Under review as submission to TMLR

Hierarchical Language Model Design For Interpretable Graph
Reasoning

Anonymous authors
Paper under double-blind review

Abstract

Large language models (LLMs) are being increasingly explored for graph tasks. Despite
their remarkable success in text-based tasks, LLMs’ capabilities in understanding explicit
graph structures remain limited, particularly with large graphs. In this work, we introduce
Hierarchical Language Model for Graph (HLM-G), which employs a two-block architecture
to capture node-centric local information and interaction-centric global structure, effectively
enhancing graph structure understanding abilities. The proposed scheme allows LLMs
to address various graph queries with high efficacy, efficiency, and robustness, while re-
ducing computational costs on large-scale graph tasks. Furthermore, we demonstrate the
interpretability of our model using intrinsic attention weights and established explainers.
Comprehensive evaluations across diverse graph reasoning and real-world tasks of node, link,
and graph-levels highlight the superiority of our method, marking a significant advancement
in the application of LLMs to graph understanding.

1 Introduction

Large Language Models (LLMs) (Vaswani et al., [2017; Devlin et al.| [2018; |Achiam et al., 2023} |(Chowdhery
et al., |2023)) have demonstrated impressive generative capabilities, revolutionizing multiple fields, including
natural language processing (NLP), computer vision (Wang et al., [2024c; Parashar et al. [2024; [Liu et al.,
2024b)), speech recognition (Fathullah et al.,[2024), and cross-modal domains (Wu et al., [2023; |[Koh et al., [2024)).
Despite this widespread success, their application to graph tasks remains an emerging area of research (Chen
et al., [2024c; Ren et al.| [2024; |Jin et al [2023)). Unlike linear text data, graph data presents unique challenges
due to its non-Euclidean topologies and intricate structures (Jin et al., [2023]), making it difficult for LLMs to
process these complex relationships effectively. As a result, the adoption of LLMs in graph-centric tasks has
been limited, with graph models such as Graph Neural Networks (GNNs) (Kipf & Welling), 2017} (Gilmer
et al., [2017; (Wang et all 2019 [Iyer et al., |2021; 2022) continuing to be the state-of-the-art in this domain.

Applying LLMs to graph tasks presents two key challenges. Firstly, real-world graphs, such as molecules,
often involve complex combinations of features and structures (Qin et al.; |2023), such as atomic properties
and the bonds between atoms. While LLMs excel at processing feature-based information due to their strong
text comprehension abilities, they often falter with structural details (Hu et al. |2023). This limitation
leads to their suboptimal performance even on simple graph tasks, such as identifying shortest paths (Guo
et al., [2023; [Wang et al., [2024a; [Fatemi et all 2023)). Consequently, LLMs tend to perform well mainly on
node-level tasks but struggle with more complex link and graph-level tasks, where understanding long-range
structures is crucial (Liu et al.l |2023; (Wu et al., [2021]). Secondly, representing graphs within LLMs poses
significant scalability challenges (Zhao et al., [2023; |Ye et al 2023b)). Encoding both feature and structural
information for each graph node, as in molecular (Dwivedi et al.l [2023), citation (Hu et al., 2020b), or
knowledge graphs (Dettmers et all [2018]), often results in lengthy prompts. This dramatically increases
computational complexity, as the attention mechanism in LLMs scales quadratically with input size, making
the application of LLMs to large graph-based tasks computationally prohibitive and demanding specialized
solutions. On the other hand, a key advantage of using LLMs for graph tasks is their capacity to process
graphs in a human-comprehensible manner, accepting input as straightforward text descriptions. With a
human-readable vocabulary, LLMs offer a natural advantage in interpretability over the opaque embeddings

Under review as submission to TMLR

utilized by GNNs (Binder et al., 2016} [Longo et al.l 2024; |Achtibat et al.l |2024). However, no prior work has
focused on providing interpretable results that explain graph structures.

To address these challenges, we introduce Hierarchical Language Model for Graphs (HLM-G), a novel
framework designed to enhance the graph structure comprehension capabilities of LLMs. Unlike conventional
LLMs that apply self-attention across all tokens, HLM-G employs a two-block architecture, comprising a
local block and a global block, each with specialized attention masking. This hierarchical structure enables
the model to initially capture local information in the lower layers, followed by the integration of global-level
information in the upper layers. Our approach not only enhances the model’s understanding of graph
structures but significantly reduces computational costs, making HLM-G more scalable for large-scale graph
tasks. Furthermore, our hierarchical design exhibits increased robustness to variations in graph prompts. We
also demonstrate the interpretability of our hierarchical language model with both model intrinsic weights
and established explainers. Finally, we conduct comprehensive experiments across seven graph reasoning
datasets and seven real-world datasets, encompassing citation networks, knowledge graphs, and molecular
graphs. Our results validate HLM-G’s ability to generalize effectively across node, link, and graph-level tasks,
marking a significant advancement in the application of language models to graph-based tasks.

2 Background and Related Work

Problem Setup. We denote a graph as G = (A, X, E), where A € R"*" X € RP*" and E € R?*™
represent the adjacency, node feature, and edge feature matrices, respectively. Here, n, m, p, and ¢ denote
the numbers of nodes, edges, node features, and edge features, respectively. Building on these, we describe
graph tasks in natural language. For each graph G;, we first construct a sequence U; that encapsulates
the natural language descriptions of G; covering A;, X;, and E;, coupled with a query @; describing the
prediction task. Each task is also associated with a true label y; € Y. This leads to a dataset of sequences
U={U,Q1,1), (Uz,Q2,92), -+, (Un,QnN,yn)}, where each sequence U; = {uy, us, - ,uy, } and all tokens
u; belong to a vocabulary V.

LLM Inference Methods. Prompt engineering has been pivotal in adapting LLMs for a wide range of
tasks (Sahoo et al., |2024a; [Zhou et al., |2022). Early attempts in prompt engineering for graph tasks use
structured representations like edge lists and adjacency matrices (Brandes et all 2013; |Zhao et al. 2023),
but these methods struggle with graph structural reasoning tasks (Guo et all 2023). NLGraph (Wang
et al) |2024al) seeks to convert graph data into natural language prompts, yet fundamental graph operations
remain challenging, even for small graphs. Studies suggest simpler prompts can be more effective, but overall
improvements are still modest (Zhao et all 2023; Fatemi et al., [2023; |Sahoo et all 2024b]). Beyond prompt
engineering, other approaches (Yao et al.l [2024; Wang et al., [2022)) involve exploring multiple reasoning paths
and selecting the most confident one, offering marginal gains at the cost of increased inference time. LLMs
continue to underperform compared to specialized graph models, indicating a significant gap (Hu et al., |2023).
The limited success of LLMs on graphs has been partly attributed to their inability to construct coherent
world models, often relying on pattern matching rather than genuine reasoning (Valmeekam et al., |2023;
Stechly et al.| [2024]).

)

LLM Fine-Tuning Methods. Fine-tuning and instruction tuning have been investigated to address LLMs
limitations in graph reasoning tasks. Fine-tuning on graph-specific datasets has achieved limited success, with
models still struggling to capture complex graph structures (Tang et al., [2023; Vafa et al| 2024). Instruction
tuning, which aligns training objectives with graph reasoning tasks, has shown more promise (Wang et al.|
2024b; |Luo et al., [2024) by introducing a variety of related tasks during training, enabling LLMs to gain
a deeper understanding of the graph domain. However, this approach is labor-intensive and continues to
face challenges with large and dense graphs. Methods such as GraphWiz (Chen et al., |2024a) have further
incorporated RL preference alignment (Rafailov et al. 2024)), demonstrating some improvements but still
struggling with dense graph structures. Furthermore, incorporating real-world graph features, such as node
and edge features in citation networks, into LLMs remains an open challenge, indicating that more work is
needed to adapt LLMs for graph tasks.

Under review as submission to TMLR

Hybrid GNN-LLM Methods. Hybrid models aim to leverage the complementary strengths of LLMs and
GNNs, combining the textual understanding capabilities of LLMs with the graph-processing proficiency of
GNNs. In these approaches, LLLMs are often used to enhance graph representations by providing enriched
feature descriptions, as demonstrated in models like GIANT (Chien et al., [2021) and LM-GNN (loannidis
et al.l [2022). Alternatively, other methods such as G-Retrieval (He et al.| [2024), LLaGA (Chen et al.| |[2024b]),
and GraphLLM (Chai et al., [2023)) incorporate graph models and employ LLMs as predictors to improve
graph reasoning tasks. Despite their effectiveness, these hybrid models inherit certain limitations associated
with GNNs, such as oversmoothing (Rusch et al, 2023, and require task-specific architecture designs (You
et al [2020), which involves distinct structures for node, link, and graph-level tasks. Additionally, these
approaches face challenges in interpretability, as they often rely on opaque embeddings, unlike LLM-only
methods which enables token-level linguistic interpretations. Such token-level interpretability is inherently
more human-understandable and offers clearer insights into the decision-making process.

3 Hierarchical Language Model Design

In this section, we introduce our Hierarchical Language Model, designed to effectively capture both the
structural and feature-based aspects of graphs. We begin by explaining how graph data can be transformed
into natural language descriptions (Section . Following this, we describe the model’s architecture, which is
composed of a local block (Section for learning local structural information, a pooling layer (Section
for integrating structural and feature information, and a global block (Section for capturing global
information. This hierarchical approach not only guides our model to better understand graph structures but
also results in computational advantages.

3.1 Natural Language Descriptions of Graphs

Following prior works (Guo et al.l 2023} [Fatemi et al., [2023)) that demonstrate the effectiveness of using simpler
graph inputs for LLMs, we define a graph-to-text representation U to describe any graph task in natural
language. For a graph G characterized by its adjacency matrix A, node features X, and edge attributes E,
we construct textual representations capturing both node feature and 1-hop structural information for each
node v; in G. These representations are divided into two components: the node feature annotation U;X and
the node structure annotation U/A¥.

Node Feature Annotation. Fach node can be effectively described in natural language and presented as
input to an LLM. The node feature annotation for a node v;, denoted as U;X, is a natural language sequence
that describes the attributes X; of v; over a predefined vocabulary V. The template for U7X is as follows:

U7 : Node <i> features: <feature 1>: <content_1>---, <feature p>: <content_p>.

E.g. 1 (Citation Network): Node 97 features: Title: A Zero-Knowledge Revocable Credential Verification
Protocol Using Attribute-Based Encryption; Abstract: We introduce a zero-knowledge credential verification
protocol leveraging Ciphertext Policy Attribute-Based...

E.g. 2 (Molecule): Node 10 features: Atomic Number: 7; Degree: 2; Formal charge: 5; Number of Hydrogens:
0; Radical electrons: 0; Hybridization: SP2; Aromatic: True; In Ring: False.

Node Structure Annotation. The node structure annotation UAF captures the structural connections of
node v; within the graph G, including its connections to other nodes and the corresponding edge features.
This serves as a textual representation of A and E. Let ne(i)1,ne(i)s, ..., ne(i); be the indices of v;’s 1-hop
neighbors in G. The template for U;:E is:

U{,L:E : Node <i> is connected to <ne(i)1 > with <edge_ features >, <ne(i)2> with <edge_ feature;>, - -, and
<ne(i)> with <edge_ feature,>.

E.g. 1 (Citation Network): Node 20 is connected to nodes 10, 14, and 19.

E.g. 2 (Molecule): Node 11 is connected to nodes 10 and 13 by a double bond,. . . and to node 27 by a conjugated
double bond.

Under review as submission to TMLR

Task Query. We define a task-specific query @ to represent the prediction task in natural language. This
query is tailored for each prediction scenario, as demonstrated below:

Q¢ : What is the prediction for- - -
E.g. 1: What is the shortest distance between nodes 0 and 17
E.g. 2: Does the molecule inhibit HIV virus replication?

Graph Task Reformulation. Any graph-level task can be reformulated using a concatenation of all nodes’
respective Ujf and U{)?E along with the task query @. Formally, this representation is given by:

f(G) = concat(Ug, Qq)

AE 77X AE 77X
= concat(U;, ", Uy, ..., Us =, U, Qa),

where v; € G and concat(-) represents the sequence concatenation operation.

While the feature descriptions are generally standardized, there are multiple ways to describe the structural
information of a graph. We explore various prompting strategies in Appendix [F-2]

3.2 The Local Block

Since language models cannot inherently understand graphs in their natural structure, we introduce a local-
to-global guidance approach, where the model first learns strong local features before capturing information
at the global graph level. To implement this, we introduce a local block M}, that employs an intra-node
attention masking mechanism. This mechanism ensures that, for each node v;, the combined text sequence
(U{ﬁE , UUX) is processed independently of other nodes, allowing the model to effectively capture node-specific
structures and features. Given an input token sequence H' € R™*% at any transformer layer, where n is the
total number of tokens across all nodes and dj, is the embedding dimension, we decompose this sequence into
segments: H' = {H,, Ho,..., Hy}, with each segment H; € R"*9 representing the tokens associated with
node v;. The attention mechanism in the local block is then formulated as:

Attention” (Q,K,V) = Diag (Attention(l) (Q1, K1, V1), .., Attention(l)(Q]\[7 Ky, VN)) ,

where
I

AE

This block diagonal attention mechanism also provides several computational advantages. Let n;* and n:

represent the number of tokens corresponding to the feature annotation U7X and structure annotation UiAE
for node v;, respectively. The total number of tokens n for the entire graph is given by n = > n;, where
n; = n¥X +n¥. By employing this block diagonal attention mechanism, we achieve significant computational
efficiency compared to traditional full attention approaches. In standard attention, the computational

Attention(l) (Q,“ K;, ‘/,L) = Softmax (W‘(/I)Hl(lfl))

complexity is typically O ((Z ni)Q), which scales quadratically with the total number of nodes, becoming
increasingly expensive for larger graphs. In contrast, our block diagonal design reduces the complexity to
@) (Z n?), resulting in a linear scaling relative to the number of nodes. This improvement substantially
enhances efficiency, especially for larger graph-based tasks, making our approach highly scalable.

3.3 Pooling Layer

To integrate structural and feature-based information extracted from the graph, we introduce a pooling
mechanism. For each node v;, we first derive local embeddings from the hidden states produced by the local
block Mj,. Specifically, the feature-based embedding is obtained as zif = nix Z?Zl h;, where h; represents

the hidden states corresponding to tokens from U;X. Similarly, the structure-based embedding z;“iE is obtained
from U;‘Z‘,E using the same approach. Next, we combine these embeddings through a parameterized pooling

Under review as submission to TMLR

Local block Global block
~ Interaction
QO o 2y, —F—pl " L))) o
U]‘ <X *@7 ™ between nodes
N 3
% Sy /// //// _____ > Queljy
. . . \:\ AN 7 /// . attention
. — . - \ />\ A
. = . A\ , \ // 54 - N kﬂ
= i =3 etwork flow
B //\\\\ // I8 Q
1 \ / 1 Y 1
V; 8 S L VYA 2
7 o o) v\ o
e 2 I N i 4 @
> R J)\ Wi >
5 = o N / =
5 g . — Xy a
o = o ; \w,>\‘(/ \ 2
= ! ///\\ /)\‘ \\ 6
= / N
@ N \\\ =
) 07N
v 3 o)
n > = £ A\
7 Sa_ -7 Wy
1y /'(\
Task g =
T -
Query]

Figure 1: Hierarchical Model Design: Local Block employs intra-node attention to learn local node and
structural features. Pooling layer combines these features and Global Block utilizes inter-node attention to
capture higher-level interactions, enabling comprehensive graph understanding. The Hierarchical model design
results in a model which is highly scalable and delivers robust performance across both structure reasoning
tasks and real world graph prediction tasks. The model also supports dual interpretability: node-level
interpretability through the Global Block and fine-grained token-level interpretability via the Local Block,
making it not only powerful but also transparent in its predictions.

operation to produce the final embedding z; for each node. Formally, given a sample U, the pooled embedding
is defined as:

zi=az}P + (1-a)z)

v
where a € (0,1) is a trainable parameter that balances the contribution of structural (z{}¥) and feature (z;\)
information. A larger o emphasizes the structural properties in the final prediction, while a smaller a gives

more weight to feature-based characteristics.

Our adaptive pooling mechanism allows our model to work for tasks requiring varying levels of structural
and feature importance, such as link and graph-level tasks that demand greater structural emphasis and
node-level tasks that rely more heavily on feature-based information. We ablate alternative pooling strategies
and configurations, which are detailed in Appendix [F]

3.4 The Global Block

To capture global-level interactions across the entire graph, we introduce the global block M, which leverages
a multi-layer transformer architecture to model comprehensive structural relationships. The global block
operates on top of the local embeddings derived from My, learning the higher-level interactions between
nodes and enriching the representation with more nuanced graph-level information. Each layer comprises an
attention mechanism followed by a feedforward layer. For any layer [, the embeddings are updated as:

(Wg)z(l—l))(wi((l)z(l—l))T
Vv,

ZW = Softmax (> (W‘(/Z)Z(l_l)),
Z(O) = [Zvu e 7zvn’zq]v

where dj, is the dimensionality of the key vectors, and W(l), W[((l)7 W‘(/l) are the weight matrices. The input
Z) includes node embeddings Zuy,- -5 20, and the task-specific query embedding z, from My. After

Under review as submission to TMLR

processing through L layers, the final embedding z((IL) is passed through a multilayer perceptron (MLP) to

generate the prediction:

i = argmax MLP(zéL)), where Zz(IL) — Z:(JLl)Jrl’

with ¢ representing the predicted class label. The training objective is to minimize cross-entropy loss:

{01,0c, v} = 3rggnii1 Ew,y~u [€(y; MLP(Mq (ML (U))))],
L,YaG,

where y is the ground truth label, and 6y, 0, ¥ represent the trainable parameters of My, Mg, and the MLP,
respectively.

4 Experiments

In this section, we conduct experiments to investigate four specific research questions (RQs) to assess the
effectiveness of our model on graph tasks: RQ1: Can our model accurately understand the underlying
structures and maintain robust performance across different graph reasoning datasets? RQ2: Does our
approach enhance interpretability performance and produce intrinsic interpretable results? RQ3: Can the
proposed method handle complex real-world datasets with diverse node or edge features? RQ4: Does the
proposed method work well across all node, link and graph level tasks?

4.1 Structure Understanding Capabilities over Graph Reasoning Datasets

To answer RQ1, we aim to validate whether our model can process graph structure information by conducting
the following experiments on graph reasoning datasets.

Datasets. First, following (Wang et al.| (2024a), we create a synthetic dataset consisting of seven graph
reasoning tasks to assess the structural reasoning capabilities of our model. These datasets were constructed
by a Random Graph Generator capable of generating graphs with up to 40 nodes and 700+ edges. Further
information on these datasets is provided in Appendix

Baselines. We compare our method against both GNN-based and LLM-based approaches. On the GNN
side, our comparisons include models such as GCN (Kipf & Welling), 2017), GAT (Velickovi¢ et al., [2017)),
and the more expressive GIN (Xu et al., [2018), as well as the graph transformer model, GTN (Yun et al.|
2019). For LLMs, our inference-only methods include Zero-Shot (Huang et al. [2023)), Chain of Thought
(CoT) (Wei et al., 2023)), CoT Self Consistency (CoT-SC) (Wang et al., 2022)), and Natural Language Graph
(NLGraph) (Wang et al.l 2024a) prompting. Additionally, fine-tuning baselines such as BERT (Devlin et al.,
2019) and Lora-Trained (Hu et al.|[2021]) Llama 3 are used for direct comparisons. We include GraphWiz (Chen
et al., 2024a) as a representative of instruction tuning. The GraphToken (Perozzi et al., |2024) method,
which utilizes a GNN encoder to fine-tune a frozen LLM, is also compared. Detailed information on our
experimental configurations and hyperparameters can be found in Appendix For LLMs, we use Llama-3
8B (Dubey et al., 2024)) as the primary backbone.

4.1.1 Quantitative Comparisons.

Our method demonstrates state-of-the-art performance across all graph reasoning datasets, significantly
outperforming all baselines, both GNN and LLM-based models. Notably, GNNs such as GIN, despite
their theoretically strong expressiveness as validated by the WL-1 test (Huang & Villar, [2021)), struggle
with graph-level tasks, failing to match the comprehensive understanding offered by our model. Prompt
engineering approaches, like CoT and NLGraph and exploration based approaches like CoT-SC do not yield
substantial improvements in performance, particularly on tasks like shortest distance that demand a deeper
comprehension of the graph structure. GraphToken, a hybrid GNN-LLM approach shows limited gains,
indicating that using GNN-augmented LLMs is insufficient for achieving top performance in graph tasks.

While instruction-tuned models like GraphWiz exhibit better results on smaller graphs, they face significant
challenges with larger and denser graphs. Notably, their performance is strong on graphs with up to 100
edges, reaching accuracies of 93% and 84% for the reachable and edge count tasks, respectively. However, this

Under review as submission to TMLR

Table 1: Graph reasoning performance comparisons. This table showcases our HLM-G model against
11 baselines across 7 graph reasoning datasets. Our method not only achieves state-of-the-art performance
among all LLMs but also outperforms GNNs on 6 out of 7 tasks. The table details the performance of
each method in terms of accuracy across various node, link, and graph-level tasks, underlining the superior
capability of our HLM-G model in handling complex graph reasoning challenges.

Type Method Node Degree Edge Existence Shortest Distance Reachable Cycle Edge Count Components
Task level Node Link Link Link Graph Graph Graph
Classes 39 2 6 2 2 70 38
GNN GCN 7.2+1.61 66.5+1.15 40.5+2.13 87.4+0.99 69.1+0.73 3.8+0.55 8.1+1.94
GIN 97.7+0.48 94.7+0.56 96.3+0.16 99.9+013 99.9+0.04 65.5+2.35 68.8+0.8
GTN 4.97+0.48 50.0+0.48 18.5+1.87 53.3+0.67 50.4+2.3 4.7x0.18 25.6+0.87
LLM-inference Zero Shot 15.9+0.00 40.8+0.00 22.3+0.00 34.1+0.00 46.4+0.00 4.4+0.00 1.8+0.00
corT 37.440.00 67.2+0.00 22.8+0.00 34.6+0.00 23.840.00 4.1+0.00 4.0-+0.00
COT-SC 37.9+0.00 69.9+0.00 24.3+0.00 41.8+0.00 24.8+0.00 7.4+0.00 4.3+0.00
NLGraph 20.4+0.00 49.3+0.00 13.2+0.00 32.4+0.00 47.7+0.00 0.37+0.00 0.5+0.00
Hybrid GNN-LLM GraphToken ‘ 22.4+2.30 64.7+0.90 54.7+1.34 54.6x2.89 73.4+1.85 7.8+0.31 5.2+0.09
LLM-finetuning BERT 21.7+1.39 55.9+2.41 61.6+1.34 76.0+0.56 91.4+0.31 97.2+0.26 29.2+0.59
Llama 3 41.1+0.13 92.6+1.01 48.3+0.34 84.7+0.69 89.8+0.08 29.1+3.16 9.2+1.44
Graphwiz 29.6+1.31 87.7+1.11 47.1+1.77 75.9+1.06 84.1+0.09 37.8+3.10 19.9+3.88
HLM-G (Ours) 99.9+0.04 100::0.00 84.6+0.43 99.9+0.07 99.9+0.06 98.6+0.03 94.2+0.21

accuracy drops sharply to 76% and 38% when the graphs become denser, with up to 700+ edges, as shown in
Table [1} Our model remains highly effective in these dense scenarios, maintaining near-perfect accuracies
across all tasks, demonstrating its robustness against graph complexity and density. Fine tuning a similar
sized BERT and even 80X larger models like Llama-3 is unable to outperform our architecture, underscoring
the fact that our design is better suited for graph based tasks than the traditional design.

4.1.2 Evaluation of Model Robustness.

A critical question emerges from the quantitative comparisons: Do language models truly understand graph
structures, or do they rely on pattern-matching? To investigate this, we conducted a robustness evaluation by
systematically shuffling the node indices of each graph using a permutation matrix P. Unlike GNNs, which
are inherently invariant to changes in node indexing due to their symmetrical message-passing framework,
LLMs may exhibit sensitivity to even slight alterations in node token representations, potentially leading
to inconsistent predictions for the same graph described differently. This issue highlights a significant
shortcoming of LLMs in graph-based tasks.

In this experiment, we applied the permutation matrix P 10 times to each graph, generating modified
adjacency matrices A* = PA* !PT at each iteration t. This process preserves the overall graph structure
while changing the node indices, allowing us to evaluate whether the model’s predictions remain consistent
under different representations.

The results, presented in Table [2] highlight a stark difference between traditional LLM-based models and our
proposed HLM-G model. NLGraph’s performance dropped significantly, indicating that prompt engineering is
not robust. Similarly, we observed that fine-tuned LLMs, such as Llama 3 and BERT, exhibited performance
drops of up to 21% and 71%, respectively, on the Node Degree task. This highlights their high sensitivity
to changes in node tokens and suggests a reliance on pattern recognition rather than a true comprehension
of the underlying graph structure. Instruction tuning does not seem to provide robustness as Graphwiz
also shows similar sensitivity as finetuned Llama 3. In contrast, our HLM-G model displays exceptional
robustness, with minimal performance drops (e.g., a mere 6.1% drop on the Shortest Distance task and 0.0%
on the Node Degree task). These findings underscore a crucial advantage of our HLM-G, while conventional
LLMs struggle with variations in graph representation, our model remains robust, reinforcing its suitability
for real-world graph tasks where representations might vary but the underlying structure remains unchanged.

4.2 Interpretability Comparisons

Having established the performance and robustness of our model, we now delve into analyzing its inter-
pretability—specifically, its ability to accurately identify and prioritize the most critical structural elements

Under review as submission to TMLR

Table 2: Structural Robustness Assessment. This table displays the accuracy drop observed over 10
permutations for each task. Lower performance drop () indicates less sensitivity to node description positions,
highlighting the model’s ability to learn graph structure effectively.

Method Node Degree(]) Edge Existence(|) Shortest Distance(]) Reachable(]) Cycle(]) Edge Count(]) Components(])
NLGraph 46.1 38.1 56.6 44.1 49.4 71.6 71.3
BERT 714 11.0 46.2 14.3 9.4 7.8 62.8
LLaMA 3 21.5 11.9 28.9 8.6 15.9 44.8 62.2
GraphWiz 18.6 23.5 32.1 15.2 26.9 38.3 42.0
HLM-G (our method) 0.0 0.0 6.1 0.8 0.1 3.0 10.2

Shortest Distance Reachability Edge Existence Node Degree

0.8

0.6

Recall

0.4 method method

04 I method 0.4 method -
! —— HLM-G (Ours) —— HLM-G (Ours) .+ —— HLM-G (Ours) 0.4 —— HLM-G (Ours)
BERT BERT BERT BERT
0.2 0.2 0.2 .»
GIN GIN GIN 0.2 GIN
- LLaMA 3 - LLaMA 3 - LLaMA 3 - LLaMA 3
0.0 0.0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
k Kk 3 k

Figure 2: Explainer Based Interpretation Comparisons. This figure illustrates the interpretability
performance of BERT, GIN, and our method on 4 graph reasoning datasets with reasoning ground truths. k
indicates the k£ most important nodes that interpreted by the model are selected.

within graph reasoning tasks, thus addressing RQ2. Interpretability serves as a vital criterion in evaluating
whether a model is capable of comprehending graph structures rather than just fitting patterns. For this
purpose, we utilize four graph reasoning datasets that offer explicit ground truths regarding which nodes are
genuinely important for a given graph task. For example, in the shortest distance task, the ground truth
consists of nodes that lie along the shortest path between two specified nodes. More details about these
ground truths are provided in Appendix [E:I] We compare the true structure understanding capabilities of
four finetuned models from Table[I} Llama-3, BERT, GIN and HLM-G.

To measure interpretability, each model is expected to generate an ordered set ¥ = {ry,...,r,} for a graph
with n nodes, ranking them from the most to the least significant, based on the model’s internal focus and
reasoning. The quality of a model’s interpretation is then evaluated by how effectively it identifies the nodes
that align with the ground truths. Ideally, a model with true structural comprehension should consistently
rank ground truth nodes higher, indicating that it genuinely understands the critical elements of the graph
structure. Using established explainers, we first reveal the extent to which our approach successfully captures
and prioritizes the essential graph components. We then introduce the intrinsic interpretability mechanism
built into our model, demonstrating its ability to provide ready made interpretations.

4.2.1 Explainer-based Interpretation

To objectively compare the interpretability performance across different models, we leverage established
explainability techniques such as Saliency (Simonyan et all |[2013), Input x Gradient (Shrikumar et al., 2016]),
DeepLIFT (Shrikumar et all |2017), and GNNExplainer (Ying et al., [2019). This approach allows us to
assess how well each model can identify and rank important graph elements, providing insight into the
structural modeling capabilities of these models. More details on this strategy, referred to as “explanations as
interpretations”, are outlined in Appendix

Setup. To quantify interpretability, we use a Recall@k metric, which measures how effectively a model
identifies the nodes that correspond to ground truths. Given a set of ground truth nodes 79 and the set of

top-k nodes identified by the model ¥ = {r,..., 7.}, we calculate Recall@k as Recall(k) = |rkmrgt‘, where

[rof]
| - | represents the cardinality of the set and N denotes the intersection. As shown in Figure [2| we evaluate

Under review as submission to TMLR

Shortest Distance Reachability Edge Existence Node Degree

Ground Truth Nodes 0035 040 Ground Truth Nodes Ground Truth Nodes

016 Ground Truth Nodes
Other Nodes Other Nodes Other Nodes Other Nodes
014 0030 07

o025

010

0015

Attention Score
Attention Score
Attentlgon Score
Attention Score

0010

002 0005 005 o1

000 0.000 0.00 00

Figure 3: Layer-by-Layer Attention Interpretation. This figure compares the mean attention scores for
relevant nodes with irrelevant nodes across each layer of the model in 4 graph reasoning tasks. The increased
scores in higher layers emphasizes the model’s capability to learn larger scale structure information and
identify relevant graph nodes effectively.

each model’s performance by plotting the recall curve for k € {1,2,...,n}, where n represents the total
number of nodes in the graph. Ideally, a model with a strong understanding of graph structure will have high
recall values across different values of k, indicating that it consistently identifies the most important nodes.

Results and Analysis. Figure[2presents the interpretability results for the four models across the four graph
reasoning datasets. Our HLM-G model demonstrates superior interpretability, particularly as k increases,
indicating a higher proficiency in pinpointing the most relevant nodes for each task. While GIN performs
adequately on tasks requiring simpler one-hop reasoning, such as Edge Existence and Node Degree, it struggles
with more complex, multi-hop reasoning tasks like Shortest Distance and Reachability. In contrast, BERT and
LLaMA consistently fail to identify relevant structural features, reflecting their limited capability to capture
intricate graph patterns. Directly fine-tuning LLMs has not led to significant improvements in these cases.
Although Llama 3 outperforms BERT on three out of four tasks, it still does not reach the performance level
of GIN or our model. Our model, in fact, excels across all tasks, even those involving multi-hop reasoning,
which further confirms its strong understanding of graph structures beyond simple pattern matching.

4.2.2 Intrinsic Attention Interpretation

A key strength of our model design is its inherent interpretability, distinguishing it from existing methods. The
local embedding matrix Z(® in the local block captures 1-hop subgraph information, where each Zy, € Z ©)
represents the 1-hop ego-graph centered around node v;. As the transformer layers progress in the global
block, they progressively integrate this localized information to capture broader global structures within
the graph. This means that embeddings in the higher layers reflect increasingly comprehensive structural
details. The attention weights associated with the task query node in the global block provide a direct
interpretation of the contribution of each node’s structural information to the final prediction, effectively
acting as importance scores for each node. This allows for a direct, interpretable insight into how the model
makes its decisions.

To illustrate this, we analyze the mean attention scores across all layers, as shown in Figure 3] As we move
to higher layers, the attention scores for ground truth nodes increase, while scores for other nodes decrease.
This pattern directly confirms that our model effectively focuses on the most important nodes, demonstrating
its ability to capture larger-scale structural information. These attention-based interpretations offer clear
insights into the model’s decision-making process without requiring additional explanation techniques.

4.3 Graph Learning Ability on Real-World Datasets.

Datasets. To answer the RQ3 and RQ4, we curated seven graph datasets widely recognized in the
graph learning community, varying in scale, domains, and task types. We adopt Arxiv (Hu et al, |2020b),
Cora (Bojchevski & Gunnemann, [2018]), and Pubmed (Sen et al., 2008) for node-level tasks; Pubmed,
WNI18RR (Bordes et al., [2013]), and FB15k-237 (Bordes et al., [2013]) for link-level tasks; and molhiv (Hu
et al.l [2020al) for graph-level tasks. More dataset details are discussed in Table

Under review as submission to TMLR

Table 3: Node-level comparisons. This table compares our method with 7 baselines on node-level tasks.
Types of methods are grouped based on their underlying approaches. All results are reported as averaged
Accuracy with standard deviations across 3 random runs. The best and second-best results are highlighted in
bold and underline respectively.

\ GNN GT LLM-inference LLM-finetuning
Dataset‘ GCN GAT GraphSage Graphormer Zero-shot Few-shot InstructGLM HLM-G (Ours)

arxiv | 71.74+0.29 73.65+0.11 71.49+0.27 72.81+0.23 74.04+0.00 72.940.00 75.70+0.12 74.81+0.07
Pubmed | 88.940.32 83.28+0.12 86.85+0.11 88.24+1.50 88.6+0.00 85.0+0.00 93.84+0.25 94.62+0.13
Cora |87.78+0.96 76.70+0.42 86.5840.26 80.414+0.30 66.1+0.00 65.14+0.00 87.08+0.32 88.5+0.43

Table 4: Link-level comparisons. This table demonstrates the comparisons between our method and 4
baselines on link-level tasks. We evaluate Pubmed by ROC-AUC, others by Accuracy.

| GNN GNN-LLM LLM-finetuning
Dataset ‘ GCN GIN OFA InstructGLM HLM-G (Ours)

Pubmed |[91.10+0.50 67.88+5.45 98.21+0.02 95.92+1.91 98.47+0.18
FB15k-237|74.204+1.10 70.70+1.80 95.544+0.06 64.39+0.98 95.71+0.13
WNI18RR [67.40+£2.40 57.30+£3.40 96.91+0.11 63.8+1.5 98.09+0.54

Table 5: Graph-level comparisons. This table demonstrates the comparisons between our method and 6
baselines on graph-level task. We evaluate molhiv by ROC-AUC.

| GNN GT GNN-LLM LLM-finetuning
Dataset| GCN GAT GIN GTN Momu Mamba HLM-G (Ours)
molhiv |75.49:|:1.63 74.45+1.53 76.26+1.41 77.67+1.49 75.92+0.85 74.23+0.12 76.49+0.33

Baselines. We compare with traditional GNNs including GCN (Kipf & Welling}, [2017), GAT (Velickovié¢
et al.l 2017)), GIN (Xu et al., [2018) and GraphSage (Hamilton et al., [2017). For graph transformer-based
baseline we include GTN (Yun et al., [2019) and Graphormer (Ying et al. 2021)). For LLMs, we compare
Zero-shot and Few-shot performance using GPT 3.5 (Ye et al., [2023al) for node-level tasks, and Llama-2-7B
finetuned InstructGLM (Ye et al. 2023b) for both node and link-level tasks. For the graph-level task, we
compare with a GNN-LLM hybrid model Momu (Su et al., [2022)) for molecular graphs. Note that we use
Mamba (Gu & Daoj, [2023)) as a baseline for graph-level task as no Transformer-based LLM is computationally
feasible for training on real-world graph-level tasks. OFA (Liu et all 2024a), a hybrid GNN-LLM model, is
also selected as a baseline due to its strong performance on link-level tasks.

Quantitative Results. As demonstrated in Tables[3] 4] and [5] our method consistently delivers competitive
performance across node, link, and graph-level tasks. Compared to traditional GNNs, our model surpasses
their performance for both node and link-level tasks with large margins. In comparison to hybrid GNN-LLM
methods, our model notably outperforms the recently developed LLM-equipped OFA; on link-level tasks
where OFA is considered especially strong. Furthermore, our model consistently perform favorably against
LLM instruction tuning approach - InstructGLM across link level tasks. Although graph transformers perform
slightly better in the graph-level task because of their specialized encodings for graph-level tasks, our model
produces much higher performance than them in node-level tasks. It is noteworthy that while LLM-only
models excel in node-level tasks, they experience a marked decline in performance on link-level tasks, validated
their limitations in processing structural information mentioned in Section [2] A crucial factor in our model’s
adaptability across all task levels is our pooling parameter « discussed in detail in Appendix This enables
our model to adjust its reliance on structural or feature-based information, thereby allowing it to generalize

10

Under review as submission to TMLR

well across all levels. Our model’s ability to dynamically adjust « provides a significant advantage, making it
more versatile and capable of handling a wide range of graph-centric tasks.

Overall, our experiments highlight our model’s computational efficiency (Appendix [D.3]), ability to process
structural information, interpretability, and effectiveness across diverse tasks. For additional experiments and
ablation studies, please refer to Appendix [D] and Appendix [E] respectively.

5 Conclusions and Discussions

In this paper, we introduce a novel Hierarchical Language Model to tackle the complexities of non-FEuclidean
structures commonly found in graphs. While language models excel in text-centric applications, they often
struggle with the intricate structures of graph data, leading to significant performance and computational
challenges. Additionally, the context length, which involves the natural language description of a graph, can
become enormous for real-world datasets, rendering them ineffective for graphs. Our method sets itself apart
by designing a hierarchical architecture to process the graph structure and enhance computational efficiency
and interpretability. We show that our model yields promising results in graph reasoning tasks as well as
robust and consistent performance on real-world datasets, outperforming most models designed for similar
purposes.

This work paves the way for future research in language models for graph learning, establishing a solid
foundation for innovation and providing valuable insights into this emerging field. Our findings significantly
narrow the gap between conventional language models and graph tasks, expanding potential applications and
improving the effectiveness of language models in handling structured data. We hope this work can shed
light on the future direction of LLM-based graph learning.

11

Under review as submission to TMLR

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

Reduan Achtibat, Sayed Mohammad Vakilzadeh Hatefi, Maximilian Dreyer, Aakriti Jain, Thomas Wiegand,
Sebastian Lapuschkin, and Wojciech Samek. Attnlrp: attention-aware layer-wise relevance propagation for
transformers. arXiv preprint arXiv:2402.05602, 2024.

Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin, Klaus-Robert Miiller, and Wojciech Samek.
Layer-wise relevance propagation for neural networks with local renormalization layers. In Artificial
Neural Networks and Machine Learning—ICANN 2016: 25th International Conference on Artificial Neural
Networks, Barcelona, Spain, September 6-9, 2016, Proceedings, Part II 25, pp. 63-71. Springer, 2016.

Mitchell Black, Zhengchao Wan, Gal Mishne, Amir Nayyeri, and Yusu Wang. Comparing graph transformers
via positional encodings. arXiv preprint arXiv:2402.14202, 2024.

Aleksandar Bojchevski and Stephan Giinnemann. Deep gaussian embedding of graphs: Unsupervised
inductive learning via ranking. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=r1ZdKJ-O0W.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. Translating
embeddings for modeling multi-relational data. Advances in neural information processing systems, 26,

2013.

Ulrik Brandes, Markus Eiglsperger, Jiirgen Lerner, and Christian Pich. Graph markup language (graphml). In
Handbook of Graph Drawing and Visualization, 2013. URL https://api.semanticscholar.org/CorpusID:
142947.

Ziwei Chai, Tianjie Zhang, Liang Wu, Kaigiao Han, Xiaohai Hu, Xuanwen Huang, and Yang Yang. Graphllm:
Boosting graph reasoning ability of large language model. arXiv preprint arXiv:2310.05845, 2023.

Nuo Chen, Yuhan Li, Jianheng Tang, and Jia Li. Graphwiz: An instruction-following language model for
graph problems. arXiw preprint arXiv:2402.16029, 2024a.

Runjin Chen, Tong Zhao, Ajay Jaiswal, Neil Shah, and Zhangyang Wang. Llaga: Large language and graph
assistant. arXiv preprint arXiv:2402.08170, 2024b.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaigiang Wang, Dawei Yin, Wenqi
Fan, Hui Liu, et al. Exploring the potential of large language models (1lms) in learning on graphs. ACM
SIGKDD Explorations Newsletter, 25(2):42—-61, 2024c.

Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Olgica Milenkovic, and Inderjit S
Dhillon. Node feature extraction by self-supervised multi-scale neighborhood prediction. arXiv preprint
arXiv:2111.00064, 2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. PaLM: Scaling language
modeling with pathways. Journal of Machine Learning Research, 24(240):1-113, 2023.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d knowledge
graph embeddings. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding, 2019.

12

https://openreview.net/forum?id=r1ZdKJ-0W
https://api.semanticscholar.org/CorpusID:142947
https://api.semanticscholar.org/CorpusID:142947

Under review as submission to TMLR

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Graph neural
networks with learnable structural and positional representations, 2022.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research, 24(43):1-48, 2023.

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large language
models. arXiv preprint arXiv:2310.04560, 2023.

Yassir Fathullah, Chunyang Wu, Egor Lakomkin, Junteng Jia, Yuan Shangguan, Ke Li, Jinxi Guo, Wenhan
Xiong, Jay Mahadeokar, Ozlem Kalinli, et al. Prompting large language models with speech recognition
abilities. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 13351-13355. IEEE, 2024.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message
passing for quantum chemistry. In International conference on machine learning, pp. 1263-1272. PMLR,
2017.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Shurui Gui, Hao Yuan, Jie Wang, Qicheng Lao, Kang Li, and Shuiwang Ji. FlowX: Towards explainable
graph neural networks via message flows. IEEE Transactions on Pattern Analysis and Machine Intelligence,
pp. 1-12, 2023. doi: 10.1109/TPAMI.2023.3347470.

Jiayan Guo, Lun Du, and Hengyu Liu. Gptdgraph: Can large language models understand graph structured
data? an empirical evaluation and benchmarking. arXiv preprint arXiv:2305.15066, 2023.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. Advances
in neural information processing systems, 30, 2017.

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh V Chawla, Thomas Laurent, Yann LeCun, Xavier Bresson, and
Bryan Hooi. G-retriever: Retrieval-augmented generation for textual graph understanding and question
answering. arXiw preprint arXiv:2402.07630, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,
2021.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Hugo Larochelle,
Marc Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020a. URL https://proceedings.neurips.cc/paper/
2020/hash/fb60d411a5cbb72b2e7d3527cfc84fd0-Abstract.html.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in neural
information processing systems, 33:22118-22133, 2020b.

Yuntong Hu, Zheng Zhang, and Liang Zhao. Beyond text: A deep dive into large language models’ ability on
understanding graph data. arXiv preprint arXiw:2310.04944, 2023.

13

https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html

Under review as submission to TMLR

Jin Huang, Xingjian Zhang, Qiaozhu Mei, and Jiaqi Ma. Can llms effectively leverage graph structural
information: when and why. arXiv preprint arXiw:2309.16595, 2023.

Ningyuan Teresa Huang and Soledad Villar. A short tutorial on the weisfeiler-lehman test and its variants. In
ICASSP 2021-2021 IEEFE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 8533-8537. IEEE, 2021.

Qian Huang, Hongyu Ren, Peng Chen, Gregor Krzmanc, Daniel Zeng, Percy S Liang, and Jure Leskovec.
Prodigy: Enabling in-context learning over graphs. Advances in Neural Information Processing Systems,
36, 2024.

Vassilis N Ioannidis, Xiang Song, Da Zheng, Houyu Zhang, Jun Ma, Yi Xu, Belinda Zeng, Trishul Chilimbi,
and George Karypis. Efficient and effective training of language and graph neural network models. arXiv
preprint arXiv:2206.10781, 2022.

Roshni G Iyer, Wei Wang, and Yizhou Sun. Bi-level attention graph neural networks. In 2021 IEEE
International Conference on Data Mining (ICDM), pp. 1126-1131. IEEE, 2021.

Roshni G Iyer, Thuy Vu, Alessandro Moschitti, and Yizhou Sun. Question-answer sentence graph for joint
modeling answer selection. arXiv preprint arXiv:2203.03549, 2022.

Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji, and Jiawei Han. Large language models on graphs: A
comprehensive survey. arXiv preprint arXiv:2312.02783, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiw:1412.6980, 2014.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks, 2017.

Jing Yu Koh, Daniel Fried, and Russ R Salakhutdinov. Generating images with multimodal language models.
Advances in Neural Information Processing Systems, 36, 2024.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation, 2021.

Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan Zhang. One for
all: Towards training one graph model for all classification tasks. arXiv preprint arXiv:2310.00149, 2023.

Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan Zhang. One for
all: Towards training one graph model for all classification tasks. In The Twelfth International Conference
on Learning Representations, 2024a. URL https://openreview.net/forum?id=4IT2pgc9ov6.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in neural
information processing systems, 36, 2024b.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’20. ACM,
August 2020. doi: 10.1145/3394486.3403076. URL http://dx.doi.org/10.1145/3394486.3403076.

Luca Longo, Mario Brcic, Federico Cabitza, Jaesik Choi, Roberto Confalonieri, Javier Del Ser, Riccardo
Guidotti, Yoichi Hayashi, Francisco Herrera, Andreas Holzinger, et al. Explainable artificial intelligence
(xai) 2.0: A manifesto of open challenges and interdisciplinary research directions. Information Fusion,
106:102301, 2024.

Zihan Luo, Xiran Song, Hong Huang, Jianxun Lian, Chenhao Zhang, Jinqi Jiang, Xing Xie, and Hai Jin.
Graphinstruct: Empowering large language models with graph understanding and reasoning capability.
arXiv preprint arXiv:2403.04483, 2024.

Shubham Parashar, Zhiqiu Lin, Tian Liu, Xiangjue Dong, Yanan Li, Deva Ramanan, James Caverlee, and
Shu Kong. The neglected tails in vision-language models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 12988-12997, June 2024.

14

https://openreview.net/forum?id=4IT2pgc9v6
http://dx.doi.org/10.1145/3394486.3403076

Under review as submission to TMLR

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zach
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library, 2019.

Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsitsulin, Mehran Kazemi, Rami Al-Rfou, and Jonathan
Halcrow. Let your graph do the talking: Encoding structured data for llms. arXiv preprint arXiv:2402.05862,
2024.

Yijian Qin, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Disentangled representation learning with large
language models for text-attributed graphs. arXiv preprint arXiv:2310.18152, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn.
Direct preference optimization: Your language model is secretly a reward model. Advances in Neural
Information Processing Systems, 36, 2024.

Ladislav Rampések, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique
Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural Information
Processing Systems, 35:14501-14515, 2022.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv
preprint arXiv:1908.10084, 2019.

Xubin Ren, Jiabin Tang, Dawei Yin, Nitesh Chawla, and Chao Huang. A survey of large language models for
graphs. arXiv preprint arXiv:2405.08011, 2024.

T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing in graph
neural networks. arXiv preprint arXiv:2303.10993, 2023.

Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal, and Aman Chadha. A
systematic survey of prompt engineering in large language models: Techniques and applications. arXiv
preprint arXiv:2402.07927, 2024a.

Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal, and Aman Chadha. A
systematic survey of prompt engineering in large language models: Techniques and applications, 2024b.
URL https://arxiv.org/abs/2402.07927.

Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan Halcrow, Bryan
Perozzi, and Vahab Mirrokni. Understanding transformer reasoning capabilities via graph algorithms.
arXiv preprint arXiv:2405.18512, 2024.

V Sanh. Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. arXiv preprint
arXiw:1910.01108, 2019.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad. Collective
classification in network data. Al magazine, 29(3):93-93, 2008.

Avanti Shrikumar, Peyton Greenside, Anna Shcherbina, and Anshul Kundaje. Not just a black box: Learning
important features through propagating activation differences. arXiv preprint arXiv:1605.01713, 2016.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through propagating
activation differences. In International conference on machine learning, pp. 3145-3153. PMLR, 2017.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visualising
image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. Chain of thoughtlessness: An analysis of
cot in planning. arXiv preprint arXiv:2405.04776, 2024.

15

https://arxiv.org/abs/2402.07927

Under review as submission to TMLR

Bing Su, Dazhao Du, Zhao Yang, Yujie Zhou, Jiangmeng Li, Anyi Rao, Hao Sun, Zhiwu Lu, and Ji-Rong
Wen. A molecular multimodal foundation model associating molecule graphs with natural language, 2022.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang. Graphgpt:
Graph instruction tuning for large language models. arXiv preprint arXiv:2310.13023, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Keyon Vafa, Justin Y Chen, Jon Kleinberg, Sendhil Mullainathan, and Ashesh Rambachan. Evaluating the
world model implicit in a generative model. arXiv preprint arXiv:2406.03689, 2024.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the planning
abilities of large language models - a critical investigation. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36, pp.
75993-76005. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/
paper/2023/file/efb2072a358cefb75886a315a6fcf880-Paper-Conference.pdf.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph Attention Networks. International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=rJXMpikCZ. accepted as poster.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov. Can language
models solve graph problems in natural language? Advances in Neural Information Processing Systems, 36,
2024a.

Jianing Wang, Junda Wu, Yupeng Hou, Yao Liu, Ming Gao, and Julian McAuley. Instructgraph: Boosting
large language models via graph-centric instruction tuning and preference alignment. arXiv preprint
arXiv:2402.08785, 2024b.

Wenhai Wang, Zhe Chen, Xiaokang Chen, Jiannan Wu, Xizhou Zhu, Gang Zeng, Ping Luo, Tong Lu, Jie
Zhou, Yu Qiao, et al. Visionllm: Large language model is also an open-ended decoder for vision-centric
tasks. Advances in Neural Information Processing Systems, 36, 2024c.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous graph
attention network. In The world wide web conference, pp. 2022-2032, 2019.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. Self-consistency improves chain of thought reasoning in language models. arXiv preprint
arXiw:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.

Shengqgiong Wu, Hao Fei, Leigang Qu, Wei Ji, and Tat-Seng Chua. Next-gpt: Any-to-any multimodal 1lm.
arXiv preprint arXiv:2309.05519, 2023.

Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica. Repre-
senting long-range context for graph neural networks with global attention. Advances in Neural Information
Processing Systems, 34:13266-13279, 2021.

16

https://proceedings.neurips.cc/paper_files/paper/2023/file/efb2072a358cefb75886a315a6fcf880-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/efb2072a358cefb75886a315a6fcf880-Paper-Conference.pdf
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ

Under review as submission to TMLR

Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S. Pappu, Karl
Leswing, and Vijay Pande. Moleculenet: A benchmark for molecular machine learning, 2018.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A comprehensive
survey on graph neural networks. IEEF transactions on neural networks and learning systems, 32(1):4-24,
2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826, 2018.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree
of thoughts: Deliberate problem solving with large language models. Advances in Neural Information
Processing Systems, 36, 2024.

Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai Shao, Shichun Liu, Yuhan Cui, Zeyang Zhou, Chao Gong,
Yang Shen, et al. A comprehensive capability analysis of gpt-3 and gpt-3.5 series models. arXiv preprint
arXiw:2303.10420, 2023a.

Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu, and Yongfeng Zhang. Natural language is all a graph
needs. arXiv preprint arXiv:2308.07134, 2023b.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-Yan
Liu. Do transformers really perform badly for graph representation? Advances in neural information
processing systems, 34:28877-28888, 2021.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer: Generating
explanations for graph neural networks. Advances in neural information processing systems, 32, 2019.

Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph neural networks. Advances in Neural
Information Processing Systems, 33:17009-17021, 2020.

Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks: A taxonomic
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5):5782-5799, 2023.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
networks. Advances in neural information processing systems, 32, 2019.

Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu, Michael Bronstein, Zhaocheng Zhu, and Jian Tang.
Graphtext: Graph reasoning in text space. arXiv preprint arXiv:2310.01089, 2023.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy Ba.
Large language models are human-level prompt engineers. arXiv preprint arXiv:2211.01910, 2022.

17

Under review as submission to TMLR

A Broader Impacts

Our research aims to enhance the understanding of graph structures through language models (LMs), marking
a modest but significant step toward improved graph reasoning capabilities. This foundational effort seeks
to refine how LMs interpret complex graph data, aspiring to inspire further research in this domain. Given
the exploratory nature of our work, we have not identified specific negative societal impacts or potential
for malicious use directly attributable to our research. Nevertheless, we recognize that all technological
advancements carry inherent risks.

In alignment with responsible research practices, we suggest continuous monitoring of developments in the
application of LMs to graph data analysis. As these models evolve to handle more complex tasks, maintaining
vigilance becomes crucial to preemptively address any emerging risks before they manifest. Our commitment
to ethical conduct underpins our research methodology, which is designed to avoid harm and does not involve
human subjects, thus mitigating potential ethical concerns related to privacy and fairness. By promoting
ongoing assessment and adopting a proactive approach to research governance, we aim to ensure that our
contributions positively impact the field and adhere to the highest standards of ethical research.

B Further Related Works

Graph Neural Networks (GNNs). Graph Neural Networks (GNNs) have emerged as a powerful
framework for learning over graph-structured data (Kipf & Welling, 12017} (Gilmer et al., 2017} [Velickovié et al.)
2018 'Wu et al., [2020; [Liu et al., |2020). GNNs operate by iteratively aggregating information from a node’s
neighbors, thereby learning node representations that capture the local structure and features of the graph.
This message-passing mechanism enables GNNs to be highly effective in tasks such as node classification,
link prediction, and graph classification. However, despite their success, GNNs are often challenged by
issues such as over-smoothing in deeper networks (Rusch et al.; |2023) and difficulties in handling long-range
dependencies (Sanford et al.| |2024)), which can limit their effectiveness on larger and more complex graphs.

Graph Transformer (GT). Graph Transformers (GTs) (Yun et all 2019; [Rampdasek et al.,[2022)) represent
a more recent approach that aims to capture global dependencies within graph data using self-attention
mechanisms. Inspired by the success of transformers in NLP tasks, GTs adapt the self-attention mechanism
to graph-structured data, allowing them to capture both local and global interactions simultaneously. This
approach helps address some of the limitations of GNNs in learning long-range dependencies. However,
Graph Transformers often require additional architectural complexities (Black et al., 2024)), such as centrality
encoding, edge features, and spatial encodings, to effectively represent graph structures. These added
complexities can lead to increased computational demands and make them less interpretable compared to
conventional GNNs.

Transformer Block in Language Models. In a transformer model, each block processes an input
sequence H; = {hy,ha,..., h,,} to output an updated sequence H; ;. A transformer block is structured
around an attention mechanism and a feedforward network, both supplemented by residual connections
and layer normalization. The multi-head attention mechanism processes the sequence H;, formulated as

Attention(Q, K, V) = softmax (Q—\/Ig) V where Q, K,V are queries, keys, and values derived from H;, and
dy, is the dimension of keys. This output is then combined with the original input H; and normalized:
Outputyppention = LayerNorm(H; + Attention(H;)). Following this, a position-wise feedforward network
processes each position in Outputeiention, described by FFN(x) = max(0, 2 Wy +b1)Wa+be with Wy, Wa, by, by
as the network parameters. The final output H;y; for the block is computed by applying another layer
normalization on the summation of the feedforward network output and the attention output: H;41 =
LayerNorm(Outputyiention + FFN(Output,iiention))- Lhis architecture allows the transformer to capture and
process dependencies across the input sequence, enabling deep contextual understanding that propagates
through successive layers of the model.

Comparisons to Prior Work. LLM-only methods commonly fail to effectively learn from graph data due
to computational feasibility and the loss of graph structural information. In contrast, our model addresses
these challenges with a local-to-global hierarchical design that efficiently leverages graph structure. Hybrid

18

Under review as submission to TMLR

GNN-LM approaches typically encounter problems with task-specific designs and limited interpretability. In
comparison, our method is inherently task-agnostic and demonstrates high interpretability. When compared
to closely related conventional Graph Transformers, which necessitate complex designs for centrality, edge, and
spatial encoding, our method streamlines the process by exclusively using natural language input, eliminating
the need for these elaborate encodings.

C Experiment Details

C.1 Details about the Datasets

In this section, we describe in detail the datasets used for our experiments. We first describe the Graph
Reasoning dataset followed by the real world datasets.

C.1.1 Graph Reasoning

Several works have proposed benchmarks for graph reasoning, such as the NLGraph (Wang et al.| [2024a) and
GraphQA (Fatemi et al.| [2023). However, upon closer examination, we observed that these benchmarks suffer
from significant class imbalance, with some classes having far more data points than others. For example,
in the cycle dataset of GraphQA, 82% of the data samples contain at least one cycle. Some works like
Graphtoken (Perozzi et all 2024) have leveraged this dataset, with their proposed architecture achieving
83% accuracy on the cycle dataset. This raises concerns about whether the models are truly reasoning on
the datasets or simply making majority label predictions. Additionally, the majority of graphs in these
benchmarks have a small number of nodes, typically ranging from 5 to 20. In reality, we expect real-world
graph datasets to be much larger than this.

To address these issues, we propose a new benchmark constructed using a random graph generator. Importantly,
all datasets in our benchmark are balanced, enabling us to evaluate the true graph reasoning ability of
language models accurately. Training and validation graphs contain up to 40 nodes with test set containing
exactly 40 nodes. .

In this section we describe our random graph generator used for creating graph reasoning datasets.

Pre-defined graphs To ensure that our generator is well covered, we first include common graphs including
Cyclic graphs, Star graphs, Complete graphs, Path graphs, Tree graphs, Wheel graphs and Barbell graphs.
All of these graphs can be created using NetworkX documentatiorﬂ

Random graphs A graphon is a function W : [0,1]> — [0,1] that takes 2 values vy, vy € [0,1]
for each pair of nodes and returns the probability p € [0, 1] for an edge between these 2 nodes. The function
W can be any function that takes 2 values v1, v2 € [0, 1] and returns p € [0,1] . Given two values vy and vg,
we implement following functions:

1. Constant graphon: Returns a random number p € [0.3,0.7]

2. Sparse graphon: Returns a small random number p € [0.05,0.15]
3. Dense graphon: Returns a big random number p € [0.8,1.0]

4. Linear graphon: Returns p = vy * vy

5. Quadratic graphon: Returns p = v? * v3

6. Sigmoidal graphon: Returns p =

1
Ttexp(—10(u—v))

7. Step graphon: Returns p =1 if v; > ¢ and vy > ¢ for some random threshold ¢ € [0, 1]

Thttps://networkx.org/documentation/stable/index.html

19

https://networkx.org/documentation/stable/index.html

Under review as submission to TMLR

8. Sin graphon: Returns p = sin(7vy) - sin(mwvs)
9. Avg graphon: Returns p = (v1 + v2)/2
10. Exp. decay graphon: Returns p = exp(—(v} + v3))

exp(v1)
exp(v1)+exp(v2)

11. Softmax graphon: Returns p =
The value v; for the i*" node is randomly initialized for each node. Using these formulations, we prepare
our benchmark for structural reasoning tasks. For every task, we extract a graph from our Random Graph
Generator and assign it a label depending on the task. We collect equal number of graphs for every label to
prevent bias towards majority class.

Table 6: Summary of Graph Analysis Tasks and Their Dataset Specifications

‘Distance Cycle Detection Edge Count Reachability Edge Existence Connected Components Node Degree

#Classes 6 2 70 2 2 38 39
Dataset Size Used 20000 4000 14000 4000 4000 19000 8000

Armed with the general-purpose graph dataset generator, we adapt synthetically generated graphs to various
graph reasoning tasks with varying complexities and describe the problem setups in a structured manner.
Specifically, we first generate subsets of base graphs for each task by controlling node quantity and graph
density. We then tailor these base graphs for specific tasks and design queries to assess the models’ capabilities
accordingly. These 7 datasets summarized in Table |§| are detailed below. A random split of 80/10/10 is used
for training , validation and test sets.

e Task 1: Shortest Distance
Given a graph G = {V, E}, predict the shortest distance between two nodes v; and v;, categorized
into six classes from 0 to 5. Class 0 indicates no path exists, while classes 1 to 5 represent distances
from 1 to 5 edges. The query posed is: “What is the shortest distance between nodes 0 and 17”

e Task 2: Cycle Detection
In a graph G = {V, E}, determine if a cycle exists. The task classifies graphs into two categories:
presence or absence of a cycle. The question asked is: “Is the graph cyclic?”

e Task 3: Edge Count
Our random graph generator can produce graphs with over 700 edges. To minimize the required
training size, we categorize sets of 10 edges into a single class. Specifically, graphs with 1 to 10 edges
are classified as class 0, 11 to 20 as class 1, continuing in this manner up to 691 to 700, which are
classified as class 69. The query posed is: “What is the total number of edges in the graph?”

o Task 4: Reachable
In a graph G = {V, E'}, predict whether there is a reachable path between two nodes v; and v;. The
query for this task is: “Are nodes 0 and 1 reachable from each other?”

e Task 5: Edge Existence
Determine if an edge exists between two nodes in a graph, represented as G = {V, E}. The posed
query is: “Does an edge exist between nodes 0 and 17”

e Task 6: Connected Components
Predict the number of connected components in a graph G = {V, E}. A component is a set of
nodes that are reachable from one another. Specifically if v; € C and v; € Cy where C and C5 are
different components then there exists no path from vy to vo. The query is: “How many connected
components does the graph have?”

e Task 7: Node Degree
Estimate the degree of a node in the graph, representing the number of direct connections or neighbors
the node has. The question is: “What is the degree of node 07”

20

Under review as submission to TMLR

C.1.2 Real world datasets

We conduct experiments on 7 different Text Attributed Graph (TAG) datasets. All of these graphs have node
features available in natural language. The datasets are concisely summarized in the table below, followed by
detailed descriptions of each dataset.

Table 7: Datasets summary for real world graphs with text attributes

Dataset ‘ Domain Task # Graphs Avg. #Nodes Avg. #Edges # Classes
Cora Citation Node 1 2,708 10,556 7
ogbn-arxiv | Citation Node 1 169,343 1,166,243 40
PubMed Citation Node 1 19,717 44,338 3
PubMed Citation Link 1 19,717 44,338 2
FB15k-237 | Knowledge Link 1 14,541 310,116 237
WN18RR | Knowledge Link 1 40,943 93,003 11
HIV Molecule Graph 41,127 25.5 27.5 2

Cora dataset, sourced from the GitHub repository as described in |Chen et al.| (2024c) , is a citation
network in the computer science domain. Each node in this dataset represents a research paper, with
raw text features consisting of the paper’s title and abstract. The edges between nodes indicate citation
relationships. Nodes are labeled according to the category of the paper, encompassing seven possible
classes. For our study, we focus on node-level prediction, specifically predicting the category of each
paper based on its features and structure. We use the 60-20-20 random split for training, validation and testing.

PubMed dataset comprises 19,717 scientific publications from the PubMed database, specifically related
to diabetes, categorized into one of three classes. The citation network includes 44,338 links. Each node
represents a research paper, with raw text features including the paper’s title and abstract. Our study
involves both node classification and link classification tasks on the PubMed dataset. The raw text data of
PubMed dataset was collected from GitHub repository provided in [Chen et al.| (2024c]).

For node classification, we use a 60-20-20 random split for training, validation, and testing. For link
classification, the goal is to predict whether two nodes are directly connected. Following the methodology of
OFA (Liu et al.| 2024al), we use an 85-5-10 random split. In the link classification task, The training, validation
and testing set is created using existence edges as positive samples and an equal number of negative samples
by checking for the absence of an edge between nodes. The evaluation metric for the link-level task is the AUC.

ogbn-arXivﬂ is a directed graph representing the citation network among Computer Science (CS) arXiv
papers. The task involves predicting the 40 subject areas of these papers, such as cs.Al, ¢s.LG, and cs.OS,
which are manually labeled by the authors and arXiv moderators. We follow the standard split for this
dataset: training on papers published until 2017, validating on those from 2018, and testing on papers
published since 2019. The raw text data of the ogbn-arxiv was collected using the same protocol as the
GitHub repository provided in Prodigy (Huang et al.| [2024).

Molhivﬂ dataset is a molecular property prediction dataset adopted from the MoleculeNet (Wu et al., [2018)).
The dataset contains 41127 molecules each represented as a graph with atom as nodes and bonds as edges.
Each atom has 9 discrete features. 1 of the features (Chirality) is common for all atoms and is therefore
not considered. The rest of the features are: Atomic Number, Degree of atom, Formal charge, Number
of connected Hydrogen, Radical electrons, Hybridization, Aromaticity and Ring. These features can be
converted to natural language using only a few lines of code. Similarly the bonds between any 2 atoms can be
of 4 types: single, double, triple or aromatic. Each of these bonds also has a boolean property: conjugated.
Therefore any edge can be represented using the bond type and whether or not it is conjugated.

20gbn-arXiv is released under license ODC-BY.
3ogbg-molhiv is released under license MIT.

21

Under review as submission to TMLR

Here we perform graph level classification where objective is to classify a molecule as HIV inhibitor or not.
The metric used here is AUC.

WN18RR is a link prediction dataset created from WN18, which is a subset of WordNet. WN18RR
dataset contains 93,003 triples with 40,943 entities and 11 relation types. Here we perform link classifi-
cation where we classify any edge in 11 possible edge types. This dataset is extracted from GitHub repositoryﬂ

FB15k-237 is a knowledge graph that contains knowledge base relation triples and textual mentions of
Freebase entity pairs. It contains 310,116 triples with 14,541 entities and 237 relation types. Here we perform
link classification where we classify any edge in 237 possible edge types. The raw text data of nodes in
FB15K237 was collected from the same Github repository as WN18RR.

C.2 Training and Optimization Settings

For the graph reasoning datasets, we train our model from scratch, with the input being the natural language
description of the graph structure. In the local block, we employ a BERT-like architecture utilizing a special
intra-node masking scheme that masks out language tokens belonging to different nodes. Across all reasoning
datasets, we use 4 local block layers. For the global block, we utilize 2 layers for most datasets, except for the
Shortest Distance, Edge Count and Number of Connected Components datasets, where 3 global block layers
are used. Our observations indicate that more complex tasks benefit from an increased number of global
block layers, which enhances overall performance.

We adopt the Adam optimizer (Kingma & Bay [2014) throughout the training phase, with a learning rate of
5¢76, weight decay of 0.1, f; = 0.9, and By = 0.95. Across all datasets, the training consists of 5 epochs,
with a batch size of 16 for graph reasoning datasets and 8 for real-world datasets. The shared parameters for
all tasks and datasets used in our language model M (G) are summarized in Table

Table 8: Parameters used for the language model.

Parameter Value
Activation gelu
Attention Dropout 0.1
Dimension 768
Dropout 0.1
Hidden Dimension 3072
Max Position Embeddings 4096
Number of Heads 12
Number of Local Block Layers 6

We attempted to leverage pretrained models such as BERT (Devlin et al., 2018)), SBERT (Reimers &
Gurevych, 2019)), DistilBERT (Sanh, |2019)), and Llama 2 7B (Touvron et al., 2023)) as the lower block, but
found no performance gains on graph reasoning tasks; in fact, performance declined when these models were
not fine-tuned. This suggests that these pretrained models do not acquire graph structure-related information
during pretraining. Our experiments indicate that fine-tuning just 4 layers of the lower block is sufficient to
achieve state-of-the-art performance on graph reasoning tasks.

For real-world datasets (Tables and 7 we employ DistilBERT in the local block and fine-tune it.
Given that these datasets contain textual node and edge features, pretrained models are better equipped to
understand these features. The number of higher block layers for each dataset is set as follows: 4 for Cora,
Pubmed, WN18RR, and FB15k-237, 2 for molhiv, and 6 for Arxiv.

4nttps://github.com/villmow/datasets_knowledge_embedding/tree/master

22

https://github.com/villmow/datasets_knowledge_embedding/tree/master

Under review as submission to TMLR

Table 9: Performance comparison with different text encoders for Cora and Pubmed.

DistilBERT SBERT Llama-2

Cora 87.9% 88.9% 89.2%
Pubmed 94.1% 93.9% 94.9%

We observed that using larger models yields improved performance on node-level tasks, as depicted in Table [0
This is expected since node features play a more critical role in making accurate node-level predictions within
real-world datasets and these larger models are better equiped to understand these text based features.

C.3 Software and Hardware

Our implementation is under the architecture of PyTorch (Paszke et al.| |2019) and PyG (Fey & Lenssen,
2019). The deployment environments are Ubuntu 18.04 with 48 Intel(R) Xeon(R) Silver 4214R CPU @
2.40GHz, 755GB Memory, and graphics cards NVIDIA RTX A6000.

D Additional Experiment Results

D.1 Downstream Task Performance

To assess the adaptability and transferability of our proposed model across different graph domains and task
levels, we evaluated its performance on downstream tasks. Specifically, we examined how well the model,
when trained on one task level (e.g., node, link, or graph), could adapt to perform effectively on another.

Experimental Setup: We pretrained our model on three distinct datasets representing different task
levels: Arxiv (Node-level), Molhiv (Graph-level), and Pubmed (Link-level). Each pretrained model was then
fine-tuned on a variety of downstream tasks by updating only the final classification layer for 5 epochs with a
learning rate of 4e~°. This setup allowed us to evaluate the model’s ability to leverage learned knowledge
and adapt to completely different downstream tasks.

Results and Analysis: The results in Table [L0| demonstrate the impressive transferability of our model.
For example, the model pretrained on the Arxiv (Node-level) dataset achieved an 87.8% accuracy on the
PubMed Link task, outperforming the performance of fully trained GIN despite being trained exclusively on
node-level information initially. Similarly, the model pretrained on the Molhiv (Graph-level) dataset delivered
competitive results on both node-level (Cora) and link-level (PubMed) tasks, showcasing its ability to adapt
to diverse task requirements.

These insights highlight the versatility of our approach, indicating that our model can effectively generalize
knowledge from one graph domain to another. Our language model design not only captures graph structures
efficiently but can also be fine-tuned for a wide range of downstream applications with limited training,
making it a valuable asset for practical real-world applications.

Table 10: Downstream task performance with different pretraining datasets. The model’s performance was
evaluated after fine-tuning only the classification layer for 5 epochs.

Pretrained \Downstream Cora (Node) Pubmed (Node) Pubmed (Link) Molhiv (Graph)

Arxiv (Node) 80.6 83.8 87.8 72.2
molhiv (Graph) 73.9 75.4 86.6 -
Pubmed (Link) 71.6 775 - 72.5

23

Under review as submission to TMLR

D.2 Generation tasks

The current architecture employs local and global transformer blocks and a classification layer for final
prediction. For generation on graphs, we need a Decoder model that can generate the output. For this,
we take inspiration from GraphLLM (Chai et al., [2023)) and leverage Prefix-Tuning (Li & Liang), [2021) for
fine-tuning a Frozen Decoder LLM with HLM-G encoder.

Prefix Tuning Given a pre-trained LLM with an L-layer transformer, prefix tuning prepends K trainable
continuous tokens (prefixes) to the keys and values of the attention at every transformer layer. Taking the
I-th attention layer as an example (I < L), prefix vectors P, € R xd" ig concatenated with the original keys

K, e R**4" and values V, e R*XdM, where d™ is the dimension of LLM, formulated as:

K| = [P; Ki]; V/ = [P; V)] € RUEx

The new prefixed keys K| and values V) are then subjected to the I-th attention layer of LLM. For simplicity,
we denote the vanilla attention computation as O; = Attn(Q), K;, V;). The computation of attention becomes:

O, = Attn(Qy, [P; K], [P; V)])

We introduce three distinct datasets tailored for graph generation tasks, each with unique complexities and
requirements. These tasks are designed to evaluate the model’s ability to generate graph structures and
properties accurately.

e Task 1: Shortest Path
The objective of this task is to generate the shortest path between two specified nodes in a graph. Given a
graph G, the query Qg is formulated as: "What is the shortest path from node i to j7", where ¢ and j are
valid nodes within GG. The output is considered correct only if the path generated is both valid and the
shortest possible.

o Task 2: Bipartite Detection
This task aims to determine whether a given graph is bipartite. A graph is defined as bipartite if it contains
no odd cycles. The challenge for the model is to predict if the graph is bipartite or, if not, to generate an
odd cycle. The query Qg is: "Is the graph bipartite?". An output is deemed correct if it accurately predicts
whether the graph is bipartite or identifies an odd cycle when the graph is not bipartite.

e Task 3: Edge Count
This dataset involves predicting the exact number of edges in a graph, enhancing the edge count task
detailed in Section 4. Unlike the previous version, this task does not classify edges into pooled groups
but requires an exact count. Additionally, the training set does not include all edge counts present in the
test set, introducing unseen scenarios. The query Q¢ is: "What are the number of edges in the graph?".
Correctness is strictly judged on the model’s ability to match the exact number of edges in G.

Table 11: Performance comparison for zero shot and HLM-G encoder on different generation tasks. Llama-2
7B is used as a decoder in both settings. (across 1 random run).

Shortest Path Bipartite Detection Edge Count

Zero shot 5.2% 11.7% 2.1%
HLM-G encoder 93.4% 95.1% 92.5%

This data indicates that HLM-G has substantial potential as a powerful graph encoder. The high accuracy
across different tasks in our tests demonstrates its effectiveness. Further experiments are necessary to fully
explore the zero-shot and few-shot capabilities of HLM-G. These future studies will help validate the model’s
performance across a broader range of graph-based applications, potentially establishing HLM-G as a useful
tool in for leveraging LLMs on graphs.

24

Under review as submission to TMLR

D.3 Computational Efficiency

We systematically compare the training efficiency across various LLM-based methods on graph reasoning
datasets and real world dataset.

Graph Reasoning Datasets. Our study evaluates multiple fine-tuning approaches, which we categorize
into two primary groups: Hybrid GNN-LLM fine-tuning and LLM-only fine-tuning. We present training
times for GraphToken (a hybrid method), BERT, Llama 3 (LLM-only), and our proposed HLM-G model
(LLM-only fine-tuning). GraphToken utilizes a 4-layer GCN as its GNN encoder with approximately 5.2
million training parameters, resulting in a total parameter count of around 8 billion, comparable to the
Lora-trained Llama 3. For BERT, we adopt a 4-layer architecture with four attention heads, yielding 56
million parameters. The parameter count for our HLM-G model varies depending on the dataset, comprising
82 million parameters for tasks such as distance, edge count, and the number of components, and 77 million
for reachability, cycle, and edge existence datasets.

Table offers a comprehensive comparison of training times among various fine-tuning methods. Despite the
HLM-G model having 20 to 30 million more parameters than BERT, its hierarchical dual-block architecture
significantly reduces both the training time per epoch and the total time to convergence. In contrast,
GraphToken, while achieving shorter training times per epoch, requires a substantially higher number of
epochs to reach convergence due to its use of a GCN encoder. Additionally, the training times for Llama 3
are notably high, as expected, due to the model’s extensive number of parameters and the maximum input
prompt length of 4096, which necessitates longer training durations. In comparison, our HLM-G model
exhibits considerable improvements in training efficiency, highlighting the computational advantages of our
approach, especially in managing large-scale graph reasoning tasks.

Table 12: Training time and total training time comparison across graph reasoning datasets. The
total training time refers to the duration required to reach the optimal validation checkpoint.

Dataset GraphToken Llama 3 BERT HLM-G (ours)
Time/Epoch Total Time | Time/Epoch Total Time Time/Epoch Total Time Time/Epoch Total Time

Distance 30 mins 20 hours 17 hours 34 hours 2 hours 30 mins 7.5 hours 2 hours 6 hours
Reachability 9 mins 8 hours 6 hours 30 hours 2 hours 10 hours 45 mins 1 hour 30 mins
Cycle 9 mins 12 hours 7 hours 21 hours 45 mins 1 hour 30 mins 40 mins 40 mins
Edge Count 33 mins 36 hours 12 hours 48 hours 3 hours 30 mins 24.5 hours 3 hours 6 hours
Edge Existence 9 mins 8.5 hours 6 hours 24 hours 45 mins 1 hour 30 mins 40 mins 40 mins
Connected Components 15 mins 18 hours 12 hours 36 hours 2 hours 14 hours 1 hour 12 hours
Node Degree 17 mins 12 hours 11 hours 33 hours 1 hour 30 mins 6 hours 1 hour 1 hour

Real-world Datasets. We evaluated the training times of our model, HLM-G, against InstructGLM for
node and link prediction tasks, as InstructGLM does not support graph-level tasks. For graph-level tasks,
we compared HLM-G with Mamba. InstructGLM uses Llama-2 7B as its backbone and incorporates Lora
with a rank of 16, resulting in 8.2 million trainable parameters. The trainable parameter count for Mamba is
approximately 91.8 million. For HLM-G, the number of trainable parameters varies depending on the number
of layers in the higher block (as detailed in Appendix , ranging from 76 million for Molhiv to 86 million
for datasets such as Pubmed, Cora, and knowledge graphs, and up to 96 million for Arxiv.

Table 13: Training time and total training time comparison across real-world datasets. Total
training time refers to the duration required to reach the optimal validation checkpoint.

Dataset Mamba InstructGLM HLM-G (ours)
Time/Epoch Total Time Time/Epoch Total Time Time/Epoch Total Time

Pubmed Node - - 23 hours 10 mins 69 hours 30 mins 2 hours 5 mins 2 hours 5 mins
Pubmed Link - - 23 hours 10 mins 46 hours 20 mins | 10 hours 30 mins 21 hours
Arxiv - - 105 hours 210 hours 7 hours 28 hours
WNI18RR - - 34 hours 68 hours 2 hours 10 mins 4 hours 20 mins
FB15k-237 - - 56 hours 56 hours 5 hours 25 hours
Molhiv 6 hours 150 hours - - 3 hours 18 hours

25

Under review as submission to TMLR

Table [L3] presents a comparison of training times across real-world datasets, demonstrating the computational
efficiency of our HLM-G model relative to other fine-tuned language models. The results clearly highlight
HLM-G’s capability to perform graph-based tasks efficiently while maintaining high performance. Particularly
notable is the significant reduction in training time compared to InstructGLM, especially in larger datasets.
This efficiency underscores where our model is most useful.

The real-world datasets used in these comparisons are characterized by their immense size and complex
descriptions, factors that typically challenge traditional LLMs. Our HLM-G model is specifically designed to
excel in these environments. Unlike conventional LLMs, which may struggle with the scale and specificity
of graph-based data, HLM-G leverages its hierarchical architecture to process such data more effectively.
This design enables HLM-G to handle the intricate details and vast data volumes more adeptly, making it
particularly suited for tasks involving extensive real-world graphs. This advantage makes HLM-G a preferred
tool for applications requiring robust and efficient graph reasoning capabilities.

E Interpretation

E.1 Interpretation Ground Truth

In the context of graph reasoning datasets, any graph can be partitioned into two distinct sets of nodes:
citical ground truth nodes, which are directly responsible for the final prediction, and non-critical nodes, which
do not influence the prediction either directly or indirectly. Due to the importance of focusing on structurally
relevant nodes, we exclude datasets such as components and edge count where each node is integral to the
final prediction. This exclusion is crucial as it allows us to experimentally investigate our model’s attention
mechanisms towards nodes that are truly significant in the reasoning process. Detailed ground truth sets for
3 link-level and 1 node-level task are described below.

Edge Existence In the edge existence task between two nodes u and v, the nodes v and v themselves are
sufficient for determining the presence of an edge, thus forming the ground truth:

GT = {u,v}

Shortest Distance For the shortest distance between nodes u and v, ground truth nodes include all nodes
lying on any shortest path. Let [be the shortest path length, then ground truth is simply union over all

these nodes:
my

GT = U{u,al,az,...,al_l,v}

i=1
where m; is the number of shortest paths.

Reachability Dataset Unlike the shortest path dataset, reachability requires consideration of all nodes in
all possible paths from u to v, including those beyond the shortest path. If n is the total number of nodes in
the graph, the ground truth set includes:

n—1 mj

GT = U U{u,ai,aé,...,aé_l,v}

j=l i=1

where m; is the number of paths of length j, 7 € {I,I+1...n—1}. This represents a more holistic understanding
of the graph’s connectivity by including paths of length [through n — 1.

Node Degree For node degree tasks focused on a single node u, the determination of degree relies solely on
its direct connections to other nodes in the graph.. The ground truth is straightforward in this case:

GT = {u}

Together, these definitions facilitate a comprehensive evaluation of our model’s capability to handle various
structural reasoning tasks, each necessitating a specific set of nodes as ground truth based on task requirements.

26

Under review as submission to TMLR

E.2 Explanation as Interpretation

It is challenging to compare interpretability performance with methods that are not interpretable or have
different interpretation formats. To achieve such comparisons, we propose to use explanations of models as
interpretations. E| However, explanations provided by explainers face their possible performance issue that
the produced explanations might not be faithful to the deep model behaviors.

This faithfulness issue requires us to first discover the most faithful explanations for the models before using
them as model interpretations. Therefore, instead of using one explainer, we adopt four explainers to select
the best explanation for each model on each dataset including Saliency (Simonyan et all [2013]), Input x
Gradient (Shrikumar et al.l [2016)), DeepLIFT (Shrikumar et al.l [2017)), and GNNExplainer (Ying et al., 2019),
where GNNExplainer can be only applied to GNNs. Specifically, we adopt Fidelity- (Yuan et al., 2023), a.k.a.,
sufficiency Fidelity (Gui et al., 2023), to measure whether an explanation provided by an explainer is faithful
to the model behavior. Formally, given N samples, Fidelity can be written as

N
. 1 . ok
Fidelity = = 2; (11(yi =yi) —1(g;" = yi))) (1)
i—
where the sample index 4 is used as subscription; 1(-) = 1 when the given condition is satisfied, otherwise, 0;
k
Q: indicates the sample ¢’s prediction result using only the top-k important nodes.

Since high Fidelity indicates that the explanation directly reflects the model behavior, the explanation can be
used as the model behavior representative. In the experiment, for each dataset and each method, we select
the explanation with the highest average Fidelity from all explainers. The Fidelity results are plotted in
Figure. 4] where Sparsity denotes the ratio 1 — k/n; thus, higher Sparsity indicates less important nodes are
used.

It is crucial to note that Fidelity results do not reflect the interpretability performance of models, they
only show the relation between the explainer and the model and are used as a principle to choose the right
explainer for each model on each dataset. With the best explanation, we use it as the interpretation of the
model to conduct interpretability comparisons mentioned in Section

E.3 Interpretation Visualization

We present the interpretation results in Figures 5] and [6] As depicted, important tokens are highlighted with
a green background. The methods under comparison are required to count the nodes connected to node 0
for making predictions. While our method accurately processes this task, BERT fails to correctly identify
the relevant node for degree counting. This discrepancy arises because node 0, consistently presented at
the beginning during training, is permuted during testing, causing BERT to misidentify its position. In
contrast, our method employs a permutation-invariant approach to graph processing, thereby preserving its
high performance during testing.

E.4 Local Block Analysis

The assessment of the node structure annotation embeddings in HLM-G reveals intriguing insights into the
model’s encoding capabilities. These embeddings, derived from 1-hop neighborhood information, prompt
an inquiry into the model’s approach to capturing such local graph structures. Specifically, we investigate
the positional and structural awareness exhibited by these embeddings, akin to the strategies employed in
GNNs and GTs, where Positional Encoding (PE) (Dwivedi et al., [2022) is a common technique for enhancing
model performance. PE assigns similar positional values to nodes in close proximity, reflecting their relative
positions within the graph.

To evaluate the positional and structural encoding prowess of HLM-G, we create over 10000 pairs of nodes
and analyze the node structure annotation embeddings generated by the lower layers of the model. By

5Note that explainers provide post explanations that can be applied to any models, while interpretations are generally
produced by the model’s specific design, a.k.a., self-interpretable model.

27

Under review as submission to TMLR

comparing these embeddings using cosine similarity, we categorize the pairs into three groups based on their
hop distance: 1-hop neighbors, 2-hop neighbors, and neighbors at 3 or more hops.

Table 14: Cosine similarity of 1-hop and 2-hop neighbors with different numbers of common
neighbors. We see that cosine similarity between 1-hop and 2-hop neighbours is quite high and keeps on
increasing with increasing number of common neighbors.

Common Neighbors ‘ 1-hop Neighbors 2-hop Neighbors

1 0.956 0.931
3 0.957 0.939
5 0.966 0.954
7 0.972 0.951
9 0.975 0.968

Table 15: Similarity for 3-hop neighbors (no common neighbors) based on the difference of
structure. The table suggests that lower block assigns similar embedding to nodes that share a common
1-hop structure.

Difference of Node Degree ‘ Cosine Similarity

0.955
0.839
0.557
0.024
-0.113
-0.129
-0.135

SO W N~ O

Table [14] and Table [L5] reveals a consistent trend in similarity: embeddings of 1-hop neighbors exhibit higher
similarity compared to those of 2-hop neighbors, and likewise for 34+ hop neighbors. Furthermore, we observe
that the number of common neighbors between two nodes significantly influences the similarity of their
embeddings. A higher number of common neighbors indicates greater positional similarity between the nodes.

In the case of 3+ hop neighbors where no common neighbors exist, we evaluate the role of structural similarity.
Here, nodes are considered similar in structure if they share a similar 1-hop neighborhood, specifically
in terms of the number of neighbors. The analysis demonstrates that the greater the difference in 1-hop
structure between nodes, the lower the similarity in their embeddings. This suggests that HLM-G effectively
encodes 1-hop neighborhood information, assigning higher similarity to nodes that are either positionally or
structurally similar.

F Ablation Studies

F.1 Pooling Mechanisms

In the process of constructing node embeddings from the outputs (Hyas, Hyyx) of the lower layer, we examine
two distinct pooling mechanisms: mean pooling and concatenate pooling.

Mean pooling employs a parameter «, which signifies the relative importance attributed to structural
information. Specifically,

Zy = POOl(HUAE,HUX) = (X * HUAE —+ (1 — O[) * HUX

Essentially, each neuron within z, encapsulates both structural and feature information. An « > 0.5 indicates
a predominance of structural information in the final prediction process, whereas o < 0.5 suggests that nodal

28

Under review as submission to TMLR

features hold greater significance.

Concatenate pooling, in contrast, yields node embeddings of doubled dimensionality by concatenating
structural and feature embeddings,

z, = Pool(Hyar, Hyx) = concat(Hyar, Hyx)

This approach integrates structural and feature vectors, thereby expanding the representational capacity of
the resultant node embeddings. The impact of various pooling ratios («) is systematically evaluated across
one node-level, link-level and graph-level real-world datasets.

Table 16: Performance comparison between mean pooling and concatenate pooling across node-
link- and graph- level datasets. 1 o implies more structural information is used for making final predictions.
Metric is Accuracy for cora and ROC-AUC for molhiv and PubMed. « = 0 implies only node features are
used for making final prediction whereas v = 1 means that predictions rely entirely on the graph’s structure.

Pooling Cora molhiv PubMed
o Node Graph Link
0.0 86.32 73.8 95.7
0.1 87.06 74.2 94.8
0.2 88.45 75.5 96.2

Mean 0.3 86.9 76.39 97.2
0.4 86.3 74.2 97.4
0.5 85.9 74.5 98.24
0.6 85.58 75.6 98.2
1.0 66.35 75.1 91.1

Concatenate - 85.35 75.1 96.6

Table [16] shows that mean pooling generally outperforms concatenate pooling, with v values between 0.1 and
0.5 delivering consistently strong results across all datasets. It’s crucial to recognize that o measures the
structural relevance in the final model. Our findings suggest that features specific to individual nodes are
more significant than broader structural characteristics, especially in citation networks such as Cora, where
« = 0.1 is optimal. Conversely, for the PubMed link dataset, an a value of 0.5 yields the best performance,
reflecting the importance of structural connections in conveying critical information about the relationships
between nodes.

F.2 Input Prompt Design

Various prompt designs can be employed to describe graph structures for language models. While the main
paper predominantly used a natural language description focusing on 1-hop neighbors (our Current Graph
Description Language, CGDL), it’s important to assess whether different prompt styles impact the model’s
performance. In this ablation study, we explore two additional prompt styles: the Adjacency List Format
(Adj-List) and Edge List Format (Edges).

Moreover, we investigate the model’s out-of-domain (OOD) capabilities under two scenarios:

o Cross-Prompt Evaluation: In this setting, models trained on one prompt design (e.g., CGDL)
are evaluated on different prompt designs (e.g., Adj-List or Edges) to test adaptability.

e Node Token Variability: We introduce OOD test sets where node identifiers are replaced with
random strings of up to four characters, simulating a situation where node tokens during inference
differ from those encountered during training.

Experimental Setup: We conducted our experiments on the Cycle graph reasoning dataset, where we
trained separate models using each of the three prompt designs—CGDL, Adj-List, and Edges. Each model

29

Under review as submission to TMLR

was trained independently using the respective prompt format to ensure it could learn the graph structures
as described by that particular design. Following training, these models were evaluated on all three prompt
formats, as well as their OOD versions with altered node tokens, resulting in a comprehensive assessment of
both in-domain and out-of-domain performance. This setup allowed us to rigorously test the adaptability
and robustness of our model under varying prompt styles and node token representations.

Table 17: In-domain and Out-of-domain performance analysis across different prompt styles and
node token variations on cycle dataset. Performance is measured as accuracy (%).

Training \Testing CGDL Adj-List Edges CGDL-OOD Adj-List-OOD Edges-OOD

CGDL 99.5% 52.5% 54.1% 96.0% 51.9% 53.6%
Adj-List 93.2% 98.5% 74.2% 73.2% 94.2% 66.5%
Edges 94.5% 86.0% 99.0% 89.5% 78.1% 98.7%

Key Observations:

1. Strong In-Domain Performance: The diagonal entries in Table [17] (99.5%, 98.5%, and 99.0%)
indicate that each model performs exceptionally well when evaluated using the same prompt style
as the one it was trained on, demonstrating strong in-domain performance. This suggests that our
model is capable of effectively learning graph structures regardless of the chosen prompt style.

2. Resilience to Node Token Variability: When examining the OOD results where node tokens
were changed (CGDL-OOD, Adj-List-OOD, Edges-O0D), each model retained considerable accuracy
compared to its in-domain results. For example, the model trained on the Edges format maintained a
high performance of 98.7% in the Edges-OOD setting. This suggests that the model is robust against
variations in node tokens and can maintain its graph structure understanding even when faced with
different node representations.

3. Superior Generalization with Edge Descriptions: The model trained with the Edges format
demonstrated remarkable generalization ability across both cross-prompt settings and OOD scenarios.
It achieved high accuracy when tested on different prompt designs (e.g., 94.5% on CGDL and 86.0%
on Adj-List), and similarly performed well even when node tokens were altered. This indicates that
training on the Edges format enables the model to adapt more effectively to variations in graph
description languages and node representations, making it a versatile choice for different graph tasks.

Overall, this ablation study on input prompt design reveals that our model can handle different input prompt
designs and adapt to node token variations, showcasing its strong generalizability and robustness in capturing
graph structures across diverse graph description languages.

F.3 Local Block Design

In this section, we examine different architectural approaches for the local block of our model, focusing
on how structure and node features are processed. Traditionally, these features are handled hierarchically,
meaning they are processed independently from each other. The input to the hierarchical design lower block
is structured as follows:

Uc = (concat(U;X, UF), concat(Us*, Us*F), . . ., concat(U;S , UAF), Ug)

This approach employs a single lower block, My, which processes the concatenated features hierarchically.

Following the hierarchical model, we introduce a double hierarchical design, which further divides the handling
of node and structural features. In this enhanced setup, we implement two distinct lower blocks: My, for
node features and My, for structural features. The input for this double hierarchical design is given by:

Ug = concat(UAEv, UX vy, -, UAEv,, UXv,, Qa)

30

Under review as submission to TMLR

Table 18: Comparison of Model Performance by Design Configuration. Accuracy is used as the
metric. This table presents performance metrics across different datasets, distinguishing between Hierarchical
and Double Hierarchical design models.

Double Hierarchical Design Hierarchical Design
Dataset | Type | 1 Lower Block 2 Lower Blocks 1 Lower Block
Pubmed | Node 94.25 93.9 92.9
Cora Node 87.8 88.3 86.1
WN18RR | Link 97.6 97.5 97.3

This arrangement allows each lower block to specialize, thereby enhancing their processing capabilities on
their respective feature types.

From Table we note a slight performance advantage with the double hierarchical design. This design
enables the model to more effectively differentiate between node features and structural elements, as these
are processed independently in the input, leading to improved performance. The double hierarchical design
exhibits comparable results whether using one or two lower blocks. Given the similar performance outcomes,
we opt for a single lower block due to its lower parameter count—using two blocks would nearly double the
parameters from 86M to 150M. Therefore, in scenarios where parameter efficiency is critical, the double
hierarchical design with a single lower block is preferable.

G Limitations, Challenges, and Perspectives

G.1 Limitations

The most significant limitation of our current methodology lies in its lack of zero- and few-shot learning
capabilities. Recent advancements in Large Language Models (LLMs) have shown exceptional proficiency in
zero- and few-shot scenarios, suggesting an urgent need for research aimed at integrating these capabilities
into our approach. An initial attempt to address this, described in Appendix involves using our model
as an encoder coupled with a powerful LLM decoder through prefix tuning. While this approach enhances
fine-tuning efficacy, it falls short in generalizing few-shot abilities.

Powerful decoder based LLMs can be used in the future leveraging a similar local to global architecture (using
similar attention masks). Earlier layers can be set to focus on tokens of the same node (mimicking intra-node
attention). Due to the Causal attention used in decoder LLMs, the last token in every node’s description can
be either directly be used as the node token in upper block or after pooling with other tokens of same node,
mimicking inter-node attention. However, more research is needed and we leave this to future work.

G.2 Challenges

A notable challenge in enhancing our model involves rethinking the attention mechanisms employed in LLMs.
Our model benefits from a unique local and global attention scheme, which could inform modifications to the
attention masks in LLMs. For example, adapting Transformer block architectures within LLMs to split the
layers into two distinct blocks—one focusing exclusively on prior tokens of the current node (lower block) and
the other emphasizing a single embedding for every node (upper block)—could be a strategy. However, this
structural modification is complex to code and train on LLMs, and it demands substantial computational
resources and algorithmic innovation.

G.3 Perspectives

Hybrid models that combine the structure analysis of Graph Neural Networks (GNNs) with the language
skills of Large Language Models (LLMs) show great promise for creating stronger systems. These models use
the broad abilities of LLMs to work well across different areas, helping to overcome the specific limitations of

31

Under review as submission to TMLR

traditional GNN architectures. Such models are suited for a wide range of graph-related tasks in real-world
settings, compensating for the limitations of GNNs, which usually have only a few million parameters and
don’t always perform consistently across different fields. This issue highlights the need for better encoding
mechanisms that can represent graph data effectively, whether it’s for knowledge graphs, molecular structures,
or social networks.

Despite increasing interest and some early successes, there are still major challenges, especially in making
these models work well across very different areas. Most current research focuses on node classification tasks,
which don’t fully show what these hybrid models can do in broader applications. Additionally, tests of these
models on various graph reasoning tasks are rare, and the results haven’t yet shown major breakthroughs.
This points to a clear need for more focused research to truly understand these models’ abilities to interpret
complex structures, identifying it as a key area for future developments.

In conclusion, while our model introduces innovative solutions to graph data analysis, the path forward
involves addressing its scalability to zero-shot learning, enhancing its integration with LLM architectures, and
expanding its adaptability to diverse and complex graph structures. These developments will not only advance
the theoretical foundations of graph neural networks but also expand their applicability and effectiveness in
practical scenarios.

32

Under review as submission to TMLR

Shortest Distance - HLM-G (Ours)

1.0 1.0
08 \\ 0.8
5. 0.6 5. 0.6
© ©
o o
04 = 0.4
02 —— Saliency 0.2
—— Input x Gradient
—— DeepLIFT
0.0 0.0
0.5 0.6 0.7 0.8 0.9
Sparsity
Reachability - HLM-G (Ours)
1.0 1.0
—— Saliency 1
—— Input x Gradient
0.8 —— DeepLIFT 0.8
>0.6 5. 0.6
£ £
o o
kel °
0.4 0.4
0.2 0.2
0.0 0.0
0.5 0.6 0.7 0.8 0.9
Sparsity
Edge Existence - HLM-G (Ours)
1.0 1.0
R R I
08 \J 0.8
5. 0.6 5. 0.6
©]
Re} ke}
S04 0.4
02 —— Saliency 0.2
—— Input x Gradient
—— DeepLIFT
0.0 0.0
0.5 0.6 0.7 0.8 0.9
Sparsity
Node Degree - HLM-G (Ours)
1.0 1.0
—— Saliency
—— Input x Gradient
0.8 —— DeepLIFT 0.8
. 0.6 5. 0.6
= £
o o
o o
04 =04
0.2 0.2
0.0 0.0
0.5 0.6 0.7 0.8 0.9
Sparsity

Shortest Distance - BERT

—— Saliency
—— Input x Gradient
—— DeepLIFT

0.6 0.7 0.8 0.9

Sparsity
Reachability - BERT

0.5

—— Saliency
—— Input x Gradient
—— DeepLIFT

0.6 0.7 0.8 0.9

Sparsity

0.5

Edge Existence - BERT

—— Saliency
—— Input x Gradient
—— DeepLIFT

0.7 0.9

Sparsity
Node Degree - BERT

e
—— Saliency
—— Input x Gradient
—— DeepLIFT

0.5 0.6 0.8

0.7 0.8

Sparsity

0.5 0.6

0.9

Shortest Distance - GIN

1.0
0.8
>.0.6
=
kel
T 0.4 \
—— Saliency
02 Input x Gradient
—— DeepLIFT
—— GNNExplainer
0.0
0.5 0.6 0.7 0.8 0.9
Sparsity
Reachability - GIN
1.0 =
0.8
£
]
k=]
“ 04
—— Saliency
02 Input x Gradient
—— DeepLIFT
—— GNNExplainer
0.0
0.5 0.6 0.7 0.8 0.9
Sparsity
Edge Existence - GIN
1.0
0.8
5. 0.6
=
kel
“04
—— Saliency
02 Input x Gradient
—— DeepLIFT
—— GNNExplainer
0.0
0.5 0.6 0.7 0.8 0.9
Sparsity
Node Degree - GIN
1.0
—— Saliency
—— Input x Gradient
0.8 —— DeepLIFT
GNNExplainer
> 0.6
=
o
kel
“ 04
0.2
0.0
0.5 0.6 0.7 0.8 0.9
Sparsity

Figure 4: Fidelity results. This figure measures the faithfulness of 4 explainers to 3 models using Fidelity
scores across different Sparsities. Results should be compared across different explainers within the same

dataset and method.

33

Under review as submission to TMLR

Legend: B Negative O Neutral @ Positive
True Predicted Attribution Attribution
Label Label Label Score

Word Importance
node [@lis connected to nodes 15, 27 , 32 and 37 §
node 1 is connected tonodes 2 ,5,6,8, 13, 24 and 36 .
node 2 is connected to nodes 1,5, 22, 24 and 38 .
node 3 is connected to nodes 8, 13,19, 23 and 29.
node 4 is connected to node 27 .
node 5 is connected to nodes1,2,8,12,16,17,27, 30, 31 and
37.
node 6 is connected to nodes 1 and 18 .
node 7 is connected to nodes 10, 14, 22 and 26 .
node 8 is connected tonodes1,3,5,11, 14,23 and 30 .
node 9 is connected to nodes 21 and 34 .
node 10 is connected to nodes 7, 12,15, 17,33 and 35 .
node 11 is connected to nodes 8, 24 and 26 .
node 12 is connected to nodes 5, 10, 22 and 30 .
node 13 is connected to nodes 1, 3, 22 and 23 .
node 14 is connected to nodes 7,8, 18, 19 and 27 .
node 15 is connected to nodes 0, 10, 22, 26, 34 and 37 .
node 16 is connected to nodes 5, 19, 32 and 36 .
node 17 is connected to nodes 5, 10, 22, 27 and 34 .
node 18 is connected to nodes 6, 14 and 32 .
node 19 is connected to nodes 3, 14, 16, 22, 24 and 30 .
node 20 is connected to nodes 22, 27, 28, 31 and 32 .
node 21 is connected to nodes 9 and 25 .
node 22 is connected to nodes 2,7 ,12,13,15,17,19, 20, 23,
24,32 and 34 .
node 23 is connected to nodes 3, 8, 13, 22 and 34 .
node 24 is connected to nodes 1,2, 11, 19 and 22 .
node 25 is connected to node 21 .
node 26 is connected to nodes 7, 11, 15 and 37 .
node 27 is connected to nodes 0,4 ,5, 14,17 and 20 .
node 28 is connected to node 20 .

a 4(0.77) a 7.33

node 29 is connected to node 3 .

node 30 is connected to nodes 5, 8, 12 and 19.

node 31 is connected to nodes 5 and 20 .

node 32 is connected to nodes 0, 16, 18, 20 and 22 .
node 33 is connected to nodes 10 and 38 .

node 34 is connected to nodes 9, 15,17 ,22,23 and 38.
node 35 is connected to node 10 .

node 36 is connected to nodes 1 and 16 .

node 37 is connected to nodes 0, 5, 15, 26 and 38 .
node 38 is connected to nodes 2, 33, 34 and 37 .
what is the degree of node 0 7

Figure 5: Interpretation visualization of HLM-G (ours) on the node degree dataset.

34

Under review as submission to TMLR

Legend: B Negative O Neutral @ Positive
True Predicted Attribution Attribution
Label Label Label Score

Word Importance
node 0 is connected to nodes 15, 27, 32 and 37 .
node 1 is connected tonodes 2 ,5,6,8, 13, 24 and 36 .
node 2 is connected to nodes 1, 5,22, 24 and 38 .
node 3 is connected to nodes 8,13, 19, 23 and 29.
node 4 is connected to node 27 .
node 5 is connected tonodes 1,2 ,8,12,16,17,27,30, 31
and 37 .
node 6 is connected to nodes 1 and 18 .
node 7 is connected to nodes 10, 14, 22 and 26 .
node 8 is connected tonodes 1,3,5,11, 14,23 and 30.
node 9 is connected to nodes 21 and 34 .
node 10 is connected to nodes 7,12, 15, 17,33 and 35 .
node 11 is connected to nodes 8, 24 and 26 .
node 12 is connected to nodes 5, 10, 22 and 30 .
node 13 is connected to nodes 1, 3, 22 and 23.
node 14 is connected to nodes 7, 8, 18, 19 and 27 .
node 15 is connected to nodes 0, 10, 22, 26, 34 and 37 .
node 16 is connected to nodes 5, 19, 32 and 36 .
node 17 is connected to nodes 5, 10, 22, 27 and 34 .
node 18 is connected to nodes 6, 14 and 32 .
node 19 is connected to nodes 3, 14,16, 22, 24 and 30 .
node 20 is connected to nodes 22, 27,28, 31 and 32 .
node 21 is connected to nodes 9 and 25 .
node 22 is connected to nodes 2,7,12,13,15,17,19, 20,23,
24,32 and 34 .
node 23 is connected to nodes 3, 8, 13, 22 and 34 .
node 24 is connected tonodes 1,2, 11,19 and 22 .
node 25 is connected to fgdel21 |
node 26 is connected to nodes 7, 11, 15 and 37 .
node 27 is connected to nodes 0, 4,5, 14,17 and 20 .
node 28 is connected to node 20 .

a 4 (1.00) a 3.21

node 29 is connected to node 3 .

node 30 is connected to nodes 5, 8, 12 and 19 .
node 31 is connected to nodes 5 and 20 .

node 32 is connected to nodes 0, 16 , 18, 20 and 22 .
node 33 is connected to nodes 10 and 38 .

node 34 is connected to nodes 9, 15,17 ,22,23 and 38..
node 35 is connected to node 10 .

node 36 is connected to nodes 1 and 16 .

node 37 is connected to nodes 0,5, 15, 26 and 38 .
node 38 is connected to nodes 2, 33, 34 and 37 .
what is the degree of node 0 ?

Figure 6: Interpretation visualization of BERT on the node degree dataset.

35

	Introduction
	Background and Related Work
	Hierarchical Language Model Design
	Natural Language Descriptions of Graphs
	The Local Block
	Pooling Layer
	The Global Block

	Experiments
	Structure Understanding Capabilities over Graph Reasoning Datasets
	Quantitative Comparisons.
	Evaluation of Model Robustness.

	Interpretability Comparisons
	Explainer-based Interpretation
	Intrinsic Attention Interpretation

	Graph Learning Ability on Real-World Datasets.

	Conclusions and Discussions
	Broader Impacts
	Further Related Works
	Experiment Details
	Details about the Datasets
	Graph Reasoning
	Real world datasets

	Training and Optimization Settings
	Software and Hardware

	Additional Experiment Results
	Downstream Task Performance
	Generation tasks
	Computational Efficiency

	Interpretation
	Interpretation Ground Truth
	Explanation as Interpretation
	Interpretation Visualization
	Local Block Analysis

	Ablation Studies
	Pooling Mechanisms
	Input Prompt Design
	Local Block Design

	Limitations, Challenges, and Perspectives
	Limitations
	Challenges
	Perspectives

