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Description

Q:  How many fruits 
are in the kitchen

Q: Is there a pot 

Q: What fruit is placed 
beside the limes 

Q:  Is there a flower 
on the table

Attention-based
Pruning

Similarity-based
Pruning

Divergence-based 
Pruning

Script
(Ours)

A wide-angle photo of a modern, open-concept 
kitchen and living area with ocean views. In the 
foreground, a white kitchen island features a 
black stovetop with a silver pot, a chrome faucet, 
and a plate of limes and pineapple. Recessed 
lighting and exposed white beams brighten the 
space. To the left, a wooden dining table with 
transparent chairs is set for a meal, centered with 
yellow flowers. At the far end, a gray sectional 
sofa faces floor-to-ceiling windows, framing a 
stunning sunset and silhouetted trees. 

Figure 1: Comparison of different token pruning methods. Attention-based and similarity-based
methods prune tokens using attention scores and similarity scores, respectively. In contrast, divergence-
based methods detect changes in model performance and retain tokens that cause minimal impact. Script
(Graph-Structured and QueRy-CondItioned Token Pruning) combines graph-structured reduction of visual
redundancy and query-conditioned semantic token selection to enable efficient pruning in MLLMs. In this
example, Script successfully preserves key visual cues, such as the silver pot on the stove, the pineapple
beside the limes, and the flowers on the table. Other methods fail to retain consistently.

Abstract

The rapid growth of visual tokens in multimodal large language models (MLLMs) leads to ex-
cessive memory consumption and inference latency, especially when handling high-resolution
images and videos. Token pruning is a technique used to mitigate this issue by removing
redundancy, but existing methods often ignore relevance to the user query or suffer from the
limitations of attention mechanisms, reducing their adaptability and effectiveness. To ad-
dress these challenges, we propose Script, a plug-and-play pruning method that requires no
retraining and generalizes across diverse MLLMs. Script comprises two modules: a graph-
structured pruning module that removes visually redundant tokens, and a query-conditioned
semantic pruning module that preserves query-relevant visual information. Together, they
enhance performance on multimodal tasks. Experiments on fourteen benchmarks across
image and video understanding tasks show that Script consistently achieves higher model
efficiency and predictive accuracy compared to existing pruning methods. On LLaVA-NeXT-
7B, it achieves up to 6.8× prefill speedup and 10× FLOP reduction, while retaining 96.88%
of the original performance. Code will be made publicly available upon acceptance.
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1 Introduction

Recent advances in large language models (LLMs) (Touvron et al., 2023a;b; Bai et al., 2023; Yang et al.,
2024) have substantially enhanced language understanding and reasoning, forming the backbone of general-
purpose multimodal systems, including vision-language models and embodied agents operating in real-world
scenarios. Building on this progress, multimodal large language models (MLLMs) (Li et al., 2024a; Chen
et al., 2024d;c; Zhang et al., 2025) extend LLMs by integrating vision encoders, enabling joint reasoning over
both visual and textual modalities. This integration empowers MLLMs to excel at diverse vision-language
tasks such as visual question answering and image captioning.

However, deploying MLLMs in practical scenarios such as mobile agents or interactive assistants is con-
strained by the high computational cost of handling high-resolution or temporally extended visual inputs.
Patch-based vision encoders typically tokenize each visual input into hundreds or even thousands of to-
kens (Luo et al., 2024; Guo et al., 2024; Zhang et al., 2023; Chen et al., 2024b; Li et al., 2025a; Liu et al.,
2025; Bai et al., 2025). In contrast to compact textual inputs, visual representations often contain hundreds
or thousands of tokens, which increases memory usage and inference latency. The explosion of vision tokens,
compounded by the quadratic complexity of attention mechanisms (Vaswani et al., 2017), creates a signif-
icant bottleneck for latency- and memory-sensitive scenarios such as mobile deployment, online inference,
and edge-based vision-language applications. To mitigate this inefficiency, visual token pruning has emerged
as a promising strategy. An effective pruning method should minimize computational cost while preserving
task performance within resource-constrained environments.

Existing visual token pruning methods can be broadly categorized into three main paradigms: (1) attention-
based methods, which retain tokens with high model-assigned importance, commonly referred to as attention
scores (Chen et al., 2024a; Xing et al., 2025; Zhang et al., 2024d); (2) similarity-based methods, which identify
and eliminate redundant visual tokens based on feature similarity (Bolya et al., 2023; Zhang et al., 2024c;
Wen et al., 2025b; Jeddi et al., 2025); and (3) divergence-minimization methods, which prune tokens by
minimizing the change in the model’s output (Alvar et al., 2025; Ye et al., 2025).
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Figure 2: (a) Efficiency Analysis on LLaVA-NeXT-7B
under 88.9% reduction. (b) Comparison with other
baselines on LLaVA-1.5-7B under 94.4% reduction.

However, existing pruning methods face two fun-
damental challenges in query-conditioned scenarios.
First, attention-based approaches depend on raw
attention scores, which are susceptible to the atten-
tion sink issue (Barbero et al., 2025), often over-
looking critical tokens. Moreover, assigning similar
scores to adjacent or semantically similar tokens can
reduce pruning efficiency (Alvar et al., 2025). As
shown in Figure 1, such methods fail to preserve
the token representing the flower, despite its clear
relevance to the query. Second, similarity- and
divergence-based methods lack explicit query condi-
tioning. Although they address visual redundancy
or output stability, they generate fixed token sub-
sets regardless of the input query, which can lead to the omission of query-referenced objects, such as the
pineapple and lime shown in Figure 1.

To address these limitations, we propose Script, a training-free and architecture-agnostic token pruning
approach that combines graph-structured pruning (GSP) and query-conditioned semantic pruning (QCSP).
On one hand, we build a bipartite graph to structure visual token redundancy, effectively identifying redun-
dant tokens with lower computational cost. On the other hand, to eliminate reliance on attention scores
and avoid issues such as attention sink, Script explicitly models interactions between the query and visual
tokens, identifying query-relevant tokens using Determinantal Point Processes (DPP), a probabilistic model
that favors diverse and semantically meaningful subsets. Together, these two modules enable effective token
pruning by jointly considering visual redundancy and input query relevance. As illustrated in Figure 2, Script
trims 88.9% tokens yet preserves 99.88% accuracy on POPE, and consistently outperforms other baselines
on 10 benchmarks. In summary, our contributions are as follows:
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• We identify the core limitations of existing pruning paradigms in query-conditioned scenarios, high-
lighting their inability to adaptively preserve task-relevant content.

• We propose Script, a training-free pruning method that combines graph-based redundancy reduction
with query-aware token selection via DPP.

• Experiments across fourteen benchmarks demonstrate that Script consistently overperforms other
baselines, and achieves up to 10× speedup while retaining 96.88% of original performance.

2 Related Work

Scalability Challenges in MLLMs. MLLMs combine visual and textual modalities to support general-
purpose perception and reasoning (Alayrac et al., 2022; Zhu et al., 2024; Chen et al., 2023; Yu et al.,
2024; Liu et al., 2024b; Cai et al., 2024). However, visual inputs introduce substantial token overhead
due to spatial redundancy and high dimensionality, exacerbating the quadratic complexity of Transformer
attention. For example, LLaVA-1.5 (Liu et al., 2023) generates 576 tokens from a 336 × 336 image, which
is already 4–5× longer than typical text-only prompts. High-resolution models like LLaVA-NeXT (Liu
et al., 2024a) and video models like LongVA (Zhang et al., 2024a) push this further, producing tens or even
hundreds of thousands of tokens per input, leading to untenable memory and compute demands for many
downstream applications. Consequently, such models often encounter memory bottlenecks, latency spikes, or
even inference failures, especially under real-time or edge deployment scenarios (Papa et al., 2023; Li et al.,
2025b), where computational resources are inherently limited. These challenges have motivated a growing
body of work on token pruning, aiming to reduce input size while preserving task-relevant semantics and
ideally without retraining or architectural changes.

Token Pruning Strategies. Efforts to mitigate visual token overhead in MLLMs can be broadly cate-
gorized into four approaches, each with distinct assumptions and limitations. (1) Pre-fusion compression,
which downsamples or selects tokens before vision-language fusion (Li et al., 2024b; Hu et al., 2024), often
requires model retraining or structural modifications, hindering plug-and-play usage. (2) Attention-based
pruning, which selects tokens using attention scores (Chen et al., 2024a; Ye et al., 2025), suffers from at-
tention drift (Wen et al., 2025a), misguiding token importance, and limiting compatibility with optimized
backends such as FlashAttention (Dao, 2024). (3) Pre-language fusion pruning, which drops tokens before
language-level alignment (Shang et al., 2024; Song et al., 2025), is often tightly coupled to specific vision
backbones, limiting transferability across architectures. (4) Similarity-based pruning, which eliminates re-
dundant tokens using intra-image feature similarity (Wen et al., 2025b; Alvar et al., 2025), is generally
efficient and model-agnostic, but often ignores query semantics, leading to the loss of task-relevant content.

While existing approaches partially alleviate visual redundancy, few simultaneously achieve the trifecta of
query relevance, architectural generality, and training-free deployment. In contrast, our proposed Script is
explicitly query-aware, visual diversity, entirely model-agnostic, and operates without any additional training.

3 Preliminary

In this section, within the context of the task Text Visual Question Answering (TextVQA), we empirically
investigate two key aspects of visual tokens in MLLMs: visual redundancy and query-conditioned relevance.
In addition, we present a theoretical formulation of efficient query-conditioned token selection. The insights
from both empirical and theoretical analysis inform the design of our Script.

3.1 Research Objective

Existing MLLMs (Liu et al., 2023; 2025; Xu et al., 2025) typically comprise three components: a vision
encoder fv, a multimodal projector g, and a large language model fϕ. After fv processes an input image Xv,
the projector g maps the features into a visual-token sequence Hv ∈ Rn×d, where n is the token count and d
is the token dimension. The language model fϕ processes the visual tokens Hv and the tokenized query Hq

to generate an answer grounded in the image. Typically, n≫ |Hq|, i.e., the visual sequence is much longer
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Figure 3: Token redundancy visualized via similarity and entropy on 10,000 COCO images.

than the textual query. Equation 1 defines vision-token pruning by seeking the subset H̃∗
v that preserves

model performance while using the fewest tokens.

H̃∗
v = arg min

H̃v⊆Hv, |H̃v|=m
L
(
fϕ([H̃v; Hq]), fϕ([Hv; Hq])

)
. (1)

Here, L measures the discrepancy between model outputs before and after pruning, serving as a proxy for
performance loss. The candidate subset H̃v ⊂ Hv contains m tokens, with m < n. To ensure query-aware
pruning, it is essential to explicitly capture the semantic interactions between visual tokens Hv and their
corresponding query tokens Hq. These query-specific interactions are crucial for identifying the most query-
relevant subset H̃v. At the same time, assessing the visual redundancy between H̃v and the full set Hv is
vital for promoting diversity in token selection, which is important for generalizing across a wide range of
tasks. Together, these two aspects contribute to forming an informative and compact token subset.

3.2 Rethinking Visual Redundancy

Table 1: Comparison of redundancy estimation
methods with a 90% pruning ratio on the POPE
Benchmark. Sim. (%): Percentage of similar-
ity pairs considered. Time: Inference time in
milliseconds. IOU@K: Intersection-over-Union
with top-K selections. Acc.: Classification ac-
curacy (%). Speedup: Relative time speedup
compared to Full Graph.
Method Sim. (%) Time IOU@K Acc. Speedup

Exhaustive 100 100 1.00 85.14 1.00x
Bipartite ∼50 35 0.93 84.49 2.81x
Random 0 34 0.52 78.63 2.82x

In natural images, spatially adjacent tokens often encode
highly overlapping content, resulting in what we refer to
as local redundancy. Carefully identifying and remov-
ing such redundancy can significantly reduce computation
without compromising accuracy.

To investigate local redundancy, we adopt the approach
from (Wang et al., 2024) and compute Manhattan dis-
tances and cosine similarities between vision-token pairs.
We group similarity values by distance and calculate the
average for each group. As shown in Figure 4(a), cosine
similarity is highest for nearby tokens and decreases until
a distance of roughly 15. Beyond this, we observe that
similarity increases again at longer distances, indicating that long-range token redundancy also exists and
deserves attention. Furthermore, we visualize the similarity distributions for neighboring tokens (hop = 1)
and randomly sampled neighbor token pairs (hop > 1). As shown in Figure 4(b), the number of neighboring
tokens with similarity greater than 0.5 is consistently higher than that of random token pairs. These results
indicate that neighboring (i.e., local) tokens encode more similar visual features, but long-range redundancy
should also be taken into account, as it clearly exists.

Insight 1: Redundancy Exists Beyond Local Neighborhoods

Spatially adjacent tokens show high similarity (local redundancy), yet long-range pairs still share appre-
ciable similarity, revealing long-range redundancy. Effective pruning must therefore model both local
and long-range redundancy to avoid information loss.

To further validate local redundancy and its estimation via cosine similarity, we introduce local information
entropy as a distribution-level measure of neighborhood compactness and compare it with cosine similarity.
For each token, we extract its 3×3 Moore neighbourhood N (v) = {hi | ∥pos(i)−pos(j)∥1 ≤ 1} (hop=1). We
then project all vectors in the neighborhood onto their first principal component and discretize the resulting
scalar values into 20 equal-width bins to estimate the probability distribution {pi}. The local information
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entropy is defined as:

Hv = −
n∑

i=1
pi log , (2)

where pi = pi + ϵ and ϵ = 10−8. A compact neighborhood typically exhibits low Hv, as its token repre-
sentations are similar and concentrated in a few bins. In contrast, a diverse neighborhood naturally yields
higher Hv, reflecting greater variation among neighboring tokens. As shown in Figures 3(c) and (d), regions
with low local similarity typically exhibit high entropy, confirming local redundancy and validating cosine
similarity as an effective proxy.

Insight 2: Cosine Similarity is a Valid Redundancy Proxy

Local information entropy inversely correlates with cosine similarity. Low-entropy (predictable) regions
coincide with high neighbor similarity.

Motivated by the validated role of cosine similarity in capturing visual redundancy and the need for compu-
tational efficiency, we design a lightweight bipartite graph-based estimator that approximates both local and
long-range redundancy using cosine similarity alone. This estimator forms the core of the graph-structured
pruning module detailed in Section 4.1.

Insight 3: Lightweight Bipartite Graph Yields Scalable Redundancy Estimation

By weighting edges with cosine similarity, the even–odd bipartite graph achieves redundancy estimation
comparable to exhaustive computation, but with significantly lower computational cost.

Tokens are represented as nodes, divided into even- and odd-indexed sets; each node in one set connects to all
nodes in the other, with edge weights defined by cosine similarity. These weights enable efficient redundancy
estimation and guide token removal. As shown in Table 1, empirical results confirm the effectiveness of the
bipartite graph-based approach. On the POPE Benchmark with a 90% pruning ratio, it achieves an accuracy
of 84.49%, which is close to that of the exhaustive approach (85.14%), while being nearly three times faster.
Meanwhile, it retains 93% IOU agreement with the exhaustive approach, indicating that most key tokens
are preserved. In contrast, the random approach is equally fast but drops to 78.63% accuracy and only 0.52
IOU, failing to preserve semantically relevant tokens.

3.3 Rethinking Query Relevance

Recent studies (Zhang et al., 2024b; Yang et al., 2025) address visual token redundancy using text-agnostic
pruning strategies that retain tokens with high [CLS] attention scores from the vision encoder’s final layer.
However, these methods often fail to incorporate the query explicitly. They are also limited by inherent issues
in attention mechanisms, such as the attention sink effect, where a disproportionate amount of attention is
assigned to the first token in a sequence, regardless of its semantic relevance. As a result, these methods
tend to preserve tokens from visually salient or high-attention regions. Meanwhile, they may discard less
prominent areas, such as backgrounds or textures, which can still be crucial to answering the query.

This observation raises a critical question: Is output-layer [CLS] attention sufficient to capture all query-
relevant visual information? Empirical observations suggest such attention-based strategies often overem-
phasize dominant foreground objects while neglecting background elements relevant to the query. As shown
in Figure 1, attention focuses on the pot and fruit in the foreground but overlooks the actual target, the flower
in the background. This results in incorrect outputs. Moreover, both divergence-based and similarity-based
approaches also fail to adapt to the user query in this example.

Insight 4: CLS Attention Misses Query-Relevant Background Tokens

Attention-based relevance measures tend to focus on visually salient foregrounds and can miss
query-relevant background tokens, underscoring the need for explicitly query-aware relevance scoring.
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3.4 Rethinking Query-Relevant Visual Token Selection

Let the query tokens be Hq = {h(q)
j }, and define their mean embedding as:

h(q)
µ = 1

ℓ

ℓ∑
j=1

h(q)
j . (3)

The relevance score qi of each visual token hi is computed as the cosine similarity between hi and the mean
query embedding h(q)

µ :

ri = h⊤
i h(q)

µ

∥hi∥∥h(q)
µ ∥

, for i = 1, . . . , n. (4)

We construct a diagonal matrix Q = diag(r1, . . . , rn) ∈ Rn×n to encode the query relevance of each visual
token. To encourage diversity among selected tokens, we define a similarity matrix S(v) ∈ Rn×n, where
S

(v)
ij measures the pairwise similarity between vision tokens hi and hj . We assume S(v) is symmetric and

positive semidefinite, which approximately holds when using cosine similarity among normalized features.
This formulation naturally aligns with modeling token selection as a k-DPP (Determinantal Point Process),
which promotes subsets that balance individual relevance with collective diversity. We therefore construct
the following k-DPP kernel (note that L is a positive-semidefinite kernel, not a loss function) to integrate
both query relevance and feature diversity:

L = Q1/2S(v)Q1/2, (5)

where Q explicitly encodes query alignment and S(v) impliciltly encourages feature diversity.

Insight 5: S(v) Promotes Diversity

For any subset I, det(LI) equals the squared volume of the parallelotope spanned by the selected
token vectors (see Appendix B). If S(v) were the identity matrix, this volume reduces to

∏
i∈I qi, i.e.,

relevance only. Introducing off-diagonal similarities lowers the determinant when two tokens are similar,
thus maximizing det(LI) encourages mutually orthogonal (diverse) token subsets.

A k-DPP assigns to each subset I ⊆ [n] of fixed size k a probability proportional to det(LI), the determinant
of the principal submatrix of L indexed by I. This determinant reflects the volume spanned by the selected
vectors, and is larger when the selected tokens are both informative and mutually distinct. Expanding the
determinant yields:

det(LI) = det(Q1/2
I S

(v)
I Q

1/2
I )

= det(Q1/2
I )2 · det(S(v)

I )

=
(∏

i∈I
qi

)
· det(S(v)

I ). (6)

This decomposition highlights the trade-off between query relevance (via
∏

i qi) and visual diversity (via
det(S(v)

I )). Based on this, we define the final surrogate objective for selecting an informative token subset:

I∗ = arg max
I⊆[n], |I|=m

∏
i∈I

qi · det(S(v)
I ). (7)

Insight 6: k-DPP Balances Relevance and Diversity via Geometry

The k-DPP determinant can be analogized to the feature-space volume spanned by selected tokens, thus
optimizing it jointly maximizes query relevance and inter-token diversity in a single objective.
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Figure 4: Overview of Script, a three-stage pruning framework: (a) overall architecture; (b) Query-
Conditioned Semantic Pruning (QCSP); (c) Graph-Structured Pruning (GSP). Together, these modules
remove semantically irrelevant and visually redundant tokens through a joint selection process.
4 Method

Motivated by the empirical analysis in Section 3, we introduce Script, as illustrated in Figure 4. Script
progressively refines token selection through two main modules: (1) Graph-Structured Pruning (GSP), which
removes visually redundant tokens using a bipartite similarity graph; and (2) Query-Conditioned Semantic
Pruning (QCSP), which consists of two steps: Query-Conditioned Relevance Scoring (QCRS), computing
the semantic relevance of each token with respect to the input query, and Diversity-Preserving Selection via
DPP, selecting a compact, diverse subset of relevant tokens. The outputs from GSP and QCSP are then
intersected to obtain the final token subset H̃∗

v .

4.1 Graph-Structured Pruning

Transformer-based visual encoders often generate dense token sequences with substantial visual redundancy
across both local and long-range contexts, as identified in Section 3.2. To mitigate this, we propose an
inference-time pruning strategy based on bipartite similarity graphs without relying on model parameters.

Bipartite Graph Construction. Given visual token embeddings Hv = [h1, . . . , hn] ∈ Rn×d, we construct
a bipartite graph by partitioning tokens into two disjoint node sets Vsrc and Vdst via alternating index
assignment (e.g., even indices to Vsrc, odd-indexed to Vdst) (Buchholz, 2024). The bipartite graph is defined
as G = (Vsrc, Vdst, S(v)), where each node in Vsrc is fully connected to every node in Vdst, and the edge weight
S

(v)
ij ∈ S(v) represents the cosine similarity between tokens ti and tj :

S
(v)
ij =

h̄src
i · h̄dst

j

∥h̄src
i ∥∥h̄dst

j ∥
. (8)

In this way, G explicitly structures token redundancy, with similarity scores providing insights into both
local and global redundancy. Notably, this bipartite graph design reduces computational cost by up to 75%
compared to conventional similarity-based pruning methods. As empirically validated in Section 3.2, most
redundancy lies in local neighborhoods and is thus well-captured by the bipartite approximation effectively.
Overall, Vsrc and Vdst jointly offer a structured, low-cost representation of Hv for redundancy modeling.
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Table 2: Performance comparisons on LLaVA-1.5-7B (Liu et al., 2023) across 10 image under-
standing benchmarks. The best results in each setting are bolded, and the second-best are underlined.

Method Venue GQA MMB MMBCN MME POPE SQAIMG VQAV2 VQAText VizWiz MMVet Acc. Relative
Upper Bound, 576 Tokens (100%), 3.817 TFLOPs

LLaVA-1.5-7B (Liu et al., 2023) Nips’23 61.94 64.09 58.10 1507.06 86.96 69.41 78.50 58.20 50.32 31.82 63.47 100%
Retain 192 Tokens in Average (↓ 66.7%), ∼1.253 TFLOPs

FastV (Chen et al., 2024a) ECCV’24 58.09 63.40 54.04 1490.65 82.30 68.96 72.88 54.09 54.97 29.59 61.29 96.56%
TRIM (Song et al., 2025) COLING’25 58.18 59.19 51.02 1405.29 78.09 67.87 74.86 54.29 48.23 30.82 59.28 93.41%
VisionZip (Yang et al., 2025) CVPR’25 59.24 63.75 53.52 1445.67 86.63 68.37 75.44 54.89 53.97 30.74 59.28 93.40%
DivPrune (Alvar et al., 2025) CVPR’25 59.91 62.54 43.00 1436.39 87.56 69.31 75.10 53.38 55.33 30.96 60.89 95.94%
SparseVLM (Zhang et al., 2024d) ICML’25 59.54 63.46 55.20 1450.07 86.49 68.67 75.61 56.93 51.23 31.24 62.08 97.82%
Script (Ours) Proposed 60.82 63.85 57.55 1493.87 87.42 69.49 77.62 57.81 53.80 31.40 63.45 100.00%

Retain 128 Tokens in Average (↓ 77.8%), ∼0.833 TFLOPs
FastV (Chen et al., 2024a) ECCV’24 56.85 62.46 53.61 1440.19 80.24 68.67 71.68 52.21 55.51 28.07 60.13 94.74%
TRIM (Song et al., 2025) COLING’25 56.85 58.42 48.66 1359.86 77.95 68.47 74.42 53.74 47.62 29.35 58.35 91.93%
VisionZip (Yang et al., 2025) CVPR’25 57.87 62.20 53.18 1429.75 85.20 68.22 74.62 54.12 54.39 27.39 60.87 95.90%
DivPrune (Alvar et al., 2025) CVPR’25 59.16 61.86 42.16 1412.97 87.36 69.01 74.19 51.92 56.21 28.30 60.08 94.66%
SparseVLM (Zhang et al., 2024d) ICML’25 58.41 62.75 53.48 1429.41 86.22 68.62 73.86 56.29 51.83 29.12 61.21 96.43%
Script (Ours) Proposed 60.27 63.10 55.85 1431.24 87.32 68.79 76.55 56.45 53.97 31.09 62.51 98.49%

Retain 64 Tokens in Average (↓ 88.9%), ∼0.415 TFLOPs
FastV (Chen et al., 2024a) ECCV’24 53.59 59.62 50.08 1366.33 75.34 68.11 58.71 51.62 54.74 27.06 56.72 89.36%
TRIM (Song et al., 2025) COLING’25 56.35 55.68 46.39 1288.31 77.80 68.22 73.10 51.69 43.84 28.29 56.58 89.14%
VisionZip (Yang et al., 2025) CVPR’25 55.47 60.82 51.29 1374.67 81.68 68.96 71.59 52.72 54.81 27.13 59.32 93.46%
DivPrune (Alvar et al., 2025) CVPR’25 57.74 59.28 39.20 1368.28 86.51 68.22 72.35 54.51 57.55 27.39 59.12 93.14%
SparseVLM (Zhang et al., 2024d) ICML’25 53.80 60.14 50.68 1295.16 80.92 69.46 68.24 53.67 50.11 24.92 57.67 90.86%
Script (Ours) Proposed 59.28 61.90 52.93 1412.08 86.95 68.65 75.08 55.20 54.31 29.96 61.49 96.88%

Retain 32 Tokens in Average (↓ 94.5%), ∼0.208 TFLOPs
FastV (Chen et al., 2024a) ECCV’24 49.61 54.64 43.99 1108.35 68.59 68.26 56.48 49.85 54.22 24.50 52.56 82.80%
TRIM (Song et al., 2025) COLING’25 54.35 53.31 43.27 1215.42 77.54 68.22 69.54 49.12 38.41 25.92 54.05 85.15%
VisionZip (Yang et al., 2025) CVPR’25 53.32 58.85 49.31 1306.97 78.18 68.62 67.51 50.76 55.47 24.95 57.23 90.17%
DivPrune (Alvar et al., 2025) CVPR’25 55.11 58.93 35.99 1303.26 83.93 68.57 69.41 51.46 57.26 25.73 57.16 90.05%
SparseVLM (Zhang et al., 2024d) ICML’25 51.74 59.64 48.64 1181.05 77.27 69.35 63.25 51.28 49.62 23.38 55.32 87.16%
Script (Ours) Proposed 57.58 61.28 50.38 1338.27 86.77 68.75 73.25 53.10 53.77 27.57 59.93 94.42%

Retain 16 Tokens in Average (↓ 97.3%), ∼0.103 TFLOPs
FastV (Chen et al., 2024a) ECCV’24 44.08 41.41 32.04 898.83 59.89 68.51 52.06 42.15 52.16 16.24 45.35 71.45%
TRIM (Song et al., 2025) COLING’25 50.81 45.28 38.46 1085.66 81.10 66.98 61.48 39.80 35.26 20.49 49.39 77.82%
VisionZip (Yang et al., 2025) CVPR’25 50.88 52.23 42.61 1179.56 75.11 66.98 62.48 45.77 54.78 20.69 53.05 83.58%
DivPrune (Alvar et al., 2025) CVPR’25 51.10 53.09 31.76 1235.71 75.98 69.21 63.89 41.15 55.04 19.86 52.29 82.38%
SparseVLM (Zhang et al., 2024d) ICML’25 46.16 54.16 42.93 987.32 69.00 68.26 58.72 41.78 49.47 21.84 50.17 79.04%
Script (Ours) Proposed 54.42 57.02 45.98 1258.55 84.44 69.12 68.77 47.65 54.09 23.71 56.81 89.51%

Redundancy Scoring. To identify redundant tokens, we retain all similarity edges above a threshold
τ , forming a pruned subgraph Gτ , where each node is connected to highly similar neighbors. For a token
ti ∈ Vsrc, we define its degree as: d(ti) =

∑
j∈Vdst

I{S(v)
ij ≥ τ}, where I denotes the indicator function,

returning 1 if the condition is true and 0 otherwise. Nodes with high degrees in Gτ are identified as
structurally redundant, typically indicating that tokens represent repeated visual content in either local or
long-range contexts. To further distinguish tokens with similar degrees, we use the average similarity µ(ti)
between token ti and its neighbors in Gτ , which captures their typical similarity. For cases where ti is an
isolated node in Gτ , we define a fallback similarity µ̃(ti) based on the mean similarity between ti and all
tokens in Vdst or Vsrc under the full graph G. The final redundancy score is then defined as:

score(ti) =
{

d(ti) · exp (γ(µ(ti)− τ)) , d(ti) > 0 in Gτ ,

µ̃(ti) in G, otherwise,
(9)

where γ is a tunable scaling factor. The score, computed using d(ti) and µ(ti) with exponential weighting,
is designed to improve ranking contrast between highly and moderately redundant tokens.

Pruning Rate and Token Removal. Based on the computed redundancy scores, we rank all visual
tokens in descending order and discard the top p most redundant ones, where p denotes the pruning ratio.
This yields a structurally pruned candidate set H̃v, which is then combined with the token set semantically
aligned with the query, produced in the next stage, to jointly form H̃∗

v .

4.2 Query-Conditioned Semantic Pruning

While the GSP module eliminates visually redundant tokens, it does not guarantee semantic alignment with
the user query. To address this limitation, we introduce the QCSP module, which comprises QCRS for each
token and diversity-preserving selection via DPP based on the relevance scores.

Query-Conditioned Relevance Scoring. We begin by computing an average query embedding h(q)
µ via

mean pooling over Hq. Each visual token hi is then scored by cosine similarity to h(q)
µ , yielding a raw query

relevance vector rraw = [r1 . . . rn] (see Eq. 4). To ensure consistency across samples, we apply min-max
normalization to obtain rnorm ∈ [0, 1]n.
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Table 3: Performance comparisons on LLaVA-NeXT-7B (Liu et al., 2024a) across 9 image under-
standing benchmarks. The best results in each setting are bolded, and the second-best are underlined.

Method Venue GQA MMB MMBCN MME POPE SQAIMG VQAV2 VQAText VizWiz MMVet Acc Relative
Upper Bound, 2,880 Tokens (100%), ∼20.825 TFLOPs

LLaVA-NeXT-7B (Liu et al., 2024a) CVPR’24 62.83 65.81 57.65 1504.72 86.92 67.59 81.20 60.38 55.65 41.11 65.43 100%
Retain 640 Tokens in Average (↓ 77.8%), ∼ 4.627 TFLOPs

FastV (Chen et al., 2024a) ECCV’24 58.93 63.14 53.88 1412.86 79.96 67.32 77.06 58.15 53.94 39.17 62.22 95.09%
TRIM (Song et al., 2025) COLING’25 61.13 65.83 55.79 1473.62 86.92 66.71 78.36 54.85 54.12 37.16 63.46 96.98%
VisionZip (Yang et al., 2025) CVPR’25 60.84 64.52 56.28 1408.67 85.86 66.36 79.13 59.90 55.46 38.79 63.76 97.44%
DivPrune (Alvar et al., 2025) CVPR’25 60.58 65.77 57.31 1457.48 86.69 66.76 79.26 57.04 55.62 38.16 64.01 97.82%
SparseVLM (Zhang et al., 2024d) ICML’25 60.32 65.66 56.81 1426.83 85.98 67.27 77.11 59.64 55.58 39.48 63.92 97.69%
Script (Ours) Proposed 62.64 65.98 57.76 1481.98 87.65 67.43 80.47 58.92 55.71 41.90 65.35 99.88%

Retain 320 Tokens in Average (↓ 88.9%), ∼2.314 TFLOPs
FastV (Chen et al., 2024a) ECCV’24 52.17 53.87 44.51 1178.61 72.54 65.67 66.52 52.30 51.33 26.58 54.44 83.21%
TRIM (Song et al., 2025) COLING’25 59.94 63.58 51.01 1426.49 86.17 66.22 74.27 51.02 53.94 32.77 61.02 93.27%
VisionZip (Yang et al., 2025) CVPR’25 59.11 62.89 53.39 1360.61 84.44 65.71 76.41 58.53 55.27 36.25 62.00 94.76%
DivPrune (Alvar et al., 2025) CVPR’25 59.24 64.03 55.58 1418.46 84.92 67.11 77.24 56.17 54.97 35.72 62.59 95.66%
SparseVLM (Zhang et al., 2024d) ICML’25 58.75 64.18 54.86 1399.77 85.16 66.14 75.62 56.55 55.22 37.94 62.44 95.43%
Script (Ours) Proposed 61.36 65.39 55.82 1452.85 87.22 67.80 78.45 57.24 55.51 38.12 63.95 97.78%

Retain 160 Tokens in Average (↓ 94.4%), ∼1.156 TFLOPs
FastV (Chen et al., 2024a) ECCV’24 48.19 47.96 39.77 1083.20 68.81 64.07 61.42 48.92 48.04 22.04 50.34 76.93%
TRIM (Song et al., 2025) COLING’25 57.36 61.53 47.79 1279.44 84.58 65.51 71.04 45.94 52.92 29.82 58.05 88.71%
VisionZip (Yang et al., 2025) CVPR’25 56.28 59.72 51.33 1342.84 84.06 65.89 73.49 54.32 53.68 34.59 60.05 91.78%
DivPrune (Alvar et al., 2025) CVPR’25 55.62 62.97 53.51 1359.82 81.05 66.28 74.48 54.18 54.87 32.38 60.33 92.21%
SparseVLM (Zhang et al., 2024d) ICML’25 53.27 62.93 53.45 1362.86 84.83 66.08 71.83 53.85 54.61 34.81 60.38 92.28%
Script (Ours) Proposed 60.73 64.20 53.67 1423.89 87.19 67.44 76.71 55.28 55.19 36.38 62.80 95.98%

Query-Conditioned Kernel Construction. To support diversity-preserving selection of query-relevant
tokens, we construct a query-aware DPP kernel that integrates token relevance with visual similarity. Im-
portantly, visual similarity in this context helps refine query-relevant token selection rather than explicitly
promote visual diversity, which is addressed by the GSP module.

Specifically, let S′(v) ∈ Rn×n be the cosine similarity matrix of ℓ2-normalized visual token embeddings:

S
′(v)
ij =

〈
hi

∥hi∥
,

hj

∥hj∥

〉
. (10)

Then, we define a query-conditioned kernel L̃ ∈ Rn×n by reweighting the pairwise visual similarity matrix
S′(v) with normalized token-to-query relevance scores rnorm: L̃ = diag(rnorm) ·S′(v) ·diag(rnorm). Intuitively,
L̃ captures diversity within token relevance, promoting token selections that are both query-aligned and
diverse. Its symmetric and positive semi-definite structure makes it well-suited for k-DPP-based selection.

Greedy Token Selection via Kernel Decomposition To select a compact yet informative subset of
k visual tokens, we perform approximate MAP (maximum a posteriori) inference under a k-DPP defined
by the query-conditioned kernel L̃. This procedure allows us to find tokens that are not only individually
relevant to the query but also collectively diverse in semantic content, reducing redundancy while ensuring
broad query coverage. The objective is to select a subset S of k tokens such that the corresponding submatrix
L̃S maximizes det(L̃S), max|S|=k det

(
L̃S

)
. The determinant reflects both semantic relevance and diversity.

A higher value indicates greater diversity in the selected subset.

To efficiently approximate the MAP solution1 for DPP, we adopt the Cholesky-based greedy algorithm (Chen
et al., 2018). The algorithm starts with an empty set and incrementally adds tokens. At each step, it selects
the token that yields the highest gain, where the gain is defined as the increase in the determinant of the
kernel submatrix after adding the token. The algorithm is initialized as follows: v2

i = L̃ii, ui = 0 ∈
Rk for all i ∈ {1, . . . , n}, where v2

i represents the importance of token i for selection, and ui is a vector
that stores the projection of token i onto the subspace spanned by the previously selected tokens.

At each iteration, the token with the largest v2 is selected: j = arg maxi∈Z\S v2
i . After the selection, for each

i /∈ (S ∪ {j}), we compute:

ei = L̃ji − ⟨uj , ui⟩√
v2

j + ϵ
, ui ← ui + eiej , v2

i ← v2
i − e2

i , (11)

where ei represents the projection of token i onto the direction defined by token j, ej is the j-th standard
basis vector in Rn, and ϵ is a small positive constant (e.g., 10−6) introduced for numerical stability. The

1MAP for DPP is an NP-hard problem.
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Table 4: Performance comparison of different pruning methods on Video-LLaVA-7B with 64
frames per video. The best results in each setting are bolded, and the second-best are underlined.

Method Venue MLVU MVBench LongVideoBench Video-MME Acc. Relative
Metric m-avg test val perception relation w/o sub short medium long

Upper Bound, All 64 × 169 Tokens (100%)
LLaVA-Video-7B - 67.75 58.15 59.07 65.03 53.64 63.66 76.46 61.21 53.19 62.19 100%

Retain 64 × 64 Tokens (↓ 62.1%)
FastV Chen et al. (2024a) ECCV’24 63.79 55.81 56.21 60.60 52.15 61.89 73.46 59.45 52.71 59.56 95.77%
DivPrune Alvar et al. (2025) CVPR’25 64.01 54.82 57.97 64.32 53.75 61.31 72.49 59.43 51.02 59.90 96.32%
SparseVLM Zhang et al. (2024d) ICML’25 65.33 56.68 56.30 61.20 51.57 60.94 73.20 58.78 51.12 59.45 95.59%
Script (Ours) Purpose 66.13 57.74 58.27 64.25 53.37 62.36 74.67 60.31 52.59 61.08 98.22%

Retain 64 × 32 Tokens (↓ 81.1%)
FastV Chen et al. (2024a) ECCV’24 58.75 52.27 52.64 56.88 48.25 56.00 63.38 55.79 48.34 54.70 87.95%
DivPrune Alvar et al. (2025) CVPR’25 61.44 53.37 56.64 62.41 51.34 59.73 69.69 57.82 49.88 58.04 93.32%
SparseVLM Zhang et al. (2024d) ICML’25 60.37 54.13 53.47 58.51 49.79 59.09 69.18 56.49 50.38 56.82 91.37%
Script (Ours) Purpose 62.77 55.37 56.35 61.40 52.97 60.35 72.11 58.46 51.20 58.99 95.00%

Retain 64 × 16 Tokens (↓ 90.5%)
FastV Chen et al. (2024a) ECCV’24 52.58 46.57 46.61 48.68 44.79 49.88 54.92 50.30 45.28 48.85 78.54%
DivPrune Alvar et al. (2025) CVPR’25 58.60 51.13 52.27 57.56 47.29 56.37 67.67 53.34 48.11 54.72 88.98%
SparseVLM Zhang et al. (2024d) ICML’25 51.97 48.87 47.42 53.02 42.89 49.58 53.81 49.45 46.22 49.25 79.19%
Script (Ours) Purpose 58.77 53.45 52.91 57.13 48.66 57.20 65.97 56.08 49.46 55.52 89.30%

update v2
i ← v2

i − e2
i encourages selecting tokens with small projections ei. A smaller ei indicates that the

token is less similar, that is, closer to being orthogonal to the already selected tokens, thereby enhancing the
diversity of the subset.

4.3 Final Token Selection

GSP and QCSP each address complementary aspects of token selection. GSP explicitly targets visual
redundancy, while QCSP captures query relevance. However, neither is sufficient on its own for robust
selection. We therefore take their intersection to ensure that the final subset is both visually compact and
semantically aligned with the query. If the intersection contains fewer tokens than the required number, we
supplement it with additional tokens from QCSP by iteratively increasing k to retrieve more tokens.

5 Experiments

5.1 Experimental Settings

We conduct comprehensive experiments to evaluate Script’s performance across diverse MLLMs and bench-
marks2. In all tables, the “Relative” column reports performance relative to the unpruned model.

Models and Baselines. We select four representative MLLMs: LLaVA 1.5 7B (Liu et al., 2023), LLaVA
NeXT 7B (Liu et al., 2024a), Video LLaVA 7B (Lin et al., 2024), and Intern VL3 (Zhu et al., 2025).
These models cover both image and video modalities with diverse architectures, providing a comprehensive
testbed for evaluating Script’s generalizability. In addition, we compare with five state-of-the-art pruning
baselines, including FastV (Chen et al., 2024a), TRIM (Song et al., 2025), SparseVLM (Zhang et al., 2024d),
DivPrune (Alvar et al., 2025), and VisionZip (Yang et al., 2025). Notably, most of these baselines are either
query-agnostic or tightly bound to specific model architectures. Some of these architectures are included in
our evaluation, enabling fair and direct comparisons.

Benchmarks. We evaluate Script across fourteen widely adopted benchmarks spanning both image
and video understanding tasks. Image understanding tasks: GQA (Hudson & Manning, 2019), Sci-
enceQA (Lu et al., 2022), VQAv2 (Goyal et al., 2017), TextVQA (Singh et al., 2019b), VizWiz (Gurari et al.,
2018), MMVet (Yu et al., 2023), MMBench (Liu et al., 2024c), MMBench-CN (Liu et al., 2024c), MME (Fu
et al., 2023), and POPE (Li et al., 2023b). Video reasoning tasks: LongVideoBench (Wu et al., 2024),
VideoMME (Fu et al., 2025), MLVU (Zhou et al., 2025), and MVBench (Li et al., 2023a).

5.2 Results and Discussions

LLaVA-1.5-7B. Table 2 compares visual token pruning methods on LLaVA-1.5-7B across different token
budgets. Our proposed method, Script, consistently outperforms baselines such as FastV, DivPrune, and

2See the appendix for additional experiments, model settings, limitations, and broader impact.
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Input Image Attention-based Divergence-based Similarity-based DPP-based
Figure 5: Visualizations of Pruning Preferences. We compute four different pruning scores for a sample
from the POPE benchmark using LLaVA-1.5-7B, with the query: “Is there a person in the image?” Red
indicates high preference, while blue indicates low.
SparseVLM, demonstrating strong adaptability and robustness across pruning levels and diverse tasks. At the
highest token budget (192 tokens), Script achieves perfect accuracy (100.00%), outperforming the next-best
method, DivPrune, by over 4 percentage points (95.94%). When reducing tokens to an intermediate level
(64 tokens), Script retains exceptional accuracy at 96.86%, indicating a minimal performance drop despite
significant token reduction. This outperforms SparseVLM by around 6 percentage points, underscoring
Script’s effective token selection strategy. Even under the most aggressive pruning (16 tokens, corresponding
to 97.2% pruning), Script still retains high accuracy (89.51%), significantly outperforming all baselines,
highlighting its strong ability to preserve essential semantic and visual information, making it suitable for
resource-constrained deployment.

LLaVA-NeXT-7B. Table 3 presents a detailed comparison of visual token pruning methods applied to
LLaVA-NeXT-7B across different token budgets. Our method, Script, consistently delivers the best perfor-
mance across pruning levels, outperforming all baseline methods. Under mild pruning (640 tokens, 77.8%
reduction), Script achieves the highest average accuracy (65.1%) and the best relative performance (99.88%),
indicating minimal information loss despite significant pruning. Under moderate pruning conditions (320 to-
kens, 88.9% reduction), Script maintains robust performance, achieving 63.97% accuracy and 97.09% relative
performance, outperforming the next-best baseline by 2.12% points. Even at the most aggressive pruning
level (160 tokens, 94.4% reduction), Script still maintains superior results, reaching 62.80% accuracy and
95.98% relative performance. These results demonstrate Script’s strong ability to retain essential visual and
semantic cues under tight computational budgets.

Video-LLaVA-7B. Table 4 reports the performance of SOTA pruning methods on Video-LLaVA-7B across
multiple token budgets. Script consistently outperforms all baselines across pruning levels, demonstrating
robust performance under growing compression ratios. Under mild pruning (64×64 tokens, 62.1% reduction),
Script achieves 98.22% average accuracy, demonstrating effective preservation of informative video content
essential for accurate multimodal reasoning. Furthermore, under moderate pruning (64×32 tokens, 81.1%
reduction), Script maintains 95.00% accuracy, outperforming FastV by roughly 7 percentage points, which
demonstrates its effectiveness even under tighter token constraints. Even under aggressive pruning (64×16
tokens, 90.5% reduction), Script retains strong performance with 89.30% average accuracy, significantly
surpassing other baselines at similar compression levels. These results highlight Script’s ability to preserve
spatio-temporal semantics, supporting its applicability in real-world video-based multimodal tasks.

5.3 Case study

To analyze how different pruning strategies handle query-relevant vision tokens, we compare four approaches:
attention-based (via [CLS]), divergence-based, similarity-based, and DPP-based. Figure 5 visualizes the
normalized scores from each method on a representative POPE benchmark. The scores reveal how each
method prioritizes tokens based on distinct selection criteria.

As shown in Figure 5, the four strategies exhibit clearly different token selection behaviors. The attention-
based method emphasizes globally salient regions, such as central objects, but often overlooks contextually
relevant backgrounds like human bodies. In contrast, divergence-based and similarity-based methods struggle
to prioritize tokens that align with the input query. The similarity-based method, in particular, ignores query
information and produces relatively uniform token scores that primarily reflect visual diversity. While such
diversity helps preserve overall image content, it fails to capture query-specific relevance. The DPP-based
method assigns the highest relevance to human faces and moderately high scores to body-related tokens,
demonstrating strong alignment with query semantics. However, similar to attention-based approaches, it
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lacks diversity in the selected tokens. These observations highlight the importance of combining GSP and
QCSP for more balanced and effective token pruning.

5.4 Ablation study

Table 5: Ablation on LLava-1.5-7B evaluating the
impact of GSP, QCRS, and DPP.

GSP QCRS DPP POPE MME GQA SQAIMG Acc. Relative
LLaVA-1.5-7B, Retain 576 Tokens (100%)

86.96 1507.06 61.94 69.41 73.41 100%
Retain 16 Tokens in Average (↓ 97.3%), ∼0.103 TFLOPs

49.92 695.70 38.69 63.76 46.78 63.73%
52.85 758.23 40.86 63.86 48.87 66.58%
77.20 1225.27 45.82 68.67 63.23 86.14%
77.75 1111.92 51.11 68.57 63.25 86.17%
83.38 1252.28 53.28 68.51 66.95 91.19%
84.44 1258.55 54.42 69.12 67.73 92.19%

To analyze the individual impact of each module, we
conduct an ablation study to evaluate the contribu-
tions of the GSP, QCRS, and DPP modules. All ex-
periments are conducted under stringent constraints,
retaining only 16 tokens on average (97.3% pruning),
with a compute cost of 0.103 TFLOPs. As shown in
Table 5, naively pruning tokens causes a sharp drop in
relative accuracy (average: 63.73%), underscoring the
need for informed token selection strategies. Incorpo-
rating GSP alone raises relative accuracy to 66.58%,
demonstrating the benefit of using a bipartite graph to model redundancy. Integrating QCSP (QCRS +
DPP) alone further improves performance, increasing relative accuracy to 91.19%. Notably, the full config-
uration achieves 92.19% of the original accuracy while retaining only 2.7% of tokens. These results further
reflect the distinct yet complementary contributions of each module.

5.5 Efficiency Analysis

Table 6: Efficiency comparisons on the POPE benchmark.
We report the theoretical FLOPs, actual runtime, KV cache com-
pression rate (%), and the achieved accuracy.

Method # Token FLOPs
(T)

Prefill Time
(ms/token)

Decode Time
(ms/token)

KV Cache
(MB)

GPU Memory
(GB)

F1 Score
(F1)

LLaVA-NeXT-7B 2880 41.7 246 29 1440.0 16.7 86.8
FastV(ECCV24) 320 4.4 (×9.5) 54 (×4.6) 23 (×1.2) 160.3 15.6 49.5
PDrop(CVPR25) 320 4.5 (×9.3) 55 (×4.5) 24 (×1.2) 160.2 15.6 60.8
SparseVLM(ICML25) 320 4.5 (×9.3) 71 (×3.5) 25 (×1.1) 161.2 18.6 76.9
VisionZip(CVPR25) 320 4.2 (×9.9) 38 (×6.6) 22 (×1.3) 160.0 14.8 82.3
DivPrune(CVPR25) 320 4.2 (×9.9) 38 (×6.6) 22 (×1.3) 160.0 13.9 84.7
Script(Ours) 320 4.1 (×10) 35 (×6.8) 22 (×1.3) 160.0 13.5 86.7

w/o DPP 320 4.1 (×10) 38 (×6.6) 22 (×1.3) 160.0 14.0 86.5

We comprehensively evaluate recent to-
ken pruning methods on the POPE
benchmark, focusing on computation
cost, inference latency, memory usage,
and accuracy. As shown in Table 6,
the uncompressed LLaVA-NeXT-7B re-
quires 41.7T FLOPs, with 246ms pre-
fill and 29ms decode latency per to-
ken. It consumes 1440MB KV cache and
16.7GB peak GPU memory, achieving an
F1 score of 86.8. In contrast, Script reduces FLOPs to 4.1T (10× reduction), prefill latency to 35ms (6.8×
faster), and decode latency to 22ms. It also lowers KV cache to 160MB and memory to 13.5GB, while
maintaining an F1 score of 86.7. Without DPP, Script maintains similar efficiency and achieves a slightly
lower F1 score of 86.5. Compared to other baselines, Script achieves the lowest prefill/decode latency, the
smallest KV cache, and the best overall F1 score. For instance, FastV and PDrop suffer major accuracy
loss (F1: 49.5 and 60.8), while VisionZip and DivPrune perform better (F1: 82.3 and 84.7) but at higher
computational and memory cost. Overall, Script achieves the best balance between efficiency and accuracy,
outperforming all baselines across nearly all metrics.

6 Conclusion

In this paper, we introduce Script which reduces inference cost by selecting a compact yet semantically
meaningful subset of visual tokens, conditioned on the user query. Script combines visual redundancy and
query relevance perspectives through four stages: (1) graph-structured filtering to remove visually redundant
tokens, (2) query-conditioned relevance scoring, (3) diversity-promoting subset selection based on relevance
scores using DPP, and (4) intersection-based fusion to retain tokens that are both visually compact and
semantically aligned with the query. Its architecture-agnostic, plug-and-play design enables seamless inte-
gration into existing MLLMs without requiring retraining or architectural changes. Extensive experiments
on fourteen vision-language benchmarks show that Script consistently reduces computational overhead and
latency while preserving, or even improving, task performance under aggressive pruning settings. Future
work includes extending Script to additional modalities such as audio and video in spatial-temporal contexts,
and exploring adaptive pruning schedules that dynamically adjust to input complexity.
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Script: Graph-Structured and Query-Conditioned
Semantic Token Pruning for Multimodal Large

Language Models

Appendix

A Notation Overview

To facilitate clarity and improve readability, we provide a detailed glossary of all mathematical symbols used
throughout this paper, as shown in Table 7. The table serves as a centralized reference point, systematically
organizing every notation involved in the core components of the Script framework, including equations,
algorithmic modules, and architectural definitions. The glossary covers all key components of the proposed
framework, including visual encoding, query representation, relevance scoring, similarity computation, DPP-
based token selection, structural pruning, and auxiliary constants. This table is intended to improve the
clarity of mathematical derivations, reduce cross-referencing overhead, and support accurate reproduction
and further development of the method.

Table 7: Detailed symbol glossary used throughout the Script framework.

Symbol Type / Dim Definition
Xv Image / video input Raw visual input passed into the vision encoder fv.
fv Function Vision encoder extracting patch-level features from Xv.
g Function Multimodal projector mapping visual features to token embeddings.
n, d, ℓ, m Integers #tokens (input, dim, query length, retained) respectively.
Hv Matrix Sequence of n visual tokens, each d-dimensional, before pruning.
Hq Sequence of vectors Tokenized user query of length ℓ.
H̃v Matrix (m× d) Visual token subset after pruning (m < n).
fφ Function (LLM) Frozen language model consuming [H̃v; Hq].
L(·, ·) Scalar loss Task loss comparing model outputs before and after pruning.
hi Vector (∈ Rd) i-th visual token embedding in Hv.
h(q)

µ Vector (∈ Rd) Mean pooled embedding of the query tokens.
qi Scalar Query-conditioned relevance score of token i.
Q = diag(q1, . . . , qn) Diagonal matrix Relevance weighting matrix for visual tokens.
Sij Scalar Cosine similarity between tokens i and j.
S Matrix (n× n) Symmetric similarity matrix among visual tokens.
L = Q1/2SQ1/2 Matrix (n× n) DPP kernel combining relevance and diversity.
I, |I| = m Index set Token indices selected for retention.
I∗ Index set Optimal index subset maximizing log-det of DPP kernel.
L̃ Matrix Query-conditioned DPP kernel with temperature scaling.
r, r̃ Vectors (∈ [0, 1]n) Raw and temperature-scaled relevance scores.
Vsrc, Vdst Token subsets Bipartite partitions used in graph-based redundancy pruning.
G = (Vsrc, Vdst, S) Graph Token similarity graph for structural filtering.
d2

i Scalar Residual variance of token i under low-rank projection.
ui Vector (∈ RT ) Coefficient vector for token i in basis space.
ei Scalar Normalizer in Cholesky-style update.
C ∈ Rn × T Matrix Basis matrix for low-rank approximation of DPP kernel.
T Integer Target rank or DPP subset size.
τ Threshold (scalar) Redundancy threshold for similarity pruning.
ϵ Constant (10−6) Numerical stability term in projection update.
⊙ Operator Element-wise (Hadamard) product.
⟨·, ·⟩ Operator Inner product used for cosine similarity.
∥·∥ Operator Euclidean norm used in normalization.
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B Determinantal Diversity: Equivalence, Bounds, and Optimality

B.1 Notation.

To facilitate clear and consistent exposition, we first define the key symbols and assumptions used throughout
the paper and illustrate each with a simple example or explanation.

• ∥·∥2 (Euclidean norm): The standard ℓ2 norm for vectors in Rd.
Example: ∥(3, 4)∥2 =

√
32 + 42 = 5.

• λi(A) (i-th largest eigenvalue of A): For a symmetric matrix A ∈ Rk×k, we order its eigenvalues
as λ1(A) ≥ λ2(A) ≥ · · · ≥ λk(A). Since all our kernels will be positive semi-definite (PSD), all
λi ≥ 0.

• 1k (all-ones vector): A k-dimensional column vector with all entries equal to one, i.e., (1, . . . , 1)⊤ ∈
Rk.

Let T = v1, . . . , vn ⊂ Rd denote a collection of feature vectors. We assume that each vi has unit norm:
∥vi∥2 = 1 for all i. This means that each vector lies on the unit hypersphere in Rd.

Example: The vector vi = (1, 0, . . . , 0)⊤ has ∥vi∥2 = 1, and thus is a valid member of T .

We adopt this unit-norm convention to ensure that inner products v⊤
i vj correspond exactly to cosine similar-

ities, simplifying the interpretation of the similarity kernel introduced next. Meanwhile, this normalization
remains fixed throughout the paper.

Similarity Kernel. Given a collection of unit-norm vectors T = [v1, . . . , vn] ⊂ Rd as introduced above,
we define a similarity kernel matrix L ∈ Rn×n whose (i, j)-entry captures the cosine similarity between vi

and vj :
Lij = v⊤

i vj , for all 1 ≤ i, j ≤ n. (12)

Since all vi lie on the unit hypersphere, we have v⊤
i vj ∈ [−1, 1]. In particular, Lii = v⊤

i vi = 1, and the more
similar two vectors are, the closer Lij is to 1.

We can express the full kernel compactly using matrix notation. Let V = [v1 v2 · · · vn] ∈ Rd×n be the
matrix whose columns are the feature vectors.

Then:
L = V ⊤V. (13)

This representation immediately implies that L is symmetric and positive semi-definite (PSD), because for
any x ∈ Rn, we have:

x⊤Lx = x⊤V ⊤V x = ∥V x∥2
2 ≥ 0. (14)

Therefore, L satisfies the standard spectral properties of Gram matrices: all eigenvalues of L are real and
non-negative, and L admits an orthonormal eigendecomposition. These properties are critical for the DPP
model discussed next.

B.2 Determinant as a Diversity Objective

We now connect the determinant of a kernel submatrix with geometric diversity. Specifically, we show that
for any subset of k unit vectors, the determinant of their Gram matrix equals the square of the volume of
the parallelotope they span.
Proposition 1 (Determinant–Volume Equivalence). Let S = [i1, . . . , ik] ⊆ [n] be an index subset of size k.
Define VS = [vi1 , . . . , vik

] ∈ Rd×k as the submatrix of feature vectors indexed by S, and LS = V ⊤
S VS ∈ Rk×k

as their Gram matrix. Then,
det LS =

(
det VS

)2 =
(

Volk(VS)
)2

, (15)
where Volk(VS) is the k-dimensional volume of the parallelotope spanned by the column vectors of VS.
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Proof. Let VS = QR be the QR decomposition of VS , where Q ∈ Rd×k has orthonormal columns and
R ∈ Rk×k is upper triangular. Then,

LS = V ⊤
S VS = R⊤Q⊤QR = R⊤R, (16)

using the fact that Q⊤Q = Ik. Taking determinants on both sides gives:

det LS = det(R⊤R) = (det R)2. (17)

Moreover, from VS = QR, we have det VS = det R because Q has orthonormal columns and thus det Q is
±1 (or undefined if d < k). Therefore,

det LS = (det VS)2. (18)

Geometrically, |det VS | gives the volume of the k-dimensional parallelotope formed by the columns of VS (a
known fact from multilinear algebra). Thus,

Volk(VS) = |det VS |, so det LS = (Volk(VS))2. (19)

This equivalence forms the foundation for interpreting det LS as a natural diversity objective: it assigns
higher values to sets of vectors that are more ‘spread out’ or ‘orthogonal’ in space.

B.3 Diversity Upper Bound via Hadamard Inequality

The determinant of any Gram matrix LS formed from unit-norm vectors is upper bounded by 1. This
follows from the classical Hadamard inequality, which gives a constraint on the determinant of a positive
semi-definite matrix in terms of its diagonal entries.
Corollary 1 (Hadamard Bound). Let LS be the Gram matrix defined above, formed from k unit vectors.
Then:

det LS ≤ 1, det LS = 1 ⇐⇒ v⊤
ip

viq = 0 for all p ̸= q. (20)

Proof. Hadamard’s inequality states that for any positive semi-definite matrix A ∈ Rk×k with diagonal
entries aii,

det A ≤ a11a22 · · · akk,

with equality if and only if the columns of A are orthogonal.

In our case, LS = V ⊤
S VS is PSD and satisfies diag(LS) = (1, 1, . . . , 1) since each ∥vi∥2 = 1.

Therefore,
det LS ≤ 1, (21)

with equality if and only if the vectors vi1 , . . . , vik
are mutually orthogonal.

The determinant det LS quantifies how linearly independent or “spread out” the vectors in S are. The
maximum value 1 occurs when the vectors are exactly orthogonal. Therefore, maximizing det LS promotes
diversity by encouraging the selection of vectors that are as close to orthogonal as possible.

B.4 Determinantal Point Processes and Diversity Maximization

We now formally introduce Determinantal Point Processes (DPPs), which are probability distributions over
subsets that inherently promote diversity. In the fixed-size or k-DPP setting, each subset S of size k is
assigned a probability proportional to the determinant of its associated submatrix LS :

PL(S) ∝ det LS , for |S| = k. (22)
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Specifically, we formulate this as:
PL(S) = det LS∑

T ⊆[n]
|T |=k

det LT
. (23)

where the denominator sums over all k-subsets of [n], ensuring a valid probability distribution.

This probabilistic model encourages the selection of sets S whose vectors are geometrically diverse, since
higher determinant values correspond to higher volume (as shown previously). In practice, one often seeks
the most probable subset under this model, known as the maximum a posteriori (MAP) estimate:

SMAP = arg max
|S|=k

det LS . (24)

This optimization problem aims to find the subset of k vectors that span the largest volume parallelotope in
Rd, or equivalently, the subset exhibiting maximal geometric diversity. The DPP framework thus provides
both a probabilistic model and a concrete objective—det LS—for achieving diverse subset selection.

B.5 Redundancy Metrics and Determinant Bounds

While the determinant det LS captures diversity, we can also assess subset quality via redundancy metrics.
These measure how similar the vectors in S are to each other, either in the worst-case or on average. Two
commonly used metrics are:

ρmax(S) = max
i̸=j∈S

Lij , ρavg(S) = 2
k(k − 1)

∑
i<j∈S

Lij . (25)

Here, Lij = v⊤
i vj is the cosine similarity between unit vectors vi and vj . The value ρmax(S) measures the

most redundant pair (i.e., most similar), while ρavg(S) captures the overall similarity level.

We now relate these redundancy measures to det LS using spectral bounds. The first bound is derived using
Gershgorin’s circle theorem.
Lemma 1 (Gershgorin-Based Lower Bound). For any subset S of size k, we have:

λmin(LS) ≥ 1− ρmax(S), det LS ≥ (1− ρmax(S))k. (26)

Proof. Each row of LS has diagonal entry 1, and all off-diagonal entries satisfy |Lij | ≤ ρmax(S) for i ̸= j.
By Gershgorin’s circle theorem, every eigenvalue of LS lies in at least one disk centered at 1 with radius
ρmax(S). Hence:

λmin(LS) ≥ 1− ρmax(S).

Since LS is symmetric, all its eigenvalues are real. Therefore, Gershgorin’s circle theorem applies directly
and guarantees that all eigenvalues lie within disks centered at the diagonal entries with radius equal to the
sum of the absolute off-diagonal entries in each row. Therefore, LS is symmetric PSD, its determinant is the
product of eigenvalues:

det LS =
k∏

i=1
λi(LS) ≥ λmin(LS)k ≥ (1− ρmax(S))k.

Next, we upper bound det LS in terms of average similarity, using the arithmetic mean-geometric mean
inequality.
Lemma 2 (AM–GM Upper Bound). Let λ1, . . . , λk be the eigenvalues of LS. Then:

det LS ≤ (1 + ρavg(S))k−1
. (27)
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This lemma provides a simple upper bound on the determinant of a Gram matrix in terms of average
pairwise similarity. While useful for theoretical analysis, this AM–GM-based inequality is often loose in
practice, especially when ρavg(S) is non-negligible. The bound does not account for the detailed spectral
structure of LS , and thus can significantly overestimate the true value of det LS . To address this, we next
derive a refined upper bound that is spectrally informed and provably tighter.

Proof. By the AM–GM inequality, for any non-negative real numbers λ1, . . . , λk, we have:

det LS =
k∏

i=1
λi ≤

(
1
k

k∑
i=1

λi

)k

=
(

tr(LS)
k

)k

= 1k = 1.

To relate this to ρavg(S), we consider the Rayleigh quotient of the all-ones vector 1k:

1⊤
k LS1k

1⊤
k 1k

=
∑

i,j∈S Lij

k2 = k + k(k − 1) · ρavg(S)
k2 = 1 + k − 1

k
ρavg(S).

This quantity upper bounds the largest eigenvalue λmax(LS) since the Rayleigh quotient provides an upper
bound over all unit vectors.

Now, to obtain an upper bound on the determinant, we consider a worst-case distribution of eigenvalues
under the trace constraint. Specifically, we assume that one eigenvalue is large and the remaining (k − 1)
are equal and small. This skewed distribution is known to maximize the determinant under fixed trace and
maximum eigenvalue constraints.

Let λmax be the largest eigenvalue, and assume the remaining (k − 1) eigenvalues are equal to λrest. Since
the total trace is k, we have:

λmax + (k − 1)λrest = k.

Solving for λrest, we get:
λrest = k − λmax

k − 1 .

The determinant is then:

det LS = λmax ·
(

k − λmax

k − 1

)k−1
.

Substituting the upper bound on λmax from above:

λmax ≤ 1 + k − 1
k

ρavg(S),

and simplifying this expression yields the claimed upper bound:

det LS ≤ (1 + ρavg(S))k−1
.

This bound is general but often loose, especially when the off-diagonal similarities in LS are uniformly
high. In such cases, we next show that a refined bound based on structured matrices can be significantly
tighter.

Motivation for a Refined Bound. The AM–GM bound above provides a worst-case envelope that does
not incorporate any spectral structure of LS beyond its average similarity. However, when all off-diagonal
entries of LS are equal to ρavg, the matrix exhibits an extremal spectral configuration that yields the smallest
determinant under fixed average similarity. By explicitly analyzing this case, we obtain a refined upper bound
that better captures the worst-case decay of det LS with increasing redundancy.
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Lemma 3 (Refined Upper Bound via Spectral Construction). Let LS be the Gram matrix of k unit vectors
with average off-diagonal similarity ρavg(S) ∈ [0, 1). Then,

det LS ≤ (1 + (k − 1)ρavg(S)) · (1− ρavg(S))k−1. (28)

Proof. Consider the class of symmetric PSD matrices LS where all off-diagonal entries are equal to ρavg, and
all diagonal entries are 1:

(LS)ij =
{

1 if i = j

ρavg if i ̸= j.

This matrix has a known spectral decomposition: one eigenvalue equals 1 + (k − 1)ρavg, and the remaining
(k − 1) eigenvalues are 1− ρavg.

Hence, the determinant is:
det LS = (1 + (k − 1)ρavg) · (1− ρavg)k−1.

By Schur-convexity of the determinant function over the eigenvalue simplex, this configuration gives the
maximal determinant among all matrices with the same average off-diagonal similarity. Thus, the bound
holds.

While this refined bound is not a universal upper bound over all positive semi-definite matrices with a given
average off-diagonal similarity, it tightly characterizes the worst-case configuration when all off-diagonal
entries are equal. Among such uniformly redundant matrices, the bound is achieved exactly, making it a
sharp envelope for assessing diversity degradation under homogeneously correlated subsets.

Compared to Lemma 2, this refined bound is strictly tighter whenever ρavg(S) > 0, as it directly models the
spectral behavior of uniformly redundant configurations. The bound thus provides a sharper envelope for
analyzing diversity degradation in highly correlated subsets.

0 0.2 0.4 0.6 0.8
0

2

4

6

8

10

ρavg

de
tL

S
up

pe
r

bo
un

d

AM–GM Bound: (1 + ρ)4

Refined Bound: (1 + 4ρ)(1 − ρ)4

Figure 6: Upper bounds on det LS vs. average similarity ρavg for k = 5. The refined bound tracks the
worst-case determinant decay more tightly than the AM–GM bound.

B.6 Global Optimality of the MAP Subset

We now show that the subset S∗ that maximizes det LS among all k-subsets also minimizes both redundancy
metrics ρmax and ρavg. This establishes that the most diverse subset under the DPP determinant objective
is simultaneously the least redundant.
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Theorem 1 (Determinant-maximizing subset minimizes redundancy). Let S∗ = arg max|S|=k det LS be the
MAP solution of the k-DPP. Then for any other k-subset S, we have:

ρmax(S∗) ≤ ρmax(S), ρavg(S∗) ≤ ρavg(S). (29)

Proof. (i) Worst-case similarity. From Lemma 1, we have for any subset S:

ρmax(S) ≥ 1− det(LS)1/k, (30)

which follows by rearranging Eq. equation 26. Since x 7→ 1 − x1/k is strictly decreasing on (0, 1], it attains
its minimum when det LS is maximized. Hence:

ρmax(S∗) ≤ ρmax(S).

(ii) Average similarity. Similarly, from Lemma 2, we rearrange Eq. equation 27:

ρavg(S) ≥ det(LS)1/(k−1) − 1. (31)

Again, this is a strictly decreasing function of det LS , so the maximizing subset S∗ achieves minimal average
redundancy:

ρavg(S∗) ≤ ρavg(S).

Corollary 2 (MAP subset is globally most diverse). The k-DPP MAP subset S∗ simultaneously maximizes
geometric diversity (via det LS) and minimizes both ρmax and ρavg among all size-k subsets.

B.7 Approximation via Greedy MAP Inference

Exact MAP inference for a k-DPP is NP-hard, as it requires evaluating
(

n
k

)
determinants. However, the

objective log det LS is known to be monotone and submodular when L is positive semi-definite, which
allows for a natural greedy approximation algorithm. The function log det LS is known to be monotone and
submodular when L is PSD, as it arises from the entropy of Gaussian variables or from spectral submodular
theory (see [ref]).

Let Ŝ denote the greedy solution obtained by iteratively selecting vectors that offer the greatest marginal
increase in log det LS . Then, by the classical Nemhauser–Wolsey theorem for submodular maximization:

log det L
Ŝ
≥ (1− 1/e) log det LS∗ , (32)

where S∗ is the exact MAP subset from Eq. equation 24.

Exponentiating both sides gives a multiplicative guarantee on the determinant:

det L
Ŝ
≥ (det LS∗)1−1/e. (33)

We now translate this guarantee into approximate bounds on redundancy. Applying Lemma 1, we get:

ρmax(Ŝ) ≤ 1− (det L
Ŝ

)1/k ≤ 1− (det LS∗)(1−1/e)/k. (34)

Similarly, applying Lemma 2 in reverse:

ρavg(Ŝ) ≤ (det L
Ŝ

)1/(k−1) − 1 ≤ (det LS∗)(1−1/e)/(k−1) − 1. (35)

Hence, the greedy subset Ŝ enjoys constant-factor approximation guarantees on both diversity and redun-
dancy metrics, with approximation factors of (det LS∗)1−1/e for diversity, and redundancy bounds that
degrade gracefully with 1/k and 1/(k − 1) exponents.
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B.8 Summary.

This section has established a formal connection between geometric diversity, as quantified by the determinant
of a Gram submatrix, and redundancy metrics such as ρmax and ρavg. We showed that:

• Maximizing det LS encourages the selection of nearly orthogonal vectors, which minimizes both
redundancy measures.

• The MAP solution to the k-DPP yields the globally most diverse and least redundant subset.

• Even when exact MAP inference is intractable, greedy algorithms yield approximate solutions with
provable guarantees, not only on det LS , but also on redundancy.

Together, these results justify the determinant objective as a principled and effective diversity metric, both
theoretically and algorithmically.

Application to Script. The diversity metric and DPP framework established in this section provide
the theoretical foundation for the Script method proposed in the main text. While Script operates in a
practical, query-conditioned multimodal setting, its core selection strategy is grounded in the same principle
of maximizing the determinant of a positive semi-definite kernel submatrix.

In Script, the DPP kernel is constructed as:

L = diag(r) · S · diag(r), (36)

where S is a symmetric matrix capturing token-token similarity (e.g., cosine similarity), and r contains
query-conditioned relevance scores. Since S is symmetric PSD and diag(r) is diagonal with non-negative
entries, the resulting matrix L remains PSD by congruence transformation. This formulation modulates
pairwise similarities by semantic alignment with the user query, but retains the PSD structure necessary for
DPP-based selection.

The subset selection objective in Script thus becomes:

S∗ = arg max
|S|=k

det(LS), (37)

which is a direct instance of the MAP inference problem for k-DPPs. As shown earlier, maximizing det(LS)
promotes geometric diversity and minimizes redundancy. Script extends this by incorporating semantic
relevance via r, enabling informed token pruning aligned with both diversity and task relevance.

This shows that even when the kernel matrix is modulated by non-uniform relevance scores—as encoded
by diag(r)—the determinant-based objective retains its ability to balance geometric diversity with task-
conditioned selection. Such a formulation is particularly well-suited for transformer compression and atten-
tion summarization, where preserving non-redundant yet relevant tokens is essential.

Therefore, the theoretical results in this section not only justify the determinant-based diversity objective
used in Script, but also explain its effectiveness in minimizing redundancy and preserving essential informa-
tion under aggressive token reduction.

Empirically, we find that maximizing det(LS) with query-conditioned L enables Script to select token subsets
that are both semantically relevant and minimally redundant, yielding improved performance in summariza-
tion and retrieval tasks (see Section 5).

C Details of experimental setup

C.1 Model Architectures

LLaVA-1.5 (Liu et al., 2023) The LLaVA series represents a foundational line of open-source vision-
language models (VLMs), recognized for their simple design, low training cost, and strong performance. The
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original LLaVA architecture integrates a pretrained CLIP (Radford et al., 2021) as the visual encoder and
Vicuna (Chiang et al., 2023) as the language model, connected via a linear projection layer. This enables
the LLM to accept image grid features as input. Through visual instruction tuning, LLaVA gains the ability
to handle multimodal tasks. LLaVA-1.5 enhances this framework by replacing the linear connector with a
multi-layer perceptron (MLP), increasing input image resolution, and utilizing a broader and more diverse
set of instruction tuning data. These modifications lead to substantial performance improvements. The
model processes images at a resolution of 336×336, resulting in 576 visual tokens per image.

LLaVA-NeXT (Liu et al., 2024a) LLaVA-NeXT (also referred to as LLaVA-1.6) builds upon LLaVA-1.5
by introducing a dynamic resolution mechanism aimed at improving visual perception. Instead of using a
fixed resolution, the model selects an optimal aspect ratio based on the original image and increases its
resolution by up to 4×. Importantly, the visual encoder remains unchanged. To handle the higher-resolution
inputs, the image is divided into multiple sub-images of the original size. Each sub-image is encoded indepen-
dently, and the resulting visual tokens are concatenated and passed to the language model. This approach
enhances the model’s performance in tasks such as visual reasoning, optical character recognition (OCR),
and knowledge-intensive questions. For consistency and fair comparison, we fix the resolution to 672×672
(4× the original), generating 2,880 visual tokens per image.

LLaVA-Video (Zhang et al., 2024e) LLaVA-Video is a variant of the LLaVA family designed specifically
for video understanding. It introduces the SlowFast frame sampling strategy to balance the number of
frames and the density of visual tokens. The model utilizes SigLIP (Zhai et al., 2023) as the visual encoder
and processes video frames at 384×384 resolution, encoding each frame into 729 visual tokens. To reduce
computational load, a 2×2 average pooling operation is applied to the grid features, effectively reducing
the number of visual tokens by a factor of 4. During evaluation, we uniformly sample 64 frames per video,
resulting in a total of 10,816 visual tokens. This design allows LLaVA-Video to efficiently model both spatial
and temporal aspects of visual input.

InternVL3 (Zhu et al., 2025) One of the most advanced open-source MLLMs at present. Building upon
its predecessor, InternVL2.5, it retains the ViT-MLP-LLM architecture, integrating a Vision Transformer
with a large language model through an MLP connector. InternVL3 features a native multimodal pre-
training paradigm, jointly acquiring linguistic and multimodal capabilities in a single stage. It incorporates
Variable Visual Position Encoding to handle extended multimodal contexts and employs advanced training
techniques like supervised fine-tuning and mixed preference optimization. InternVL3 demonstrates superior
performance across a wide range of multimodal tasks, including tool usage, GUI agents, industrial image
analysis, and 3D vision perception.

C.2 Evaluation Benchmarks

C.2.1 General Image Benchmarks

VQAv2 (Goyal et al., 2017) An open-ended visual question answering benchmark that evaluates a model’s
ability to understand images, natural language, and commonsense knowledge. It contains 265,016 images
from the COCO dataset (Lin et al., 2014) and abstract scenes, with each image paired with an average of
5.4 questions. Each question is annotated with 10 ground truth answers and 3 plausible alternatives. We
use the test-dev split for evaluation.

GQA (Hudson & Manning, 2019) A large-scale VQA benchmark built on real-world images from the
Visual Genome dataset (Krishna et al., 2017), designed to test compositional reasoning and fine-grained visual
understanding. It provides over 22 million balanced question-answer pairs, with each image accompanied
by a detailed scene graph describing objects, attributes, and relationships. We evaluate on the test-dev
balanced split.

VizWiz (Gurari et al., 2018) A real-world VQA benchmark created from images taken by blind users,
paired with spoken questions and 10 crowd-annotated answers each. It introduces two main challenges:
answering questions and detecting unanswerable ones, due to issues like poor image quality and ambiguous
content. We use the test split for evaluation.
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ScienceQA (Lu et al., 2022) A multimodal, multiple-choice QA benchmark covering diverse scientific
domains. It includes 21,208 questions categorized across 26 topics, 127 categories, and 379 skills. Nearly half
of the questions include image or text context, and the majority are supplemented with grounded lectures
(83.9%) and detailed explanations (90.5%). We evaluate using the test split that includes image context,
referred to as ScienceQA-IMG.

POPE (Li et al., 2023b) A benchmark focused on evaluating object hallucination in vision-language
models. Using images from COCO, it formulates binary questions regarding the presence of specific objects
in the scene. Precision, recall, and F1 score are used to quantify hallucination. We use the test split for
evaluation.

MME (Fu et al., 2023) A broad benchmark assessing both perceptual and cognitive abilities of multimodal
large language models. It comprises 14 subtasks across perception (e.g., object recognition, counting, color,
position, OCR) and cognition (e.g., commonsense reasoning, numerical calculation, translation, code un-
derstanding). All binary instruction-answer pairs are manually constructed to avoid data leakage, ensuring
rigorous evaluation.

MMBench (Liu et al., 2024c) A comprehensive benchmark designed to evaluate a wide range of mul-
timodal capabilities. It features a large and diverse set of questions, surpassing prior benchmarks in scale
and coverage. A novel CircularEval strategy, powered by ChatGPT, converts open-ended responses into
structured formats for consistent scoring. A Chinese version, MMBench-CN, is also provided.

MM-Vet (Yu et al., 2023) A benchmark emphasizing the integration of multimodal skills. It defines six
core capabilities, recognition, OCR, knowledge, language generation, spatial reasoning, and mathematics,
via 218 challenging examples. Evaluation is conducted using ChatGPT to ensure consistency across varied
answer formats.

HallusionBench (Guan et al., 2024) An image-context reasoning benchmark crafted to expose two
frequent failure modes of large vision–language models: language hallucination (answers driven by strong
linguistic priors that contradict the image) and visual illusion (misleading visual features that produce
confident yet wrong responses). Comprising carefully designed examples that remain challenging for GPT-
4V and LLaVA-1.5, it enables fine-grained diagnosis of how VLMs over-trust language or under-exploit
vision, offering insights for building more faithfully grounded models.

C.2.2 Text-Oriented Benchmarks

TextVQA (Singh et al., 2019a) A benchmark designed to evaluate models’ ability to read and reason
about text embedded in images. Sourced from the Open Images v3 dataset (Krasin et al., 2017), it includes
scenes rich in textual content such as signs and packaging. The benchmark emphasizes integration of OCR
with visual and linguistic reasoning. We use the validation split for evaluation.

AI2D (Kembhavi et al., 2016) A diagram-based question answering benchmark consisting of over 5,000
grade school science diagrams, annotated with more than 150,000 structured labels and ground-truth syntac-
tic parses. It also includes over 15,000 multiple-choice questions aligned with the diagrams, enabling research
on visual reasoning and diagram understanding in scientific contexts. We use the test split with mask for
evaluation.

ChartQA (Masry et al., 2022) A large-scale benchmark designed for question answering over charts,
focusing on complex reasoning that involves both visual interpretation and logical or arithmetic operations.
It includes 9.6K human-written questions and 23.1K questions generated from chart summaries. Unlike
prior template-based benchmarks, ChartQA challenges models to perform multi-step reasoning using both
the visual content and underlying data tables of charts, highlighting the need for advanced multimodal
understanding. We use the test split for evaluation.

OCRBench (Liu et al., 2024d) A comprehensive evaluation benchmark assessing the OCR capabilities
of large multimodal models. It comprises 29 datasets across diverse text-related visual tasks, including text
recognition, scene text-centric VQA, document-oriented VQA, key information extraction, and handwritten
mathematical expression recognition.
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Table 8: Performance comparisons on LLaVA-1.5-13B Liu et al. (2024a) across 10 image un-
derstanding benchmarks.

Method Venue VQAV2 GQA VizWiz SQAIMG VQAText POPE MME MMBEN MMBCN MMVet Acc. Average
Upper Bound, 576 Tokens (100%), 3.817 TFLOPs

LLaVA-1.5-13B Liu et al. (2023) Nips’23 80.10 63.35 53.36 72.85 61.24 86.00 1531.25 68.55 63.55 36.22 66.21 100%
Retain 128 Tokens in Average (↓ 77.8%), ∼0.833 TFLOPs

FastV Chen et al. (2024a) ECCV’24 75.53 58.13 54.46 74.32 58.76 75.55 1460.56 66.01 62.23 32.78 63.17 95.41%
TRIM Song et al. (2025) COLING’25 76.34 59.14 49.87 72.14 55.08 86.38 1426.49 67.11 58.14 35.13 63.06 95.24%
VisionZip Yang et al. (2025) CVPR’25 76.83 57.79 52.03 73.68 58.39 82.77 1449.42 67.14 62.95 36.01 64.01 96.67%
DivPrune Alvar et al. (2025) CVPR’25 77.41 59.21 53.35 72.28 58.40 86.81 1457.97 66.13 60.74 34.41 64.16 96.90%
SparseVLM Zhang et al. (2024d) ICML’25 77.61 59.46 51.74 74.23 59.93 85.02 1487.59 68.14 62.36 35.92 64.87 97.97%
Script (Ours) Proposed 77.87 59.27 52.49 73.29 58.45 87.31 1498.30 67.15 61.35 36.12 64.83 97.64%

Retain 64 Tokens in Average (↓ 88.9%), ∼0.415 TFLOPs
FastV Chen et al. (2024a) ECCV’24 65.73 51.39 53.48 73.01 53.74 56.49 1246.54 59.12 55.18 26.89 55.78 84.24%
TRIM Song et al. (2025) COLING’25 73.12 57.85 49.23 72.00 52.10 86.65 1406.12 65.04 52.57 27.98 60.73 91.72%
VisionZip Yang et al. (2025) CVPR’25 73.75 56.23 53.12 74.29 57.41 75.67 1379.66 64.94 61.33 33.40 61.91 93.51%
DivPrune Alvar et al. (2025) CVPR’25 75.20 57.91 54.49 71.67 57.54 84.35 1454.29 64.13 59.87 29.31 62.73 94.74%
SparseVLM Zhang et al. (2024d) ICML’25 73.12 55.91 52.17 72.09 57.14 77.91 1374.35 65.12 60.23 32.94 61.62 93.07%
Script (Ours) Proposed 76.67 59.64 53.55 72.75 57.86 87.19 1466.98 65.85 58.72 36.20 64.20 96.96%

Retain 32 Tokens in Average (↓ 94.5%), ∼0.208 TFLOPs
FastV Chen et al. (2024a) ECCV’24 61.13 48.36 51.68 72.37 50.73 53.99 1198.33 54.27 53.22 23.65 52.93 79.95%
TRIM Song et al. (2025) COLING’25 69.83 55.67 48.58 70.64 49.65 85.85 1284.57 63.13 45.45 26.34 57.79 86.28%
VisionZip Yang et al. (2025) CVPR’25 68.40 52.71 53.09 72.79 55.20 66.85 1257.67 61.32 55.58 29.43 57.81 87.62%
DivPrune Alvar et al. (2025) CVPR’25 72.00 56.20 54.55 70.89 54.76 79.12 1405.02 61.47 57.12 27.98 60.42 91.25%
SparseVLM Zhang et al. (2024d) ICML’25 71.57 54.05 51.54 70.86 53.74 77.45 1327.37 62.88 58.91 28.13 59.55 89.94%
Script (Ours) Proposed 75.25 58.75 53.35 71.99 55.43 87.31 1421.10 63.79 56.36 30.77 62.41 94.26%

C.2.3 Video Benchmarks

MLVU (Zhou et al., 2025) The first large-scale benchmark for long video understanding. It features
videos ranging from 3 minutes to 2 hours and spans nine tasks covering holistic, single-detail, and multi-
detail understanding. Both multiple-choice and open-ended questions are included. We report performance
using the M-Avg metric.

MVBench (Li et al., 2023a) A benchmark tailored for evaluating temporal reasoning in video compre-
hension. It includes 20 carefully designed tasks requiring dynamic understanding across multiple frames.
MVBench introduces a static-to-dynamic transformation approach to systematically test temporal under-
standing. We use the test split for evaluation.

LongVideoBench (Wu et al., 2024) A large-scale benchmark for evaluating understanding of long-form
videos. It consists of 3,763 videos (up to 1 hour long), each accompanied by subtitles and 6,678 human-
written multiple-choice questions across 17 categories. A key feature is the referring reasoning task, where
questions target specific video segments. We use the validation split for evaluation.

Video-MME (Fu et al., 2025) A comprehensive video benchmark featuring 900 expert-curated videos
spanning 256 hours across six primary domains and 30 subfields. Videos range from 11 seconds to 1 hour
in duration and include video, audio, and subtitles (not used during evaluation). It provides 2,700 expert-
annotated QA pairs designed to probe complex temporal and multimodal reasoning abilities.

C.3 Comparison Methods

C.3.1 Text-based Methods

FastV (Chen et al., 2024a) The first work to identify inefficiencies in visual attention within MLLMs.
Based on this observation, FastV proposes a simple, training-free acceleration method: after the second
transformer layer, it prunes a portion of visual tokens with the lowest visual-text attention scores. This
strategy significantly reduces computational cost during inference without retraining.

SparseVLM (Zhang et al., 2024d) Inspired by multi-stage pruning methods such as PyramidDrop,
SparseVLM introduces a more fine-grained strategy that incorporates textual guidance. It observes that not
all instruction tokens are equally informative for pruning visual tokens. Therefore, it first selects text tokens
highly relevant to the visual content as “raters," and uses their attention distribution to guide which visual
tokens should be preserved or pruned, resulting in improved model efficiency and accuracy.
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Table 9: Performance comparisons on LLaVA-Next-13B Liu et al. (2024a) across 8 image under-
standing benchmarks. The best results in each setting are bolded, and the second-best are underlined.

Method Venue VQAV2 GQA VizWiz SQAIMG VQAText POPE MME MMBEN MMBCN MMVet Acc. Average
Upper Bound, 576 Tokens (100%), 3.817 TFLOPs

LLaVA-NeXT-13B Liu et al. (2024a) Nips’23 82.30 64.35 59.15 73.15 63.20 85.20 1539.50 68.55 61.05 45.02 67.91 100%
Retain 640 Tokens in Average (↓ 77.8%), ∼4.627 TFLOPs

FastV Chen et al. (2024a) ECCV’24 79.34 60.89 56.44 71.75 60.74 80.24 1536.7 65.25 59.39 43.68 65.45 96.38%
TRIM Song et al. (2025) COLING’25 79.34 63.19 54.31 71.42 57.64 87.31 1543.36 68.75 61.21 42.34 66.26 97.57%
VisionZip Yang et al. (2025) CVPR’25 79.37 62.79 56.12 70.83 61.91 85.83 1529.22 68.31 62.61 46.98 67.13 98.84%
DivPrune Alvar et al. (2025) CVPR’25 80.34 63.54 56.73 72.12 59.42 86.44 1531.41 67.51 62.59 39.10 66.42 97.81%
SparseVLM Zhang et al. (2024d) ICML’25 79.49 62.74 57.55 72.35 62.48 85.56 1573.74 68.85 64.10 41.35 67.31 99.11%
Script (Ours) Proposed 81.14 64.22 57.02 72.08 61.40 87.31 1552.61 68.93 61.91 47.13 67.87 99.95%

Retain 320 Tokens in Average (↓ 88.9%), ∼2.314 TFLOPs
FastV Chen et al. (2024a) ECCV’24 66.98 54.36 53.33 70.11 55.34 64.10 1288.0 59.48 54.14 30.52 57.27 84.34%
TRIM Song et al. (2025) COLING’25 75.94 61.13 52.12 69.59 52.18 87.42 1484.6 67.53 57.34 33.41 63.09 92.90%
VisionZip Yang et al. (2025) CVPR’25 76.18 60.37 54.84 70.12 60.17 82.33 1417.13 66.45 62.53 41.21 64.50 94.96%
DivPrune Alvar et al. (2025) CVPR’25 78.13 61.28 55.10 72.39 57.46 85.32 1465.01 65.91 61.59 39.42 64.98 95.68%
SparseVLM Zhang et al. (2024d) ICML’25 76.75 60.91 54.75 70.94 60.01 81.35 1491.46 68.10 63.45 39.36 65.05 95.78%
Script (Ours) Proposed 79.64 63.11 55.31 71.46 58.74 87.63 1501.15 66.73 61.48 42.32 66.16 97.42%

Retain 160 Tokens in Average (↓ 94.4%), ∼1.156 TFLOPs
FastV Chen et al. (2024a) ECCV’24 62.67 50.79 52.03 69.11 51.74 62.95 1229.18 56.48 53.16 27.36 54.77 80.66%
TRIM Song et al. (2025) COLING’25 72.15 58.93 51.12 69.19 49.12 87.00 1392.30 65.75 51.65 27.68 60.21 88.66%
VisionZip Yang et al. (2025) CVPR’25 72.45 57.81 52.35 69.47 58.69 76.38 1393.49 64.85 60.01 35.39 61.70 90.86%
DivPrune Alvar et al. (2025) CVPR’25 75.64 60.30 53.15 71.44 56.43 81.29 1436.17 65.19 60.59 37.34 63.31 93.22%
SparseVLM Zhang et al. (2024d) ICML’25 74.62 59.79 52.38 69.89 55.89 80.92 1429.44 65.19 59.17 36.48 62.58 92.15%
Script (Ours) Proposed 77.85 62.32 53.19 71.37 56.47 88.83 1476.99 65.49 59.91 40.34 64.96 95.65%

C.3.2 Vision-based Methods

TRIM (Song et al., 2025) Pruning based solely on visual input, while ignoring textual context, may
lead to suboptimal decisions. TRIM addresses this issue by utilizing CLIP-based similarity. It computes
cosine similarities between image tokens (from the visual encoder) and text tokens (from the text encoder),
and uses these similarity scores to rank visual tokens by importance. Low-similarity tokens are pruned to
accelerate inference without significant performance loss.

VisionZip (Yang et al., 2025) A visual-only token pruning method that analyzes self-attention concen-
tration in the visual encoder. VisionZip first selects dominant tokens with high self-attention weights. Then,
it applies clustering on the remaining tokens to extract diverse contextual tokens. The union of dominant
and contextual tokens is passed to the language model, aiming to preserve both saliency and diversity of
visual content.

C.3.3 Similarity-based Methods

DivPrune (Alvar et al., 2025) DivPrune reformulates token pruning as a Maximum Minimum Distance
Problem (MMDP), aiming to select the most diverse subset of visual tokens. Rather than relying solely on
attention or similarity scores, it explicitly maximizes the minimum pairwise distance among retained tokens,
ensuring the selected tokens cover a broad semantic space. This diversity-preserving strategy leads to robust
performance under extreme token reduction.

C.4 Implementation Details

For image-based benchmarks, we adopt the official implementation of LLaVA3. The models are loaded
using the released checkpoints (e.g., LLaVA-1.5 and LLaVA-NeXT), and we follow the default preprocessing
pipeline for image resizing (e.g., 336×336 or 672×672 resolution), tokenization, and prompt formatting. All
evaluations are conducted in a zero-shot setting unless otherwise specified. For video-based benchmarks,
we follow the official implementation of LLaVA-NeXT4, which also supports LLaVA-Video. We adopt the
same architecture for multi-frame video inputs and process videos by uniformly sampling frames (e.g., 64
frames per video). Each frame is resized to 384×384, and visual tokens are pooled as described in the
original LLaVA-Video paper. For evaluation, we use the lmms-eval toolkit5, which provides standardized
metric computation and dataset loading for long-form video understanding tasks. All experiments are run

3https://github.com/haotian-liu/LLaVA
4https://github.com/LLaVA-VL/LLaVA-NeXT
5https://github.com/EvolvingLMMs-Lab/lmms-eval
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Table 10: Performance comparisons on InternVL3-8B Zhu et al. (2025) across 10 image under-
standing benchmarks. The best results in each setting are bolded, and the second-best are underlined.

Method AI2D TextVQA ChartQA OCRBench HallBench MME MMB-EN MMB-CN Acc. Average
Upper Bound, All 1280 Tokens (100%)

InternVL3-8B 85.28 81.51 85.07 853 50.02 2393.22 83.82 82.54 84.22 100.0%
Retain 256 Tokens (↓ 80.0%)

FastV 82.21 74.34 70.58 632 48.45 2348,31 83.36 82.04 77.98 92.6%
DivPrune 80.88 64.70 57.51 477 38.63 2249.17 80.63 80.27 70.41 82.80%
Script 82.87 75.97 72.20 640 48.98 2334.22 83.45 81.57 78.35 93.03%

Retain 128 Tokens (↓ 90.0%)
FastV 77.35 63.55 46.82 426 42.75 2250.31 81.09 80.20 68.44 80.9%
DivPrune 76.45 55.44 42.58 378 37.57 2166.22 78.49 77.55 64.31 75.75%
Script 79.88 67.65 50.78 471 44.46 2282.98 82.12 80.53 70.98 84.29%

on NVIDIA H100 GPUs (80GB), using bfloat16 precision. For fair comparison across different models and
pruning strategies, we keep inference batch size and decoding settings (e.g., temperature = 0.2, top-k = 1)
consistent throughout all benchmarks. For each benchmark, we repeat the evaluation 3 times and
report the average result as the final score.

D Additional Experimental Results

D.1 Script for Large Parameters of Model

As shown in Table 8 and Table 9, our method Script consistently outperforms other baselines across both
7B and 13B model settings. This demonstrates that Script is effective and scalable, maintaining strong
performance regardless of model size. Our proposed method Script achieves top performance across all
evaluated benchmarks in both 7B and 13B configurations. It demonstrates not only superior accuracy but
also remarkable robustness across varying model capacities, consistently ranking first in overall average score.

D.2 Script for advanced open-source MLLM

In addition to LLaVA, we further apply Script to one of the most advanced open-source MLLMs to date,
InternVL3. The results are shown in Table 10. Here, we fix the input resolution to 896×896, yielding 1,280
visual tokens. Notably, unlike its performance on the LLaVA series, DivPrune exhibits a significant perfor-
mance drop on InternVL3, as it does not account for the relevance to user instructions during pruning. In
contrast, our Script jointly considers both diversity and relevance, consistently achieving the best perfor-
mance across different reduction ratios. Specifically, even when 90% of the visual tokens are removed, our
method retains 83.9% of the original performance, 3% higher than the second-best FastV, demonstrating its
effectiveness and adaptability in advanced MLLM architectures.

D.3 Statistical Significance Experiments

Table 11: Statistical comparison between our method
and other baselines on MME benchmark with ratain
160 tokens. StdDev denotes standard deviation. Re-
ported p-values correspond to the paired one-sided t-
test and Wilcoxon signed-rank test. All experiments
are set with the significance level of α = 5%.

Method Mean (%) StdDev t-test p Wilcoxon p

FastV 1076.81 2.62 1.01× 10−43 9.54× 10−7

TRIM 1316.74 3.41 8.96× 10−35 9.54× 10−7

VisionZip 1349.28 2.34 8.49× 10−36 9.54× 10−7

DivPrune 1347.72 2.04 1.90× 10−36 9.54× 10−7

SparseVLM 1369.62 2.39 7.58× 10−35 9.54× 10−7

Script(Ours) 1487.98 0.94 1.00 1.00

To assess the robustness and statistical reliability
of our method, we conduct 20 independent runs
using LLaVA-Next-7B under identical experimental
settings with varying random seeds. All statistical
comparisons are made against the Script. To de-
termine whether Script is statistically better than
other methods, we perform paired one-sided t-tests
and Wilcoxon signed-rank tests. e evaluate the null
hypothesis H0: Script performs the same as the oth-
ers, against the alternative hypothesis H1: Script
performs better. Since the resulting p-values are
significantly lower than the significance threshold of
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α = 0.05, we reject the null hypothesis H0. This suggests that the observed performance difference is
statistically significant.

Is there a car ?

What is the number on the athlete ?

Is there pizza ?

Is there cat and dish?

Is there cake and beer ?

Input Image Visual Token NumberScore

What is food on the plate?

Figure 7: Visualizations of relevance scores and retained tokens. Each visualization illustrates the
spatial attention allocated by models to regions corresponding to various textual instructions, demonstrating
the capacity of pre-trained multimodal models to identify and focus on task-specific visual elements.

E Additional Visualization Results

In this section, we provide additional visualizations that comprehensively illustrate the relevance scores and
retained visual tokens as shown in Figure 7 and 8. These visualizations further emphasize the strengths
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Is there a bird ?

How many person in the picture ?

Is there a man playing with a skateboard ?

How many cats in the picture ?

Is there a man playing tennis ?

Input Image Visual Token NumberScore

Is there a man fire hydrant?

Figure 8: Visualizations of relevance scores and retained tokens. Each visualization illustrates the
spatial attention allocated by models to regions corresponding to various textual instructions, demonstrating
the capacity of pre-trained multimodal models to identify and focus on task-specific visual elements.

of models utilizing language-image pre-training, showcasing their enhanced capability to align textual in-
structions accurately with the corresponding visual regions. Specifically, the visualizations depict clear and
intuitive correspondences: for instance, when instructions involve detecting the presence of specific objects
or counting individuals or animals, the relevance maps highlight pertinent regions directly associated with
these queries. Such precise spatial attention enables effective and efficient visual token pruning, significantly
reducing redundancy by retaining only informative regions. This targeted retention not only improves com-
putational efficiency but also boosts interpretability by transparently displaying the reasoning processes of
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multimodal large language models. Overall, these visualizations underscore the robustness and adaptability
of pre-trained models in dynamically identifying and concentrating on task-specific visual details essential
for accurate multimodal understanding.

To evaluate the effectiveness of our proposed method on larger language models, we apply Script to two
models equipped with 13B LLMs: LLaVA-1.5-13B and LLaVA-NeXT-13B. The results are presented in
Table 8 and Table 9. The larger language models lead to significant performance improvements and also
make MLLMs less sensitive to visual token pruning. Among various pruning strategies, text-attention-based
methods benefit the most from scaling up the language model, indicating that a larger LLM brings more
accurate attention. Across different types of pruning methods, Script consistently outperforms all other ap-
proaches under various reduction ratios. With 77.8% of visual tokens removed, our method retains 98.0% and
99.9% of the original performance on LLaVA-1.5-13B and LLaVA-NeXT-13B, respectively, demonstrating
its effectiveness on larger language models.

 0.9 0.1  0.3  0.5 0.70
Structural Similarity Threshold

Figure 9: Visualization of structural redundancy under different thresholds. We show patch-level
redundancy maps computed from CLIP-ViT features on images from the COCO dataset. Redundancy is
defined as the average cosine similarity between each patch and its spatial neighbors. Red regions indicate
high structural redundancy, while blue regions are more distinctive. As the threshold increases (from left to
right: 0.1 to 0.9), the resulting selection becomes increasingly sparse, focusing on structurally salient regions.

Redundancy Visualization Across Thresholds. To better understand how structural redundancy
varies across visual patches, we visualize the redundancy score maps under multiple threshold values
(τ = 0.1, 0.3, 0.5, 0.7, 0.9), as shown in Fig. 9. For each image, we compute a patch-wise redundancy score
by averaging the cosine similarity of each patch with its 8-connected spatial neighbors. Binary masks are
then derived by thresholding these scores at varying levels of τ .

From these visualizations, we make several concrete observations: 1. Low-threshold masks capture
nearly all background regions. At τ = 0.1, the redundancy masks are overly dense, activating most of
the image, including backgrounds and even parts of objects. For example, in the third row of Fig. 9, the sky
and road areas are almost entirely marked as redundant, despite their varying brightness or shadows. This
reflects high local structural similarity in these regions.

2. Mid-thresholds begin to separate object boundaries from background. At τ = 0.5, patches
corresponding to uniform regions, such as wall surfaces, grass fields, or repeated window patterns, remain
marked as redundant. However, patches near object contours (e.g., bicycle spokes or human silhouettes)
start to drop out of the redundancy mask, indicating a transition point in local distinctiveness.

3. High thresholds isolate semantically salient regions. At τ = 0.9, the remaining non-redundant
patches are sparsely located and strongly correspond to objects or parts that deviate structurally from their
neighborhood. In the fourth row, only the traffic sign and vehicle wheels persist, while nearly all background
and texture-repetitive areas are filtered out. This confirms that our score effectively distinguishes structurally
unique regions.

4. Local redundancy clusters spatially. Across thresholds, redundant patches tend to form contiguous
clusters (rather than scattered points), especially in flat surfaces like roads, skies, and building facades. This
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affirms our assumption that redundancy is fundamentally a local phenomenon, driven by short-range visual
similarity.

These findings highlight the critical role of threshold selection in pruning. Lower thresholds retain nearly
all patches and offer little compression, while overly high thresholds risk discarding important structural
details. Our visualizations demonstrate that an appropriate threshold (e.g., τ = 0.5) can reliably suppress
locally redundant regions while preserving semantically meaningful tokens. This supports the design of our
pruning strategy based on structural redundancy.

F Limitations

One key limitation of our work is that the proposed pruning method relies on direct access to the encoded
visual tokens during inference, which limits its applicability to open-source Multimodal large language mod-
els. In contrast, many widely used proprietary models such as ChatGPT, Gemini, and Claude operate as
closed systems, where intermediate visual features are not accessible. Although these black-box models also
incur high computational costs for visual reasoning, our method cannot currently be applied in such settings.
Moreover, while our method is compatible with advanced open-source MLLMs such as Qwen2.5-VL and In-
ternVL3, we observe that these models are generally more sensitive to visual token pruning compared to the
LLaVA series. Specifically, under the same pruning ratio, these models exhibit more significant performance
degradation. This phenomenon is likely due to the fact that such architectures already incorporate internal
visual token compression techniques, such as pixel unshuffle or token merging, which reduce redundancy
prior to pruning. As a result, additional pruning may lead to excessive information loss. Adapting prun-
ing strategies to better suit these highly optimized architectures, such as by incorporating pruning-aware
training or model-specific heuristics, remains an important direction for future research.

G Broader Impacts

Multimodal large language models have demonstrated remarkable success across a wide range of domains,
including education, accessibility, robotics, and content creation. Despite their capabilities, these models
often incur high inference costs, particularly when processing high-resolution images or extended video
sequences. Such computational demands pose substantial challenges for real-world deployment.

In this work, we introduce a simple yet effective visual token pruning strategy that enhances inference
efficiency without requiring any additional training. By selectively removing redundant visual inputs, our
method significantly reduces computational overhead and deployment costs. This improvement facilitates
the deployment of MLLMs on resource-constrained platforms, such as mobile devices and edge computing
environments, thereby promoting broader accessibility and scalability in practical applications.

However, it is important to note that improving computational efficiency does not inherently address the
ethical challenges associated with MLLMs. Our method does not mitigate risks related to potential misuse,
such as the generation of harmful content or the dissemination of misinformation. As such, continued
research and policy development are essential to ensure the responsible and safe use of increasingly efficient
multimodal language models.
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