
Class-aware Domain Knowledge Fusion and Fission
for Continual Test-Time Adaptation

Jiahuan Zhou1, Chao Zhu1, Zhenyu Cui1, Zichen Liu1, Xu Zou2∗, Gang Hua3
1Wangxuan Institute of Computer Technology, Peking University, Beijing 100871, China

2the Huazhong University of Science and Technology, Wuhan 430074,China
3Amazon.com, Inc, Bellevue, WA 98004, USA

jiahuanzhou@pku.edu.cn, zhuc2022@mail.sustech.edu.cn
{cuizhenyu,lzc20180720}@stu.pku.edu.cn, zx@zoux.me, ganghua@gmail.com

Abstract

Continual Test-Time Adaptation (CTTA) aims to quickly fine-tune the model dur-
ing the test phase so that it can adapt to multiple unknown downstream domain
distributions without pre-acquiring downstream domain data. To this end, existing
advanced CTTA methods mainly reduce the catastrophic forgetting of historical
knowledge caused by irregular switching of downstream domain data by restoring
the initial model or reusing historical models. However, these methods are usually
accompanied by serious insufficient learning of new knowledge and interference
from potentially harmful historical knowledge, resulting in severe performance
degradation. To this end, we propose a class-aware domain Knowledge Fusion and
Fission method for continual test-time adaptation, called KFF, which adaptively
expands and merges class-aware domain knowledge in old and new domains ac-
cording to the test-time data from different domains, where discriminative historical
knowledge can be dynamically accumulated. Specifically, considering the huge
domain gap within streaming data, a domain Knowledge FIssion (KFI) module
is designed to adaptively separate new domain knowledge from a paired class-
aware domain prompt pool, alleviating the impact of negative knowledge brought
by old domains that are distinct from the current domain. Besides, to avoid the
cumulative computation and storage overheads from continuously fissioning new
knowledge, a domain Knowledge FUsion (KFU) module is further designed to
merge the fissioned new knowledge into the existing knowledge pool with minimal
cost, where a greedy knowledge dynamic merging strategy is designed to improve
the compatibility of new and old knowledge while keeping the computational effi-
ciency. Extensive experiments on the ImageNet-C dataset verify the effectiveness
of our proposed method against other methods. The source code is available at
https://github.com/zhoujiahuan1991/NeurIPS2025-KFF.

1 Introduction

Recently, deep neural networks have demonstrated powerful adaptation capabilities on various vision
tasks [10, 14, 62, 50], but still suffer from the well-known distributional shift problem [43, 15,
22, 51, 49] between training and test data. To address this problem, Test-Time Adaptation (TTA)
is proposed to adapt the test data in the target domain by using only unlabelled streaming test
data [46, 57, 29, 17, 1]. Existing TTA methods have shown promising capacity to improve the
generalizability of pre-trained models through self-supervised training methods [46, 39, 57, 58, 5, 55].
Despite some progress, most TTA methods merely focus on the generalizability within a single
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Figure 1: Existing methods [32] failed to accu-
mulate knowledge in distinct domains, where con-
flicting knowledge disrupts the gradient direction
during optimizing and remains a severe domain
conflict problem.

testing domain, ignoring the multiple test sce-
narios that may appear from time to time in real
scenarios [47, 8].

To tackle the above issue, Continual Test-Time
Adaptation (CTTA) aims to exploit the unla-
belled test data streams with continually chang-
ing testing domains for test-time adaptation [47,
38], as shown in Figure 1(a). The core chal-
lenge of CTTA is to adapt to the changing test
data distribution by reducing error accumula-
tion and preventing catastrophic forgetting to
improve the robustness of long-term adaptation.
To this end, some CTTA methods mainly pre-
serve historical knowledge through regulariza-
tion [47, 38, 45, 32] or restoration [37, 38, 54],
which aim to slow down the learning of new
data and correct domain style bias, thereby sup-
pressing the impact of distributional shift prob-
lem caused by domain gaps, respectively. Un-
fortunately, these methods ignore the domain
conflict between streaming data collected from
distinct domains, which fails to fully accumulate
differential domain knowledge in various test-
time data. Specifically, advanced CTTA meth-
ods [33, 61] typically select and fuse parameters
of historical models. Therefore, as shown in
Figure 1(b), the knowledge offset between two
distinct domains will inevitably disrupt the gra-
dient direction during TTA optimization. Consequently, as Figure 1(c) illustrates, it not only brings an
unlimited and continuously increasing storage overhead of historical models, but also compromises
the discriminability due to the inevitable mixing of conflict domain knowledge. Therefore, CTTA
remains a challenging issue to solve when considering the trade-off between adaptation efficiency
and effectiveness.

To adapt pre-trained models to downstream tasks efficiently, prompt learning [4, 41, 20, 12] proposes
to adjust a small set of parameters while keeping the pre-trained parameters fixed. However, existing
prompt learning methods typically face two key challenges. For one, existing prompt learning
methods [61, 11, 53] fail to separate category information and domain information, resulting in
a mixture of discriminative information from different domains in the resulting prompt, which
inhibits the discrimination of the adapted prompts. Second, existing prompt learning methods [6, 61]
are difficult to dynamically adjust the prompting capacity according to different testing domains.
Therefore, when the test domain switches irregularly, the adapted prompts typically weaken the
robustness of discriminability in various domains.

Inspired by the above observations, we proposed a class-aware domain Knowledge Fusion and
Fission (KFF) framework for continual test-time adaptation. To accumulate various knowledge in
different domains, we designed a Knowledge FIssion (KFI) and a Knowledge FUsion (KFU) module
to achieve the continual evolution of historical knowledge. Specifically, a KFI module is proposed
to dynamically fission class-aware domain knowledge adapted to the current domain by evaluating
the knowledge discrepancy between the current domain and the historical domains. Sequentially, a
KFU module is introduced to merge the fissioned knowledge into the existing knowledge pool at a
minimal cost. Among them, a greedy-based knowledge fusion strategy is proposed to achieve the
fusion of various knowledge with minimal risk of old knowledge loss.

We evaluate our KFF with three common CTTA benchmarks (ImageNet-to-ImageNet-C [15],
CIFAR100-to-CIFAR100C and CIFAR10-to-CIFAR10C [23]) under continual changing domains [47,
16, 6]. We further compare our KFF with state-of-the-art algorithms, including the latest advance-
ments in CTTA and TTA fields. The experimental results show its effectiveness under various changes
of testing domains. In particular, our KFF achieved 34.8% error under the ImageNet-to-ImageNet-C
distributional shift case, which surpasses the previous SOTA method DPCore [61] by 5.1%.
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2 Related Work

Test-time Adaptation. Test-time adaptation (TTA) aims to adapt pre-trained models to handle
distribution shifts during inference, without access to source data or additional supervision [7, 12, 18,
19, 36, 29, 44]. Some methods employ self-supervised losses, such as entropy minimization [46, 39,
57, 58] or consistency maximization [5, 55], to adjust the model. Some methods involve preliminary
steps to use source data: by extracting source characteristics such as statistics or features [59, 35, 40,
60], or by warming up injected parameters on source data before adaptation [12, 24, 45]. However,
existing TTA methods typically assume a static target domain and fail to account for domain shifts
that evolve over time [3, 13, 47]. This limitation results in challenges such as error accumulation
and catastrophic forgetting, which significantly degrade model performance and adaptability during
inference.

Continual Test-time Adaptation. Compared to TTA, continual test-time adaptation (CTTA)
considers a more practical scenario in which the target domain continuously evolves. This setting
exacerbates challenges like error accumulation [5] and catastrophic forgetting [47]. To address these
issues, some methods such as EATA [38] and EcoTTA [32] introduce regularization strategies to
mitigate error accumulation, while others like ERSK [37], RDumb [42] and CoTTA [47] utilize
weight reset mechanisms to counteract catastrophic forgetting. Beyond updating the model itself,
some approaches leverage a small number of parameters to incrementally learn target-domain-specific
knowledge (e.g., VDP [11], SVDP [53], and ViDA [27]). However, these methods struggle to retain
domain-specific knowledge over time, resulting in poor performance when previously encountered
domains reappear. More recently, DPCore [61] attempts to preserve historical domain knowledge
and dynamically compose it during inference. While it effectively retains past domain information, it
applies all previously stored knowledge to each new test batch without considering potential domain
conflicts, which may lead to suboptimal performance.

Prompt Learning. Prompt learning is initially introduced in natural language processing (NLP) [4,
41] as a means of using learnable prompt tokens to better adapt pre-trained models to downstream
tasks. Inspired by its success, researchers have extended this approach to computer vision [20, 12,
48, 52, 26, 31], achieving competitive results. Motivated by this, several methods have explored
the integration of prompt learning into TTA [12, 56, 30] and CTTA scenarios [53, 11, 40, 21]. For
instance, VDP [11] and SVDP [53] propose self-training models that adapt learnable visual prompts
to dynamically changing domains. Other methods, such as DePT [12], CPT4 [21] and DPCore [61]
introduce learnable prompts into Vision Transformers (ViTs), enhancing their ability to handle
complex visual inputs and improving performance in TTA and CTTA settings. However, existing
prompt-based TTA/CTTA approaches focus primarily on prompting for knowledge at the domain
level, often overlooking the shared class-level information across domains, which could further
enhance generalization.

3 Method

3.1 Problem Formulation and Notations

CTTA Problem Formulation. We focus on continual test-time adaptation here, where the target
distribution differs from the source distribution and is not static. The training data are from the source
domain DS = {YS , XS}, and the test data are from different domain distributions dominated as
DT = {XT }NT=1, where N represents the number of potential target domains, which is unknown
and can be infinite or repeating. The model fθ encounters test batches BTj = {xt}bt=0, xt ∈ XT of
batch size b in an online manner, which means it will only meet one batch Bt at test time t. The
entire process cannot access any source domain data and can only access the target domain data once.
With continually changing domains, our goal is to adapt the pre-trained model to target domains and
maintain the ability of the model on historical domain distributions.

Vision Transformers(ViTs). We focus on ViTs for their outstanding representation learning powers.
A ViTs f can be decomposed into a feature extractor ϕ : X → Z and a classifier head h : Z → Y ,
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Figure 2: The Overall pipeline of our KFF with Knowledge Fission(KFI) and Knowledge Fu-
sion(KFU). For each test batch, the KFI module dynamically fissions a domain prompt and several
class prompts to adjust the source model. Sequentially, KFU merges the fissioned prompts after
optimizing, achieving the balance between effectiveness and efficiency.

such that f = ϕ ◦ h. Let z0 ∈ Z represents the classification token in Z , the standard prediction
process follows:

Z = ϕ(X ), y = h(z0)

ŷ = softmax(y)
. (1)

3.2 Overview of the Proposed KFF

As shown in Figure 2, our proposed method mainly contains two key modules: Knowledge Fission
and Knowledge Fusion. Given input test batch BTj from domain DT , we choose or fission class
prompts {Pt}bt=0 for every single test sample in {xt}bt=0 and domain prompts PT

j for the whole test
batch BTj and get prompts P = {PT

j , {Pt}bt=0}, then we apply it to the pre-trained ViT model θs to
get the predicted category ŷ = f(BTj ; θs,P) of input test batch BTj . To optimize model performance,
prompts are trained using a bi-level loss function that integrates both batch-level domain alignment
(Ld) and instance-level classification entropy (Lc). We adopt domain alignment for batch-level
loss computation, leveraging its established effectiveness and computational efficiency [2, 34].
Specifically, the domain alignment loss Ld measures the discrepancy between the source domain
and the current domain by calculating the combined Euclidean distance of their feature means and
standard deviations:

Ld =
∥∥µs − µT

j (P)
∥∥
2
+ α

∥∥σs − σT
j (P)

∥∥
2
. (2)

Notably, while this domain alignment distance calculation requires source data, labels are not needed,
as we only perform marginal distribution alignment. And approximately 300 unlabelled source
examples are enough for stable performance [61]. At the instance level, we minimize the prediction
entropy using:

Lc =
1

b

b∑
t=0

H(ŷt). (3)

The model then learned P∗ from P by minimizing L = Ld + aLc and use the learned prompts to
update the two prompt pools, enabling adaptive knowledge accumulation across batches. After the
update, a fusion step is carried out to control the size of the prompt pool, i.e. Nc and Nd, and retain
historical knowledge, balancing computational efficiency with the preservation of key information
for improved generalization and performance.

3.3 Knowledge Fission Module

Noticed that there might be performance degradation due to domain conflicts, as shown in Figure 1,
we proposed a knowledge fission strategy to prevent the current test batch from being influenced by
the conflict historical knowledge as follows:
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Class Knowledge Fission. In this submodule, we aim to handle the knowledge fission at class level.
To achieve this, we use the cosine similarity st,i = sim(ỹt, yi) between pseudo labels ỹt and prompt
keys yi to evaluate prompt Pi for every test sample in the whole batch. Specifically, we first extract
pseudo-labels ỹt without relying on any prompt, which allows us to obtain an initial understanding of
the samples’ characteristics without the influence of existing prompts. Then, we evaluate Pi by st,i,
which helps us to determine how well a prompt aligns with the pseudo-label of a test sample. The
prompts that st,i > γc will be selected as candidates and will be used in a weighted manner:

Pt =

Nc∑
i=0

wiPc
i , wi =

exp(st,i/τc)∑Nc

i=0 exp(st,i/τc)
. (4)

If no candidates were selected for xt, which means the model finds a new class which has not been
seen before and is not similar to any seen classes, the model will fission a new prompt Pt for the
test sample. This new prompt is designed to capture the unique characteristics of the new class. It is
worth mentioning that at the initial state when the pool is empty, we will fission a prompt for every
single test sample. This is because there are no existing prompts to rely on, and each sample needs to
have its own representation. The class prompt Pc is concatenated by Pt of each test sample xt and
will be used for prediction and learning:

Pc =
[
P0,P1, . . . ,Pb

]
. (5)

Domain Knowledge Fission. The module takes the statical numbers ΓT
j , i.e. mean µ and standard

σ, of the test batch BTj as input key to match the domain prompt in the domain prompt pool. These
statistical features can effectively represent the overall characteristics of the test batch and are used to
match the domain prompt in the domain prompt pool. The prompt pool will select prompts where
di = d(ΓT

j ,Γi) < γd as candidates based on the Euclidean distance of input statistical numbers ΓT
j

and prompt keys Γi:
di = d(ΓT

j ,Γi) =
∥∥ΓT

j − Γi

∥∥
2
, Γ = {µ, σ}. (6)

The selected prompts will be used by:

Pd = PT
j =

Nd∑
i=0

wiPd
i , wi =

exp(−di/τd)∑Nd

i=0 exp(−di/τd)
. (7)

If no prompt is selected, which implies that the test batch comes from a new domain and is not similar
to historical domains, or it is the first batch for testing, the model will fission a new prompt for the test
batch. This new fissioned prompt is added to capture the unique characteristics of the new domain.

3.4 Knowledge Fusion Module

Fission-only method will cause the prompt pool to grow up without limitation, which may result in
inefficiency, inadequate understanding of historical knowledge and unnecessary retention of duplicate
historical information. To address this problem, we proposed a knowledge fusion strategy to limit
the growth of the prompt pool, enhance the comprehension of historical knowledge, and eliminate
redundant information.

Class Knowledge Fusion. Once the model has learned the class prompts P∗
c , we incorporate

them into the prompt pool using Algorithm 1. Inspired by the finding suggested in EATA [38] that
adaptation on test samples with very high entropy may hurt performance, we use a threshold γh to
control whether the test sample should be used for updating the prompt pool. Those learned prompts
with H(ŷt) > γh will be used for updating the prompt pool: the learned fissioned prompts will be
directly add to the original prompt pool with its pseudo label ỹt, otherwise the prompts will update
all the prompts that composed it in the original prompt pool with the weight of composition:

Pc∗
i =

1

b

b∑
t=0

[wtiP∗
t + (1− wti)Pc

i ] . (8)

To keep the size of the prompt pool for efficiency as well as maintain the knowledge in it as much
as possible, we cluster and fuse the prompts in the original prompt pool with a minimum spanning
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tree(MST). We construct a graph G = (V,E) where V is the set of all prompts in the original prompt
pool and E is the set of edges connecting each pair of prompts, calculated by cosine similarity:

eij =
yiyj

∥yi∥ ∥yj∥
. (9)

By applying the MST algorithm, i.e. Kruskal, to this graph, we can find a sub-graph that connects
all prompts with the minimum total edge weight, clustering them into Nc groups. Prompts that are
closely connected in the sub-graph are then fused together to reduce the size of the prompt pool.

Algorithm 1 Algorithm of Updating Class Prompt Pool

Require: Output ŷ, learned prompts P∗
c and weights of prompts w

1: for each t ∈ [0, len(P∗
c )) do

2: if softmax_entropy(ŷt) > γh then
3: continue
4: if max(wt) is NaN then
5: add (ŷt,P∗

t ) to class prompt pool
6: else
7: for each (yi,Pc

i ) ∈ domain prompt pool do
8: y∗i ← αcwtiŷt + (1− αcwti)yi
9: Pc∗

i ← wtiP∗
t + (1− wti)Pc

i
10: if class prompt pool is full then
11: cluster prompts in class prompt pool into Nc groups
12: merge all the prompts in each group

Domain Knowledge Fusion. After backwards propagation, the model will use learned domain
prompt P∗

d to update the domain prompt pool with Algorithm 2. We will add a new prompt to the
original domain prompt pool if the prompt is a fissioned prompt, otherwise, it will update all the
prompts that compose it in the original prompt pool with the weight of composition:

Pd∗
i = wiP∗

d + (1− wi)Pd
i . (10)

In cases where the domain prompt pool reaches its maximum capacity, we need to reduce its size
while preserving the most important knowledge. To achieve this, we fuse the closest pair of prompts
in the pool by Euclidean distance d(Γi,Γj).

Algorithm 2 Algorithm of Updating Domain Prompt Pool

Require: Test batch statistic ΓT
j , learned prompt P∗

d and weights of prompts w
1: if max(w) is NaN then
2: add (ΓT

j ,P∗
d ) to domain prompt pool

3: fuse the nearest pair if domain prompt pool is full
4: else
5: for each (Γi,Pd

i ) ∈ domain prompt pool do
6: Γ∗

i ← αdwiΓ
T
j + (1− αdwi)Γi

7: Pd∗
i ← wiP∗

d + (1− wi)Pd
i

4 Experiments

4.1 Experiment Setup

Datasets. We evaluate our proposed method on three classification CTTA datasets: ImageNet-to-
ImageNet-C [15], CIFAR100-to-CIFAR100C and CIFAR10-to-CIFAR10C [23]. Each dataset has
15 corruption types (categorized into 4 main groups) and 5 corruption severity levels. We use the
highest level of corruption severity and keep the same order as CoTTA [47] in CTTA settings.

Comparison Methods. We compared our proposed method with state-of-the-art CTTA and TTA
methods. In detail, we investigated general TTA methods TENT [46], SAR [39] and POEM [1]
and CTTA methods CoTTA [47], VDP [11], RoTTA [55], C-MAE [28], ROID [33], ViDA [27],
CoLA [6] with DeYO [25], PALM [32], and DPCore [61].
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Table 1: Classification error rate (%) for ImageNet-to-ImageNet-C online CTTA task, evaluated on
ViT-Base backbone with corruption severity level 5.
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Figure 3: Classification error rate(%)
for CIFAR100-to-CIFAR100-C online
CTTA task.

Implementation Details. We followed the implementa-
tion details specified in previous work [47, 61]. We use
ViT-B/16 as our backbone. We utilize the AdamW op-
timizer with a learning rate 0.1 for domain prompts and
0.001 for class prompts with a batch size b = 64. The
length of domain prompts is set to 8, and the length of
class prompts is set to 1. Other hyper-parameters γd, γc,
γh, αd, αc, τd, τc, a, Nd and Nc are set to 25, 0.005, 2, 0.1,
0.1, 3, 1, 3, 20 and 100. The hyper-parameters were deter-
mined using four disjoint validation corruptions [Speckle
Noise, Gaussian Blur, Spatter, Saturate] from ImageNet-C,
following MEMO [57].

4.2 Main Results
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Figure 4: Computational analysis on
ImageNet-C.

CTTA with Non-Repeating Domains. We evaluated
our proposed method across various challenging domain
adaptation scenarios without domain repetition. For the
ImageNet-to-ImageNet-C task, as shown in Table 1, our
method achieves a notable state-of-the-art (SOTA) im-
provement of 21% over the source model. Compared to
the second-best method, DPCore, it still shows a signif-
icant performance improvement of 5.1%. Additionally,
we evaluate our method on the CIFAR100-to-CIFAR100C
and CIFAR10-to-CIFAR10C datasets. In the CIFAR100-
to-CIFAR100C task, our method outperforms DPCore by
2.6%, while in the CIFAR10-to-CIFAR10C task, the im-
provement reaches 3.0%. These results show that our
method achieves SOTA performance on both datasets,
highlighting its strong generalization ability and effectiveness in handling non-repeating domain shift
scenarios. Details for CIFAR10/100-to-CIFAR10/100C are available at Section B.

CTTA with Repeating Domains. In real-world scenarios, test data domains may not only continu-
ally shift but also reappear after being previously encountered. Under such conditions, CTTA methods
are expected to effectively retain knowledge from seen test domains and retrieve it to assist prediction
when those domains recur. As shown in Table 2, we train on all 15 domains of ImageNet-C for 10
repeated rounds and compare the mean performance of existing TTA and CTTA methods. It can be
seen that our method achieves 34.5% on mean error rate, yielding an improvement of 9.9% compared
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Table 2: Classification error rate(%) for ImageNet-to-ImageNet-C online CTTA task in 10 repeated
rounds (R1-R10).

Method Venue R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Mean

Source - 55.8 55.8 55.8 55.8 55.8 55.8 55.8 55.8 55.8 55.8 55.8

Tent ICLR ’21 51.0 50.6 51.0 53.1 67.9 89.7 99.9 99.9 99.9 99.9 76.3
CoTTA CVPR’22 49.9 50.8 51.5 51.5 51.7 52.2 53.0 53.2 53.3 53.5 52.1
ViDA ICLR ’24 43.5 42.7 42.5 42.4 42.4 42.3 42.3 42.3 42.2 42.3 42.5
CoLA NeurIPS ’24 40.6 39.9 38.8 38.8 38.8 38.4 38.0 38.8 38.0 38.8 38.9
DPCore ICML ’25 39.9 41.2 43.2 44.2 44.8 45.4 45.9 45.7 46.3 46.8 44.4
Ours - 34.8 34.6 34.6 34.6 34.3 34.2 34.4 34.4 34.4 34.5 34.5

Input image Ours

Snow Motion Blur

DPCoreInput image OursDPCore

Pixelate

Input image OursDPCore

Figure 5: The qualitative analysis of attention map on the ImageNet-C CTTA task. We compared the
attention map of the CLS token between DPCore and our method during CTTA process.

to DPCore. This significant performance gain is primarily attributed to our proposed Class-aware
Domain Knowledge Fission module, which effectively learns and retains domain-specific knowledge,
and the Knowledge Fusion module, which mitigates forgetting of previously seen domains while
maintaining constant parameter overhead.

4.3 Comparison with SOTA
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Figure 6: Computational analysis on
ImageNet-C under 10 repeated rounds.

Computation and Memory Efficiency. We analyze the
computational complexity across methods in Figure 4 by
comparing learnable parameters. The results show that
our proposed method achieves efficiency by introducing
only 0.09M parameters (~0.1% of the total parameters of
the model) while delivering the best performance. Further-
more, we conduct a comparative analysis of our proposed
method and the state-of-the-art, high-efficiency prompt-
based approach DPCore in terms of learnable parameters
for the CTTA with repeating domains task, as illustrated
in Figure 6. The results reveal that although our method
initially exhibits a marginally higher number of parame-
ters in the first round due to the class prompts, it maintains
parameter stability throughout subsequent iterations. In
contrast, DPCore experiences a continuous increase in the number of parameters. In the final round,
DPCore utilizes approximately five times more parameters than our method, highlighting the superior
parameter efficiency of our proposed approach.

Visualization and Analysis. In Figure 5, we present a qualitative analysis of attention maps on the
ImageNet-C CTTA task, focusing on the attention patterns of the CLS token between the previous
SOTA method DPCore and our proposed method. The results reveal that our method can direct
attention towards discriminative regions associated with object classes, while DPCore exhibits more
diffused attention patterns, failing to concentrate on class-specific details. This disparity in attention
allocation underscores the efficacy of our class-specific prompt design in enhancing feature extraction
and adaptation performance. Furthermore, in Figure 7, we conduct a t-SNE analysis to visualize
the feature distributions of different domains, where distinct colours denote various domain labels.
Instead, they converge towards similar feature clusters, indicating a tendency to overgeneralize across
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Figure 7: t-SNE analysis across different domains. Differnet colours represent different domains.
Result shows that our methods can assign test batches with correct prompts, compared to that DPCore
and method without KFF tend to overgeneralize across domains.

domains. These findings highlight the critical role of our method’s prompt assignment strategy and
KFF in enhancing domain discrimination during continual test-time adaptation. A comprehensive
theoretical analysis of this phenomenon, including a simple assumption and mathematical proofs, is
presented in Section A, further validating the effectiveness of our proposed approach.

4.4 Ablation Study

Table 3: Effect of each components. Average error
rate(%) for ImageNet-to-ImageNet-C CTTA task

Base Pc Pd KFI KFU Mean

✓ - - - - 55.8
✓ - ✓ ✓ ✓ 39.5
✓ ✓ - ✓ ✓ 50.9
✓ ✓ ✓ - - 62.9
✓ ✓ ✓ ✓ - 36.9
✓ ✓ ✓ ✓ ✓ 34.8

Effect of Each Component. Table 3 evalu-
ate the contributions of class prompts(Pc), do-
main prompts(Pd), Knowledge Fission(KFI)
and Knowledge Fusion(KFU) on ImageNet-to-
ImageNet-C CTTA task. In Exp-1, when only
domain prompts are utilized along with KFI
and KFU, the error rate drops significantly by
16.3% compared to the source model, reaching
39.5%. However, it still lags behind our pro-
posed method by 4.7% in terms of error rate.
Exp-2, which incorporates class prompts but
omits domain prompts, shows a 4.9% decrease
in error rate relative to the pre-trained Source model, with an error rate of 50.9%. In Exp-3, both Pc

and Pd are used but without KFI and KFU, suffers a notable performance decline, with an error rate
increasing to 62.9%, highlighting the critical role of KFI. On the other hand, Exp-4, which includes
both types of prompts and KFI but excludes KFU, achieves an error rate of 36.9%. Our proposed
method, with all components integrated, achieves the lowest average error rate of 34.8%. The result
indicates that each component plays an indispensable role in CTTA tasks.
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Figure 8: Ablation Study on ImageNet-to-ImageNet-C online
CTTA task.

Influence of Hyper-parameters.
The size of domain prompt pool Nd

and the size of class prompt pool Nc

are two important hyper-parameters
in our KFF. Therefore, we conduct
extensive experiments to evaluate
their influence. As illustrated in
Figure 8, both prompt pool sizes have
little impact on performance within
a reasonable range, showing a stable
error rate change. This is because our
KFF has comprehensively described
the trend of domain and class changes across the CTTA process through knowledge fission and
fusion, while excessive prompts inevitably introduce unnecessary parameter redundancy. Therefore,
to balance effectiveness and efficiency, our KFF sets Nd and Nc to 20 and 100, respectively. We
provide further discussion about the hyper-parameters in the Appendix Section B.
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5 Conclusion

In this paper, we tackle the twin challenges of catastrophic forgetting and inadequate assimilation of
new knowledge in Continual Test-Time Adaptation (CTTA), where models must adapt to unknown,
shifting domains without prior access to downstream data. We introduce KFF, a class-aware Knowl-
edge Fusion and Fission framework: the Fission module isolates discriminative, domain-specific
prompts to block interference from dissimilar historical domains, while the Fusion module greedily
merges new knowledge back into the existing pool to maintain efficiency. Across multiple CTTA
benchmarks, KFF reduces forgetting by up to 30% and improves new-domain accuracy by an average
of 4.2%, all with minimal extra computation and storage.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract and introduction clearly state the claims and contributions of our
work.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations in Section C.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide provide the full set of assumptions and a complete (and correct)
proof in Section A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the information needed for reproducing the main results of this
paper in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The code will be made publicly available after the paper is accepted. At the
same time, all the datasets we used are publicly available and the main experimental results
can be reproduced based on Section 3 and Section 4.1.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We described the settings in the experiment in Section 4.1, including the
hyperparameters and how they were chosen, as well as the type of optimizer.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Due to limited resources, we only extensively evaluate the performance of our
proposed method on ImageNet-C across 10 independent runs with different random seeds.
The detailed values are provided in Section B and Table 9. Other experiments use fixed
random seeds to ensure reproducible results within the same settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provided the computer resources we used to conduct the experiments in
Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics
https://neurips.cc/public/EthicsGuidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed the potential impacts of the work in Section D.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release anything that needs a safeguard.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited the original paper that we build upon, such as the pre-trained ViT
model and the datasets(ImageNet, ImageNet-C, CIFAR100, CIFAR100-C, CIFAR10 and
CIFAR10C) we used. The detailed information about licenses is stated in Section E.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Theoretical Analysis

We further provide theoretical insight into why our methods can apply test batches with correct
prompts, under the assumption of well-separated clusters.

We consider a streaming scenario where test batches B1, . . . , Bt arrive sequentially. Each batch Bt is
associated with a feature representation Γt = {µ(ϕ(Bt)), σ(ϕ(Bt))}, where ϕ is a feature extraction
function, µ denotes the mean and σ denotes the standard deviation. The distance between two batches
is defined as the Euclidean distance between their feature representations:

d(Bi, Bj) = d(Γi,Γj) = ∥Γi − Γj∥2
Assumption A.1. We assume that these batches can be naturally partitioned into N well-separated
clusters {Ci}Ni=1 based on their distances. Formally:
Definition A.1 (Well-Separated Clusters). A clustering {Ci}Ni=1 is well-separated if there exists a
threshold θ > 0 such that

∀i ̸= j, max
B,B′∈Ci

d(B,B′) < θ < min
B∈Ci,B′∈Cj

d(B,B′)

This implies that intra-cluster distances are uniformly smaller than inter-cluster distances. We set
our hyper-parameters such that γd < θ and Nd > N , where γd is the distance threshold for prompt
matching and Nd is the maximum number of prompts allowed in the pool.
Lemma A.1. Under the Knowledge Fission mechanism, our method correctly assigns all batches Bt

to prompts from the same cluster.

Proof. We proceed by induction on the test time t:
Base Case (t = 1): At test time t1, when there is no prompts in the prompt pool, We initialize the
first prompt with Γ1 = Γ(B1), which trivially belongs to the same cluster as B1.
Inductive Step: Suppose our algorithm assigns batches B1, B2, . . . , Bt−1 with correct prompts.
Since each prompt is updated by Γ∗

i ← (1− α)Γi + αΓ(Bt), for the reason that both Γi and Γ(Bt)
belongs to the same cluster, Γ∗

i also belongs to the same cluster. Then, assume that a new batch Bt

belongs to cluster j, we consider two cases based on whether Bt matches a prompt: (1) Bt matches
one or more prompts. For the reason that d(Ci) < θ < d(Ci, Cj) and γd < θ, the matched prompt(s)
should be in the same cluster with Bt. (2) Bt do not match any prompt. Then Bt creates a new
prompt Γnew = Γ(Bt) in cluster j. This new prompt, where Γnew = Γ(Bt), lies exactly in the same
cluster as Bt. Thus, all batches will match the correct prompt(s) by induction.

Lemma A.2. Our proposed method fuses prompts from the same clusters with Knowledge Fusion.

Proof. From Lemma A.1, we can learn that each prompt lies inside a cluster, and as Nd > N , we
know that there exists clusters that has more than one prompts when the prompt pool is full. With
assumption d(Ci) < θ < d(Ci, Cj), the distance between the fused prompts must be less than
θ, which implies that it comes from the same cluster. Thus, our proposed method fuses prompts
from the same cluster with Knowledge Fusion, and furthermore the fused prompt still lies inside the
cluster.

Proposition A.3. Our proposed method assigns all batches Bt with correct prompt(s) from the same
cluster with Knowledge Fission and Fusion.

Proof. By Lemma A.1, we know that the Knowledge Fission mechanism ensures that each batch Bt

is initially assigned to a prompt from its correct cluster. And Lemma A.2 shows that the Knowledge
Fusion mechanism only merges prompts within the same cluster. Therefore, even after fusion
operations, each prompt remains associated with a single cluster. The iterative process of knowledge
fission and fusion maintains the invariant that all prompts accurately represent their respective clusters.
Hence, all batches are consistently assigned to prompts from their correct clusters.

This theoretical framework guarantees that our method effectively organizes prompts into semantically
meaningful clusters, enabling accurate and efficient retrieval during inference. The experimental
results visualized in Figure 7 corroborate this theory, as the clear separation of domains in the t-SNE
plot aligns with the hypothesized cluster structure, and meanwhile, our prompt keys are shown to
correspond explicitly to individual domains, thus validating the correctness of our theoretical analysis.
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Table 4: Classification error rate(%) for ImageNet-to-ImageNet-C online CTTA task across different
strategies of selecting class prompts.
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Source 53.0 51.8 52.1 68.5 78.8 58.5 63.3 49.9 54.2 57.7 26.4 91.4 57.5 38.0 36.2 55.8
DPCore 42.2 38.7 39.3 47.2 51.4 47.7 46.9 39.3 36.9 37.4 22.0 44.4 45.1 30.9 29.6 39.9
Hard Match 39.8 36.6 36.4 45.1 46.8 42.0 40.9 33.6 30.5 28.2 20.8 38.7 39.0 30.4 27.5 35.8
Top1 Match 40.9 37.0 36.2 44.5 45.4 40.2 39.3 33.6 31.0 33.4 20.9 39.4 34.7 26.9 28.1 35.4
Top3 Match 40.5 37.0 36.0 44.9 45.7 39.0 38.3 31.7 30.8 37.4 20.7 37.1 34.5 25.5 27.2 35.1
Top5 Match 40.0 37.5 37.8 46.1 48.6 40.5 39.5 32.6 30.4 27.9 21.2 38.7 38.7 30.7 28.7 35.9
Ours 40.1 36.5 36.0 44.5 45.6 39.1 39.1 32.2 31.0 30.0 20.9 38.3 34.9 26.3 27.4 34.8

B Additional Results

Impact of Class Prompt Selection Methods. To evaluate the effect of class prompt selection
strategies, we conducted experiments comparing three approaches: using pseudo-labels directly as
matching keys, selecting prompts via top-k matching (k = 1, 3, 5), and our threshold-based method
for adaptive prompt utilization. As shown in Table 4, our threshold-based approach achieves the
best performance, outperforming the source model by 21%. A plausible explanation is that while
pseudo-label methods fail to leverage inter-class shared knowledge, and top-k methods overlook class-
specific gaps, while our threshold mechanism can dynamically identifies discriminative boundaries
between classes. This allows for more effective exploitation of prior knowledge, balancing cross-class
generalization and intra-class specificity.

Detailed Results for for CIFAR10/100-to-CIFAR10/100C. We present the detailed results for
CIFAR100-to-CIFAR100C and CIFAR10-to-CIFAR100C online CTTA tasks in Table 5 and Table 6,
respectively. For a fair comparison, our method is benchmarked against several TTA and CTTA
methods. Result shows that our method achieves SOTA performance on both datasets.
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Figure 9: Error rate between the full-information
and class-excluded settings on ImageNet-C across
10 independent tests (T1–T10).

Prompt Functionality Validation via Domain-
Class Information Separation. To validate
the distinct roles of domain prompts and class
prompts, we designed an experiment using three
sequentially varying domains, where the test
set comprised the first 100 classes of the ini-
tial domain. In the full-information setup, the
model was adapted on all samples across the
three domains, leveraging both domain and class
prompts. In the class-excluded setup, we ex-
cluded the first 100 classes of the initial domain
from adaptation, forcing the model to rely solely
on target class information from other domains
and domain information without target classes.
Across 10 independent tests (T1–T10), as shown
in Figure 9, the class-excluded setup exhibited
only a 0.2% average performance degradation
compared to the full-information setup, which is significantly smaller than the 4.7% and 16.1%
degradations observed when isolating one of the prompt components (Table 3). These results confirm
that: 1) domain prompts and class prompts effectively capture domain-level and class-level features,
respectively; 2) the model integrates these two types of information to maintain robust generalization
in unseen scenarios, validating the complementary utility of the proposed prompt design.

t-SNE Analysis across Different Classes. In Figure 10, we leverage t-SNE to visualize the
distribution of pseudo-labels for test images, where each class is colour-coded for clarity. Unlike
standard t-SNE implementations that rely on Euclidean distance, we adopt cosine similarity to
compute pairwise distances between pseudo-labels, aligning with our method’s similarity metric
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Table 5: Classification error rate (%) for CIFAR100-to-CIFAR100-C online CTTA task, evaluated on
ViT-Base backbone with corruption severity level 5.
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Source - 55.0 51.5 26.9 24.0 60.5 29.0 21.4 21.1 25.0 35.2 11.8 34.8 43.2 56.0 35.9 35.4

Tent ICLR’21 53.0 47.0 24.6 22.3 58.5 26.5 19.0 21.0 23.0 30.1 11.8 25.2 39.0 47.1 33.3 32.1
CoTTA CVPR’22 55.0 51.3 25.8 24.1 59.2 28.9 21.4 21.0 24.7 34.9 11.7 31.7 40.4 55.7 35.6 34.8
VDP AAAI’23 54.8 51.2 25.6 24.2 59.1 28.8 21.2 20.5 23.3 33.8 7.5 11.7 32.0 51.7 35.2 32.0
C-MAE CVPR’24 48.6 30.7 18.5 21.3 38.4 22.2 17.5 19.3 18.0 24.8 13.1 27.8 31.4 35.5 29.5 26.4
ViDA ICLR’24 50.1 40.7 22.0 21.2 45.2 21.6 16.5 17.9 16.6 25.6 11.5 29.0 29.6 34.7 27.1 27.3
DPCore ICML’25 48.2 40.2 21.3 20.2 44.1 21.1 16.2 18.1 15.2 22.3 9.4 13.2 28.6 32.8 25.5 25.1
Ours - 31.2 28.1 15.1 20.5 36.0 20.4 16.3 19.4 17.7 20.2 10.6 16.8 27.9 27.1 29.6 22.5

Table 6: Classification error rate (%) for CIFAR10-to-CIFAR10-C
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Source - 60.1 53.2 38.3 19.9 35.5 22.6 18.6 12.1 12.7 22.8 5.3 49.7 23.6 24.7 23.1 28.2

Tent ICLR’21 57.7 56.3 29.4 16.2 35.3 16.2 12.4 11.0 11.6 14.9 4.7 22.5 15.9 29.1 19.5 23.5
CoTTA CVPR’22 58.7 51.3 33.0 20.1 34.8 20.0 15.2 11.1 11.3 18.5 4.0 34.7 18.8 19.0 17.9 24.6
VDP AAAI’23 57.5 49.5 31.7 21.3 35.1 19.6 15.1 10.8 10.3 18.1 4.0 27.5 18.4 22.5 19.9 24.1
C-MAE CVPR’24 30.6 18.9 11.5 10.4 22.5 13.9 9.8 6.6 6.5 8.8 4.0 8.5 12.7 9.2 14.4 12.6
ViDA ICLR’24 52.9 47.9 19.4 11.4 31.3 13.3 7.6 7.6 9.9 12.5 3.8 26.3 14.4 33.9 18.2 20.1
DPCore ICML’25 22.0 18.2 14.9 14.3 24.4 13.9 12.0 11.6 10.7 15.0 5.7 21.8 15.6 12.7 18.0 15.4
Ours - 17.8 14.4 9.4 11.4 22.8 12.9 8.8 8.6 8.1 10.5 4.5 17.9 13.3 10.3 15.4 12.4

design. Given that DPCore lacks class-specific prompts, we compare our approach against a baseline
method without the Knowledge Fission and Fusion (KFF) module. The results demonstrate that our
method effectively maps distinct classes to corresponding prompts, thereby mitigating inter-class
confusion and achieving superior class discrimination. Specifically, the t-SNE visualization reveals
well-separated clusters for each class, validating that our prompt-based adaptation strategy can
dynamically adjust to class-specific features during test time.

Further Comparison on Efficiency. To further validate the efficiency of the method, we sup-
plemented the comparisons of the learnable parameter count, GPU memory usage, average Flops
used per batch, and relative computation time with baselines, evaluated on a single NVIDIA 4090
GPU. The experiments were carried out in the repeating domain setting, with the results presented
in Table 7. The results show that the proposed method balances performance and efficiency. When
compared to Tent (superior raw efficiency), it gains 15.2% performance with minimal extra cost.

Pseudo Label of Test Images
Class Prompt Key

(a) Ours without KFI & KFU

Pseudo Label of Test Images
Class Prompt Key

(b) Ours

Figure 10: t-SNE analysis across classes. Different colours represent different classes. Result shows
that the proposed method effectively maps pseudo-labels of distinct classes to corresponding prompts
compared to the baseline method without the KFF.
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Table 7: Computational analysis on ImageNet-to-ImageNet-C with repeating domains.
Method Venue Params.(M) Time Mem.(GB) TFLOPs Err Mean

R
ou

nd
1

Tent ICLR’21 0.03 1.0 5.5 1.08 51.0
CoTTA CVPR’22 86.57 4.7 16.2 3.24 49.9
ViDA ICLR’24 93.70 35.3 9.3 14.03 43.4
DPCore ICML’25 0.08 1.6 5.7 1.67 39.9
Ours - 0.09 1.9 6.0 1.68 34.8

R
ou

nd
10

Tent ICLR’21 0.03 1.0 5.5 1.08 99.9
CoTTA CVPR’22 86.57 4.7 16.2 3.24 53.5
ViDA ICLR’24 93.70 35.3 9.3 14.03 42.3
DPCore ICML’25 1.03 2.1 8.4 1.73 46.8
Ours - 0.20 1.8 6.1 1.60 34.5
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Figure 11: Ablation Study on ImageNet-to-ImageNet-C online CTTA task.

Meanwhile, it outperforms CoTTA and ViDA in both efficiency and performance. Regarding DPCore,
it maintains comparable early-round efficiency while achieving a 5.1% performance gain, and in
later rounds (the 10th round), its KFI module ceases new prompt generation when no new domains
emerge and reduces computational load, by contrast, DPCore suffers from escalating parameters,
inference latency, memory usage, and error rates due to unconstrained prompt accumulation. These
findings collectively confirm that our method successfully harmonizes performance enhancement and
efficiency, validating its suitability for real-world continuous test-time adaptation scenarios.

Further Analysis towards the Hyper-parameters Nc and Nd. We further explored how Nc

and Nd balance pool expansion control and retention of subtle, future-valuable knowledge by
spanning a broader parameter range. The results in Figure 11 show that excessively small N restricts
prompt diversity, losing critical subtle knowledge for future adaptation, while overly large N causes
uncontrolled pool expansion, leading to poorly optimized redundant prompts due to limited samples.
Our method selects the optimal Nc and Nd, balancing these trade-offs to avoid both indefinite
expansion and valuable knowledge loss.

More Analysis towards the Hyper-parameters γ and α. We conducted extensive experiments
on the influences of key hyper-parameters (γ and α) on knowledge fission and fusion, with results
summarized in Table 8. The results show that while the optimal γc and γd value varies slightly
between ImageNet-C, CIFAR10, and CIFAR100, the performance remains stable within a reasonable
range (0.5%) across all datasets, and that varying α and γh within a typical range leads to performance
fluctuations of less than 0.2% on different datasets. Furthermore, excessively small or large γc/γd
degrades performance consistently: a small γc/γd introduces irrelevant knowledge, while a large
γc/γd limits knowledge reuse. This consistent cross-dataset behavior highlights γc/γd’s robustness:
though not universally optimal, its core tuning logic, balancing knowledge relevance and reuse,
generalizes well, simplifying deployment via systematic adjustment rather than arbitrary search.

Consistency of the Proposed Method Under Different Random Seeds. We evaluated the perfor-
mance of our proposed method for ImageNet-to-ImageNet-C with 10 different random seeds. As
demonstrated in Table 9, our approach exhibits consistent performance across different initializations,
highlighting its stability in handling varied starting conditions.
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Table 8: Effect of α and γ across different datasets. Average error rate for CTTA tasks. Numbers
with * represent the original default parameters tuned on the disjoint validation set from ImageNet-C.

(a) Effect of αc across different datasets.

0 0.05 0.1* 0.15 0.2 0.3 0.5

IN-C 34.9 34.8 34.8 34.8 34.8 34.9 35.0
C10-C 12.6 12.5 12.4 12.4 12.5 12.6 12.6

C100-C 22.7 22.7 22.5 22.5 22.6 22.5 22.6

(b) Effect of αd across different datasets.

0 0.05 0.1* 0.15 0.2 0.3 0.5

IN-C 34.9 34.8 34.8 34.8 34.9 34.9 34.9
C10-C 12.5 12.4 12.4 12.5 12.5 12.6 12.6
C100-C 22.7 22.6 22.5 22.5 22.5 22.6 22.6

(c) Effect of γc across different datasets.

1e-4 1e-3 5e-3* 7e-3 1e-2 5e-2 1e-1

IN-C 36.0 35.2 34.8 34.8 35.1 35.2 35.8
C10-C 12.7 12.6 12.4 12.4 12.3 12.2 12.2

C100-C 23.0 22.7 22.5 22.5 22.4 22.1 22.3

(d) Effect of γd across different datasets.

10 15 20 25* 30 35 40

IN-C 36.2 35.0 34.8 34.8 35.0 35.7 35.1
C10-C 12.7 12.5 12.4 12.4 12.4 12.5 12.5

C100-C 22.9 22.8 22.6 22.5 22.5 22.7 22.8

(e) Effect of γh across different datasets.

1 1.5 2* 2.5 3 3.5 4

IN-C 35.0 34.8 34.8 35.0 35.1 35.4 35.8
C10-C 12.6 12.5 12.4 12.4 12.5 12.5 12.5

C100-C 22.8 22.7 22.5 22.5 22.6 22.7 22.7

Table 9: Classification error rate(%) for ImageNet-to-ImageNet-C online CTTA task with 10 different
random seeds (R1-R10).

Method R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Mean Std

Ours 35.4 35.5 34.6 34.9 34.6 34.8 34.7 35.2 34.8 34.8 34.8 0.3

C Limitations.

Although our method shows a great improvement in CTTA, there are some limitations that may
affect its broader application. Firstly, The method relies on accessing source domain statistics
during the adaptation phase. This dependency poses challenges in scenarios where source data is
proprietary, privacy-restricted, or unavailable due to compliance barriers (e.g., medical/financial
datasets). Secondly, experimental validation is currently restricted to synthetic, manually designed
corruptions, which may not fully mimic the complexity of real-world distribution shifts. While
synthetic corruptions provide controlled evaluation, the method’s robustness to unseen, naturalistic
corruptions remains unvalidated. Furthermore, although our method is computationally efficient
compared to most of current methods, we still introduce additional computational overhead during the
adaptation phase, posing challenges for resource-constrained edge devices or real-time applications
with strict latency budgets.

D Broader Impact.

Our method enhances the generalization of the pre-trained model in continual test-time adaptation,
promoting its application in the real world.

E Asset License and Consent

The ViTs we used is loaded from timm, which is released under Apache-2.0 license. Some compo-
nents of code and pretrained model is utilized from the official repository of CoTTA [47], ViDA [27],
DPCore [61] and RobustBench [9], which is released under MIT license. The datasets used, CIFAR-
10-C, CIFAR-100-C and ImageNet-C [15, 23], are publicly available online, released under Apache-
2.0 license.
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