . . . , e(n) defines an orthonormal basis
of Rd. By Lemma D.2.1

∇ · f(x) = (xn · ∇)(xn · f(x)) +∇⊥ · f(x).

For f(x) ∈ TxM, we have f(x) · xn = 0. Thus:

∇⊥ · f(x) = ∇ · f(x)− (xn · ∇)(f(x) · xn)︸ ︷︷ ︸
=0

= ∇ · f(x).

Differentiating the tangency condition f(x) · xn = 0 along xn leads

0 = ∂xn(f(x) · xn) = ⟨∂xnf(x),xn⟩+ ⟨f(x), ∂xnxn⟩.

Since ∂xnxn = 0, we conclude that ⟨∂xnf(x),xn⟩ = 0. Finally, expanding ∇ · f(x) in
xn, e(1), . . . , e(n) leads to

∇⊥ · f(x) = ∇ · f(x) =
n∑

i=1

⟨∂e(i)f(x), e(i)⟩+ ⟨∂xnf(x),xn⟩︸ ︷︷ ︸
=0

= divMf(x). (H.2)

In our setting Im(Σ(x)) = x⊥ = TxM. Hence, the right-hand side of the Fokker-Planck equa-
tion 3.4

divM(Σ(x)∇Mf(x)) = ∇⊥ · (Σ(x)∇⊥f(x)), (H.3)

generalizes the notion of a divergence-form operator to the manifold setup.

H.2 CONDITIONAL DIFFUSIONS ON SCALED d-SPHERES

Several authors have recently developed SGM on Riemannian manifolds
(De Bortoli et al., 2022; Huang et al., 2022; Benton et al., 2024) in order to generate data ly-
ing on a particular manifold. Clearly different, our goal is more classical: generating data in Rd.
However, each solution path of our forward and backward SDE lies on its scaled d-sphere ∥→x0∥Sd−1.
Clearly, d-spheres are particular cases of Riemannian manifolds and possibly the most studied.
De Bortoli et al. (2022) describes diffusions of

→
x

n
in the d-sphere Sd−1. The simplest one involves a

Brownian motion on the d-sphere that converges to the uniform distribution on the d-sphere, pn∞.
Unfortunately, this appealing proposal does not directly apply to our framework: the Brownian
motion on the d-sphere is not a solution of our forward SDE of

→
x

n
. Indeed, in general, there exists
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→
x

n
∈ Sd−1 such that Σ(xn) =

∑d
k=1(G

kxn)(Gkxn)⊺ ̸= ISd−1 . So, the Fokker-Planck equation
of De Bortoli et al. (2022),

∂

∂s
pn(xn) = divSd−1(∇Sd−1pn(xn)), ∀xn ∈ Sd−1, (H.4)

and our Fokker-Planck equation for the direction,

∂

∂s
pn(xn) = divSd−1(Σ(xn)∇Sd−1pn(xn)), ∀xn ∈ Sd−1, (H.5)

do not coincide. However, the analyses from the SGM-on-manifold community on the finite-time
distribution, its score, approximations, and score-matching losses choices could certainly facilities
the MSGM training process in the future.

In our case, the norm of solution being constant along path, we can write both the forward and the
backward equations of the direction on the unit d-sphere from equation 3.1 and equation 3.12:

d
→
x

n

t = G(
→
x

n

t ) ◦ d
→
Bt, (H.6)

d
←
x

n

t =
1

∥←xt∥
G(
←
xt)

(
G(
←
xt)

⊺∇ log pT−t

(
∥←xt∥

←
x

n

t

)
dt+ ◦d

←
Bt

)
, (H.7)

= G(
←
x

n

t )

(
G(
←
x

n

t )
⊺
(
∥←xt∥∇⊥ log pT−t

(
∥←xt∥

←
x

n

t

))
dt+ ◦d

←
Bt

)
. (H.8)

We note that ∥x∥∇⊥ = ∇Sd−1 = ∂xn is the Riemannian gradient on the scaled d-sphere ∥x∥Sd−1.
Therefore, using p⊗s , the density of the couple of variables (∥←xs∥,

←
x

n

s ) ∈ R+ × Sd−1,

∥←xt∥∇⊥ log pT−t

(
∥←xt∥

←
x

n

t

)
=

∂

∂xn
log pT−t

(
∥←xt∥

←
x

n

t

)
(H.9)

=
∂

∂xn
log
(
p⊗T−t

(
∥←x

n

t ∥,
←
x

n

t

)
∥←xt∥1−d

)
(H.10)

=
∂

∂xn
log
(
pnT−t

(←
x

n

t

∣∣ ∥←xn

t ∥
)
p|.|

(
∥←xt∥

)
∥←xt∥1−d

)
,

(H.11)

=
∂

∂xn
log pnT−t

(←
x

n

t

∣∣ ∥←xt∥
)

(H.12)

=
∂

∂xn
log pnT−t

(←
x

n

t

∣∣ ∥←x0∥
)

(H.13)

= ∇Sd−1 log pnT−t

(←
x

n

t

∣∣ ∥←x0∥
)

(H.14)

and finally

d
←
x

n

t = G(
←
x

n

t )

(
G(
←
x

n

t )
⊺∇Sd−1 log pnT−t

(←
x

n

t

∣∣ ∥←x0∥
)
dt+ ◦d

←
Bt

)
. (H.15)

In contrast, forward and backward SDEs of De Bortoli et al. (2022) read

d
→
x

n

t = d
→
B

Sd−1

t , (H.16)

d
←
x

n

t = ∇Sd−1 log pnT−t

(←
x

n

t

)
dt+ d

←
B

Sd−1

t , (H.17)

where
→
B

Sd−1

t and
←
B

Sd−1

t are Brownian motions on the d-sphere. They can be defined from Stroock’s
representation (Hsu, 2002, Example 3.3.2) as

d
→
B

Sd−1

t = (Id − (
→
x

n

t )(
→
x

n

t )
⊺) ◦ d

→
Bt, (H.18)

d
←
B

Sd−1

t = (Id − (
←
x

n

t )(
←
x

n

t )
⊺) ◦ d

←
Bt. (H.19)
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The first main difference with MSGM is that the projection on the tangent plane, (Id − (xn)(xn)⊺),
(quadratic in xn) is replaced in our approach by G(

←
x

n

t ) (linear in xn). Accordingly the noise
(conditional) covariance, (Id − (xn)(xn)⊺)2 = (Id − (xn)(xn)⊺) (projection property), is replaced
by G(

←
x

n

t )G(
←
x

n

t )
⊺ = Σ(

←
x

n

t ). To make our diffusion coincide with equation H.16, we would have
to consider

G(x) := ∥x∥(Id − xn(xn)⊺), (H.20)

which is Lipchitz continuous but nonlinear. As such, the noise covariance would be

Σ(x) = ∥x∥2Id − xx⊺. (H.21)

In general, we can hardly expect such a simple form from MSGM noise covariance. However, for the
random tensor equation 6.1, we can show (see equation J.10) that:

2EΣ(x) = ∥x∥2Id − xx⊺. (H.22)

In addition, our score involved in the backward SDE equation H.15 depends on the norm ∥←xt∥. The
norm ∥←xt∥ = ∥

←
x0∥ appears as a covariable – with prior distribution p|.| – for the diffusion on the

unit d-sphere. This is another major difference of our approach compared to SGM on manifolds.
Besides, from this point of view, we can better understand how the direction and magnitude are
re-coupled during MSGM generation. Along the reverse diffusion, the conditional score direction
H.14 will focus along some orientations, counterbalancing the direction equiprobability of the latent
space, i.e. reversing the "whitening" of the forward process. On different scaled d-sphere ∥x0∥Sd−1,
the conditional score direction will be oriented differently, pushing along some orientations on some
spheres and along other directions on spheres of larger radius. Accordingly, along the backward
diffusion, the directions tend to align differently on different hypershperes. The distribution of
direction become more and more radius-dependent.

If data samples
→
x0 are snapshots of a conservative dynamical system, all data points probably have

the similar energy E = ∥→x0∥2, i.e. Var(E)/E[E]2 is small. All data points are on closed scaled
d-spheres

√
E Sd−1 and our approach becomes even closer to De Bortoli et al. (2022).

H.3 LINK WITH NEURAL NETWORK ARCHITECTURE

Form equation H.14, we also note that

G(
←
xt)

⊺∇ log pT−t

(←
xt

)
= G(

←
x

n

t )
⊺∇Sd−1 log pnT−t

(←
x

n

t

∣∣ ∥←x0∥
)
, (H.23)

justifying our neural network spherical architecture equation L.33

G(
←
xt)

⊺∇ log pT−t(
←
xt) ≈ aθ(

←
xt, T − t) = ãθ

(
∥←xt∥
∥←xt∥ϵ

←
x

n

t , log ∥
←
xt∥ϵ, T − t

)
. (H.24)

I ANALYTIC ILLUSTRATIONS ON SIMPLIFIED CASES

I.1 THE TWO-DIMENSIONAL CASE

We note here that for d = 2, we can find an analytic solution for our multiplicative forward SDE.
Moreover, it corresponds to the Brownian motion on the circle.

Let us recall this forward SDE:

d
→
x(t) = G(

→
x(t)) ◦ d

→
Bt =

K∑
k=1

Gk→x(t) ◦ d
→
B

k

t =

(
K∑

k=1

Gk ◦ d
→
B

k

t

)
→
x(t), (I.1)

In dimension 2,

d
→
x(t) = αJ

→
x(t) ◦ d

→
B

1

t , (I.2)
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where
→
x =

(→
x1
→
x2

)
∈ R2, J =

(
0 −1
1 0

)
is the π

2 -rotation.

d

(→
x1
→
x2

)
= α

(
−→x2
→
x1

)
◦ d
→
B

1

t , (I.3)

Then, in the complex plane,
→
x
C
=
→
x1 + i

→
x2 ∈ C, with i =

√
−1 and we have:

d
→
x
C
(t) = αi

→
x
C
◦ d
→
B

1

t , (I.4)

since

d
→
x1 + id

→
x2 = αi(

→
x1 + i

→
x2) ◦ d

→
B

1

t = α(−→x2 + i
→
x1) ◦ d

→
B

1

t . (I.5)
The solution is the Brownian motion on the circle:

→
x
C
(t) =

→
x
C
(0) exp(αi

→
B

1

t ), (I.6)

i.e.

→
x(t) = R(α

→
B

1

t )
→
x(0) =

cos(α
→
B

1

t ) − sin(α
→
B

1

t )

sin(α
→
B

1

t ) cos(α
→
B

1

t )

→x(0), (I.7)

i.e.

→
x1(t) =

→
x1(0) cos(α

→
B

1

t )−
→
x2(0) sin(α

→
B

1

t ), (I.8)
→
x2(t) =

→
x1(0) sin(α

→
B

1

t ) +
→
x2(0) cos(α

→
B

1

t ). (I.9)

The key element of the proof was the possibility to write the forward diffusion with a single skew-
symmetric matrix in equation I.2. Below we generalize this idea to larger dimension d ⩾ 2.

I.2 TENSOR BUILT FROM A SINGLE SKEW-SYMMETRIC MATRIX

Here we assume that whole tensor G is built from the same dense skew-symmetric matrix G1 i.e.

Gk =G1, ∀k ∈ {1, . . . , d}, (I.10)

with G1 a skew-symmetric matrix. As explained in Appendix K.2.1, this tensor respect the condition
A1 but not the A2. Nevertheless, this case and its analytic solution may be insightful.

I.2.1 MATRIX EXPONENTIAL

Here the full Brownian matrix Z can be simply factorized as

Zs =

d∑
k=1

Gk(
→
Bs)k =G1

d∑
k=1

(
→
Bs)k. (I.11)

It has the same distribution than

Z ′s =
√
d G1

→
B′s, (I.12)

with
→
B
′

another single Brownian motion. The forward diffusion simplify to

d
→
xs =

√
d G1→xs ◦ d

→
B′s, (I.13)

with solution

→
xs = exp(Z ′s)

→
x0 = exp

(√
d G1

→
B′s

)
→
x0, (I.14)

since Z ′s and dZ ′s commute.
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I.2.2 DIAGONALIZATION IN THE COMPLEX PLANE

G1 has pure imaginary eigenvalues and can be diagonalized in C on an orthonormal basis

G1 =UC(iΛ)UH
C , (I.15)

with UC a complex unitary matrix, Λ a real diagonal matrix, and the superscript H denotes the
conjugate transpose. Then, the solution can be easily evaluate as follow

→
xs =UC exp

(
i
√
d Λ

→
B′s

)
UH

C
→
x0, (I.16)

For an even dimension d, and for all j ∈ {1, . . . , d/2}, there exists λj ∈ R such that

(UH
C
→
xs)2j−1 = exp

(
i
√
d λj

→
B′s

)
(UH

C
→
x0)2j−1, (I.17)

(UH
C
→
xs)2j = exp

(
−i
√
d λj

→
B′s

)
(UH

C
→
x0)2j . (I.18)

For an odd dimension d, G1 has at least one zero eigenvalue. Without loss of generality, we consider
Λd,d = 0 and for all j ∈ {1, . . . , (d− 1)/2}, there exists λj ∈ R such that

(UH
C
→
xs)2j−1 = exp

(
i
√
d λj

→
B′s

)
(UH

C
→
x0)2j−1, (I.19)

(UH
C
→
xs)2j = exp

(
−i
√
d λj

→
B′s

)
(UH

C
→
x0)2j , (I.20)

(UH
C
→
xs)d = (UH

C
→
x0)d. (I.21)

I.2.3 REAL SOLUTION WITH SINE AND COSINE

The diagonalization matrix, U , is complex but we can find a real unitary matrix, UR, to make
G1 block diagonal, and then expressing the solution with cosinus and sinus as in equation I.8 and
equation I.9:

(U⊺
R
→
xs)2j−1 = cos

(√
d λj

→
B′s

)
(U⊺

R
→
x0)2j−1 − sin

(√
d λj

→
B′s

)
(U⊺

R
→
x0)2j , (I.22)

(U⊺
R
→
xs)2j = sin

(√
d λj

→
B′s

)
(U⊺

R
→
x0)2j−1 + cos

(√
d λj

→
B′s

)
(U⊺

R
→
x0)2j . (I.23)

For an odd dimension d, the real solution reads

(U⊺
R
→
xs)2j−1 = cos

(√
d λj

→
B′s

)
(U⊺

R
→
x0)2j−1 − sin

(√
d λj

→
B′s

)
(U⊺

R
→
x0)2j , (I.24)

(U⊺
R
→
xs)2j = sin

(√
d λj

→
B′s

)
(U⊺

R
→
x0)2j−1 + cos

(√
d λj

→
B′s

)
(U⊺

R
→
x0)2j , (I.25)

(U⊺
R
→
xs)d = (U⊺

R
→
x0)d. (I.26)

Figure 5 illustrates the solution for d = 4 with 20000 realizations of
→
xT at large time T = 100, with

λ1 = 1, λ2 = 10,
→
x0 = (1, 1, 1, 1), and UR = I4. A rotation-invariant distribution, p∞, would

induce rotation-invariant marginals and hence point cloud projections appearing rotation-invariant.
This is clearly not the case here. This counter example shows that low-rank tensors as defined in
equation I.10 cannot guaranty rotation-invariant latent distribution, and thus prevent the use of our
simple eCDF-based sampling procedure.

Figure 7 illustrates the latent vector support for a random initial condition
→
x0 =

N ((1, 1, 1, 1), 0.01I4). The supporting manifold is not one-dimensional anymore, but still depend
on the initial direction distribution, pn0 .
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Figure 5: Projection of samples,
→
xT , sketching the support of the invariant measure, p∞, for a

low-rank tensor I.10, d = 4 and
→
x0 = (1, 1, 1, 1). The top plot is in space (x1, x2, x3), the bottom

plots are, form left to right, in space (x1, x2), (x1, x3), (x1, x4), and (x4, x3).
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Moreover, as expected from the expression above, the initial norm, ∥→x0∥, scales the one-dimensional
manifold supporting the invariant measure (not shown) and the initial direction,

→
x

n

0 , has an influence
at large time. Figure 6 shows the same example with

→
x0 = (

√
2,
√
2, 0, 0). The initial norm is the

same but the initial direction is different. Therefore, the limit distribution, p∞, if it exists does depend
on the initial direction,

→
x

n

0 , making the latent sampling intractable.

Figure 6: Projection of samples,
→
xT , sketching the support of the invariant measure, p∞, for a

low-rank tensor I.10, d = 4 and
→
x0 = (

√
2,
√
2, 0, 0). The top plot is in space (x1, x2, x3), the

bottom plots are, form left to right, in space (x1, x2), (x1, x3), (x1, x4), and (x4, x3).
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Figure 7: Projection of samples,
→
xT , sketching the support of the invariant measure, p∞, for a

low-rank tensor I.10, d = 4 and
→
x0 = N ((1, 1, 1, 1), 0.01I4). The top plot is in space (x1, x2, x3),

the bottom plots are, form left to right, in space (x1, x2), (x1, x3), (x1, x4), and (x4, x3).
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I.3 NON-COMMUTATIVITY IN THE GENERAL CASE

For a general tensor G in dimension d > 2 , it is temping to look for a solution
→
xs of the forward

SDE
d
→
xs = ◦dZs

→
xs,

of the form exp(Zs)
→
x0 with Z =

∑d
k=1 G

k(
→
Bs)k. Zs being skew-symmetric, exp(Zs) is unitary

and such a solution would be reminiscent of the rotation form of equation I.6 and equation I.16 derived
above. However, exp(Zs)

→
x0 is not a solution of equation 3.1 in general, since dZsZs ̸= ZsdZs.

J RANK AND SKEW-SYMMETRY CONDITIONS FOR RANDOM TENSOR G

In this appendix, we treat the case of random tensor G as defined by equation 6.1. We will show that
this tensor respects both assumptions A1 and A2 almost surely. Then, we will discuss the speed of
contraction of the Fokker-Planck equation with this tensor.

J.1 PROOF OF THE RANK CONDITION

Proposition J.1. Let Mk ∈ Rd,d be iid random matrices with entries drawn independently from
N (0, 1). Define the skew-symmetric matrices Gk = 1

2 (M
k − (Mk)⊺) and for x ∈ Rd \ {0} define

the (random) matrix
G(x) := [G1x,G2x, . . . ,Gdx] ∈ Rd,d.

Then, almost surely rank(G(x)) = d− 1.

Proof. Let x ̸= 0. Let M be a random standard Gaussian matrix. Then, let D = M −M⊺. Then,
D is Gaussian matrix with entries drawn from N (0, 2), in particular

E[DijDkℓ] = E[(Mij −Mij)(Mkℓ −Mℓk)] = 2(δikδjℓ − δiℓδjk). (J.1)

Consequently,

E[(M −M⊺)xx⊺(M⊺ −M)] = −E[Dxx⊺D]. (J.2)

Now, for the covariance structure it holds

− (E[Dxx⊺D])ik = E[(Dx)i(Dx)k], (J.3)

=

d∑
j=1

d∑
ℓ=1

E[DijxjDkℓxℓ], (J.4)

=

d∑
j=1

d∑
ℓ=1

xjxℓE[DijDkℓ], (J.5)

= 2

d∑
j=1

d∑
ℓ=1

xjxℓ(δikδjℓ − δiℓδjk), (J.6)

= 2δik

d∑
j=1

d∑
ℓ=1

xjxℓδjℓ − 2

d∑
j=1

d∑
ℓ=1

xjxℓδiℓδjk, (J.7)

= 2δik∥x∥2 − 2xixk. (J.8)

Hence E[Dxx⊺D] = 2(∥x∥Id − xx⊺). Consequently for any k = 1, . . . , d it holds that

E[(Gkx)(Gkx)⊺] =
1

4
E[(Mk − (Mk)⊺)xx⊺((Mk)⊺ −Mk)] =

1

2
(∥x∥2Id − xx⊺). (J.9)

As a result, the matrix G(x) has columns Gkx
iid∼ N (0,V ) with

V = V (x) = EΣ(x) =
1

2
(∥x∥2Id − xx⊺), (J.10)
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of rank d− 1. Therefore, Σ(x) = G(x)G(x)⊺ ∼Wd(V (x), d) is a Wishart matrix.

Let K = K(x) be a matrix
K = [K1, . . . ,Kd−1], (J.11)

with column vectors Ki forming an orthonormal basis of the hyperplane x⊥. Then by construction,
we have

2

∥x∥2
KV K⊺ = Id−1. (J.12)

This means, that
√
2

∥x∥KG(x) = (
√
2

∥x∥KG1x . . .
√
2

∥x∥KGdx),
√
2

∥x∥KGkx
iid∼ N (0, Id−1). (J.13)

Therefore,
√
2

∥x∥KΣ(x)
( √

2
∥x∥K

)⊺
=
( √

2
∥x∥KG(x)

)( √
2

∥x∥KG(x)
)⊺
∼Wd−1(Id−1, d), (J.14)

is a Wishart matrix, in particular Wp(C, n) denotes the Wishart distribution with n degrees of freedom.
In the case n ≥ p, such matrix is invertible almost surely (Muirhead, 2009, Theorem 3.1.4). In our
case n = d > p = d− 1 thus almost surely

rank
( √

2
∥x∥KG(x)

)
= rank

(( √
2

∥x∥KG(x)
)⊺)

= d− 1. (J.15)

Now, since G(x)⊺x = 0 we obtain almost surely that

d− 1 = rank
( √

2
∥x∥KG(x)

)
≤ rank(G(x)) ≤ d− 1, (J.16)

which yields the claim.

J.2 TENSOR RENORMALIZATION

In practice, we renormalize the tensor G as follows:

G =

√
d

∥G̃∥2
G̃ with G̃k

ij =
1
2 (M

k
i,j −Mk

j,i). (J.17)

The normalization ensures that the trace of matrix defining the Itô term of our forward SDE – i.e. the
term driving the exponential decreases of E→xs (see the forward Itô SDE equation D.9) – is

tr

(
1
2

∑
k

GkGk

)
= −tr

(
1
2

∑
k

Gk(Gk)⊺

)
= − 1

2

∑
k

∥Gk∥22 = − 1
2∥G∥

2
2 = − 1

2d, (J.18)

similarly to the trace of the matrix defining the Itô term of classical Ornstein Uhlenbeck forward SDE
:

tr (−Id) = −d. (J.19)

This normalization helps to better control the speed of convergence of the forward SDE without
changing its skew-symmetry nor its rank.

J.3 MEAN SPEED OF CONVERGENCE WITH RENORMALIZED TENSOR

Note that in this case, for (x,y) ∈ S = {(x,y) ∈ Sd−1 × Sd−1|x⊥y},

E∥G(x)y∥2 = y⊺EΣ(x)y = y⊺E(
d∑

k=1

(Gkx)(Gkx)⊺)y = y⊺ d

2
(∥x∥2Id − xx⊺)y =

d

2
. (J.20)

So, we can expect exponential convergence of the Fokker-Planck equation with the speed

E[α(G, d)] = (d− 1)E min
(x,y)∈S

∥G⊺(x)y∥2 = (d− 1)E∥G⊺(
→
x0)y0∥2 =

1

2
d(d− 1). (J.21)
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Therefore, the convergence gets faster when the dimension increases.

However, the tensor G is normalized (see equation J.17), so the evaluation of the convergence speed
is modified. We note first that:

E∥G̃∥2 = d E∥G̃1∥2 =
d

4
E∥M1 − (M1)⊺∥2 =

d

2

∑
ij

(E(M1
ij)

2 − EM1
ijM

1
ji), (J.22)

=
d

2

∑
ij

(1− δ2ij) =
1

2
d2(d− 1). (J.23)

So, we obtain an estimate by Cauchy-Schwartz and Jensen’s inequality

E∥G(x)y∥2 = E∥
√
d

∥G̃∥
G̃(x)y∥2 = E

[
d

∥G̃∥2
∥G̃(x)y∥2

]
, (J.24)

⩽ E

[
d

∥G̃∥2

]
E∥G̃(x)y∥2, (J.25)

⩽
d

E∥G̃∥2
E∥G̃(x)y∥2, (J.26)

= d
d/2

d2(d− 1)/2
, (J.27)

=
1

d− 1
, (J.28)

and finally we obtain the following bound

Eα(G, d) ⩽ (d− 1)E∥G⊺(
→
x0)y0∥2 = 1. (J.29)

K GOING BEYOND THE RANK CONDITION FOR MSGM SCALABILITY

The dense tensor of Appendix J imposes a computational complexity as O(d3). To scale up the
method, we shall consider sparse tensor G. However, the rank condition A2 makes it difficult to find
sparse tensors. Therefore, we here open the discussions to a weaker set of assumptions.

K.1 WEAKER ASSUMPTIONS

We recall here the two main assumptions of the paper

Skew-symmetry : For any k ∈ {1, . . . , d}, the matrix Gk = (Gk
i,j)i,j is skew-symmetric. (A1)

Rank condition : For any x ∈ Rd\{0}, rank(G(x)) = d− 1. (A2)

Note that the Fokker-Planck equation 3.4, Proposition F.2, Proposition F.1, and Theorem 3.4.1 re-
quire only the assumption A1. So, the backward SDE, ODE and score-matching loss are general
enough and do not prevent the use of sparse tensor G. In contrast, our current proof of the asymptotic
results Theorem 3.1.1, Theorem D.4.1, and Theorem 3.3.1 rely on the restrictive assumption A2, and
unfortunately, it seems difficult to find a sparse tensor G matching this assumption.

K.1.1 RANK CONDITION ALMOST EVERYWHERE

Therefore, we discuss here a weaker set of assumptions where the noise rank condition A2 is verified
for almost all x ∈ Rd only. This set of assumptions will yield a definition of a sparse tensor in
Appendix K.2.2 providing satisfactory numerical results in practice.

Skew-symmetry : For any k ∈ {1, . . . , d}, the matrix Gk = (Gk
i,j)i,j is skew-symmetric. (A1)

Rank condition almost everywhere: For almost all x ∈ Rd, rank(G(x)) = d− 1. (A3)

The assumption A3 means the set AG = {x ∈ Rd|G(x)) < d− 1} has zero Lebesgue measure, i.e.∫
AG

dx = 0. Obviously, the assumption A2 implies the assumption A3.

54



2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

The right-hand side of the Fokker-Planck equation 3.4 is a function of ∇⊥p∞ only. Hence, under the
weaker assumptions A1 and A3, rotational invariant distributions are still invariant measures of the
Fokker-Planck equation. Following the proof of Theorem D.2.1, we saw that the invariant density
is characterized by ∥G(x)⊺∇⊥p∞(x)∥ = 0 almost surely. So, if G(x) has rank d − 1 for almost
all x with respect to the Lebesgue measure, then this requires ∇⊥p∞(x) = 0 almost everywhere.
Therefore, the invariant measures of Fokker-Planck equation 3.4 must be rotational invariant almost
everywhere.

However, the existence and uniqueness of a classical solution (Lemma D.4.1) and the convergence
guaranties to the invariant distribution (Theorem D.4.1) need more careful analysis. We only sketch
some challenges involved, the full analysis will be carried out in a follow up work.

If the diffusion process enters the area of points x, such that rank(G(x)) < d− 1, one has to make
sure that the Diffusion process is not trapped in such an area, even if it has a measure zero. In
particular, let D ⊂ Sd−1 be defined as

D = {xn ∈ Sd−1 | rank(G(xn)) < d− 1}.

Then, we call D a trap set. If the process
→
x

n

s once ever entering D with positive probability, it cannot
leave D again, i.e.

P(→x
n

s ∈ D, ∀s ≥ s0|
→
x

n

s0 ∈ D) > 0.

Hence, in this case, convergence to the correct invariant measure has to ensure that the trap set
is not invariant under the diffusion-controlled dynamic. Such a analysis then sufficiently can be
implied by Hörmander / bracket-generating conditions, i.e. hypoellipticity analysis. Based on this, the
asymptotic results Theorem 3.1.1, Theorem D.4.1, and Theorem 3.3.1 must be adapted. In this case
we expect the convergence rate to the invariant distribution to be slower compared to the exponential
convergence rate obtained in the case of strong rank condition, see also Appendix K.3 for a related
discussion.

Although a detailed analysis of this research question is out of the scope of the current manuscript, we
want to stress its relevance related to the scalability of the proposed method for the high-dimensional
case. The standard construction via a random dense tensor G poses scalability problems. On the
other side, sparse tensors provide a tool to enable such scalability provided that they satisfy the
(weaker) rank conditions. While the non-local sparse tensor discussed in Appendix K.2.3, satisfy
the strong rank condition, the local sparse tensors from Appendix K.2.2 only satisfy the weak rank
conditions. Still, the latter have been applied in our numerical investigation for the high-dimensional
test cases with Particle Image Velocimetry measurements as discussed in Appendix M.7 yielding first
very promising results.

K.1.2 ITÔ TERM RANK CONDITION

Now, we discuss another weaker set of assumptions where the noise rank condition A2 is replaced by
an Itô drift rank condition. Although attractive, a detailed analysis in Appendix K.2.1 will lead us to
consider this set of assumptions as insufficient for the MSGM sampling procedure.

Skew-symmetry : For any k ∈ {1, . . . , d}, the matrix Gk = (Gk
i,j)i,j is skew-symmetric. (A1)

Itô term rank condition : the matrix S :=
1

2

d∑
k=1

(Gk)(Gk)⊺ is full rank (A4)

From Lemma D.1.1, we note that S = −∇∇ · Σ. Lemma D.1.2 gives the Itô forward diffusion
which can be expressed with S. The assumption A2 is not needed for these lemmas. These results
are true as long as the assumption A1 is verified. Taking the expectation of the Itô diffusion, we get:

d

ds
E→xs = −SE

→
xs. (K.1)

Instead of controlling the convergence of the full distribution ps, the assumption A4 controls the
convergence of the mean only. It leads to the following property justifying our assumption choice.
Proposition K.1.1. Let the assumption A1 holds. Then, the following assertions are equivalent

• The assumption A4 holds.
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• E[→xs|
→
x0] −→

s→∞
0.

• Var[
→
xs|
→
x0] −→

s→∞
∥→x0∥2.

Proof. S is positive semi-definite, so it is diagonalizable in an orthonormal basis, and from equa-
tion K.1, E→xs −→

s→∞
0 if and only if S is positive definite, i.e. the assumption A4 is verified.

Besides, by assumption A1, the norm ∥→xs∥ is conserved along the diffusion, so

Var[
→
xs|
→
x0]= ∥

→
xs∥2 − ∥E[

→
xs|
→
x0]∥2 = ∥→x0∥2 − ∥E[

→
xs|
→
x0]∥2 (K.2)

which converges to ∥→x0∥2 if and only if E[→xs|
→
x0] −→

s→∞
0.

We highlight the fact that the assumption A4 is weaker than the assumption A2 as stated
by Proposition K.1.2. It is actually a strictly weaker assumption since the tensors defined in
Appendix K.2.1 and Appendix K.2.2 respect assumption A4 but not assumption A2.
Proposition K.1.2. Let the assumption A1 holds. Then, the assumption A2 implies the assumption
A4.

Proof. If the assumption A2 holds, then, Theorem 3.3.1 implies that
→
xs

L−→
s→0

→
x∞ = ∥→x∞∥

→
x

n

∞.

The asymptotic latent direction,
→
x

n

∞, is independent of the initial condition
→
x0 and has zero mean.

Therefore,

E[→xs|
→
x0] −→

s→∞
E[→x∞|

→
x0] = E[∥→x∞∥

→
x

n

∞|
→
x0] = ∥

→
x0∥E[

→
x

n

∞|
→
x0] = ∥

→
x0∥E[

→
x

n

∞] = 0, (K.3)

and by Proposition K.1.1, the assumption A4 holds.

K.2 SPARSE TENSORS

Here we propose several possible choices of sparse tensors.

First, we will consider a simple low-rank tensor in Appendix K.2.1 and show that it makes the latent
distribution untractable. Then, we will introduce a sparse local tensor in Appendix K.2.2, which
is adapted to MSGM and leads to good generative skills in practice. Finally, we propose a sparse
nonlocal tensor in Appendix K.2.3 that involves more Brownian motions but meets the original
assumptions A1 and A2 of our paper.

K.2.1 LOW-RANK TENSOR

A simple choice of tensor with d2 = O(d2) non-zero coefficients would be to take d times the same
dense random skew-symmetric matrix G1 i.e.

Gk
i,j = G1

i,j =
1
2 (M

1
i,j −M1

j,i), (K.4)

M1
i,j

iid∼ N (0, 1). (K.5)

Appendix I.2 provides an analytic solution for the forward diffusion in this case. Such a solution
would be a strong advantage for our learning procedure, bypassing the need for numerical integration
of the forward diffusion, and enabling denoising score matching instead of sliced score matching.
However, Proposition K.2.1 below shows that there is a rank deficiency, probably inducing the
existence of non-rotation-invariant latent distribution, p∞, preventing MSGM sampling in practice.
Indeed, numerically illustrated in dimension d = 4, the analytic solution of Appendix I.2 shows a
latent distribution intractable in practice. The latent distribution is not rotation-invariant and does
depends on the initial direction distribution, pn0 . It seems to be a direct consequence of the rank
deficiency.

We conclude that low-rank tensors as in equation K.4 is not a suitable choice for MSGM. oreover, it
suggests that assumptions A1 and A4 as in Appendix K.1.2 are not sufficient for MSGM.
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Proposition K.2.1. If G is defined from equation K.4 and equation K.5, then, for any x ∈ Rd,
rank(G(x)) ⩽ 1. Assumption A1 is verified, assumptions A2 and A3 are not for d ⩾ 3, and
assumption A4 is verified almost surely if and only if the dimension d if even. Moreover, we have
S = d

2G
1(G1)⊺ and ES = d(d−1)

4 Id.

Proof. The tensor defined by equation K.4 and equation K.5 obviously matches the skew-symmetric
condition A1.

For odd dimension d, G1 – like all skew-symmetric matrix – is singular. Thus S is singular and even
the weak condition A4 is not satisfied.

For even d the polynomial p : Rd×d → R, M 7→ det( 12 (M −M⊤), which is non-zero since
there exists invertible skew-symmetric matrices. As a non-zero polynomial, the set {M ∈ Rd,d |
det(M −M⊤)} forms a proper algebraic variety with zero Lebesgue measure. Hence, since the
Gaussian distribution is absolutely continuous w.r.t. to the Lebesgue measure, it holds

P(det(G1) = 0) = 0, (K.6)

and so G1 is invertible with full rank with probability 1. Thus

S=
d

2
G1(G1)⊺. (K.7)

is positive definite. Therefore, A4 is verified for even dimension d.

However, for any d ⩾ 3, neither conditions A2 nor condition A3 is satisfied. Indeed, for any
x ∈ Rd\{0}, rank(G(x)) =rank[G1x, . . . ,G1x] ⩽ 1. This is expected since the diffusion involves
a single Brownian motion (see Appendix I.2).

Since the entries in M1 are independent standard normal Gaussian, we have V(G1
i,j) =

1
4 (V(M

1
i,j)+

V(M1
j,i) =

1
2 . Then, [G1(G1)⊤]ik =

d∑
j=1

G1
ijG

1
kj . Hence for i = k

E[[G1(G1)⊤]ik] =

d∑
j=1

E[(G1
ij)

2] =
∑
j ̸=i

1

2
=

d− 1

2
,

since G1
ii = 0. For i ̸= k, G1

ij and G1
kj involve independent entries of M1, leading to E[G1

ijG
1
kj ] = 0.

As a consequence

E[S] = d
2E[G

1(G1)⊤] =
d(d− 1)

4
Id ∈ Rd,d.

K.2.2 LOCAL SPARSE TENSOR

Let us define a tensor with only 2d = O(d) non-zero coefficients.

Gk
i,j =

{
1 if i = j − 1[d] = k
−1 if i− 1[d] = j = k
0 otherwise.

, 1 ⩽ i, j, k ⩽ d, (K.8)

with [d] stands for modulo d. It is built from a subset of the canonical basis of skew-symmetric
matrices, keeping only d matrices with most non-zero values close to the diagonal. It ensures a strong
sparsity and a local structure for x→ Gkx.

The skew-symmetry assumption A1 is obviously fulfilled from the definition K.8. However, the strict
rank condition assumption A2 is not in general. Fortunately, the assumptions A3 and A4 still hold. In
particular, the Itô term matrix simplifies as shown by the following proposition.

We implemented this version of sparse tensor. For small dimension applications in Appendix M.6.2
and Appendix M.6.1, it has been found to provide numerical results as good as the dense tensor im-
plementation (see Figures 29 and 43). For large dimension applications, dense tensor can complicate
or even prevent MSGM applications. There, we obtained satisfactory results with local sparse tensor
(see Figure 49 in Appendix M.6.2).

57



3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

Proposition K.2.2. If G is defined from equation K.8, then, for any x ∈ (R\{0})d, rank(G(x)) =
d− 1 Moreover, we have S = Id and the assumptions A1, A3, and A4 are verified.

Proof. For any x ∈ (R\{0})d, we have

G(x) =[G1x, . . . ,Gdx]=


x2 0 · · · 0 −xd

−x1 x3 · · · 0 0

0 −x2
. . .

...
...

...
...

. . . xd 0
0 0 · · · −xd−1 x1

 . (K.9)

To simplify notations, all the indices in this proof will be defined modulo d. For instance, xi+1 for
i = d stands for x1.

For any y ∈ Rd, G(x)Ty = 0 (∈ Rd) if and only if, for all i ⩽ d, xi+1yi − xiyi+1 = 0 and
yi+1 = xi+1

xi
yi. Finally,

yi = Πi−1
j=1

xi+1

xi
y1 =

xi

x1
y1. (K.10)

Therefore, y ∈ Rx. Reciprocally, we can verify that Rx ⊂ Ker(G(x)). We conclude that
rank(G(x)) = d− dim(Ker(G(x))) = d− 1.

To evaluate the matrix S, we note that
Gk =eke

⊺
k+1−ek+1e

⊺
k, (K.11)

with (ek)k the canonical basis of Rd. Then,

S = −1

2

∑
d
k=1(G

k)2, (K.12)

= −1

2

d∑
k=1

(eke
⊺
k+1−ek+1e

⊺
k)

2, (K.13)

= −1

2

d∑
k=1

(0− eke
⊺
k−ek+1e

⊺
k+1 + 0), (K.14)

=
1

2
(Id+Id), (K.15)

= Id. (K.16)

K.2.3 NON-LOCAL SPARSE TENSOR

We also propose another tensor with d(d− 1) = O(d2) non-zero coefficients.

Gk,k′

i,j =

{
1 if i− k′[d] = j = k
−1 if i = j − k′[d] = k
0 otherwise.

,
1 ⩽ i, j, k ⩽ d,
1 ⩽ k′ ⩽ ⌈d−12 ⌉,

(K.17)

where ⌈d−12 ⌉ is the least integer greater than or equal to d−1
2 . It is the canonical basis for skew-

symmetric matrices. It ensures a relative sparsity and encodes a non-local structure for x→ Gk,k′x.

Here, the sparse tensor G is of size d×d×d(d−1)/2 instead of d×d×d. Our theoretical framework
differs slightly. The forward diffusion involves d(d − 1)/2 one-dimensional Brownian motions.
Consequently, the neural network, aθ(x, s), approximating the scaled score, G(x)∇ log ps(x),
has d(d − 1)/2 coefficients. The size of the neural network parameters θ can increase and may
complicate the training procedure. An alternative could be to work with a neural network, sθ(x, s),
which approximates the true score,∇ log ps(x), having d coefficients only.

This choice of tensor meets all the assumptions, including A1 and A2 as proofed below. However,
because of the additional implementation complexity mentioned above, we postpone its numerical
evaluation to MSGM for future work.

58



3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

Proposition K.2.3. If G is defined from equation K.17, then, for any x ∈ Rd\{0}, rank(G(x)) =
d− 1 Moreover, we have S = Id and the assumptions A1, A2, A3, and A4 are verified.

Proof. For any x ∈ Rd\{0}, we have

G(x) =[G1,1x, . . . ,Gd,⌈ d−1
2 ⌉x] (K.18)

We already know that Im(G(x)) ⊂ x⊥ since x⊺G(x) = 0. Now we assume that y ∈ x⊥, and we
define

Q=
1

∥x∥2
(yx⊺−xy⊺). (K.19)

Applying on x, we get:

Qx=
1

∥x∥2
(y∥x∥2−xy·x) =y. (K.20)

Besides, (Gk,k′)k,k′ is the canonical basis of skew-symmetric matrices and Q is skew-symmetric so
there exists α ∈ R

d(d−1)
2 such that

Q =

⌈ d−1
2 ⌉∑

k′=1

d∑
k=1

αk,k′G
k,k′ (K.21)

and thus

y=Qx =

⌈ d−1
2 ⌉∑

k′=1

d∑
k=1

αk,k′G
k,k′x=G(x)α∈ Im(G(x)). (K.22)

We conclude that Im(G(x)) = x⊥ and rank(G(x)) = d− 1.

To evaluate the matrix S, we note that

Gk,k′ =eke
⊺
k+k′−ek+k′e

⊺
k, (K.23)

with (ek)k the canonical basis of Rd, and defining again all the indices modulo d.

S = −1

2

⌈ d−1
2 ⌉∑

k′=1

d∑
k=1

(Gk,k′)2, (K.24)

= −1

2

⌈ d−1
2 ⌉∑

k′=1

d∑
k=1

(
eke

⊺
k+k′−ek+k′e

⊺
k

)2
, (K.25)

= −1

2

⌈ d−1
2 ⌉∑

k′=1

∑
d
k=1(0−eke

⊺
k−ek+k′e

⊺
k+k′ + 0), (K.26)

=
1

2
(Id+Id), (K.27)

= Id. (K.28)

K.3 DISCUSSION ABOUT LOCAL AND NON LOCAL STRUCTURE

The random tensor of Appendix J and the large sparse tensor of Appendix K.2.3 may be interpreted
as non-local since x→ Gkx changes coefficients xi of x which are not sorted next to each other in
x. For large dimension d, we believe that this can accelerate the convergence in comparison with
local tensors, like the sparse tensor of Appendix K.2.2 or a discretized version of transport noise
SPDEs. Indeed, for local dynamics the randomness may take time to spread by going from one
coefficient to the next whereas in non-local dynamics the randomness can spread directly in the whole
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state space at each time step. Our preliminary numerical results (not shown) seems to confirm this
intuition. oreover, the stronger theoretical properties of those non-local tensors – rank condition A2
and thus exponential convergence of the distribution – also tends to confirm our conjecture. However,
diffusion models in large dimension strongly rely on the powerful skills of convolutional neural
networks (CNN), which have – up to attention layers – an intrinsic local structures. Accordingly, it
may be difficult for a CNN to learn how to denoise a non-local noising process. More theoretical and
experimental works would be needed to confirm this intuition. This is out of the scope of this already
lengthy paper and is currently under investigation by the authors.

L NUMERICAL SCHEME

L.1 NUMERICAL INTEGRATION OF SDES

L.1.1 STOCHASTIC RUNGE-KUTTA METHOD FOR STRATONOVICH SDES

We consider the Stratonovich stochastic differential equation (SDE):

dxt = fS(t,xt) dt+ G̃(t,xt) ◦ dBt, (L.1)

where fS : R × Rd → Rd is the drift, G̃ : R × Rd → Rd×m is the diffusion term, and Bt is an
d-dimensional Wiener process.

The following Runge-Kutta (RK) method (Kloeden et al., 1992) approximates the solution xn+1 ≈
x(tn+1) over the interval [tn, tn+1], with time step ∆t = tn+1 − tn and Wiener increment ∆Bn =
Btn+1 −Btn :

K1 = fS(tn,xn)∆t+ G̃(tn,xn)∆Bn, (L.2)

K2 = fS

(
tn +

∆t

2
,xn +

K1

2

)
∆t+ G̃

(
tn +

∆t

2
,xn +

K1

2

)
∆Bn, (L.3)

K3 = fS

(
tn +

∆t

2
,xn +

K2

2

)
∆t+ G̃

(
tn +

∆t

2
,xn +

K2

2

)
∆Bn, (L.4)

K4 = fS(tn +∆t,xn +K3)∆t+ G̃(tn +∆t,xn +K3)∆Bn, (L.5)

xn+1 = xn +
1

6
(K1 + 2K2 + 2K3 +K4). (L.6)

This method leverages the structure of Stratonovich SDEs and their differential geometry properties.
It is particularly well-suited to our SDE equation 3.1 with skew-symmetric noise and no Stratonovich
drift.

L.1.2 RENORMALISATION

Both our forward SDE equation 3.1 and backward SDE equation 2.2 preserve the solution norm
∥xt∥. However, even the above Runge Kutta discretization can break this symmetry. To enforce it
numerically, we normalize after each time step.

The final integration scheme is summarized in Algorithm 2. Here, we highlight the differences
compared to the classical RK4 in color. Note that the optional of normalization in line 10 of the
Algorithm is relevant only for MSGM but not for SGM.

L.2 SCHEDULING

In order to enable both a sufficient statistical convergence of the forward SDE at time s = T and a
convenient time step, we implemented a time scheduling for both SGM and MSGM. We first recall
the basic principle of scheduling in continuous time, then propose a method for MSGM, and finally
discuss the theoretical consequences.
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Algorithm 2: SRK4 for conservative Stratonovich SDEs with renormalization.

Input: Integration time T , number of time step NT , initial condition x0, drift fS , diffusion G̃
1: ∆t← T

NT
; {Time step}

2: for n = 0 to NT − 1 do
3: ∆Bn ∼ N (0,∆t Id) {Wiener increment}
4: tn ← n∆t
5: K1 ← fS(tn,xn)∆t + G̃(tn,xn)∆Bn

6: K2 ← fS

(
tn + ∆t

2 , xn + K1

2

)
∆t + G̃

(
tn + ∆t

2 , xn + K1

2

)
∆Bn

7: K3 ← fS

(
tn + ∆t

2 , xn + K2

2

)
∆t + G̃

(
tn + ∆t

2 , xn + K2

2

)
∆Bn

8: K4 ← fS(tn +∆tn, xn +K3)∆t + G̃(tn +∆tn, xn +K3)∆Bn

9: x̃n+1 ← xn + 1
6 (K1 + 2K2 + 2K3 +K4) {Classical RK4 blend}

10: xn+1 ←
∥x0∥
∥x̃n+1∥

x̃n+1 {Optional step : Enforce ∥xn+1∥ = ∥x0∥)}

11: end for
12: return xNT

{Approximation of xT }

L.2.1 USUAL SCHEDULING

In continuous time (Song et al., 2021), a convenient way is to make a change of variable, replacing
the time s by

z(s) =

∫ s

0

g2(s′)ds′. (L.7)

with

g2(s) =
1

2
β(s) =

1

2

(
βm + (βM − βm)

s

T

)
, (L.8)

and βM > βm > 0. We first describe the hyperparameters values chosen in our numerical experiments
and then explain how scheduling affects SGM and MSGM theories.

Since we built our code from an existing one (https://github.com/CW-Huang/
sdeflow-light,Huang et al. (2021)), by default we choose the values provided there for SGM
scheduling: βm = 0.1 and βM = 20. We expect these values to be already finely tuned and we have
verified that this couple of values gives indeed better results than many other choices (not shown).
We believe that these default values of the SGM hyperparameters enable a fair comparison to MSGM.
For some test cases, we found another SGM scheduling that works better and we use it instead. All
scheduling hyperparameters are provided in the tables summarizing test cases in Appendix M.

For small time s, the time remapping is linear : g2(s) ∼
s→0

1
2βm and z(s) ∼

s→0

1
2βms whereas for

large time, g2(s) ∼
s→T

1
2βM and using the Taylor expansion around T , yielding

z(s) = z(T ) + z′(t)(s− T ) + o(s− T ),

we find that

z(s) =
1

2

(
βm +

1

2
(βM − βm)

s

T

)
s, (L.9)

=
1

2

(
βM + βm

2
T + βM (s− T )

)
+ o

s→T
(s− T ), (L.10)

−→
s→T

βM + βm

4
T. (L.11)

As such, SGM forward and backward SDEs become:

d
→
xs = −g2(s)→xsds+

√
2g(s)d

→
Bs, (L.12)

d
←
xt = g2(T − t)

←
xtdt+

√
2g(T − t)

(
aθ(T − t,

←
xt)dt+ ◦d

←
Bt

)
, (L.13)
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where aθ(T−t,
←
xt) approximates

√
2g(T−t)∇ log pT−t(

←
xt). The backward SDE can be integrated

with the Stochastic Runge-Kutta Algorithm 2 where

fS(t,
←
xt) = g2(T − t)

←
xt +

√
2g(T − t)aθ(T − t,

←
xt) and G̃(t,

←
xt) =

√
2g(T − t). (L.14)

L.2.2 SCHEDULING FOR MSGM

We propose a similar scheduling for MSGM. Scheduled forward and backward SDEs write:

d
→
xs = g(s)G(

→
xs) ◦ d

→
Bs, (L.15)

d
←
xt = g(T − t)G(

←
xt)

(
aθ(T − t,

←
xt)dt+ ◦d

←
Bt

)
, (L.16)

where aθ(T − t,
←
xt) approximates g(T − t)G(

←
xt)

⊺∇ log pT−t(
←
xt). Numerically, following Algo-

rithm 2 we can integrate the forward SDE with

fS(s,
→
xs) = 0 and G̃(s,

→
xs) = g(s)G(

→
xs), (L.17)

and the backward SDE with

fS(t,
←
xt) = g(T − t)G(

←
xt)aθ(T − t,

←
xt) and G̃(t,

←
xt) = g(T − t)G(

←
xt). (L.18)

L.2.3 THEORETICAL RESULTS

We can verify that our theoretical results remain under this time scheduling. The new Fokker-Planck
equation is

∂

∂s
ps = ∇⊥ ·

(
1
2g

2(s)Σ(x)∇⊥ps(x)
)
. (L.19)

which can be rewritten as
∂

∂s
pgs = ∇⊥ ·

(
1
2Σ(x)∇⊥pgs(x)

)
. (L.20)

pgs = pz(s). (L.21)

Besides, for 0 ≤ s′ ≤ z(T ) for βM > βm Taylor expansion at s′0 = βM+βm

4 T yields

z−1(s′) =
−βmT +

√
β2
mT 2 + 4T (βM − βm)z

βM − βm
(L.22)

= T +
2

βM
(s′ − s0)

(
1 + o

s′→s′0

(1)

)
, (L.23)

−→
s′→s′0

T. (L.24)

Therefore, from the convergence of pgs (already proofed) we have the convergence of ps′ = pgz−1(s′).
The rate of convergence is still exponential:

∥ps′ − p∞∥2L2(Rd) = ∥pgz−1(s′) − p∞∥2L2(Rd), (L.25)

⩽ ∥pgz−1(0) − p∞∥2L2(Rd) exp(−α(G, d)z−1(s′)), (L.26)

= ∥p0 − p∞∥2L2(Rd) exp (−α(G, d)T ) (L.27)(
1− α(G, d)

βM/2

(
s′ − βM + βm

4
T

)(
1 + o

s′→ βM+βm
4 T

(1)

))
.

Besides the ELBO remains valid :

p0(x) ⩾ E∞(x) := E
[
log p0(

→
xT )

∣∣→x0 = x
]

(L.28)

−
∫ T

0

E→
xs

[
1
2∥aθ(

→
xs, s)∥2 +∇ · (g(s)G(

→
xs)aθ(

→
xs, s))

∣∣∣∣→x0 = x

]
ds.
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L.3 LOSS EVALUATION

Following the existing code (https://github.com/CW-Huang/sdeflow-light,Huang
et al. (2021)), we sample final integration time s of the forward SDEs uniformly on [tϵ, T ] with T = 1
with tϵ small. According to Theorem 3.4.1, we consider the following SSM loss:

LSSM(θ) = Ê→
x0

Ês∼U [tϵ,T ]Ê→xs|
→
x0

Êvs∼Rad(d)LSSM(s,
→
xs, gG,aθn

, vs), (L.29)

with

LSSM(s,x, gG,aθn
,v) = 1

2∥aθ(x, s)∥2 + (v · ∇)(g(s)G(x)aθ(x, s)) · v, (L.30)

where Ê is the averaged over the generated samples. Each training sample
→
x0 of a batch is chosen

randomly among the train set. For each of them, we sample one time s, one solution
→
xs, and one

slicing direction vs ∼ Rad(d).

For SGM, we take G =
√
2 in the above expressions and following Song et al. (2021), the solution

→
xs of the SGM scheduled forward SDE equation L.12 is

→
xs = exp(− 1

2z(s))
→
x0 +

√
1− exp(−z(s))→x∞, (L.31)

where z(s) :=
∫ s

0
g2(s′)ds′ is given by equation L.9,

→
x0 is chosen randomly among the train set and

→
x∞ ∼ N (0, Id).

Unfortunately, to evaluate the MSGM loss, we cannot apply the same methodology, since, for d > 2
we are not aware of an analytic expression for the solution of the MSGM forward SDE, neither
with nor without scheduling (equation L.15 and equation 3.1 respectively). We integrate that SDE
numerically with the stochastic Runge-Kutta method with renormalization (see Appendix L.1.1 and
Appendix L.1.2). Through this integration, we have to compute the solution

→
xsk for many time steps

sk := kT/NT ∈ [0, T ]. Instead of sampling a random continuous time s ∼ U([tϵ, T ]), we choose a
random discrete time as follow

s ∼ U(I(tϵ, T )) with I(tϵ, T ) = {sk|sk = k T
NT

, k ∈ {1, . . . , NT }, sk ⩾ tϵ}. (L.32)

The numerical integration of the forward SDE implies a larger computational cost compared to
SGM. Therefore, as explained in Appendix M.3, for fair comparisons between SGM and MSGM, the
number of ADAMS iterations will be smaller.

For two-dimensional test cases, we could have used the analytic example of Appendix I to integrate
the forward MSGM SDE. However, we prefer to propose and analyze an algorithm that is not tied to
the dimension 2. So, we perform all our numerical experiments with the same algorithm whatever
the dimension. SGM forward equation is integrated analytically, whereas the MSGM is integrated
numerically.

L.4 NEURAL NETWORK ARCHITECTURE

L.4.1 SPHERICAL DECOMPOSITION AS AN INPUT LAYER

In line with our spherical decomposition equation 3.6, we add a fixed input layer to the network used
in MSGM:

aθ(x, s) = ãθ (x/∥x∥ϵ, log ∥x∥ϵ, s) , with ∥x∥ϵ := ∥x∥+ ϵ. (L.33)

The geometrical interpretation of Appendix H.3 also suggests that form.

For SGM, if not stated otherwise, we use a default architecture:

aθ(x, s) = ãθ(x, s). (L.34)

L.5

L.4.1 NETWORK ARCHITECTURE FOR LOW-DIMENSIONAL TEST CASES (MLP)

Following the existing code (https://github.com/CW-Huang/sdeflow-light,Huang
et al. (2021)), we parameterize the vector field ãθ : Rd̃ × R→Rd (d̃ = d or d+ 1) with a 4-layer
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MLP conditioned on an index t ∈ R by concatenation. Let H = 128 be the hidden width. For input
x ∈ Rd̃, we form h0 = [x; t] ∈ Rd̃+1 and compute

h1 = swish(W1h0 + b1), W1 ∈ RH×(d̃+1),

h2 = swish(W2h1 + b2), W2 ∈ RH×H ,

h3 = swish(W3h2 + b3), W3 ∈ RH×H ,

y = W4h3 + b4, W4 ∈ Rd×H ,

with (swish(z))i = zi σ(zi) and σ the logistic sigmoid. We set ãθ(x, t) = y ∈ Rd. No residual
connections, normalization, or dropout are used. Table 1 summarizes the hyperparameters of this
default architecture.

Table 1: MLP architecture hyperparameters.

Hyperparameter Value

Input dimension d̃ = d or d+ 1
Index dimension 1
Hidden width 128
Depth 3 hidden layers
Activation Swish (x 7→ xσ(x))
Output dimension d
Output layer Linear
Residual connections None
Normalization / Dropout None

L.4.2 NETWORK ARCHITECTURE FOR HIGH-DIMENSIONAL TEST CASES (UNET FOR 32× 32
VORTICITY FIELDS)

For high-dimensional experiments of Appendix M.6.2, we model the score field ãθ(x, t) using a 2D
UNet operating on images x′ of size H ×W representing vorticity snapshots (H = W = 16 or 32).
Some part of our algorithm was built for vectors rather than images. So depending on the portion of
the algorithm, images x′ ∈ R1×H×W are reshaped into vectors x ∈ Rd with d = HW or vectors
are reshaped as a one–channel images x′ ∈ R1×H×W .

Optional spherical premodule. When enabled, we apply the spherical decomposition of
Appendix L.4.1:

(xn
ϵ , log ∥x∥ε) = NormalizeLogRadius(x), xn

ϵ =
x

∥x∥ε
.

The normalized field xn
ϵ is passed to the UNet, while log ∥x∥ε is embedded through a small MLP and

added to the temporal embedding, giving a conditioning mechanism analogous to the time embedding
of diffusion models.

UNet backbone. The core architecture follows the DDPM UNet of Dhariwal & Nichol (2021): a
fully convolutional encoder–decoder with skip connections, residual blocks, and optional attention at
intermediate resolutions. We use one input channel and one output channel (vorticity). Let C0 denote
the base width. The feature width at resolution level k is C0mk where C0 is the base channel width
and mk is the channel multiplier.

The UNet receives (x, t) (and optionally log ∥x∥ϵ) and computes:

ãθ(x, t) = UNetθ(reshape(x), Emb(t) + Emblog(log ∥x∥ϵ)) ,

followed by flattening back to dimension d if needed.

This UNet is used as a drop-in replacement for the small-dimensional MLP of Appendix L.4.1,
enabling MSGM/SGM to scale to image-like vorticity fields up to dimension d = 1024.
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Table 2: UNet architecture hyperparameters.

Component Setting
Input / output channels 1
Input resolution H = W ∈ {16, 32}
Base channels width C0 32
Channel multipliers (1, 2, 4)
Residual blocks per stage 2
Attention resolutions 8× 8 and 4× 4 (for 16× 16 input)
Activation SiLU
Time embedding sinusoidal + MLP
Log-norm conditioning optional MLP added to time embedding
Dropout 0
Upsampling / downsampling convolutional
Output 1-channel vorticity field

M DETAILS ABOUT OUR NUMERICAL EXPERIMENTS

We will show that – for comparable training time – MSGM can generate distribution of better quality
than SGM when data distribution tails are heavy or close to being heavy. For distributions with lighter
tails such as Gaussian ones, SGM and MSGM produce similar results, except for a small number of
backward time steps where SGM can become unstable. MSGM is more robust in this aspect.

Our code can be found here: https://anonymous.4open.science/r/
MSGM-submission-6E1E and the preprocessed vorticity data we used in Appendix M.7
can be found here: https://anonymous.4open.science/r/MSGM-data-6E64.

M.1 TEST CASES

We will illustrate MSGM and compare it to SGM through different test cases. We first consider four
examples sampled from known distributions: the Swiss roll, a multidimensional Gaussian distribution,
and the multidimensional Cauchy distribution with and without correlations. Then, we will address
the experimental fluid dynamics data. For each test case, a table summarizes the nominal parameters
used in the experiments (see tables 3, 4, 5, 6, and 7). All are performed on CPU. In addition, we
additional cover a high-dimensional application with imagine processing, see section Appendix M.7
with a GPU A40 NVL with 48 Go of VRAM.

M.2 DATA PREPROCESSING

The data set and distribution are centered before processing. For SGM, data sets are renormalized,
component by component, by their estimated standard deviations. This preconditioning can signifi-
cantly reduce the number of conditioning of the covariance of the data set, and therefore facilitate the
SGM (Guth et al., 2022). Generated data are then re-scaled for plots and other post-processings. For
MSGM, it is not necessary and may even be counterproductive for conservative dynamical systems.
In fact, it changes the definition of energy ∥→x0∥2. The modified energy has no physical meaning. It
may have a very different distribution, possibly much less relevant for the data structure. So, we do
not renormalize the data set before training MSGM.

M.3 COMPARISON STRATEGY

We will perform different qualitative visual comparisons with pairplots and quantitative assessment
with Maximum Mean Discrepancy (MMD) (Gretton et al., 2012). Given two ensembles X = (x(i)) ∈
(R)N and Y = (y(i)) ∈ (R)N samples of random variables X and Y respectively, we define
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Table 3: Swiss roll test case: parameters of the nominal numerical experiments.

Parameter SGM MSGM
Dimension d 2 2
Number of used training data points (M ) 220 × 256 220 × 256
Number of test data points 104 104

Reference number of ADAMS steps 220 220

Number of ADAMS steps (Niter) 220 220

CPU time / ADAMS steps (in ms) 4 3
Batch size 256 256

Number of time steps (forward) Nf
T 1 16

Number of time steps (backward) N b
T 16 16

βmin 0.1 0.1
βmax 20 20
tε 10−3 10−3

Learning rate 10−3 10−3

Neural network architecture default spherical (equation L.33)

MD (MMD(train)= 0.9× 10−2) 1.9× 10−2 0.9× 10−2

MMD(x, y) as:

MMD2(X,Y) =
1

N2

N∑
i,j=1

(
k(x(i), x(j))− 2k(x(i), y(j)) + k(y(i), y(j))

)
, (M.1)

k(u, v) = exp(−∥u− v∥2). (M.2)

If Xtest is the test set and Xgen our generated ensemble, MMD(Xtest,Xgen) is a metric of the precision
of our generated ensemble and hence our AI generative algorithm. A small MMD means close distribu-
tions. However, MMD is a relative metric. So we compare MMD(Xtest,Xgen

SGM), MMD(Xtest,Xgen
MSGM)

and MMD(Xtest,Xtrain) where Xgen
SGM and Xgen

MSGM are generated from SGM and MSGM respectively,
and Xtrain is the train set. MMD(Xtest,Xtrain) provides a reference MMD, encoding in particular
possible distribution shifts between the train and the test sets.

The numerical integration of the MSGM forward SDE is an additional significant computational cost
compared to SGM, and hence a slower training procedure. This cost scales linearly in NT due to
the "for" loop in time. Empirically, it appears to scale as ζ =

√
d Nt/2

4 (not shown), probably due
to the vectorized d × d × d tensor products involved in each integration time step. In most of the
numerical experiments below, Nt = 24 and thus ζ =

√
d. The SGM iteration steps are ζ times faster

than the MSGM iteration steps. Consequently, the number of iterations for the SGM is max(1, ⌊ζ⌋)
times larger than the number of iterations for the MSGM. As such, we can compare the results of
SGM and MSGM at a similar training cost. By convention, we take the number of iterations for SGM
as a reference and refer to it as the reference number of iterations. Summary tables 3, 4, 5, 6, and
7) provide the values for the reference number of iterations, the true number of iterations, and the
execution time per ADAMS step.

M.4 SWISS ROLL

We first illustrate our method with the Swiss roll distribution. It is a simple two-dimensional
distribution: https://homepages.ecs.vuw.ac.nz/~marslast/Code/Ch6/lle.py.
Its curved shape makes it difficult to grasp by linear Gaussian approaches. Both MSGM and SGM
mimic the Swiss roll distribution well, as illustrated by the pairplot 8. However, the diffusion
distribution ps differs from Figure 9 to Figure 10. In particular, latent distributions are completely
different. Figure 11 illustrates the convergence of the SGM and MSGM approaches as a function of
the reference number of ADAMS iterations and as a function of number of time steps for integrating
the backward SDE. The precision of each sampler is quantified through MMD and the confidence
intervals of MMD are estimated from the samples of 10 MMD.
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Figure 8: Pair plots of generated data (orange dots) compared to ground truth data (blue dots) with
the SGM (left) and MSGM (right) for Swissroll data. On the diagonal, log-histogram of ground truth
data (continuous blue line) and logarithm of the pdf KDE estimation of generated data (orange line)
are superimposed.

Figure 9: Evolution of the solution log-pdf log(ps(x1, x2)) of SGM forward SDE (top) and backward
SDE (bottom) for Swiss roll data.

Figure 10: Evolution of the solution log-pdf log(ps(x1, x2)) of MSGM forward SDE (top) and
backward SDE (bottom) for Swiss roll data.

Figure 11: Convergence of MMD (mean and 80% confidence interval) for Swiss roll distribution as a
function of reference number of ADAMS iterations (left) and as a function of number of time steps
for integrating the backward SDE (right).
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Figure 12: Pair plots of generated data (orange dots) compared to ground truth data (blue dots) with
the SGM (left) and MSGM (right) with 8 time steps backward for a vector of 4 correlated Gaussian
variables, among 16 correlated Gaussian variables used for training. On the diagonal, log-histogram
of ground truth data (continuous blue line), and logarithm of the pdf KDE estimation of generated
data (orange line) are superimposed.

M.4.1

M.5 ANISOTROPIC GAUSSIAN DISTRIBUTION

Table 4: Gaussian test case: parameters of the nominal numerical experiments.

Parameter SGM MSGM
Dimension d 16 16
Number of used training data points (M ) 1048576× 256 262144× 256
Number of test data points 104 104

Reference number of ADAMS steps 220 220

Number of ADAMS steps (Niter) 220 = 1048576 262144
CPU time / ADAMS steps (in ms) 3 23
Batch size 256 256

Number of time steps (forward) Nf
T 1 16

Number of time steps (backward) N b
T 16 16

βmin 0.1 0.1
βmax 20 20
tε 10−3 10−3

Learning rate 10−3 10−3

Neural network architecture default spherical (equation L.33)

MD (MMD(train)=1.5× 10−2) 11× 10−2 2.5× 10−2

For a complete numerical analysis, we compare SGM and MSGM on correlated Gaussian data
x0 ∼ N (0,AAT ), with a fixed matrix, A, initialized with i.i.d. coefficients Ai,j∼N (0, 1). For 32
time steps backward, the pairplots in Figures 12, 13, and 14 present similar generative skills, but for
8 or 16 time steps backward, only MSGM gives good results. For 8 time steps backwards, MSGM
still provides a good distribution, whereas the SGM backward SDE completely diverges. Figures 15,
16, and 17 also highlight this and show that the converged dynamics of the pdf ps differs between
SGM and MSGM. Figure 18 also confirms that MSGM converges faster with the number of time
steps, and is generally more stable.
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Figure 13: Pair plots of generated data (orange dots) compared to ground truth data (blue dots) with
the SGM (left) and MSGM (right) with 16 time steps backward for a vector of 4 correlated Gaussian
variables, among 16 correlated Gaussian variables used for training. On the diagonal, log-histogram
of ground truth data (continuous blue line), and logarithm of the pdf KDE estimation of generated
data (orange line) are superimposed.

Figure 14: Pair plots of generated data (orange dots) compared to ground truth data (blue dots) with
the SGM (left) and MSGM (right) with 32 time steps backward for a vector of 4 correlated Gaussian
variables, among 16 correlated Gaussian variables used for training. On the diagonal, log-histogram
of ground truth data (continuous blue line), and logarithm of the pdf KDE estimation of generated
data (orange line) are superimposed.
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Figure 15: Evolution of the solution log-pdf log(ps(x1, x2)) of SGM forward SDE (top) and backward
SDE (bottom, with 8 time steps) for Gaussian data.

Figure 16: Evolution of the solution log-pdf log(ps(x1, x2)) of SGM forward SDE (top) and backward
SDE (bottom, with 32 time steps) for Gaussian data.

Figure 17: Evolution of the solution log-pdf log(ps(x1, x2)) of MSGM forward SDE (top) and
backward SDE (bottom, with 16 time steps) for Gaussian data.
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Figure 18: Convergence of MMD (mean and 80% confidence interval) for the Gaussian data as
a function of number of time steps for integrating the backward SDE N b

T (top), as a function of
reference number of ADAMS iterations (middle) for N b

T = 8 (left) and N b
T = 32 (right), and as a

function of dimension (bottom) for N b
T = 8 (left) and N b

T = 32 (right).
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M.6 MULTIVARIATE CAUCHY DISTRIBUTION

Cauchy distributions are worst-case heavy-tail distributions in the sense that they do not have finite
moments. Still, they appear in applications of hydrology, e.g. annual maximum one-day rainfalls and
river discharges. Consequently, we analyze the expressivity of MSGM in this extreme case. Note that
due to the absence of finite moments, convergence in common metrics such as Wasserstein-p or total
variation is not well defined.

M.6.1 VECTOR OF INDEPENDENT CAUCHY VARIABLES

Table 5: Vector of independent Cauchy variables: parameters of the nominal numerical experiments.

Parameter SGM MSGM
Dimension d 2 2
Number of used training data points (M ) 220 × 256 209715× 256
Number of test data points 105 105

Reference number of ADAMS steps 220 220

Number of ADAMS steps (Niter) 220 = 1048576 209715
CPU time / ADAMS steps (in ms) 3 27
Batch size 256 256

Number of time steps (forward) Nf
T 1 64

Number of time steps (backward) N b
T 128 128

βmin 0.1 0.1
βmax 20 0.4
tε 10−3 10−3

Learning rate 10−3 10−3

Neural network architecture default spherical (equation L.33)

MD (MMD(train)=2.8× 10−3) 7.5× 10−3 3.3× 10−3

We first illustrate our method with a vector of independent Cauchy variables: x0 = xCa with xCa
defined by equation 6.2 with scale parameter γ = 1/50. As expected, Figure 19 and Figure 20
confirm that SGM does not reproduce fat tails unlike MSGM. oreover, SGM misaligns the far data
points that have the coordinate x1 < −3. An explanation of the superior skills is the similarity
between the data distribution and the latent distribution in MSGM: a property not shared by SGM, as
illustrated in Figures 21 and 22.

Figure 19 compares MSGM with fast scheduling (βm = 0.1, βM = 0.4) and a neural network
architecture based on spherical decomposition equation L.33 with SGM with default scheduling
(βm = 0.1, βM = 20) and default neural network architecture. For a fair comparison of MSGM,
we complement our numerical analysis with Figures 23-27: we test SGM with fast and default
schedulings, and with both spherical-decomposition-based and default network architectures. This
fast scheduling seems not adapted to SGM, making the sample generation highly inaccurate in
the pairplot of Figure 24. In contrast, the network architecture with spherical decomposition does
improve the SGM sampling procedure, especially for distribution tails. However, even with this
architecture, SGM remains less efficient than MSGM. First, the estimated tail is less clean. Secondly,
the samples generated far are not properly aligned with the test samples, especially for x2 < −3.
Third, outside the x1 and x2 axes, SGM generates too few samples close to the origin (say points x
with ∥x∥ 1

2
> 2 and ∥x∥1 < 2).

For Cauchy distributions, we still compare MMD values. However, it is not well defined mathe-
matically and is hardly relevant numerically. Indeed, the Gaussian kernel structure of the MMD is
probably not adapted to samples that are so far from each other. In our experiments, we used 104

samples to compute an approximate MMD. Other quantities of interest can also be utilized, such
as the survival function t 7→ P(∥x∥ > R), illustrated in Figure 20. As expected MSGM clearly
outperforms SGM on this metric. Indeed by construction our learning method is robust in terms of
the radial distribution ∥x∥ obtained directly from the data and not after the noising process. This is
valid since the norm distribution does not change in time due to equation 3.7.
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Figure 19: Pair plots of generated data (orange dots) compared to ground truth data (blue dots) with
the SGM (left) and MSGM (right) for a vector of two independent Cauchy variables. On the diagonal,
log-histogram of ground truth data (continuous blue line), theoretical log-pdf (dashed blue line), and
logarithm of the pdf KDE estimation of generated data (orange line) are superimposed.

Figure 20: Survival function of generated data (orange line) compared to ground truth data (blue line)
with the SGM (left) and MSGM (right) for a vector of two independent Cauchy variables.

Figure 21: Evolution of the solution log-pdf log(ps(x1, x2)) of MSGM forward SDE (top) and
backward SDE (bottom) for a vector of two independent Cauchy variables, with fast scheduling:
βm = 0.1, βM = 0.4 and our neural network architecture based on spherical decomposition
equation L.33.
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Figure 22: Evolution of the solution log-pdf log(ps(x1, x2)) of SGM forward SDE (top) and backward
SDE (bottom) for a vector of two independent Cauchy variables, with default scheduling: βm = 0.1,
βM = 20 and default neural network architecture.

Figure 23: Generated data (orange lines and dots) compared to ground truth data (blue lines and dots)
with the MSGM (top left corner) and the SGM (bottom) for two-dimensional Cauchy distribution.
SGM plots correspond to a default scheduling: βm = 0.1, βM = 20. Left plots correspond to our
neural network architecture based on spherical decomposition equation L.33 whereas the right plot
correspond to default neural network architecture. On the diagonal, log-histogram of ground truth
data (continuous blue line), theoretical log-pdf (dashed blue line), and logarithm of the pdf KDE
estimation of generated data (orange line) are superimposed.
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Figure 24: Generated data (orange lines and dots) compared to ground truth data (blue lines and
dots) with the SGM for two-dimensional Cauchy distribution. Plots correspond to a fast scheduling:
βm = 0.1, βM = 0.4. The left plot corresponds to our neural network architecture based on spherical
decomposition equation L.33 whereas right plot corresponds to default neural network architecture.
On the diagonal, log-histogram of ground truth data (continuous blue line), theoretical log-pdf (dashed
blue line), and logarithm of the pdf KDE estimation of generated data (orange line) are superimposed.

Figure 25: Evolution of the solution log-pdf log(ps(x1, x2)) of SGM forward SDE (top) and backward
SDE (bottom) for a vector of two independent Cauchy variables, with default scheduling: βm = 0.1,
βM = 20 and our neural network architecture based on spherical decomposition equation L.33.

Figure 26: Evolution of the solution log-pdf log(ps(x1, x2)) of SGM forward SDE (top) and backward
SDE (bottom) for a vector of two independent Cauchy variables, with fast scheduling: βm = 0.1,
βM = 0.4 and default neural network architecture.
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Figure 27: Evolution of the solution log-pdf log(ps(x1, x2)) of SGM forward SDE (top) and backward
SDE (bottom) for a vector of two independent Cauchy variables, with fast scheduling: βm = 0.1,
βM = 0.4 and our neural network architecture based on spherical decomposition equation L.33.

Figure 28: Survival function of generated data (orange line) compared to ground truth data (blue line)
with the SGM (left) and MSGM (right) for a vector of 4 correlated Cauchy variables.

M.6.2 VECTOR OF CORRELATED CAUCHY VARIABLES

Table 6: Vector of correlated Cauchy variables: parameters of the nominal numerical experiments.

Parameter SGM MSGM
Dimension d 4 4
Number of used training data points (M ) 220 × 256 220 × 256
Number of test data points 105 105

Reference number of ADAMS steps 220 220

Number of ADAMS steps (Niter) 220 220

CPU time / ADAMS steps (in ms) 3 45
Batch size 256 256

Number of time steps (forward) Nf
T 1 128

Number of time steps (backward) N b
T 128 128

βmin 0.1 0.01
βmax 20 1
tε 10−4 10−4

Learning rate 10−3 10−3

Neural network architecture default spherical (equation L.33)

MD (MMD(train)=3.5× 10−3) 11.2× 10−3 5.2× 10−3

To address dimensionality issues, we consider the correlated Cauchy variables already presented
in Section 6.1. In terms of survival function, MSGM is as expected more accurate than SGM (see
Figure 28).
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Figure 29: Generated data (orange lines and dots) compared to ground truth data (blue lines and
dots) with the MSGM (top) with dense tensor G (top left corner), with sparse local tensor G
(top right corner), and the SGM (bottom) for a vector of 4 correlated Cauchy variables. SGM
correspond to a default scheduling: βm = 0.1, βM = 20. Left and top plots correspond to our neural
network architecture based on spherical decomposition equation L.33 whereas the right bottom plot
corresponds to default neural network architecture. On the diagonal, log-histogram of ground truth
data (continuous blue line), and logarithm of the pdf KDE estimation of generated data (orange line)
are superimposed.

As for independent Cauchy variables, we present complementary numerical experiments with different
scheduling and different neural network architectures in Figures 29 and 30. Figures 31-35 unveil the
corresponding diffusion dynamics from s = 0 to s = T and from t = 0 to t = T . Again, the neural
network architecture based on spherical decomposition significantly improves the SGM generative
skills but MSGM remains a more efficient sampler. Not all the branches of the star-like pdf are well
sampled and, outside the branches, the regions near the origin is not well sampled.

One can wonder if the poorer results of SGM would improve for a larger number of ADAMS
iterations. To answer this question, we run longer experiments with 224 = 16777216 ADAMS
iterations. Figures 36, 37, and 4a show that MSGM slightly improves with an increasing number
of iterations, whereas SGM diverges. For a fair comparison, the MMD convergence Figure 4a is
expressed in terms of effective number of ADAMS iterations, i.e. we proportionally reduce the
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Figure 30: Generated data (orange lines and dots) compared to ground truth data (blue lines and dots)
with the SGM for a vector of 4 correlated Cauchy variables with a fast scheduling: βm = 0.01, βM =
1. The left plot corresponds to our neural network architecture based on spherical decomposition
equation L.33 whereas the right plot corresponds to default neural network architecture. On the
diagonal, log-histogram of ground truth data (continuous blue line), and logarithm of the pdf KDE
estimation of generated data (orange line) are superimposed.

Figure 31: Evolution of the solution log-pdf log(ps(x1, x3)) of MSGM forward SDE (top) and
backward SDE (bottom) for a vector of 4 correlated Cauchy variables, with fast scheduling: βm =
0.01, βM = 1 and our neural network architecture based on spherical decomposition equation L.33.

Figure 32: Evolution of the solution log-pdf log(ps(x1, x3)) of SGM forward SDE (top) and backward
SDE (bottom) for a vector of 4 correlated Cauchy variables, with default scheduling: βm = 0.1,
βM = 20 and default neural network architecture.
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Figure 33: Evolution of the solution log-pdf log(ps(x1, x3)) of SGM forward SDE (top) and backward
SDE (bottom) for a vector of 4 correlated Cauchy variables, with default scheduling: βm = 0.1,
βM = 20 and our neural network architecture based on spherical decomposition equation L.33.

Figure 34: Evolution of the solution log-pdf log(ps(x1, x3)) of SGM forward SDE (top) and backward
SDE (bottom) for a vector of 4 correlated Cauchy variables, with fast scheduling: βm = 0.01, βM = 1
and default neural network architecture.

Figure 35: Evolution of the solution log-pdf log(ps(x1, x3)) of SGM forward SDE (top) and backward
SDE (bottom) for a vector of 4 correlated Cauchy variables, with fast scheduling: βm = 0.01, βM = 1
and our neural network architecture based on spherical decomposition equation L.33.
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Figure 36: Pair plots of generated data (orange dots) compared to ground truth data (blue dots)
with the SGM (left) and MSGM (right) with 224 = 16777216 ADAMS iterations for a vector of 4
correlated Cauchy variables. On the diagonal, log-histogram of ground truth data (continuous blue
line), and logarithm of the pdf KDE estimation of generated data (orange line) are superimposed.

Figure 37: Evolution of the solution log-pdf log(ps(x1, x3)) of SGM forward SDE (top) and backward
SDE (bottom, 224 = 16777216 ADAMS iterations and 29 = 512 time steps) for a vector of 4
correlated Cauchy variables, with default scheduling: βm = 0.1, βM = 20 and default neural
network architecture.

number of ADAMS iterations for MSGM in order to make the CPU training time of SGM and
MSGM similar (see Appendix M.3 for details). For SGM with very large number of iterations
(224 = 16777216), we use a larger number of time steps (29 = 512) for the backward SDE to prevent
all samples generated by SGM to diverge.

M.7 VORTICITY FIELD FROM PARTICLE IMAGE VELOCIMETRY MEASUREMENTS

Particle Image Velocimetry (PIV) is an experimental technique to measure velocity fields in flu-
ids by tracking the displacement of tracer particles between consecutive images illuminated with
lasers (Adrian & Westerweel, 2011). We used two-dimensional, two-component (2D2C) PIV data
of Figure 38, which provide both in-plane velocity components. Here PIV is not time-resolved, i.e.
each velocity image is uncorrelated to the next. The flow observed is a benchmark configuration : a
wake flow at Reynolds number Re = 3900 created by a circular cylinder embedded in a mean stream
(Parnaudeau et al., 2008). We compute the two-dimensional curl of the velocity. Named vorticity, it
is presented in Figure 39.

M.6.1 LOW-DIMENSIONAL TEST CASE: VORTICITY EVALUATED ON SEVERAL SPATIAL POINTS

To reduce the dimension d of the data, we severely crop the vorticity images and subsample them
spatially, keeping only 4× 4 pixels by images as illustrated by Figure 40. Once reshaped as a vector,
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Figure 38: 2D2C PIV velocity field: velocity component along x (left) and velocity component along
y (right).

Figure 39: The full two-dimensional vorticity (left) and a zoom (right) of a PIV field
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Table 7: Low-dimensional vorticity test case: parameters of the nominal numerical experiments.

Parameter SGM MSGM
Dimension d 16 16
Number of used training data points (M ) 210 = 1024 1024
Number of test data points 6476 6476
Reference number of ADAMS steps 220 220

Number of ADAMS steps (Niter) 220 = 1048576 262144
CPU time / ADAMS steps (in ms) 4 32
Batch size 256 256

Number of time steps (forward) Nf
T 1 16

Number of time steps (backward) N b
T 8 8

βmin 0.025 0.025
βmax 5 5
tε 10−4 2.5× 10−5

Learning rate 10−3 10−3

Neural network architecture default spherical (equation L.33)

MD (MMD(train)=0.9× 10−2) 1.5× 10−2 1.3× 10−2

Figure 40: Spatial cropping and spatial subsampling of a vorticity field to obtain a data sample at low
dimension d = 16.

each small image represents a data point of dimension 16. If we choose a dimension d ⩽ 16, we just
keep the first d coefficients of the vector. For this experimental dataset, we investigate the influence
of the amount of data available for learning. Our default experiments will train the models with
210 = 1024 data points only.

As seen previously in Section 6.2, MSGM is more robust in low-data mode and better represents rare
events, as also confirmed by the survival function Figure 41. We explain it by a latent distribution
close to the data distribution as illustrated in Figure 42.

For a fair numerical comparison, we also test SGM with and without our neural network architecture
based on spherical decomposition equation L.33 in Figures 43, 44, and 45. This architecture improves
the quality of the generated samples. However, tails are still underestimated and some regions of the
space remain clearly badly sampled. In contrast, MSGM samples fit well the data distribution both
with dense and with sparse tensor, G.

To complete the numerical study, we evaluated the MMD between generated samples and test samples
for different values of the reference number of ADAMS iterations, different number of time steps
to integrate the backward SDE, different dimension d, and different numbers of training data. The
convergence plots are visible in Figures 46 and 47. Again, MMD may not be the best tool for studying
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Figure 41: Survival function of generated data (orange line) compared to ground truth data (blue
line) with the SGM (left) and MSGM (right) trained on 1024 16-dimensional data points representing
PIV-based vorticity fields.

Figure 42: Evolution of the solution log-pdf log(ps(x1, x3)) of MSGM forward SDE (top) and
backward SDE (bottom) for the vorticity images distribution, with nominal scheduling (βm = 0.025,
βM = 5.0) and our neural network architecture based on spherical decomposition equation L.33.

rare events. We can observe some tendencies, but definite conclusions may not be obtained from
those convergence plots. For a very small training set (26 = 64 data points), both SGM and MSGM
fail and MMDs are similarly large. The biggest MMD gap between SGM and MSGM appears to
be in the intermediate region: 210 = 1024 data points. As expected, this gap seems to increase with
dimension, even though this tendency is not fully clear for the plot. For small numbers of ADAMS
iterations or small numbers of time steps, MSGM seems much better than SGM. This is expected
since the MSGM latent space is already close to the data distribution. Without enough ADAMS
iterations, neither the MSGM nor the SGM samples accurately mimic the data distribution, and in
any case, it is better to let the optimization procedure run for a long enough time.

M.6.2 HIGH-DIMENSIONAL TEST CASE : VORTICITY IMAGE PROCESSING

To demonstrate that MSGM can address high-dimensional problems, we propose here an image
generator based on the sparse local tensor of Appendix K.2.2 and the Unet detailed in Appendix L.4.2
. From the original high-resolution PIV-based vorticity images of Figure 39, we crop, subsample at
resolution 64× 64, smooth and subsample again images them spatially, keeping 32× 32 pixels by
images as illustrated by Figure 48. Once reshaped as a vector, each small image represents a data
point of dimension 1024.

Figures 49 and 50 present generated images with MSGM and SGM respectively. Table 8 summarizes
the parameters of our numerical experiment. The numerical evaluation of image generation skills of
MSGM is beyond the scope of this paper and we postpone this study to future work.

N SUMMARIZED COMPARISON OF MSGM AND SGM

This section is devoted to a brief comparison of these two concepts of generative modeling both from
theoretical and empirical point of views.
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Figure 43: Pair plots of generated data (orange dots) compared to ground truth data (blue dots) with
the MSGM with dense tensor G (top left), sparse local tensor G (top right), and SGM (bottom)
trained on 1024 16-dimensional data points representing PIV-based vorticity fields. Left and top
plots correspond to our neural network architecture based on spherical decomposition equation L.33
whereas the right bottom plot correspond to default neural network architecture. On the diagonal
log-histogram of ground truth data (blue line) and logarithm of the pdf KDE estimation of generated
data (orange line) are superimposed.

Figure 44: Evolution of the solution log-pdf log(ps(x1, x3)) of SGM forward SDE (top) and backward
SDE (bottom) for the vorticity images distribution, with nominal scheduling (βm = 0.025, βM = 5.0)
and default neural network architecture.
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Figure 45: Evolution of the solution log-pdf log(ps(x1, x3)) of SGM forward SDE (top) and backward
SDE (bottom) for the vorticity images distribution, with nominal scheduling (βm = 0.025, βM = 5.0)
and our neural network architecture based on spherical decomposition equation L.33.

Figure 46: Convergence of MMD (mean and 80% confidence interval) for the vorticity images
distribution as a function of number of training data for (from left to right and from top to bottom)
dimension d = 2, 4, 8, and 16.
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Figure 47: Convergence of MMD (mean and 80% confidence interval) for the vorticity images
distribution as a function of reference number of ADAMS iterations (top left), as a function of number
of time steps for integrating the backward SDE (top right), and as a function of dimension (bottom).

Figure 48: Spatial cropping and subsampling (left), spatial smoothing (middle), and spatial sub-
sampling again (right) of a vorticity field to obtain a data sample at lower but still high dimension
d = 1024.
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Figure 49: 32 × 32 image generation from MSGM with forward (top) and backward diffusion
(bottom) at time (from left to right) s = T − t = 0, 0.25, and T = 1.

Figure 50: 32× 32 image generation from SGM with forward (top) and backward diffusion (bottom)
at time (from left to right) s = T − t = 0, 0.25, and T = 1. The apparent heteroskedasticity in the
diffusion is due to the data normalization (pixel-wise variance is larger on top and bottom boundaries).
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Table 8: High-dimensional vorticity test case: parameters of the nominal numerical experiments.

Parameter SGM MSGM
Dimension d 1024 1024
Number of used training data points (M ) 5000 5000
Number of test data points 2500 2500
Reference number of ADAMS steps 105 105

Number of ADAMS steps (Niter) 105 105

GPU time / ADAMS steps (in ms) 410 590
Batch size 128 128

Number of time steps (forward) Nf
T 1 128

Number of time steps (backward) N b
T 2048 2048

βmin 0.8 0.8
βmax 160 160
tε 8× 10−3 8× 10−3

Learning rate 10−4 10−4

Neural network architecture default spherical (equation L.33)

MMD (MMD(train)=1.4× 10−3) 2.4× 10−3 3.2× 10−3

Each strategy follows its own noising process, leading to different invariant distributions, i.e. Gaussian
for SGM and rotational invariant for MSGM. Both latent spaces are tractable, allowing for fast initial
sample generation for the reverse process. As a particular added on, the latent distribution of MSGM
allows for finite KL divergence when compared to heavy-tail distribution, e.g., as discussed and
motivated by Appendix E.6. From the convergence speed, both dynamics allow for exponential
convergence to the invariant distribution, assuming the rank condition A2 is satisfied for G. We will
conclude this section with a comparison discussion beyond the heavy tail case.

N.1 THEORETICAL ASPECTS

The latent space of MSGM is data aware, which ensures smaller KL-divergence of target distribution
and latent distribution compared to classical SGM, see Appendix E and Proposition E.5.1. The
method allows for inductive bias based on physics in the design of G. For example, in the context of
transport noise, making the noising/denoising process more physically relevant. This topic is part of
future work by the authors and is briefly discussed in Section 7. Moreover, the conservation of norm
in the denoising/backward process of MSGM serves as a stabilization tool, both for training and for
sampling stage. In particular, samples cannot diverge.

At first glance, MSGM offers drawbacks compared to SGM. First, we have to rely on SSM and
cannot apply DSM since we do not have access to an analytic score solution of the noising process.
Second, we have to rely on numerical integration in the training because of no available analytic
solution; see also the empirical discussion N.2 below.

When it comes to scalability, as d → ∞, the current theoretical analysis is not yet complete. The
current analysis is built on the (strong) rank-condition which can be verified in the case of dense
tensors; see Appendix J. This is a limit in terms of scalability due to the d3 scaling of G. Here,
the sparse tensors discussed in Appendix K will serve as a solution when it comes to scalability.
However, in this context the rank condition has to be relaxed and new analysis is required as outlined
in Appendix K.1.1.

N.2 EMPIRICAL ASPECTS

SGM offers exact integration of the noising process, while MSGM relies on numerical integration.
Although this at first glance looks like a drawback in praxis, for most of our test cases, only a few
forward steps were needed in the training process, making the training traceable and comparable
to SGM training based on exact integration, while offering the same quality. For a more detailed
discussion, we refer to the fair comparison discussion in Appendix M.3. As our current experiments
suggest, MSGM requires less data in training. From approximation theory, learning the score reduces
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to training on a support that is the hyper-sphere in Rd, with a conditioning variable log ∥x∥ ∈ R.
In particular, the effective domain for learning a neuronal remains bounded in d. It may affect the
stability of the approximation using such an approximation class. Finally, the stabilization due to the
conservation of norm avoids divergence instabilities of SSM solvers for MSGM, when compared to
well known instabilities of SSM solvers for SGM.

89


	 
	Introduction
	Additive Score-based generative model
	Forward and backward SDEs
	A neural network to fit the score

	Multiplicative Score-based generative model
	Forward SDE
	Dynamics of norm and direction
	Non-Gaussian latent space
	Reverse ODE/SDE and score matching

	Workflow
	Related works
	Experiments
	Multivariate Cauchy distribution
	Measured vorticity fields

	Conclusion and discussion
	Appendix

	 Appendix
	Losses for score matching
	Stochastic Calculus and Stratonovich Integrals
	Itô Integrals and SDEs
	Stratonovich Integrals and Chain rule
	Conversion between Itô and Stratonovich forms
	Fokker–Planck equation

	Sampling from 1D distributions
	The Fokker-Planck equation and its invariant measures
	Itô form of the forward SDE
	Fokker-Planck equation and theorem : invariant measure Y
	Distribution of the norms
	Norm dynamics in SGM
	Norm dynamics in MSGM

	Fokker-Planck equation of the direction
	Main results on the distribution of directions
	Proof of Prop:sphericalFPsolution
	Proof of theorem : law Yn : Limit behavior of Fokker-Planck equation of the direction

	Proof of theorem:asymptotic distribution : Convergence of Fokker-Planck equation
	Beyond pure Stratonovich noise

	Latent distribution
	The invariant measures define white noises in the weak sense
	Condition of Gaussianity for the latent vector
	A tractable algorithm to sample latent vectors
	Gaussianization of the latent vectors
	A shorter distance between latent and data distribution
	Relevance of MSGM latent space for heavy-tail distributions.
	Infinite KL Divergence between Cauchy distribution and standard Gaussian
	Finite KL divergence between Cauchy distribution and its related 


	Backward diffusion
	Proof of theorem:ELBO equiv score matching: equivalence between ELBO and score matching
	Statement of the theorem
	Notations correspondence
	Marginal density from Feynman-Kac representation
	Change of measure and Jensen's inequality
	Girsanov theorem
	ELBO evaluation
	From ELBO to our SSM loss
	Remark on the score parametrization
	Girsanov theorem in the transport noise literature

	Comparison with diffusions on Riemannian manifolds
	Riemannian Manifolds and Differentiation
	Conditional diffusions on scaled d-spheres
	Link with neural network architecture

	Analytic illustrations on simplified cases
	The two-dimensional case
	Tensor built from a single skew-symmetric matrix
	Matrix exponential
	Diagonalization in the complex plane
	Real solution with sine and cosine

	Non-commutativity in the general case

	Rank and skew-symmetry conditions for random tensor G
	Proof of the rank condition
	Tensor renormalization
	Mean speed of convergence with renormalized tensor

	Going beyond the rank condition for MSGM scalability
	Weaker assumptions
	Rank condition almost everywhere
	Itô term rank condition

	Sparse tensors
	Low-rank tensor
	Local sparse tensor
	Non-local sparse tensor

	Discussion about local and non local structure

	Numerical scheme
	Numerical integration of SDEs
	Stochastic Runge-Kutta Method for Stratonovich SDEs
	Renormalisation

	Scheduling
	Usual scheduling
	Scheduling for MSGM
	Theoretical results

	Loss evaluation
	Neural network architecture
	Spherical decomposition as an input layer

	
	Network Architecture for low-dimensional test cases (MLP)
	Network Architecture for high-dimensional test cases (UNet for 3232 vorticity fields)


	Details about our numerical experiments
	Test cases
	Data preprocessing
	Comparison strategy
	Swiss roll
	

	Anisotropic Gaussian distribution
	Multivariate Cauchy distribution
	Vector of independent Cauchy variables
	Vector of correlated Cauchy variables

	Vorticity field from Particle Image Velocimetry measurements
	Low-dimensional test case: vorticity evaluated on several spatial points
	High-dimensional test case : vorticity image processing


	Summarized comparison of MSGM and SGM
	Theoretical aspects
	Empirical aspects



