
Masala Mamu : Agentic AI Kitchen Assistant
Barani Ranjan Sa,b, Brijgopal Bharadwaja,b, M Chandan Kumar Raoa,b, Shunmuga Janani Aa,b and Siva Sa,b

aDivision of Interdisciplinary Sciences
bIndian Institute of Science, Bangalore

Abstract. Modern households struggle with kitchen management
tasks like grocery tracking, meal planning, and dietary monitor-
ing. We present Masala Mamu, an AI-powered kitchen assistant
using a multi-agent system to integrate these functions. A cen-
tral Router Agent delegates tasks to specialized agents: Inventory
Manager (tracks ingredients), Price Comparison Agent (finds deals
across vendors), Recipe Generator (suggests meals based on in-
ventory), and Health & Diet Agent (monitors nutrition). Built on
LangChain/LangGraph with multimodal capabilities, the system of-
fers an integrated approach to meal planning and grocery shopping
optimized for Indian dietary preferences and e-commerce landscape.

Project Code: https://github.com/chandanraoiisc/
masala-mamu-agent-ai

1 Introduction

Maintaining a balanced diet while managing costs presents signifi-
cant challenges. Existing solutions separately address nutrition track-
ing, recipe generation, or price comparison, creating fragmented
experiences. Masala Mamu integrates these functions for the In-
dian context, where diverse dietary preferences and a complex e-
commerce landscape complicate decision-making.

Key contributions include:
• A multi-agent routing architecture for specialized task delegation
• A recipe generation system that considers inventory and dietary

preferences
• A nutrition analysis system with macro-nutrient breakdown capa-

bilities
• A price comparison agent for major Indian e-commerce platforms
• Vision-based inventory management with semantic search
• Real-time nutrition tracking dashboard with personalized insights

2 System Architecture

2.1 Multi-Agent Architecture

Masala Mamu uses specialized agents coordinated by a central
router:
• Routing Agent: Directs workflows based on query intent and task

state
• Recipe Agent: Generates meal suggestions based on inventory,

dietary, and cuisine preferences
• Nutrition Agent: Processes food queries and provides nutritional

data
• Price Agent: Finds best grocery deals across e-commerce plat-

forms

User Interface

Routing Agent

Nutrition Agent Inventory Agent Price Comparison

Response Generator

Figure 1. Multi-agent system architecture

• Inventory Agent: Manages kitchen ingredients database
• Response Generator: Creates cohesive responses from agent out-

puts
LangGraph orchestration enables complex multi-domain queries

like "What’s the most cost-effective high-protein vegetarian meal?"

2.2 Technology Stack

• LLMs: OpenAI, Gemini, GitHub Marketplace Models
• Framework: LangChain/LangGraph for orchestration
• Frontend: Streamlit for UI and visualizations
• Storage: SQLite (nutrition), MongoDB (inventory)
• Vision: GPT-4o for ingredient recognition
• Embeddings: Sentence-transformers for semantic search
• Scraping: Custom tools for e-commerce price comparison

3 Key Components
3.1 Routing Engine

The LangGraph router flow powers the system’s execution logic. An
IntentParser using GPT extracts query intents, key entities, and de-
termines agent sequencing. The router, the entry point for queries,
tracks required and completed agents to select the next one to acti-
vate.



Each agent functions as a node in the graph, processing its special-
ized task before updating the state and returning control to the router.
This creates a conditional execution flow based on user intent that in-
vokes the response generator when complete. This modular approach
ensures goal-driven execution and easy extensibility.

3.2 Nutrition Analysis System

The nutrition analysis component provides macro-nutrient informa-
tion through an LLM-powered approach with search augmentation
for up-to-date data:

Algorithm 1 Nutrition Analysis Workflow
1: Parse query (recipe vs. ingredients)
2: Initialize LLM with nutrition prompt
3: Perform web search for nutrition data
4: Extract structured data with Pydantic
5: Store in SQLite database with timestamp
6: Generate visualizations of trends

Key technical features include:
• Search Augmentation: Custom DuckDuckGo wrapper for nutri-

tion data retrieval
• Source Tracking: Attribution system for data provenance and

transparency
• Cooking Method Awareness: Adjusts nutrition based on cooking

techniques
• Structured Data Models: Pydantic models (MacroNutrient, In-

gredientNutrition)
• Indian Cuisine Support: Regional ingredient recognition and

unit conversion
The relational SQLite database enables historical analysis with

per-ingredient breakdowns, supporting comprehensive analytics
through the dashboard interface.

3.3 Price Comparison Engine

The price comparison engine scrapes real-time pricing from Indian e-
commerce platforms (BigBasket, BlinkIt, Zepto, JioMart) using cus-
tom tools and suggests alternatives based on price and nutritional
similarity. Data is presented comparatively for informed purchasing
decisions.

3.4 Kitchen Inventory Management

The inventory management module tracks groceries and quantities
using:
• GPT-4o vision for identifying groceries from images and bill re-

ceipt
• Vector embeddings for semantic search capabilities

In MongoDB, Inventory collection has ItemNm and it’s corre-
sponding quantity with its stored on date as fields. Along with this,
an embedding field is also added with the embedded ItemNm in 384
dim vector space. A vector search index is generated on this embed-
ding field in MongoDB. The vector search index is used as the vector
store in RAG pipeline.

Users can upload grocery photos or receipts for automatic item
detection, with review options before database addition. The RAG-
based query system enables natural language inventory questions like
"What ingredients do I have for pasta?" or "Which vegetables will
expire soon?"

3.5 Recipe Generation Service

The recipe generation service provides intelligent dish recommen-
dations tailored to available ingredients and user preferences. Key
features include:
• User Preferences Support: Accounts for dietary restrictions

(e.g., vegan, gluten-free) and preferred cuisine types (e.g., Italian,
Indian) to generate personalized recipes

• Structured Response: Returns recipes in a consistent JSON for-
mat, including ingredient quantities and step-by-step instructions

• Inventory Integration: Leverages available ingredient data to
recommend practical, waste-reducing meal options

• Missing Ingredient Identification: Assists the router agent in de-
tecting any missing ingredients and passes this information to the
price comparison service, which then recommends the most cost-
effective platforms for purchasing them
The service uses prompt engineering to ensure contextually rele-

vant, structured recipe outputs. Integration with inventory and shop-
ping services simplifies meal planning while supporting dietary
needs and budget-conscious decisions.

3.6 Nutrition Analytics Dashboard

The Plotly-powered nutrition dashboard provides detailed nutritional
insights through:
• Macro-nutrient Tracking:

– Multi-panel time-series of calories, protein, carbs, and fat
– Configurable date ranges (7-90 days) with target value indica-

tors
• Nutritional Balance:

– Macro-nutrient distribution pie charts with ratio analysis
– Caloric source breakdown with percentage calculations

• Interactive Features:
– Customizable nutritional targets and data filtering
– Export options for reports and multi-user support
– Consistency tracking to identify gaps in nutrition records
Built with Streamlit and connected directly to the SQLite database,

the dashboard dynamically updates charts based on the latest nutri-
tion data, providing immediate visual feedback on dietary patterns
and trends.

4 Implementation Details
4.1 Nutrition Agent Implementation

The nutrition agent uses LangChain’s framework with:
• System Prompt: Specialized prompt with structured output re-

quirements and explicit guidance on nutrition analysis
• Function-Calling Architecture: OpenAI functions with custom

NutritionSearchTool for ingredient and recipe queries
• Data Models: Pydantic models (MacroNutrient, IngredientNutri-

tion, RecipeNutrition) for structured data handling
• Processing Pipeline: Query classification, web search, data con-

solidation, and unit normalization
Router integration is handled through a NutritionAgentRouter

class that manages intent detection, conversation context, and struc-
tured responses compatible with the response generator.

Data extraction features include:
• Optimized search queries for nutrition databases
• LLM-based extraction from semi-structured content
• Unit conversion for international and Indian measurements



• Error handling with fallback mechanisms
The implementation stores both raw and processed data for au-

ditability while providing accurate nutrition information with source
citations.

4.2 Database Schema

The Nutrition-Agent SQLite database includes three key tables:
• nutrition_inquiries: Query metadata with timestamps and user

identifiers
• nutrition_records: Recipe/ingredient macro-nutrient data with

foreign keys to inquiries
• ingredient_records: Detailed per-ingredient nutrition with stan-

dardized units
This relational design enables time-series analysis of nutrition

patterns, per-ingredient nutritional impact assessment, data integrity
through foreign key constraints, and optimized queries for dashboard
visualizations. Database utility functions abstract complex queries
while maintaining performance with large datasets spanning months
of nutrition records.

4.3 Routing Logic

The routing logic is implemented using LangGraph, starting at a
router node that evaluates the state and determines the next agent
to activate.
1. Router Initialization: Defined as a conditional edge that routes

based on required_agents and completed_agents.
2. Agent Registration: Agents are added as nodes with async han-

dlers to process input and return updated state.
3. Looping Execution: After each agent runs, control returns to the

router to evaluate the next step.
4. State Management: Agents append themselves to com-

pleted_agents and add structured outputs (e.g., recipe_data, inven-
tory_data).

5. Extensibility: New agents can be added without modifying router
logic—only update the IntentParser.

4.4 Response Generator

The ResponseGeneratorAgent reads the current state and parsed
intent to understand the user’s query and the agents involved in
processing it. Based on this, it selectively parses outputs such as
recipe_data, inventory_data, shopping_data, and health_data, de-
pending on which agents were used.

It constructs a structured response tailored to the user’s request by
including only the relevant sections—e.g., a recipe if the user asked
for one, or nutritional data if health advice was sought. This ensures
precision and relevance in the system’s responses while maintaining
a cohesive user experience across multiple agent interactions.

5 Evaluation
The system was evaluated on several dimensions:

5.1 OCR and Image Recognition Accuracy

Used OCR Readers for reading the grocery bills and handwrit-
ten texts, easyOCR as a standalone detected meaningless vegetable
names by combining texts, easyOCR with an embedding pipeline to
extract just vegetables and fruits, worked better, but still had issues

with image noise and handwritten texts. Gpt-4O performed much
better with very low WER and CER as shown in Table 1. A dataset
of synthetic bills with handwritten text format and noisy images are
generated and used for this comparison.

Model WER (D1) CER (D1) WER (D2) CER (D2) WER (D3) CER (D3)
GPT-4o 0.1182 0.0745 0.1044 0.0583 0.0880 0.0577
EasyOCR + Embedding Pipeline 0.5508 0.3751 0.5580 0.3839 0.5586 0.3819

Table 1. Comparison of OCR accuracy using Word Error Rate (WER) and
Character Error Rate (CER) metrics

Similarly, a dataset of different vegetables is crawled from web for
comparing different models for image detection. A clip model using
a small patch and large patch of openAI Vit pretrained model is com-
pared with gpt-4O. Clip model with large patch performed much bet-
ter with higher accuracy but failed in distinguishing alike items eg:
Peas vs Beans. Gpt-4o performed with full accuracy in identifying
individual as well as group of vegetables which are declutterred. Ta-
ble 2 shows the comparison of accuracy metrics for different models
on these datasets.

Model Dataset 1 Dataset 2 Dataset 3
CLIP (ViT-B/32, small patch) 0.72 0.82 0.81
CLIP (ViT-L/14, large patch) 0.92 0.93 0.94
GPT-4o (Vision + Multimodal) 0.97 0.97 0.98

Table 2. Comparison of image recognition accuracy across different
models and datasets

5.2 Recipe Generation Accuracy

Recipe generation capabilities were evaluated across four large lan-
guage models on three datasets of varying complexity and cuisine
types. As shown in Table 3, smaller, well-optimized models outper-
formed larger ones in this specialized domain.

Model Dataset 1 Dataset 2 Dataset 3
xai/grok-3-mini 0.99 0.95 0.96
mistral-ai/Ministral-3B 0.97 0.93 0.94
meta/Meta-Llama-3.1-70B-Instruct 0.68 0.64 0.70
microsoft/Phi-3.5-MoE-instruct 0.99 0.97 0.96

Table 3. Comparison of recipe generation accuracy across different LLMs
and datasets

Both xai/grok-3-mini and microsoft/Phi-3.5-MoE-instruct demon-
strated exceptional accuracy (above 0.95) across all datasets.
The mistral-ai/Ministral-3B model also performed well with
slightly lower but reliable scores. Surprisingly, the significantly
larger meta/Meta-Llama-3.1-70B-Instruct model showed substan-
tially lower accuracy (0.64–0.70), indicating that architecture spe-
cialization and training optimization are more important than model
size for domain-specific tasks like recipe generation.

6 Conclusion & Future Work
Masala Mamu demonstrates the effectiveness of multi-agent kitchen
assistance, combining nutrition awareness with price optimization in
a unified interface. The modular architecture enables future expan-
sion.

Future work:



• Enhanced image recognition for receipts/food photos
• Nutrition-goal-based recipe recommendations
• Long-term dietary pattern analysis
• Meal planning and grocery delivery integration

References
[1] LangChain Framework Documentation, 2023.
[2] LangGraph: Graph-based Multi-agent Orchestration, 2024.
[3] Streamlit: The fastest way to build data apps, 2022.
[4] Confident AI, "LLM Evaluation Metrics", https://documentation.

confident-ai.com/llm-evaluation/metrics/create-locally, 2023.
[5] GitHub Marketplace Models, https://github.com/marketplace/models,

2024.



Individual Contributions

Barani Ranjan S

Master of Technology (Online) - DSBA
Led the overall architecture and system design of the Kitchen

Assistant, adopting a modular, agent-based approach using Lang-
Graph. Developed the core LangGraph orchestration layer to coor-
dinate multiple specialized agents through a well-defined execution
flow, including a custom workflow orchestrator, a robust router node
for intelligent agent routing, and standardized agent and state models
to ensure consistent communication across components.

Implemented the IntentParser for understanding user queries and
dynamically constructing the agent workflow. Created the Respon-
seGeneratorAgent to synthesize outputs from multiple agents into a
concise and context-aware final response. Beyond core orchestration,
integrated teammates’ independent agents into the unified workflow,
adapting their implementations to fit seamlessly within the Lang-
Graph structure. Built and deployed a scalable and reliable FastAPI
backend, ensuring smooth interaction between users and the agentic
pipeline.

Brijgopal Bharadwaj

Master of Technology (Online) - DSBA
Developed the nutrition-agent module as a cornerstone of the

kitchen assistant system, creating an LLM-based agent that accu-
rately breaks down nutritional content of recipes and ingredients. De-
signed a system that searches the web for up-to-date nutrition data
using DuckDuckGo and structures this information using Pydantic
models. Implemented a SQLite database to store past queries, en-
abling users to track nutritional habits over time, visualized through
Matplotlib charts and a Streamlit dashboard.

Enhanced system flexibility to work with different LLM providers
(supporting OpenAI, GitHub Copilot, and Groq). Implemented ad-
vanced features such as cooking method awareness in nutrition cal-
culations, comprehensive error handling, logging, and a functional
CLI. Created a router integration layer for smooth communication
with other agents. Additionally, coordinated team efforts for the final
LaTeX report, helping with formatting and condensing contributions
within the page limit.

M Chandan Kumar Rao

Master of Technology (Online) - DSBA
Developed a Multi-Platform Price Comparison Agent that

searches and compares prices for groceries and household items
across major Indian e-commerce platforms including BigBasket,
Blinkit, Zepto, and Swiggy Instamart, using LangChain technolo-
gies. Built a standalone Price Comparison MCP server architec-
ture that integrates with the chatbot frontend, leveraging Streamlit,
LangChain, and LangGraph technologies.

Created a feature-rich chatbot frontend with integrated text-to-
speech capabilities using Google TTS, voice-to-text functionality,
and dynamic chart visualization. These features enhanced the user
experience by providing multiple interaction modalities and clear vi-
sual representation of price comparisons. Additionally, made signifi-
cant contributions to the overall system design and project documen-
tation.

Shunmuga Janani A

Master of Technology (Online) - DSBA
Developed the inventory agent by creating a MongoDB instance

with vector search capabilities. Utilized Sentence Transformer for
embedding the ItemNm key field and enabled vector search index-
ing in MongoDB for the embedding field. Created CRUD operation
functions and implemented a RAG framework with an LLM agent
for generating responses based on the RAG retrieved context.

Enhanced the system with image processing capabilities using
GPT-4o to read images and receipts, extracting groceries with cor-
responding quantities. Implemented a Human-In-Loop confirmation
process before updating inventory. Conducted comparative analysis
of OCR and image recognition models using artificially generated
bills and vegetable images, ensuring selection of the most effective
model for the system’s vision components.

Siva S

Master of Technology (Online) - DSBA
Developed a structured LLM-based cooking assistant by integrat-

ing open-source models from the GitHub Models Marketplace us-
ing LangChain. Engineered prompt templates capable of conditional
reasoning and JSON-formatted responses, applying techniques such
as few-shot prompting, chain-of-thought reasoning, and instruction
tuning to improve generalization and reliability. Built an evaluation
pipeline using DeepEval with a custom wrapper for GitHub-hosted
models, enabling automated benchmarking on the RecipeDataset us-
ing answer relevancy metrics.

Explored retrieval-augmented generation with DuckDuckGo-
based context injection, later deprioritizing it after observing suffi-
cient generalization from the base LLM. Experimented with inject-
ing real-time ingredient availability as contextual input, retrieved via
semantic vector search over a MongoDB Atlas database. Initially fed
this inventory context directly into the recipe generation chain, but
later correctly rerouted it through a dedicated router agent to sup-
port modular, agentic flow orchestration. Encapsulated the evalua-
tion workflow into a reusable framework for scalable testing across
diverse models and domains.



Appendix
Project Images

Figure 2. System interface visualization

Figure 3. User interaction flow diagram

Figure 4. Agent communication network

Figure 5. Macro-nutrient distribution visualization

Figure 6. Nutrition trends over time


