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ABSTRACT

Graph Attention Networks (GATs) are one of the most popular GNN architectures
and are considered as the state-of-the-art architecture for representation learning
with graphs. In GAT, every node attends to its neighbors given its own represen-
tation as the query. However, in this paper we show that GAT computes a very
limited kind of attention: the ranking of the attention scores is unconditioned
on the query node. We formally define this restricted kind of attention as static
attention and distinguish it from a strictly more expressive dynamic attention. Be-
cause GATs use a static attention mechanism, there are simple graph problems
that GAT cannot express: in a controlled problem, we show that static attention
hinders GAT from even fitting the training data. To remove this limitation, we
introduce a simple fix by modifying the order of operations and propose GATv2:
a dynamic graph attention variant that is strictly more expressive than GAT. We
perform an extensive evaluation and show that GATv2 outperforms GAT across 12
OGB and other benchmarks while we match their parametric costs. Our code is
available at https://github.com/tech-srl/how_attentive_are_
gats.1 GATv2 is available as part of the PyTorch Geometric library,2 the Deep
Graph Library,3 and the TensorFlow GNN library.4

1 INTRODUCTION

Graph neural networks (GNNs; Gori et al., 2005; Scarselli et al., 2008) have seen increasing popularity
over the past few years (Duvenaud et al., 2015; Atwood and Towsley, 2016; Bronstein et al., 2017;
Monti et al., 2017). GNNs provide a general and efficient framework to learn from graph-structured
data. Thus, GNNs are easily applicable in domains where the data can be represented as a set of
nodes and the prediction depends on the relationships (edges) between the nodes. Such domains
include molecules, social networks, product recommendation, computer programs and more.

In a GNN, each node iteratively updates its state by interacting with its neighbors. GNN variants
(Wu et al., 2019; Xu et al., 2019; Li et al., 2016) mostly differ in how each node aggregates and
combines the representations of its neighbors with its own. Veličković et al. (2018) pioneered the use
of attention-based neighborhood aggregation, in one of the most common GNN variants – Graph
Attention Network (GAT). In GAT, every node updates its representation by attending to its neighbors
using its own representation as the query. This generalizes the standard averaging or max-pooling
of neighbors (Kipf and Welling, 2017; Hamilton et al., 2017), by allowing every node to compute
a weighted average of its neighbors, and (softly) select its most relevant neighbors. The work of

1An annotated implementation of GATv2 is available at https://nn.labml.ai/graphs/gatv2/
2from torch_geometric.nn.conv.gatv2_conv import GATv2Conv
3from dgl.nn.pytorch import GATv2Conv
4from tensorflow_gnn.graph.keras.layers.gat_v2 import GATv2Convolution
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k0 k1 k2 k3 k4 k5 k6 k7 k8 k9
q0
q1
q2
q3
q4
q5
q6
q7
q8
q9

0.08 0.10 0.10 0.07 0.08 0.08 0.11 0.09 0.20 0.08

0.05 0.10 0.10 0.04 0.04 0.04 0.13 0.06 0.38 0.04

0.05 0.10 0.10 0.04 0.05 0.05 0.13 0.06 0.38 0.05

0.08 0.10 0.10 0.07 0.08 0.08 0.10 0.09 0.24 0.08

0.08 0.09 0.09 0.07 0.07 0.07 0.10 0.08 0.27 0.07

0.09 0.11 0.11 0.08 0.09 0.08 0.11 0.10 0.16 0.09

0.04 0.10 0.11 0.03 0.04 0.04 0.14 0.06 0.40 0.04

0.07 0.09 0.09 0.06 0.07 0.07 0.10 0.08 0.29 0.07

0.04 0.11 0.11 0.02 0.04 0.03 0.14 0.07 0.41 0.04

0.07 0.09 0.09 0.06 0.07 0.07 0.11 0.08 0.30 0.07
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(a) Attention in standard GAT (Veličković et al. (2018))

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9
q0
q1
q2
q3
q4
q5
q6
q7
q8
q9

0.95 0.00 0.00 0.01 0.01 0.00 0.00 0.02 0.01 0.00

0.01 0.92 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.02

0.00 0.00 0.95 0.00 0.00 0.01 0.02 0.01 0.00 0.00

0.01 0.01 0.00 0.94 0.00 0.01 0.00 0.00 0.02 0.01

0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.01 0.01 0.00

0.00 0.01 0.01 0.01 0.01 0.89 0.01 0.01 0.04 0.02

0.00 0.01 0.04 0.00 0.01 0.01 0.86 0.02 0.01 0.03

0.04 0.02 0.01 0.01 0.03 0.01 0.00 0.87 0.00 0.01

0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.94 0.00

0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.93
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(b) Attention in GATv2, our fixed version of GAT

Figure 1: In a complete bipartite graph of “query nodes” {q0, ..., q9} and “key nodes” {k0, ..., k9}:
standard GAT (Figure 1a) computes static attention – the ranking of attention coefficients is global
for all nodes in the graph, and is unconditioned on the query node. For example, all queries (q0 to
q9) attend mostly to the 8th key (k8). In contrast, GATv2 (Figure 1b) can actually compute dynamic
attention, where every query has a different ranking of attention coefficients of the keys.

Veličković et al. also generalizes the Transformer’s (Vaswani et al., 2017) self-attention mechanism,
from sequences to graphs (Joshi, 2020).

Nowadays, GAT is one of the most popular GNN architectures (Bronstein et al., 2021) and is
considered as the state-of-the-art neural architecture for learning with graphs (Wang et al., 2019a).
Nevertheless, in this paper we show that GAT does not actually compute the expressive, well known,
type of attention (Bahdanau et al., 2014), which we call dynamic attention. Instead, we show that
GAT computes only a restricted “static” form of attention: for any query node, the attention function
is monotonic with respect to the neighbor (key) scores. That is, the ranking (the argsort) of attention
coefficients is identical for all nodes in the graph, and is unconditioned on the query node. This fact
severely hurts the expressiveness of GAT, and is demonstrated in Figure 1a.

Supposedly, the conceptual idea of attention as the form of interaction between GNN nodes is
orthogonal to the specific choice of attention function. However, Veličković et al.’s original design of
GAT has spread to a variety of domains (Yang et al., 2020; Wang et al., 2019c; Huang and Carley,
2019; Ma et al., 2020; Kosaraju et al., 2019; Nathani et al., 2019; Wu et al., 2020; Zhang et al., 2020)
and has become the default implementation of “graph attention network” in all popular GNN libraries
such as PyTorch Geometric (Fey and Lenssen, 2019), DGL (Wang et al., 2019b), and others (Dwivedi
et al., 2020; Gordić, 2020; Brockschmidt, 2020). Many other works employed GNNs with attention
mechanisms other than the standard GAT’s (Yun et al. (2019), see also Appendix A). However, none
of these works identified the monotonicity of GAT’s attention mechanism, the theoretical differences
between attention types, nor empirically compared their performance.
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To overcome the limitation we identified in GAT, we introduce a simple fix to its attention function
by only modifying the order of internal operations. The result is GATv2 – a graph attention variant
that has a universal approximator attention function, and is thus strictly more expressive than GAT.
The effect of fixing the attention function in GATv2 is demonstrated in Figure 1b.

In summary, our main contribution is identifying that one of the most popular GNN types, the graph
attention network, does not compute dynamic attention, the kind of attention that it seems to compute.
We introduce formal definitions for analyzing the expressive power of graph attention mechanisms
(Definitions 3.1 and 3.2), and derive our claims theoretically (Theorem 1) from the equations of
Veličković et al. (2018). Empirically, we use a synthetic problem to show that standard GAT cannot
express problems that require dynamic attention (Section 4.1). We introduce a simple fix by switching
the order of internal operations in GAT, and propose GATv2, which does compute dynamic attention
(Theorem 2). We further conduct a thorough empirical comparison of GAT and GATv2 and find
that GATv2 outperforms GAT across 12 benchmarks of node-, link-, and graph-prediction. For
example, GATv2 outperforms extensively tuned GNNs by over 1.4% in the difficult “UnseenProj
Test” set of the VarMisuse task (Allamanis et al., 2018), without any hyperparameter tuning; and
GATv2 improves over an extensively-tuned GAT by 11.5% in 13 prediction objectives in QM9. In
node-prediction benchmarks from OGB (Hu et al., 2020), not only that GATv2 outperforms GAT
with respect to accuracy – we find that dynamic attention provided a much better robustness to noise.

2 PRELIMINARIES

A directed graph G = (V, E) contains nodes V = {1, ..., n} and edges E ⊆ V × V , where (j, i) ∈ E
denotes an edge from a node j to a node i. We assume that every node i ∈ V has an initial
representation h

(0)
i ∈ Rd0 . An undirected graph can be represented with bidirectional edges.

2.1 GRAPH NEURAL NETWORKS

A graph neural network (GNN) layer updates every node representation by aggregating its neighbors’
representations. A layer’s input is a set of node representations {hi ∈ Rd | i ∈ V} and the set of
edges E . A layer outputs a new set of node representations {h′i ∈ Rd′ | i ∈ V}, where the same
parametric function is applied to every node given its neighbors Ni = {j ∈ V | (j, i) ∈ E}:

h′i = fθ (hi,AGGREGATE ({hj | j ∈ Ni})) (1)

The design of f and AGGREGATE is what mostly distinguishes one type of GNN from the other. For
example, a common variant of GraphSAGE (Hamilton et al., 2017) performs an element-wise mean
as AGGREGATE, followed by concatenation with hi, a linear layer and a ReLU as f .

2.2 GRAPH ATTENTION NETWORKS

GraphSAGE and many other popular GNN architectures (Xu et al., 2019; Duvenaud et al., 2015)
weigh all neighbors j ∈ Ni with equal importance (e.g., mean or max-pooling as AGGREGATE). To
address this limitation, GAT (Veličković et al., 2018) instantiates Equation (1) by computing a learned
weighted average of the representations ofNi. A scoring function e : Rd×Rd→R computes a score
for every edge (j, i), which indicates the importance of the features of the neighbor j to the node i:

e (hi,hj) = LeakyReLU
(
a> · [Whi‖Whj ]

)
(2)

where a ∈ R2d′ , W ∈ Rd′×d are learned, and ‖ denotes vector concatenation. These attention scores
are normalized across all neighbors j ∈ Ni using softmax, and the attention function is defined as:

αij = softmaxj (e (hi,hj)) =
exp (e (hi,hj))∑

j′∈Ni
exp (e (hi,hj′))

(3)

Then, GAT computes a weighted average of the transformed features of the neighbor nodes (followed
by a nonlinearity σ) as the new representation of i, using the normalized attention coefficients:

h′i = σ
(∑

j∈Ni

αij ·Whj

)
(4)

From now on, we will refer to Equations (2) to (4) as the definition of GAT.
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3 THE EXPRESSIVE POWER OF GRAPH ATTENTION MECHANISMS

In this section, we explain why attention is limited when it is not dynamic (Section 3.1). We then
show that GAT is severely constrained, because it can only compute static attention (Section 3.2).
Next, we show how GAT can be fixed (Section 3.3), by simply modifying the order of operations.

We refer to a neural architecture (e.g., the scoring or the attention function of GAT) as a family of
functions, parameterized by the learned parameters. An element in the family is a concrete function
with specific trained weights. In the following, we use [n] to denote the set [n] = {1, 2, ..., n} ⊂ N.

3.1 THE IMPORTANCE OF DYNAMIC WEIGHTING

Attention is a mechanism for computing a distribution over a set of input key vectors, given an
additional query vector. If the attention function always weighs one key at least as much as any other
key, unconditioned on the query, we say that this attention function is static:
Definition 3.1 (Static attention). A (possibly infinite) family of scoring functions F ⊆(
Rd × Rd → R

)
computes static scoring for a given set of key vectors K= {k1, ...,kn}⊂Rd and

query vectors Q= {q1, ..., qm}⊂Rd, if for every f ∈ F there exists a “highest scoring” key jf ∈ [n]
such that for every query i ∈ [m] and key j ∈ [n] it holds that f

(
qi,kjf

)
≥ f (qi,kj). We say

that a family of attention functions computes static attention given K and Q, if its scoring function
computes static scoring, possibly followed by monotonic normalization such as softmax.

Static attention is very limited because every function f ∈ F has a key that is always selected,
regardless of the query. Such functions cannot model situations where different keys have different
relevance to different queries. Static attention is demonstrated in Figure 1a.

The general and powerful form of attention is dynamic attention:
Definition 3.2 (Dynamic attention). A (possibly infinite) family of scoring functions F ⊆(
Rd × Rd → R

)
computes dynamic scoring for a given set of key vectors K= {k1, ...,kn}⊂Rd

and query vectors Q= {q1, ..., qm}⊂Rd, if for any mapping ϕ: [m]→ [n] there exists f ∈ F such
that for any query i ∈ [m] and any key j 6=ϕ(i) ∈ [n]: f

(
qi,kϕ(i)

)
> f (qi,kj). We say that a family

of attention functions computes dynamic attention for K and Q, if its scoring function computes
dynamic scoring, possibly followed by monotonic normalization such as softmax.

That is, dynamic attention can select every key ϕ (i) using the query i, by making f
(
qi,kϕ(i)

)
the

maximal in {f (qi,kj) | j ∈ [n]}. Note that dynamic and static attention are exclusive properties,
but they are not complementary. Further, every dynamic attention family has strict subsets of static
attention families with respect to the same K and Q. Dynamic attention is demonstrated in Figure 1b.

Attending by decaying Another way to think about attention is the ability to “focus” on the most
relevant inputs, given a query. Focusing is only possible by decaying other inputs, i.e., giving these
decayed inputs lower scores than others. If one key is always given an equal or greater attention score
than other keys (as in static attention), no query can ignore this key or decay this key’s score.

3.2 THE LIMITED EXPRESSIVITY OF GAT

Although the scoring function e can be defined in various ways, the original definition of Veličković
et al. (2018) (Equation (2)) has become the de facto practice: it has spread to a variety of domains and
is now the standard implementation of “graph attention network” in all popular GNN libraries (Fey
and Lenssen, 2019; Wang et al., 2019b; Dwivedi et al., 2020; Gordić, 2020; Brockschmidt, 2020).

The motivation of GAT is to compute a representation for every node as a weighted average of its
neighbors. Statedly, GAT is inspired by the attention mechanism of Bahdanau et al. (2014) and the
self-attention mechanism of the Transformer (Vaswani et al., 2017). Nonetheless:
Theorem 1. A GAT layer computes only static attention, for any set of node representations K =
Q = {h1, ...,hn}. In particular, for n> 1, a GAT layer does not compute dynamic attention.

Proof. Let G = (V, E) be a graph modeled by a GAT layer with some a and W values (Equations (2)
and (3)), and having node representations {h1, ...,hn}. The learned parameter a can be written as a
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concatenation a = [a1‖a2] ∈ R2d′ such that a1,a2 ∈ Rd′ , and Equation (2) can be re-written as:

e (hi,hj) = LeakyReLU
(
a>1 Whi + a>2 Whj

)
(5)

Since V is finite, there exists a node jmax ∈ V such that a>2 Whjmax
is maximal among all nodes

j ∈ V (jmax is the jf required by Definition 3.1). Due to the monotonicity of LeakyReLU and
softmax, for every query node i ∈ V , the node jmax also leads to the maximal value of its attention
distribution {αij | j ∈ V}. Thus, from Definition 3.1 directly, α computes only static attention. This
also implies that α does not compute dynamic attention, because in GAT, Definition 3.2 holds only
for constant mappings ϕ that map all inputs to the same output.

The consequence of Theorem 1 is that for any set of nodes V and a trained GAT layer, the attention
function α defines a constant ranking (argsort) of the nodes, unconditioned on the query nodes
i. That is, we can denote sj = a>2 Whj and get that for any choice of hi, α is monotonic with
respect to the per-node scores {sj | j ∈ V}. This global ranking induces the local ranking of every
neighborhood Ni. The only effect of hi is in the “sharpness” of the produced attention distribution.
This is demonstrated in Figure 1a (bottom), where different curves denote different queries (hi). A
discussion regarding the generalization to multi-head attention can be found in Appendix C.

3.3 BUILDING DYNAMIC GRAPH ATTENTION NETWORKS

To create a dynamic graph attention network, we modify the order of internal operations in GAT and
introduce GATv2 – a simple fix of GAT that has a strictly more expressive attention mechanism.

GATv2 The main problem in the standard GAT scoring function (Equation (2)) is that the learned
layers W and a are applied consecutively, and thus can be collapsed into a single linear layer. To fix
this limitation, we simply apply the a layer after the nonlinearity (LeakyReLU), and the W layer
after the concatenation, 5 effectively applying an MLP to compute the score for each query-key pair:

GAT (Veličković et al., 2018): e (hi,hj) =LeakyReLU
(
a> · [Whi‖Whj ]

)
(6)

GATv2 (our fixed version): e (hi,hj) =a>LeakyReLU (W · [hi‖hj ]) (7)

The simple modification makes a significant difference in the expressiveness of the attention function:

Theorem 2. A GATv2 layer computes dynamic attention for any set of node representations K =
Q = {h1, ...,hn} .

We prove Theorem 2 in Appendix B. The main idea is that we can define an appropriate function
that GATv2 will be a universal approximator (Cybenko, 1989; Hornik, 1991) of. In contrast, GAT
(Equation (52)) cannot approximate any such desired function (Theorem 1).

Complexity GATv2 has the same time-complexity as GAT’s declared complexity:O (|V|dd′ + |E|d′).
However, by merging its linear layers, GAT can be computed faster than stated by Veličković et al.
(2018). For a detailed time- and parametric-complexity analysis, see Appendix I.

4 EVALUATION

First, we demonstrate the weakness of GAT using a simple synthetic problem that GAT cannot even fit
(cannot even achieve high training accuracy), but is easily solvable by GATv2 (Section 4.1). Second,
we show that GATv2 is much more robust to edge noise, because its dynamic attention mechanisms
allow it to decay noisy (false) edges, while GAT’s performance severely decreases as noise increases
(Section 4.2). Finally, we compare GAT and GATv2 across 12 benchmarks overall. (Sections 4.3
to 4.6 and appendix F.4). We find that GAT is inferior to GATv2 across all examined benchmarks.

Setup When previous results exist, we take hyperparameters that were tuned for GAT and use them
in GATv2, without any additional tuning. Self-supervision (Kim and Oh, 2021; Rong et al., 2020a),
graph regularization (Zhao and Akoglu, 2020; Rong et al., 2020b), and other tricks (Wang, 2021;
Huang et al., 2021) are orthogonal to the contribution of the GNN layer itself, and may further improve

5We also add a bias vector b before applying the nonlinearity, we omit this in Equation (7) for brevity.
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A,4 B,3 C,2 D,1

A,? B,? C,? D,?

Figure 2: The DICTIONARY-
LOOKUP problem of size k=4: ev-
ery node in the bottom row has an
alphabetic attribute ({A,B,C, ...})
and a numeric value ({1, 2, 3, ...});
every node in the upper row has
only an attribute; the goal is to pre-
dict the value for each node in the
upper row, using its attribute.
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Figure 3: The DICTIONARYLOOKUP problem: GATv2 easily
achieves 100% train and test accuracies even for k=100 and
using only a single head.

all GNNs. In all experiments of GATv2, we constrain the learned matrix by setting W = [W ′‖W ′],
to rule out the increased number of parameters over GAT as the source of empirical difference (see
Appendix I.2). Training details, statistics, and code are provided in Appendix D.

Our main goal is to compare dynamic and static graph attention mechanisms. However, for reference,
we also include non-attentive baselines such as GCN (Kipf and Welling, 2017), GIN (Xu et al., 2019)
and GraphSAGE (Hamilton et al., 2017). These non-attentive GNNs can be thought of as a special
case of attention, where every node gives all its neighbors the same attention score. Additional
comparison to a Transformer-style scaled dot-product attention (“DPGAT”), which is strictly weaker
than our proposed GATv2 (see a proof in Appendix G.1), is shown in Appendix G.

4.1 SYNTHETIC BENCHMARK: DICTIONARYLOOKUP

The DICTIONARYLOOKUP problem is a contrived problem that we designed to test the ability of
a GNN architecture to perform dynamic attention. Here, we demonstrate that GAT cannot learn
this simple problem. Figure 2 shows a complete bipartite graph of 2k nodes. Each “key node” in
the bottom row has an attribute ({A,B,C, ...}) and a value ({1, 2, 3, ...}). Each “query node” in
the upper row has only an attribute ({A,B,C, ...}). The goal is to predict the value of every query
node (upper row), according to its attribute. Each graph in the dataset has a different mapping from
attributes to values. We created a separate dataset for each k = {1, 2, 3, ...}, for which we trained a
different model, and measured per-node accuracy.

Although this is a contrived problem, it is relevant to any subgraph with keys that share more than
one query, and each query needs to attend to the keys differently. Such subgraphs are very common
in a variety of real-world domains. This problem tests the layer itself because it can be solved using a
single GNN layer, without suffering from multi-layer side-effects such as over-smoothing (Li et al.,
2018), over-squashing (Alon and Yahav, 2021), or vanishing gradients (Li et al., 2019). Our code
will be made publicly available, to serve as a testbed for future graph attention mechanisms.

Results Figure 3 shows the following surprising results: GAT with a single head (GAT1h) failed
to fit the training set for any value of k, no matter for how many iterations it was trained, and after
trying various training methods. Thus, it expectedly fails to generalize (resulting in low test accuracy).
Using 8 heads, GAT8h successfully fits the training set, but generalizes poorly to the test set. In
contrast, GATv2 easily achieves 100% training and 100% test accuracies for any value of k, and even
for k=100 (not shown) and using a single head, thanks to its ability to perform dynamic attention.
These results clearly show the limitations of GAT, which are easily solved by GATv2. An additional
comparison to GIN, which could not fit this dataset, is provided in Figure 5 in Appendix F.1.

Visualization Figure 1a (top) shows a heatmap of GAT’s attention scores in this DICTIONARY-
LOOKUP problem. As shown, all query nodes q0 to q9 attend mostly to the eighth key (k8), and have
the same ranking of attention coefficients (Figure 1a (bottom)). In contrast, Figure 1b shows how
GATv2 can select a different key node for every query node, because it computes dynamic attention.
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The role of multi-head attention Veličković et al. (2018) found the role of multi-head attention to
be stabilizing the learning process. Nevertheless, Figure 3 shows that increasing the number of heads
strictly increases training accuracy, and thus, the expressivity. Thus, GAT depends on having multiple
attention heads. In contrast, even a single GATv2 head generalizes better than a multi-head GAT.

4.2 ROBUSTNESS TO NOISE

We examine the robustness of dynamic and static attention to noise. In particular, we focus on
structural noise: given an input graph G=(V, E) and a noise ratio 0≤ p≤ 1, we randomly sample
|E|×p non-existing edges E ′ from V×V\E . We then train the GNN on the noisy graph G′=(V, E∪E ′).
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Figure 4: Test accuracy compared to the noise ratio: GATv2 is more robust to structural noise
compared to GAT. Each point is an average of 10 runs, error bars show standard deviation.

Results Figure 8 shows the accuracy on two node-prediction datasets from the Open Graph Bench-
mark (OGB; Hu et al., 2020) as a function of the noise ratio p. As p increases, all models show
a natural decline in test accuracy in both datasets. Yet, thanks to their ability to compute dynamic
attention, GATv2 shows a milder degradation in accuracy compared to GAT, which shows a steeper
descent. We hypothesize that the ability to perform dynamic attention helps the models distinguishing
between given data edges (E) and noise edges (E ′); in contrast, GAT cannot distinguish between
edges, because it scores the source and target nodes separately. These results clearly demonstrate the
robustness of dynamic attention over static attention in noisy settings, which are common in reality.

4.3 PROGRAMS: VARMISUSE

Setup VARMISUSE (Allamanis et al., 2018) is an inductive node-pointing problem that depends on
11 types of syntactic and semantic interactions between elements in computer programs.

Table 1: Accuracy (5 runs±stdev) on VARMIS-
USE. GATv2 is more accurate than all GNNs
in both test sets, using GAT’s hyperparameters.
† previously reported by Brockschmidt (2020).

Model SeenProj UnseenProj

No-
Attention

GCN† 87.2±1.5 81.4±2.3

GIN† 87.1±0.1 81.1±0.9

Attention GAT† 86.9±0.7 81.2±0.9
GATv2 88.0±1.1 82.8±1.7

We used the framework of Brockschmidt (2020),
who performed an extensive hyperparameter tuning
by searching over 30 configurations for every GNN
type. We took their best GAT hyperparameters and
used them to train GATv2, without further tuning.

Results As shown in Table 1, GATv2 is more accu-
rate than GAT and other GNNs in the SeenProj test
sets. Furthermore, GATv2 achieves an even higher
improvement in the UnseenProj test set. Overall,
these results demonstrate the power of GATv2 in
modeling complex relational problems, especially
since it outperforms extensively tuned models, without any further tuning by us.
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4.4 NODE-PREDICTION

We further compare GATv2, GAT, and other GNNs on four node-prediction datasets from OGB.

Table 2: Average accuracy (Table 2a) and ROC-AUC (Table 2b) in node-prediction datasets (10
runs±std). In all datasets, GATv2 outperforms GAT. † – previously reported by Hu et al. (2020).

(a)

Model Attn. Heads ogbn-arxiv ogbn-products ogbn-mag

GCN† 0 71.74±0.29 78.97±0.33 30.43±0.25

GraphSAGE† 0 71.49±0.27 78.70±0.36 31.53±0.15

GAT 1 71.59±0.38 79.04±1.54 32.20±1.46
8 71.54±0.30 77.23±2.37 31.75±1.60

GATv2 (this work) 1 71.78±0.18 80.63±0.70 32.61±0.44
8 71.87±0.25 78.46±2.45 32.52±0.39

(b)

ogbn-proteins

72.51±0.35

77.68±0.20

70.77±5.79
78.63±1.62

77.23±3.32
79.52±0.55

Results Results are shown in Table 2. In all settings and all datasets, GATv2 is more accurate than
GAT and the non-attentive GNNs. Interestingly, in the datasets of Table 2a, even a single head of
GATv2 outperforms GAT with 8 heads. In Table 2b (ogbn-proteins), increasing the number of heads
results in a major improvement for GAT (from 70.77 to 78.63), while GATv2 already gets most of
the benefit using a single attention head. These results demonstrate the superiority of GATv2 over
GAT in node prediction (and even with a single head), thanks to GATv2’s dynamic attention.

4.5 GRAPH-PREDICTION: QM9

Setup In the QM9 dataset (Ramakrishnan et al., 2014; Gilmer et al., 2017), each graph is a molecule
and the goal is to regress each graph to 13 real-valued quantum chemical properties. We used the
implementation of Brockschmidt (2020) who performed an extensive hyperparameter search over
500 configurations; we took their best-found configuration of GAT to implement GATv2.

Table 3: Average error rates (lower is better), 5 runs for each property, on the QM9 dataset. The best
result among GAT and GATv2 is marked in bold; the globally best result among all GNNs is marked
in bold and underline. † was previously tuned and reported by Brockschmidt (2020).

Predicted Property Rel. to
Model 1 2 3 4 5 6 7 8 9 10 11 12 13 GAT

GCN† 3.21 4.22 1.45 1.62 2.42 16.38 17.40 7.82 8.24 9.05 7.00 3.93 1.02 -1.5%
GIN† 2.64 4.67 1.42 1.50 2.27 15.63 12.93 5.88 18.71 5.62 5.38 3.53 1.05 -2.3%

GAT† 2.68 4.65 1.48 1.53 2.31 52.39 14.87 7.61 6.86 7.64 6.54 4.11 1.48 +0%
GATv2 2.65 4.28 1.41 1.47 2.29 16.37 14.03 6.07 6.28 6.60 5.97 3.57 1.59 -11.5%

Results Table 3 shows the main results: GATv2 achieves a lower (better) average error than GAT, by
11.5% relatively. GAT achieves the overall highest average error. In some properties, the non-attentive
GNNs, GCN and GIN, perform best. We hypothesize that attention is not needed in modeling these
properties. Generally, GATv2 achieves the lowest overall average relative error (rightmost column).

4.6 LINK-PREDICTION

We compare GATv2, GAT, and other GNNs in link-prediction datasets from OGB.

Results Table 8 shows that in all datasets, GATv2 achieves a higher MRR than GAT, which achieves
the lowest MRR. However, the non-attentive GraphSAGE performs better than all attentive GNNs.
We hypothesize that attention might not be needed in these datasets. Another possibility is that
dynamic attention is especially useful in graphs that have high node degrees: in ogbn-products and
ogbn-proteins (Table 2) the average node degrees are 50.5 and 597, respectively (see Table 5 in
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Appendix E). ogbl-collab and ogbl-citation2 (Table 8), however, have much lower average node
degrees – of 8.2 and 20.7. We hypothesize that a dynamic attention mechanism is especially useful to
select the most relevant neighbors when the total number of neighbors is high. We leave the study of
the effect of the datasets’s average node degrees on the optimal GNN architecture for future work.

4.7 DISCUSSION

In all examined benchmarks, we found that GATv2 is more accurate than GAT. Further, we found
that GATv2 is significantly more robust to noise than GAT. In the synthetic DICTIONARYLOOKUP
benchmark (Section 4.1), GAT fails to express the data, and thus achieves even poor training accuracy.

In few of the benchmarks (Table 8 and some of the properties in Table 3) – a non-attentive model
such as GCN or GIN achieved a higher accuracy than all GNNs that do use attention. We hypothesize
that attention is not needed in these datasets.

Which graph attention mechanism should I use? It is usually impossible to determine in advance
which architecture would perform best. A theoretically weaker model may perform better in practice,
because a stronger model might overfit the training data if the task is “too simple” and does not
require such expressiveness. Intuitively, we believe that the more complex the interactions between
nodes are – the more benefit a GNN can take from theoretically stronger graph attention mechanisms
such as GATv2. The main question is whether the problem has a global ranking of “influential” nodes
(GAT is sufficient), or do different nodes have different rankings of neighbors (use GATv2).

Veličković, the author of GAT, has confirmed on Twitter6 that GAT was designed to work in the
“easy-to-overfit” datasets of the time (2017), such as Cora, Citeseer and Pubmed (Sen et al., 2008),
where the data might had an underlying static ranking of “globally important” nodes. Veličković
agreed that newer and more challenging benchmarks may demand stronger attention mechanisms
such as GATv2. that depends on the representation of the query node as well. In this paper, we revisit
the traditional assumptions and show that many modern graph benchmarks and datasets contain more
complex interactions, and thus require dynamic attention.

5 CONCLUSION

In this paper, we identify that the popular and widespread Graph Attention Network does not compute
dynamic attention. Instead, the attention mechanism in the standard definition and implementations of
GAT is only static: for any query, its neighbor-scoring is monotonic with respect to per-node scores.
Further, the ranking (the argsort) of attention coefficients is identical for all nodes in the graph,
and is unconditioned on the query node. As a result, GAT cannot even express simple alignment
problems. To address this limitation, we introduce a simple fix and propose GATv2: by modifying
the order of operations in GAT, GATv2 achieves a universal approximator attention function and is
thus strictly more powerful than GAT.

We demonstrate the empirical advantage of GATv2 over GAT in a synthetic problem that requires dy-
namic selection of nodes, and in 12 benchmarks from OGB and other public datasets. Our experiments
show that GATv2 outperforms GAT in all benchmarks while having the same parametric cost.

We encourage the community to use GATv2 instead or in addition to GAT whenever comparing new
GNN architectures to the common strong baselines. In complex tasks and domains and in challenging
datasets, a model that uses GAT as an internal component can replace it with GATv2 to benefit
from a strictly more powerful model. To this end, we make our code publicly available at https:
//github.com/tech-srl/how_attentive_are_gats ,7 and GATv2 is available as part
of the PyTorch Geometric library,8 the Deep Graph Library,9 and the TensorFlow GNN library.10

6https://twitter.com/PetarV_93/status/1399685979506675714
7An annotated implementation of GATv2 is available at https://nn.labml.ai/graphs/gatv2/
8from torch_geometric.nn.conv.gatv2_conv import GATv2Conv
9from dgl.nn.pytorch import GATv2Conv

10from tensorflow_gnn.graph.keras.layers.gat_v2 import GATv2Convolution

9

https://github.com/tech-srl/how_attentive_are_gats
https://github.com/tech-srl/how_attentive_are_gats
https://twitter.com/PetarV_93/status/1399685979506675714
https://nn.labml.ai/graphs/gatv2/


Published as a conference paper at ICLR 2022

ACKNOWLEDGMENTS

We thank Gail Weiss for the helpful discussions, thorough feedback, and inspirational paper (Weiss
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A RELATED WORK

Attention in GNNs Modeling pairwise interactions between elements in graph-structured data goes
back to interaction networks (Battaglia et al., 2016; Hoshen, 2017) and relational networks (Santoro
et al., 2017). The GAT formulation of Veličković et al. (2018) rose as the most popular framework
for attentional GNNs, thanks to its simplicity, generality, and applicability beyond reinforcement
learning (Denil et al., 2017; Duan et al., 2017). Nevertheless, in this work, we show that the popular
and widespread definition of GAT is severely constrained to static attention only.

Other graph attention mechanisms Many works employed GNNs with attention mechanisms
other than the standard GAT’s (Zhang et al., 2018; Thekumparampil et al., 2018; Gao and Ji, 2019;
Lukovnikov and Fischer, 2021; Shi et al., 2020; Dwivedi and Bresson, 2020; Busbridge et al., 2019;
Rong et al., 2020a; Veličković et al., 2020), and Lee et al. (2018) conducted an extensive survey
of attention types in GNNs. However, none of these works identified the monotonicity of GAT’s
attention mechanism, the theoretical differences between attention types, nor empirically compared
their performance. Kim and Oh (2021) compared two graph attention mechanisms empirically, but in a
specific self-supervised scenario, without observing the theoretical difference in their expressiveness.

The static attention of GAT Qiu et al. (2018) recognized the order-preserving property of GAT, but
did not identify the severe theoretical constraint that this property implies: the inability to perform
dynamic attention (Theorem 1). Furthermore, they presented GAT’s monotonicity as a desired trait (!)
To the best of our knowledge, our work is the first work to recognize the inability of GAT to perform
dynamic attention and its practical harmful consequences.

B PROOF FOR THEOREM 2

For brevity, we repeat our definition of dynamic attention (Definition 3.2):

Definition 3.2 (Dynamic attention). A (possibly infinite) family of scoring functions F ⊆(
Rd × Rd → R

)
computes dynamic scoring for a given set of key vectors K= {k1, ...,kn}⊂Rd

and query vectors Q= {q1, ..., qm}⊂Rd, if for any mapping ϕ: [m]→ [n] there exists f ∈ F such
that for any query i ∈ [m] and any key j 6=ϕ(i) ∈ [n]: f

(
qi,kϕ(i)

)
> f (qi,kj). We say that a family

of attention functions computes dynamic attention for K and Q, if its scoring function computes
dynamic scoring, possibly followed by monotonic normalization such as softmax.

Theorem 2. A GATv2 layer computes dynamic attention for any set of node representations K =
Q = {h1, ...,hn} .

Proof. Let G = (V, E) be a graph modeled by a GATv2 layer, having node representations
{h1, ...,hn}, and let ϕ : [n] → [n] be any node mapping [n] → [n]. We define g : R2d → R
as follows:

g (x) =

{
1 ∃i : x =

[
hi‖hϕ(i)

]
0 otherwise

(8)

Next, we define a continues function g̃ : R2d → R that equals to g in only specific n2 inputs:

g̃([hi‖hj ]) = g([hi‖hj ]),∀i, j ∈ [n] (9)

11https://grlmila.github.io/
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For all other inputs x ∈ R2d, g̃(x) realizes to any values that maintain the continuity of g̃ (this is
possible because we fixed the values of g̃ for only a finite set of points). 12

Thus, for every node i ∈ V and j6=ϕ(i) ∈ V:

1 = g̃
([
hi‖hϕ(i)

])
> g̃ ([hi‖hj ]) = 0 (10)

If we concatenate the two input vectors, and define the scoring function e of GATv2 (Equation (7)) as
a function of the concatenated vector [hi‖hj ], from the universal approximation theorem (Hornik
et al., 1989; Cybenko, 1989; Funahashi, 1989; Hornik, 1991), e can approximate g̃ for any compact
subset of R2d.

Thus, for any sufficiently small ε (any 0 < ε < 1/2) there exist parameters W and a such that for
every node i ∈ V and every j 6=ϕ(i):

eW ,a

(
hi,hϕ(i)

)
> 1− ε > 0 + ε > eW ,a (hi,hj) (11)

and due to the increasing monotonicity of softmax:

αi,ϕ(i) > αi,j (12)

The choice of nonlinearity In general, these results hold if GATv2 had used any common non-
polynomial activation function (such as ReLU, sigmoid, or the hyperbolic tangent function). The
LeakyReLU activation function of GATv2 does not change its universal approximation ability (Leshno
et al., 1993; Pinkus, 1999; Park et al., 2021), and it was chosen only for consistency with the original
definition of GAT.

C GENERALIZATION TO MULTI-HEAD ATTENTION

Veličković et al. (2018) found it beneficial to employ H separate attention heads and concatenate
their outputs, similarly to Transformers. In this case, Theorem 1 holds for each head separately: every
head h ∈ [H] has a (possibly different) node that maximizes {s(h)j | j ∈ V} , and the output is the
concatenation of H static attention heads.

D TRAINING DETAILS

In this section we elaborate on the training details of all of our experiments. All models use residual
connections as in Veličković et al. (2018). All used code and data are publicly available under the
MIT license.

D.1 NODE- AND LINK-PREDICTION

We used the provided splits of OGB (Hu et al., 2020) and the Adam optimizer. We tuned the
following hyperparameters: number of layers ∈ {2, 3, 6}, hidden size ∈ {64, 128, 256}, learning rate
∈ {0.0005, 0.001, 0.005, 0.01} and sampling method – full batch, GraphSAINT (Zeng et al., 2019)
and NeighborSampling (Hamilton et al., 2017). We tuned hyperparameters according to validation
score and early stopping. The final hyperparameters are detailed in Table 4.

12The function g̃ is a function that we define for the ease of proof, because the universal approximation
theorem is defined for continuous functions, and we only need the scoring function of GATv2 e to approximate
the mapping ϕ in a finite set of points. So, we need the attention function e to approximate g (from Equation 8)
in some specific points. But, since g is not continuous, we define g̃ and use the universal approximation theorem
for g̃. Since e approximates g̃, e also approximates g in our specific points, as a special case. We only require
that g̃ will be identical to g in specific n2 points {[hi‖hj ] | i, j ∈ [n]}. For the rest of the input space, we don’t
have any requirement on the value of g̃, except for maintaining the continuity of g̃. There exist infinitely many
such possible g̃ for every given set of keys, queries and a mapping ϕ, but the concrete functions are not needed
for the proof.
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Dataset # layers Hidden size Learning rate Sampling method

ogbn-arxiv 3 256 0.01 GraphSAINT
ogbn-products 3 128 0.001 NeighborSampling
ogbn-mag 2 256 0.01 NeighborSampling
ogbn-proteins 6 64 0.01 NeighborSampling

ogbl-collab 3 64 0.001 Full Batch
ogbl-citation2 3 256 0.0005 NeighborSampling

Table 4: Training details of node- and link-prediction datasets.

D.2 ROBUSTNESS TO NOISE

In these experiments, we used the same best-found hyperparameters in node-prediction, with 8
attention heads in ogbn-arxiv and 1 head in ogbn-mag. Each point is an average of 10 runs.

D.3 SYNTHETIC BENCHMARK: DICTIONARYLOOKUP

In all experiments, we used a learning rate decay of 0.5, a hidden size of d = 128, a batch size of
1024, and the Adam optimizer.

We created a separate dataset for every graph size (k), and we split each such dataset to train and
test with a ratio of 80:20. Since this is a contrived problem, we did not use a validation set, and the
reported test results can be thought of as validation results. Every model was trained on a fixed value
of k. Every key node (bottom row in Figure 2) was encoded as a sum of learned attribute embedding
and a value embedding, followed by ReLU.

We experimented with layer normalization, batch normalization, dropout, various activation functions
and various learning rates. None of these changed the general trend, so the experiments in Figure 3
were conducted without any normalization, without dropout and a learning rate of 0.001.

D.4 PROGRAMS: VARMISUSE

We used the code, splits, and the same best-found configurations as Brockschmidt (2020), who
performed an extensive hyperparameter tuning by searching over 30 configurations for each GNN
type. We trained each model five times.

We took the best-found hyperparameters of Brockschmidt (2020) for GAT and used them to train
GATv2, without any further tuning.

D.5 GRAPH-PREDICTION: QM9

We used the code and splits of Brockschmidt (2020) who performed an extensive hyperparameter
search over 500 configurations. We took the best-found hyperparameters of Brockschmidt (2020)
for GAT and used them to train GATv2. The only minor change from GAT is placing a residual
connection after every layer, rather than after every other layer, which is within the experimented
hyperparameter search that was reported by Brockschmidt (2020).

D.6 COMPUTE AND RESOURCES

Our experiments consumed approximately 100 days of GPU in total. We used cloud GPUs of type
V100, and we used RTX 3080 and 3090 in local GPU machines.

E DATA STATISTICS

E.1 NODE- AND LINK-PREDICTION DATASETS

Statistics of the OGB datasets we used for node- and link-prediction are shown in Table 5.

12
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Dataset # nodes # edges Avg. node degree Diameter

ogbn-arxiv 169,343 1,166,243 13.7 23
ogbn-mag 1,939,743 21,111,007 21.7 6
ogbn-products 2,449,029 61,859,140 50.5 27
ogbn-proteins 132,534 39,561,252 597.0 9

ogbl-collab 235,868 1,285,465 8.2 22
ogbl-citation2 2,927,963 30,561,187 20.7 21

Table 5: Statistics of the OGB datasets (Hu et al., 2020).

E.2 QM9

Statistics of the QM9 dataset, as used in Brockschmidt (2020) are shown in Table 6.

Training Validation Test

# examples 110,462 10,000 10,000
# nodes - average 18.03 18.06 18.09
# edges - average 18.65 18.67 18.72
Diameter - average 6.35 6.35 6.35

Table 6: Statistics of the QM9 chemical dataset (Ramakrishnan et al., 2014) as used by Brockschmidt
(2020).

E.3 VARMISUSE

Statistics of the VARMISUSE dataset, as used in Allamanis et al. (2018) and Brockschmidt (2020),
are shown in Table 7.

Training Validation UnseenProject Test SeenProject Test

# graphs 254360 42654 117036 59974
# nodes - average 2377 1742 1959 3986
# edges - average 7298 7851 5882 12925
Diameter - average 7.88 7.88 7.78 7.82

Table 7: Statistics of the VARMISUSE dataset (Allamanis et al., 2018) as used by Brockschmidt
(2020).

F ADDITIONAL RESULTS

F.1 DICTIONARYLOOKUP

Figure 5 shows additional comparison between GATv2 and GIN (Xu et al., 2019) in the DICTIO-
NARYLOOKUP problem. GATv2 easily achieves 100% train and test accuracy even for k=100 and
using only a single head. GIN, although considered as more expressive than other GNNs, cannot
perfectly fit the training data (with a model size of d = 128) starting from k=20.

F.2 LINK-PREDICTION

Results for link-prediction are showen in Table 8.
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Figure 5: Train and test accuracy across graph sizes in the DICTIONARYLOOKUP problem. GATv2
easily achieves 100% train and test accuracy even for k=100 and using only a single head. GIN
(Xu et al., 2019), although considered as more expressive than other GNNs, cannot perfectly fit the
training data (with a model size of d = 128) starting from k=20.

Table 8: Average Hits@50 (Table 8a) and mean reciprocal rank (MRR) (Table 8b) in link-prediction
benchmarks from OGB (10 runs±std). The best result among GAT and GATv2 is marked in bold;
the best result among all GNNs is marked in bold and underline. † was reported by Hu et al. (2020).

(a)

ogbl-collab
Model Attn. Heads w/o val edges w/ val edges

No-
Attention

GCN† 44.75±1.07 47.14±1.45

GraphSAGE† 48.10±0.81 54.63±1.12

GAT GAT1h 39.32±3.26 48.10±4.80
GAT8h 42.37±2.99 46.63±2.80

GATv2 GATv21h 42.00±2.40 48.02±2.77
GATv28h 42.85±2.64 49.70±3.08

(b)

ogbl-citation2

80.04±0.25

80.44±0.10

79.84±0.19
75.95±1.31
80.33±0.13
80.14±0.71

F.3 QM9

Standard deviation for the QM9 results of Section 4.5 are presented in Table 9.

F.4 PUBMED CITATION NETWORK

We tuned the following parameters for both GAT and GATv2: number of layers ∈ {0, 1, 2}, hidden
size ∈ {8, 16, 32}, number of heads ∈ {1, 4, 8}, dropout ∈ {0.4, 0.6, 0.8}, bias ∈ {True, False},
share weights ∈ {True, False}, use residual ∈ {True, False}. Table 10 shows the test accuracy
(100 runs±stdev) using the best hyperparameters found for each model.

It is important to note that PubMed has only 60 training nodes, which hinders expressive models
such as GATv2 from exploiting their approximation and generalization advantages. Still, GATv2
is more accurate than GAT even in this small dataset. In Table 15, we show that this difference is
statistically significant (p-value < 0.0001).

G ADDITIONAL COMPARISON WITH TRANSFORMER-STYLE ATTENTION
(DPGAT)

The main goal of our paper is to highlight a severe theoretical limitation of the highly popular GAT
architecture, and propose a minimal fix.
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Predicted Property
Model 1 2 3 4 5 6 7

GCN† 3.21±0.06 4.22±0.45 1.45±0.01 1.62±0.04 2.42±0.14 16.38±0.49 17.40±3.56

GIN† 2.64±0.11 4.67±0.52 1.42±0.01 1.50±0.09 2.27±0.09 15.63±1.40 12.93±1.81

GAT1h 3.08±0.08 7.82±1.42 1.79±0.10 3.96±1.51 3.58±1.03 35.43±29.9 116.5±10.65

GAT8h
† 2.68±0.06 4.65±0.44 1.48±0.03 1.53±0.07 2.31±0.06 52.39±42.58 14.87±2.88

GATv21h 3.04±0.06 6.38±0.62 1.68±0.04 2.18±0.61 2.82±0.25 20.56±0.70 77.13±37.93
GATv28h 2.65±0.05 4.28±0.27 1.41±0.04 1.47±0.03 2.29±0.15 16.37±0.97 14.03±1.39

Predicted Property Rel. to
Model 8 9 10 11 12 13 GAT8h

GCN† 7.82±0.80 8.24±1.25 9.05±1.21 7.00±1.51 3.93±0.48 1.02±0.05 -1.5%
GIN† 5.88±1.01 18.71±23.36 5.62±0.81 5.38±0.75 3.53±0.37 1.05±0.11 -2.3%

GAT1h 28.10±16.45 20.80±13.40 15.80±5.87 10.80±2.18 5.37±0.26 3.11±0.14 +134.1%
GAT8h

† 7.61±0.46 6.86±0.53 7.64±0.92 6.54±0.36 4.11±0.27 1.48±0.87 +0%

GATv21h 10.19±0.63 22.56±17.46 15.04±4.58 22.94±17.34 5.23±0.36 2.46±0.65 +91.6%
GATv28h 6.07±0.77 6.28±0.83 6.60±0.79 5.97±0.94 3.57±0.36 1.59±0.96 -11.5%

Table 9: Average error rates (lower is better), 5 runs ± standard deviation for each property, on
the QM9 dataset. The best result among GAT and GATv2 is marked in bold; the globally best
result among all GNNs is marked in bold and underline. † was previously tuned and reported by
Brockschmidt (2020).

Table 10: Accuracy (100 runs±stdev) on Pubmed. GATv2 is more accurate than GAT.

Model Accuracy

GAT 78.1±0.59
GATv2 78.5±0.38

We perform additional empirical comparison to DPGAT, which follows Luong et al. (2015) and the
dot-product attention of the Transformer (Vaswani et al., 2017). We define DPGAT as:

DPGAT (Vaswani et al., 2017): e (hi,hj) =
((

h>i Q
)
·
(
h>j K

)>)
/
√
dk (13)

Variants of DPGAT were used in prior work (Gao and Ji, 2019; Dwivedi and Bresson, 2020; Rong
et al., 2020a; Veličković et al., 2020; Kim and Oh, 2021), and we consider it here for the conceptual
and empirical comparison with GAT.

Despite its popularity, DPGAT is strictly weaker than GATv2. DPGAT provably performs dynamic
attention for any set of node representations only if they are linearly independent (see Theorem 3
and its proof in Appendix G.1). Otherwise, there are examples of node representations that are
linearly dependent and mappings ϕ, for which dynamic attention does not hold (Appendix G.2).
This constraint is not harmful when violated in practice, because every node has only a small set of
neighbors, rather than all possible nodes in the graph; further, some nodes possibly never need to be
“selected” in practice.

G.1 PROOF THAT DPGAT PERFORMS DYNAMIC ATTENTION FOR LINEARLY INDEPENDENT
NODE REPRESENTATIONS

Theorem 3. A DPGAT layer computes dynamic attention for any set of node representations
K = Q = {h1, ...,hn} that are linearly independent.

Proof. Let G = (V, E) be a graph modeled by a DPGAT layer, having linearly independent node
representations {h1, ...,hn}. Let ϕ : [n]→ [n] be any node mapping [n]→ [n].

15



Published as a conference paper at ICLR 2022

We denote the ith row of a matrix M as Mi.

We define a matrix P as:

Pi,j =

{
1 j = ϕ(i)

0 otherwise
(14)

Let X ∈ Rn × Rd be the matrix holding the graph’s node representations as its rows:

X =


— h1 —
— h2 —

...
— hn —

 (15)

Since the rows of X are linearly independent, it necessarily holds that d ≥ n.

Next, we find weight matrices Q ∈ Rd × Rd and K ∈ Rd × Rd such that:

(XQ) · (XK)> = P (16)

To satisfy Equation (16), we choose Q and K such that XQ = U and XK = P>U where U is
an orthonormal matrix (U ·U> = U> ·U = I).

We can obtain U using the singular value decomposition (SVD) of X:

X = UΣV > (17)

Since Σ ∈ Rn × Rn and X has a full rank, Σ is invertible, and thus:

XV Σ−1 = U (18)

Now, we define Q as follows:
Q = V Σ−1 (19)

Note that XQ = U , as desired.

To find K that satisfies XK = P>U , we use Equation (17) and require:

UΣV >K = P>U (20)

and thus:
K = V Σ−1UTP>U (21)

We define:
z (hi,hj) = e (hi,hj) ·

√
dk (22)

Where e is the attention score function of DPGAT (Equation (13)).

Now, for a query i and a key j, and the corresponding representations hi,hj :

z (hi,hj) =
(
h>i Q

)
·
(
h>j K

)>
(23)

= (XiQ) · (XjK)
> (24)

Since XiQ = (XQ)i and XjK = (XK)j , we get

z (hi,hj) = (XQ)i ·
(
(XK)j

)>
= Pi,j (25)

Therefore:

z (hi,hj) =

{
1 j = ϕ(i)

0 otherwise
(26)

And thus:

e (hi,hj) =

{
1/
√
dk j = ϕ(i)

0 otherwise
(27)
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To conclude, for every selected query i and any key j 6=ϕ(i):

e
(
hi,hϕ(i)

)
> e (hi,hj) (28)

and due to the increasing monotonicity of softmax:

αi,ϕ(i) > αi,j (29)

Hence, a DPGAT layer computes dynamic attention.

In the case that d > n, we apply SVD to the full-rank matrix XX> ∈ Rn×n, and follow the same
steps to construct Q and K.

In the case that Q ∈ Rd × Rdk and K ∈ Rd × Rdk and dk > d, we can use the same Q and K
(Equations (19) and (21)) padded with zeros. We define the Q′ ∈ Rd ×Rdkey and K ′ ∈ Rd ×Rdkey

as follows:

Q′i,j =

{
Qi,j j ≤ d
0 otherwise

(30)

K ′i,j =

{
Ki,j j ≤ d
0 otherwise

(31)

G.2 DPGAT IS STRICTLY WEAKER THAN GATV2

There are examples of node representations that are linearly dependent and mappings ϕ, for which
dynamic attention does not hold. First, we show a simple 2-dimensional example, and then we show
the general case of such examples.

x

y

h0 = x̂

h1 = x̂+ ŷ

h2 = x̂+ 2ŷ

Figure 6: An example for node representations that are linearly dependent, for which DPGAT cannot
compute dynamic attention, because no query vector q ∈ R2 can “select” h1.

Consider the following linearly dependent set of vectors K = Q (Figure 6):

h0 = x̂ (32)
h1 = x̂+ ŷ (33)
h2 = x̂+ 2ŷ (34)

where x̂ and ŷ are the cartesian unit vectors. We define β ∈ {0, 1, 2} to express {h0,h1,h2} using
the same expression:

hβ = x̂+ βŷ (35)
Let q ∈ Q be any query vector. For brevity, we define the unscaled dot-product attention score as s:

s (q,hβ) = e (q,hβ) ·
√
dk (36)

Where e is the attention score function of DPGAT (Equation (13)). The (unscaled) attention score
between q and {h0,h1,h2} is:

s (q,hβ) =
(
q>Q

) (
h>βK

)>
(37)

=
(
q>Q

) (
(x̂+ βŷ)

>
K
)>

(38)

=
(
q>Q

) (
x̂>K + βŷ>K

)>
(39)

=
(
q>Q

) (
x̂>K

)>
+ β

(
q>Q

) (
ŷ>K

)>
(40)
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The first term
(
q>Q

) (
x̂>K

)>
is unconditioned on β, and thus shared for every hβ . Let us focus

on the second term β
(
q>Q

) (
ŷ>K

)>
. If
(
q>Q

) (
ŷ>K

)>
> 0, then:

e (q,h2) > e (q,h1) (41)

Otherwise, if
(
q>Q

) (
ŷ>K

)> ≤ 0:

e (q,h0) ≥ e (q,h1) (42)

Thus, for any query q, the key h1 can never get the highest score, and thus cannot be “selected”. That
is, the key h1 cannot satisfy that e (q,h1) is strictly greater than any other key.

In the general case, let h0,h1 ∈ Rd be some non-zero vectors , and λ is some scalar such that
0 < λ < 1.

Consider the following linearly dependent set of vectors:

K = Q = {βh1 + (1− β)h0 | β ∈ {0, λ, 1}} (43)

For any query q ∈ Q and β ∈ {0, λ, 1} we define:

s (q, β) = e (q, (βh1 + (1− β)h0)) ·
√
dk (44)

Where e is the attention score function of DPGAT (Equation (13)).

Therefore:

s (q, β) =
(
q>Q

) (
(βh1 + (1− β)h0)

>
K
)>

(45)

=
(
q>Q

) (
βh>1 K + (1− β)h>0 K

)>
(46)

=
(
q>Q

) (
βh>1 K + h>0 K − βh>0 K

)>
(47)

=
(
q>Q

) (
β
(
h>1 K − h>0 K

)
+ h>0 K

)>
(48)

= β
(
q>Q

) (
h>1 K − h>0 K

)>
+
(
q>Q

) (
h>0 K

)>
(49)

If
(
q>Q

) (
h>1 K − h>0 K

)>
> 0:

e (q,h1) > e (q,hλ) (50)

Otherwise, if
(
q>Q

) (
h>1 K − h>0 K

)> ≤ 0:

e (q,h0) ≥ e (q,hλ) (51)

Thus, for any query q, the key hλ cannot be selected. That is, the key hλ cannot satisfy that e (q,hλ)
is strictly greater than any other key. Therefore, there are mappings ϕ, for which dynamic attention
does not hold.

While we prove that GATv2 computes dynamic attention (Appendix B) for any set of node represen-
tations K = Q, there are sets of node representations and mappings ϕ for which dynamic attention
does not hold for DPGAT. Thus, DPGAT is strictly weaker than GATv2.

G.3 EMPIRICAL EVALUATION

Here we repeat the experiments of Section 4 with DPGAT. We remind that DPGAT is strictly weaker
than our proposed GATv2 (see a proof in Appendix G.1).

H STATISTICAL SIGNIFICANCE

Here we report the statistical significance of the strongest GATv2 and GAT models of the experiments
reported in Section 4.
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Figure 7: Test accuracy compared to the noise ratio: GATv2 and DPGAT are more robust to structural
noise compared to GAT. Each point is an average of 10 runs, error bars show standard deviation.

Table 11: Accuracy (5 runs±stdev) on VARMISUSE. GATv2 is more accurate than all GNNs in both
test sets, using GAT’s hyperparameters. † – previously reported by Brockschmidt (2020).

Model SeenProj UnseenProj

No-
Attention

GCN† 87.2±1.5 81.4±2.3

GIN† 87.1±0.1 81.1±0.9

Attention
GAT† 86.9±0.7 81.2±0.9
DPGAT 88.0±0.8 81.5±1.2
GATv2 88.0±1.1 82.8±1.7

Table 12: Average accuracy (Table 12a) and ROC-AUC (Table 12b) in node-prediction datasets (10
runs±std). In all datasets, GATv2 outperforms GAT. † – previously reported by Hu et al. (2020).

(a)

Model Attn. Heads ogbn-arxiv ogbn-products ogbn-mag

GCN† 0 71.74±0.29 78.97±0.33 30.43±0.25

GraphSAGE† 0 71.49±0.27 78.70±0.36 31.53±0.15

GAT 1 71.59±0.38 79.04±1.54 32.20±1.46
8 71.54±0.30 77.23±2.37 31.75±1.60

DPGAT 1 71.52±0.17 76.49±0.78 32.77±0.80
8 71.48±0.26 73.53±0.47 27.74±9.97

GATv2 (this work) 1 71.78±0.18 80.63±0.70 32.61±0.44
8 71.87±0.25 78.46±2.45 32.52±0.39

(b)

ogbn-proteins

72.51±0.35

77.68±0.20

70.77±5.79
78.63±1.62

63.47±2.79
72.88±0.59

77.23±3.32
79.52±0.55
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Table 13: Average error rates (lower is better), 5 runs ± standard deviation for each property, on the
QM9 dataset. The best result among GAT, GATv2 and DPGAT is marked in bold; the globally best
result among all GNNs is marked in bold and underline. † was previously tuned and reported by
Brockschmidt (2020).

Predicted Property
Model 1 2 3 4 5 6 7

GCN† 3.21±0.06 4.22±0.45 1.45±0.01 1.62±0.04 2.42±0.14 16.38±0.49 17.40±3.56

GIN† 2.64±0.11 4.67±0.52 1.42±0.01 1.50±0.09 2.27±0.09 15.63±1.40 12.93±1.81

GAT1h 3.08±0.08 7.82±1.42 1.79±0.10 3.96±1.51 3.58±1.03 35.43±29.9 116.5±10.65

GAT8h
† 2.68±0.06 4.65±0.44 1.48±0.03 1.53±0.07 2.31±0.06 52.39±42.58 14.87±2.88

DPGAT8h 2.63±0.09 4.37±0.13 1.44±0.07 1.40±0.03 2.10±0.07 32.59±34.77 11.66±1.00
DPGAT1h 3.20±0.17 8.35±0.78 1.71±0.03 2.17±0.14 2.88±0.12 25.21±2.86 65.79±39.84

GATv21h 3.04±0.06 6.38±0.62 1.68±0.04 2.18±0.61 2.82±0.25 20.56±0.70 77.13±37.93
GATv28h 2.65±0.05 4.28±0.27 1.41±0.04 1.47±0.03 2.29±0.15 16.37±0.97 14.03±1.39

Predicted Property Rel. to
Model 8 9 10 11 12 13 GAT8h

GCN† 7.82±0.80 8.24±1.25 9.05±1.21 7.00±1.51 3.93±0.48 1.02±0.05 -1.5%
GIN† 5.88±1.01 18.71±23.36 5.62±0.81 5.38±0.75 3.53±0.37 1.05±0.11 -2.3%

GAT1h 28.10±16.45 20.80±13.40 15.80±5.87 10.80±2.18 5.37±0.26 3.11±0.14 +134.1%
GAT8h

† 7.61±0.46 6.86±0.53 7.64±0.92 6.54±0.36 4.11±0.27 1.48±0.87 +0%

DPGAT1h 12.93±1.70 13.32±2.39 14.42±1.95 13.83±2.55 6.37±0.28 3.28±1.16 +77.9%
DPGAT8h 6.95±0.32 7.09±0.59 7.30±0.66 6.52±0.61 3.76±0.21 1.18±0.33 -9.7%

GATv21h 10.19±0.63 22.56±17.46 15.04±4.58 22.94±17.34 5.23±0.36 2.46±0.65 +91.6%
GATv28h 6.07±0.77 6.28±0.83 6.60±0.79 5.97±0.94 3.57±0.36 1.59±0.96 -11.5%
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Figure 8: Test accuracy and statistical significance compared to the noise ratio: GATv2 is more robust
to structural noise compared to GAT. Each point is an average of 10 runs, error bars show standard
deviation.

Table 14: Accuracy (5 runs±stdev) on VARMISUSE. GATv2 is more accurate than all GNNs in both
test sets, using GAT’s hyperparameters. † – previously reported by Brockschmidt (2020).

Model SeenProj UnseenProj

GAT† 86.9±0.7 81.2±0.9
GATv2 88.0±1.1 82.8±1.7

p-value 0.048 0.049
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Table 15: Accuracy (100 runs±stdev) on Pubmed. GATv2 is more accurate than GAT.

Model Accuracy

GAT 78.1±0.59
GATv2 78.5±0.38

p-value < 0.0001

Table 16: Average accuracy (Table 16a) and ROC-AUC (Table 16b) in node-prediction datasets (30
runs±std). We report on the best GAT / GATv2 from Table 2.

(a)

Model ogbn-arxiv ogbn-products ogbn-mag

GAT 71.65±0.38 79.04±1.54 32.36±1.10
GATv2 71.93±0.35 80.63±0.70 33.01±0.41

p-value 0.0022 <0.0001 0.0018

(b)

ogbn-proteins

78.29 ±1.59
78.96±1.19

0.0349

Table 17: Average Hits@50 (Table 17a) and mean reciprocal rank (MRR) (Table 17b) in link-
prediction benchmarks from OGB (30 runs±std). We report on the best GAT / GATv2 from Table 8.

(a)

ogbl-collab
Model w/o val edges w/ val edges

GAT 42.24±2.26 46.02±4.09
GATv2 43.82±2.24 49.06±2.50

p-value 0.0043 0.0005

(b)

ogbl-citation2

79.91±0.13
80.20±0.62

0.0075

Table 18: Average error rates (lower is better), 20 runs ± standard deviation for each property, on the
QM9 dataset. We report on GAT and GATv2 with 8 attention heads.

Predicted Property
Model 1 2 3 4 5 6 7

GAT 2.74±0.08 4.73±0.40 1.47±0.06 1.53±0.06 2.44±0.60 55.21±42.33 25.36±31.42
GATv2 2.67±0.08 4.28±0.23 1.43±0.05 1.51±0.07 2.21±0.08 16.64±1.17 13.61±1.68

p-value 0.0043 <0.0001 0.0138 0.1691 0.0487 0.0001 0.0516

Predicted Property
Model 8 9 10 11 12 13

GAT 7.36±0.87 6.79±0.86 7.36±0.93 6.69±0.86 4.10±0.29 1.51±0.84
GATv2 6.13±0.59 6.33±0.82 6.37±0.86 5.95±0.62 3.66±0.29 1.09±0.85

p-value <0.0001 0.0458 0.0006 0.0017 <0.0001 0.0621
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I COMPLEXITY ANALYSIS

We repeat the definitions of GAT, GATv2 and DPGAT:

GAT (Veličković et al., 2018): e (hi,hj) =LeakyReLU
(
a> · [Whi‖Whj ]

)
(52)

GATv2 (our fixed version): e (hi,hj) =a>LeakyReLU (W · [hi‖hj ]) (53)

DPGAT (Vaswani et al., 2017): e (hi,hj) =
((

h>i Q
)
·
(
h>j K

)>)
/
√
d′ (54)

I.1 TIME COMPLEXITY

GAT As noted by Veličković et al. (2018), the time complexity of a single GAT head may be
expressed as O (|V|dd′ + |E|d′). Because of GAT’s static attention, this computation can be further
optimized, by merging the linear layer a1 with W , merging a2 with W , and only then compute
a>{1,2}Whi for every i ∈ V .

GATv2 require the same computational cost as GAT’s declared complexity: O (|V|dd′ + |E|d′): we
denote W = [W1‖W2], where W1 ∈ Rd′×d and W d′×d

2 contain the left half and right half of the
columns of W , respectively. We can first compute W1hi and W2hj for every i, j ∈ V . This takes
O (|V|dd′).
Then, for every edge (j, i), we compute LeakyReLU (W · [hi‖hj ]) using the precomputed W1hi
and W2hj , since W · [hi‖hj ] = W1hi +W2hj . This takes O (|E|d′).
Finally, computing the results of the linear layer a takes additional O (|E|d′) time, and overall
O (|V|dd′ + |E|d′).

DPGAT also takes the same time. We can first compute h>i Q and h>j K for every i, j ∈ V . This

takesO (|V|dd′). Computing the dot-product
(
h>i Q

) (
h>j K

)>
for every edge (j, i) takes additional

O (|E|d′) time, and overall O (|V|dd′ + |E|d′).

I.2 PARAMETRIC COMPLEXITY

GAT GATv2 DPGAT

Official 2d′ + dd′ d′ + 2dd′ 2ddk + dd′

In our experiments 2d′ + dd′ d′ + dd′ 2dd′

Table 19: Number of parameters for each GNN type, in a single layer and a single attention head.

All parametric costs are summarized in Table 19. All following calculations refer to a single layer
having a single attention head, omitting bias vectors.

GAT has learned vector and a matrix: a ∈ R2d′ and W ∈ Rd′×d, thus overall 2d′ + dd′ learned
parameters.

GATv2 has a matrix that is twice larger: W ∈ Rd′×2d, because it is applied on the concatenation
[hi‖hj ]. Thus, the overall number of learned parameters is d′ + 2dd′. However in our experiments,
to rule out the increased number of parameters over GAT as the source of empirical difference, we
constrained W = [W ′‖W ′], and thus the number of parameters were d′ + dd′.

DPGAT has Q and K matrices of sizes ddk each, and additional dd′ parameters in the value matrix
V , thus 2ddk + dd′ parameters overall. However in our experiments, we constrained Q = K and
set dk = d′, and thus the number of parameters is only 2dd′.
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