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Abstract

LiDAR-based 3D panoptic segmentation often
struggles with the inherent sparsity of data from
LiDAR sensors, which makes it challenging to
accurately recognize distant or small objects. Re-
cently, a few studies have sought to overcome
this challenge by integrating LiDAR inputs with
camera images, leveraging the rich and dense tex-
ture information provided by the latter. While
these approaches have shown promising results,
they still face challenges, such as misalignment
during data augmentation and the reliance on post-
processing steps. To address these issues, we pro-
pose Image-Assists-LiDAR (IAL), a novel multi-
modal 3D panoptic segmentation framework. In
IAL, we first introduce a modality-synchronized
data augmentation strategy, PieAug, to ensure
alignment between LiDAR and image inputs from
the start. Next, we adopt a transformer decoder to
directly predict panoptic segmentation results. To
effectively fuse LiDAR and image features into
tokens for the decoder, we design a Geometric-
guided Token Fusion (GTF) module. Addition-
ally, we leverage the complementary strengths of
each modality as priors for query initialization
through a Prior-based Query Generation (PQG)
module, enhancing the decoder’s ability to gen-
erate accurate instance masks. Our IAL frame-
work achieves state-of-the-art performance com-
pared to previous multi-modal 3D panoptic seg-
mentation methods on two widely used bench-
marks. Code and models are publicly available at
https://github.com/IMPL-Lab/IAL.git.

1Singapore University of Technology and Design (SUTD)
2Institute for Infocomm Research (I2R), A*STAR, Singapore. Cor-
respondence to: Na Zhao <na zhao@sutd.edu.sg>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
3D Panoptic segmentation simultaneously assigns semantic
labels and identifies distinct instances, effectively unifying
3D semantic (Zhao et al., 2021; Xu et al., 2023b) and in-
stance (Li & Zhao, 2024) segmentation to provide a holistic
understanding of the scene. This task is particularly crucial
for real-world applications, such as dynamic object track-
ing (Yang et al., 2023) and autonomous driving (Hong et al.,
2021; Cao et al., 2024). LiDAR is an indispensable sensor
for perceiving the 3D world, with its LiDAR point cloud
typically serving as the sole input for 3D panoptic segmenta-
tion (Razani et al., 2021; Zhou et al., 2021; Li et al., 2022a).
However, LiDAR inherently faces limitations in detecting
small or distant objects due to its radial emission pattern,
which results in sparse returns along each laser ray (Li et al.,
2022b). Consequently, entities that are small or located at a
distance may not receive sufficient information. In contrast,
camera images provide denser and more detailed represen-
tations, effectively compensating for the sparsity in LiDAR
data, particularly in these challenging scenarios.

This complementary nature has motivated the use of
multi-modal information for enhanced panoptic segmen-
tation. Recently, LCPS (Zhang et al., 2023) and Panoptic-
FusionNet (Song et al., 2024) have pioneered LiDAR-and-
image fusion methods for multi-modal 3D panoptic segmen-
tation. However, these methods only perform augmentation
on the LiDAR side, leading to misalignment between the
two modalities. This misalignment hinders effective inte-
gration of information from both modalities, causing the
models to rely predominantly on LiDAR data, rather than
fully utilizing both LiDAR and image data. Moreover, the
prediction heads in LCPS and Panoptic-FusionNet do not
directly predict 3D panoptic segmentation results. Instead,
they use a post-processing strategy that involves clustering
instances after semantic segmentation (Zhou et al., 2021).
This strategy presents two issues: 1) The post-processing
step is inefficient and limits the effectiveness of segmenta-
tion by relying on preliminary results; 2) Their convolution-
based prediction heads rely on local context, which may be
suboptimal for panoptic segmentation as it requires global
context for accurate predictions.

To address the first limitation, we propose a modality-
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synchronized augmentation strategy – PieAug. PieAug
ensures that the augmentation of multi-view images is syn-
chronized with the augmentation of their corresponding
LiDAR pairs, enabling well-aligned and enriched LiDAR
and image inputs. Notably, PieAug is a general multi-modal
data augmentation strategy designed for outdoor segmen-
tation tasks. Its LiDAR-specific augmentation can be seen
as a generalization of existing point cloud augmentation
techniques, e.g., instance augmentation (Zhou et al., 2021),
PolarMix (Xiao et al., 2022), LaserMix (Kong et al., 2023b).

To overcome the second post-processing limitation, we pro-
pose adopting a transformer decoder for multi-modal 3D
panoptic segmentation, inspired by its success in 3D panop-
tic segmentation (Xiao et al., 2025) and multi-modal 3D
object detection (Bai et al., 2022; Yan et al., 2023). By lever-
aging global context and directly predicting class labels and
mask outputs, the transformer decoder eliminates the inef-
ficiencies and constraints associated with post-processing.
Despite its promise, adopting a transformer decoder intro-
duces new challenges, particularly in designing effective
queries and tokens as inputs. To overcome these challenges,
we introduce a Geometric-guided Token Fusion (GTF)
module and a Prior-based Query Generation (PQG) mod-
ule. Combined with the PieAug strategy, these components
form our proposed solution: a novel Image-Assist-LiDAR
transformer-based framework, named IAL, for multi-modal
3D panoptic segmentation in autonomous driving scenarios.

GTF module integrates the sparse, cylinder-shaped LiDAR
features with the compact, grid-shaped image features to
create input tokens. Specifically, we adopt Cylinder3D (Zhu
et al., 2020) to extract LiDAR features and use raw LiDAR
points as geometric guidance to locate corresponding image
patches for each cylindrical voxel. Additionally, we design a
scale-aware positional embedding to encode the cylindrical
voxels’ locations and their receptive fields, facilitating the
fusion of image patches and cylindrical voxels. This ap-
proach enhances feature fusion while mitigating projection
errors caused by variations in cylindrical voxel shapes.

Our PQG module leverages prior knowledge from Li-
DAR and image inputs, which provide complementary
strengths for object perception, to improve query initial-
ization. Specifically, we generate two groups of instance
queries – geometric-prior and texture-prior instance queries
– derived from LiDAR and image modalities, respectively.
Geometric-prior queries exploit LiDAR’s geometric fea-
tures, which are well-suited for detecting nearby or large
objects rich in geometric information. In contrast, texture-
prior queries leverage images by applying state-of-the-art
detection and segmentation models, such as Grounding-
DINO (Liu et al., 2023a) and SAM (Kirillov et al., 2023), to
better identify distant and small objects. To handle challeng-
ing scenarios where both LiDAR and images fail to provide

reliable instance queries, we introduce a set of learnable
parameters as no-prior instance queries. Consequently, the
three groups of instance queries, combined with a set of
semantic queries, are input into the transformer decoder to
predict instance masks and semantic labels.

Our contributions can be summarized as: 1) We present IAL,
a novel transformer-based multi-modal framework for multi-
modal 3D panoptic segmentation, eliminating the cumber-
some post-processing steps required by previous methods.
2) We propose PieAug, a multi-modal augmentation tech-
nique that not only addresses the asynchronization issue but
also serves as a generalized formulation of existing LiDAR
augmentation methods. 3) We design the GTF and PQG
modules that can effectively fuse image and LiDAR features
as tokens and queries for the transformer decoder. 4) Our
IAL achieves state-of-the-art performance in outdoor panop-
tic segmentation, surpassing previous methods by 2.5% and
4.1% in PQ on the nuScenes and SemanticKITTI bench-
marks, respectively.

2. Related Work
3D Panoptic Segmentation. Most advanced approaches for
LiDAR-based 3D panoptic segmentation can be categorized
into three main groups: top-down, bottom-up, and single-
path methods (Li & Chen, 2022). The top-down method
typically follows a detection-first principle, where bounding
boxes are predicted initially, followed by the generation
of instance masks from points within those boxes (Sirohi
et al., 2021; Xu et al., 2023a; Ye et al., 2023). In contrast,
bottom-up methods (Zhou et al., 2021; Hong et al., 2021;
Razani et al., 2021; Xu et al., 2022; Li et al., 2022a) begin
with semantic segmentation predictions and then generate
instance masks through operations such as grouping and
clustering. Both top-down and bottom-up approaches are
limited by the performance of their preliminary predictions
(object detection or semantic segmentation, respectively),
which hinders their ability to achieve holistic perception.
On the other hand, single-path methods treat panoptic seg-
mentation as a unified task, simultaneously addressing the
segmentation of both “stuff” and “thing” classes. For ex-
ample, MaskRange (Gu et al., 2022), MaskPLS (Marcuzzi
et al., 2023), and P3Former (Xiao et al., 2025) utilize learn-
able queries to predict masks and classes for both “thing”
and “stuff” object types. Additionally, PUPS (Su et al.,
2023) and DQFormer (Yang et al., 2025) explore the use of
auxiliary categorical and positional embeddings for query
initialization. However, these methods mainly rely on Li-
DAR. inputs and often struggle with recognizing small or
distant objects, where geometric information degrades. This
limitation inspires the use of camera images, which contain
rich texture information, to enhance panoptic segmentation.

Multi-modal 3D Scene Understanding. Multi-modal
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Figure 1. The architecture overview of our Image-Assists-LiDAR (IAL) framework. We first voxelize the point cloud into cylindrical
voxels. In PieAug, we synchronize augmentation by pairing cylindrical and image grids, mixing original and new scans in different modes.
Using a transformer-based structure, we design token fusion (GTF) and query initialization (PQG) modules to align and complement both
modalities. In GTF, features from both modalities are bridged via LiDAR-to-image projection and scale-aware positional embeddings.
We generate instance queries for “thing” classes using modality knowledge (specifically, geometric and texture priors from LiDAR and
image features) and learnable parameters (for instances without advanced modality priors) in PQG. These instance queries, along with
semantic queries, are iteratively updated through multiple transformer decoder layers to produce the final panoptic predictions.

learning with LiDAR and images has been extensively stud-
ied for 3D semantic segmentation (Zhuang et al., 2021;
Krispel et al., 2020; Yan et al., 2022; Li et al., 2023b; Liu
et al., 2023b; Man et al., 2023; Wu et al., 2024; An et al.,
2025) and object detection (Liang et al., 2022; Yin et al.,
2024; Bai et al., 2022; Li et al., 2024). A key challenge in
these tasks is to effectively fuse the features of both modali-
ties to leverage their complementary strengths. To address
this, existing methods design fusion modules to align data
from different sensors. Additionally, some object detection
studies (Bai et al., 2022; Chen et al., 2023; Li et al., 2024;
Zhang et al., 2024) have shown that image-driven queries
improve the detection of challenging objects. While these
approaches are not directly applicable to panoptic segmenta-
tion, they inspire our design of the Geometric-guided Token
Fusion (GTF) and Prior-based Query Generation (PQG). For
multi-modal 3D panoptic segmentation, LCPS (Zhang et al.,
2023) and Panoptic-FusionNet (Song et al., 2024) are two pi-
oneering works. LCPS designs a point-to-mask mapping for
LiDAR to image fusion, while Panoptic-FusionNet directly
applies point-to-pixel mapping by geometric information.
However, these methods primarily apply augmentations
only to LiDAR, leading to misalignment between modali-
ties and an over-reliance on LiDAR features. Additionally,
their reliance on post-processing makes panoptic inference
inefficient and limits the effectiveness of true multi-modal
perception.

LiDAR-Based Data Augmentation. Studies on LiDAR-
based data augmentation often rely on instance- or scene-
level mixing. Instance mixing methods (Zhou et al., 2021;
Xiao et al., 2022; Zhao et al., 2022) augment point clouds
by copying instance points from one scan to another, while
scene-wise mixing approaches, such as LaserMix (Kong
et al., 2023b) and PolarMix (Xiao et al., 2022), divide the
scene into multiple intervals along inclination or azimuth

angles and selectively swap these intervals between scans.
RangeFormer (Kong et al., 2023a) represents the 3D scene
as a range-view image and applies tailored augmentation
strategies for range-view learning. Similarly, UniMix (Zhao
et al., 2024) extends scene-wise mixing to different at-
tributes, including intensity and semantic channels. In multi-
modal 3D scene understanding, data augmentation for both
modalities remains underexplored. LaserMix++ (Kong et al.,
2024) extends LaserMix to multi-modal scenes but relies on
a single augmentation strategy. MSeg3D (Li et al., 2023b)
applies asymmetric augmentation to each modality, using
only simple local transformations – reducing the risk of mis-
alignment but at the cost of data diversity. To address these
limitations, we propose a general multi-modal augmentation
strategy that incorporates diverse instance- and scene-level
mixing to enhance both cross-modal alignment and panoptic
segmentation performance.

3. Methodology
In the multi-modal 3D panoptic segmentation, we are given
a 3D point cloud consisting of N discrete sampling points,
denoted as P = {pj ∈ R1×4}Nj=1, where each point pj

contains its Cartesian coordinates in Euclidean space and
its reflection intensity. The point cloud is associated with
K view images, represented as I = {Ik ∈ RH×W×3}Kk=1,
H and W denote the height and width of images. The goal
of this task is to effectively utilize P and I to predict both
semantic and instance labels for each point.
Framework Overview. In this paper, we introduce Image-
Assist-LiDAR (IAL), a novel transformer-based framework
for multi-modal 3D panoptic segmentation, as illustrated
in Fig. 1. To process the sparse and irregular LiDAR point
cloud, we first apply cylindrical voxelization, converting
points into cylindrical-shaped voxels based on their polar
coordinates. As a result, each voxel vi contains a varying
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number of points, with voxel shapes differing along the
radial axis. The point cloud P can then be represented as
V = {vi}Mi=1, where M is the number of valid cylindri-
cal voxels. We apply modality-synchronized augmentation
through our proposed PieAug strategy (Sec. 3.1), ensuring
consistency across LiDAR and image data by pairing each
voxel with its corresponding image regions and employing
a generalized augmentation operator for diverse effects.

The augmented 3D voxels and images are then processed
by 3D encoder E3D and 2D encoder E2D, extracting voxel-
wise features F3D ∈ RM×D and image features F2D ∈
RK×H×W×D, where D is the feature dimension. The 3D
encoder uses Cylinder3D (Zhu et al., 2020), known for its
strong generalization in 3D panoptic segmentation (Xiao
et al., 2025; Zhang et al., 2023), and 2D encoder is Swift-
Net (Oršić & Šegvić, 2021) with a ResNet-18 backbone.

Next, we use F3D and F2D to create tokens and queries for
a transformer decoder, enabling cross-modal interaction. To-
ken features are formed by concatenating voxel features with
their aligned image counterparts, guided by a unified, scale-
aware positional embedding (Sec.3.2). Meanwhile, instance
queries qth are initialized using modality-compensated pri-
ors (Sec.3.3). These queries, along with semantic queries
qsm are fed into the transformer decoder to predicts the
instance masks and semantic labels.

3.1. Modality-Synchronized Augmentation
To mitigate modality misalignment and enhance diversity
during data augmentation, we propose PieAug. The key idea
is to extract a flexible number of cylindrical voxels along
the height, angle, or radius axes – analogous to cutting a
variable-sized pie slice from a cake – and swap it with
a corresponding slice from another scene, as illustrated
in Fig. 2. To maintain synchronization across modalities,
each 3D “pie” is paired with its corresponding image patch,
which is exchanged simultaneously.

For simplicity, we illustrate the process of finding the corre-
sponding image patch for a single voxel from one camera
view. This can be easily extended to a pie-shaped region
with multiple image views. Given a voxel containing Ni

points, denoted as vi = {pj}Ni
i , where

∑M
i=1Ni = N , we

first project the LiDAR point pj from 3D coordinate system
to its corresponding 2D coordinates in the image plane using
the following transformation:

π(pj) = K×T× [pj,1,pj,2,pj,3, 1]
⊤, (1)

where K ∈ R3×3 is the camera intrinsic matrix and T ∈
R4×4 is the extrinsic transformation matrix. Next, we define
gi as the bounding rectangle that encloses all projected
points π(pj). This ensures that each voxel corresponds to a
specific region in the image, denoted as ⟨vi,gi⟩:

gi = B ({π(pj) | pj ∈ vi}) . (2)
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Figure 2. Motivation and implementation variants of PieAug.
Each column illustrates the motivation for LiDAR-image syn-
chronized augmentation. Each row displays a different pie-cut
strategy. Point clouds are projected on camera images, with colors
indicating semantic labels or data sources. Best viewed in color.

Here B(·) is the operator that fits a bounding rectangle en-
closing a set of pixels.

During augmentation, we determine the size and position
of the pie-cut using a 3D binary mask S ∈ {0, 1}R×Θ×Z ,
where R, Θ, and Z represent the binning resolution along
the radial, angular, and height axes of the cylindrical vox-
elization, respectively. Each voxel is assigned a correspond-
ing mask value S(r, θ, z), where S(r, θ, z) = 1 indicates
that the voxel is replaced with one from a new scan; other-
wise, it remains unchanged from the original scene. Conse-
quently, the augmented cylinder Vaug is obtained as follows:

Vaug = Vorg ⊗ (1− S) +Vnew ⊗ S, (3)
where ⊗ denotes an element-wise masking operation, multi-
plying the voxel values by the corresponding mask. Since
each voxel vi aligns with an image region gi, we apply
image augmentation in parallel using the same mask S.

Instance Pasting. We first illustrate how PieAug achieves
instance-level augmentation (copy and paste) by selecting
pie-cut voxels corresponding to s sampled instances from
a new scene. We apply transformations such as translation,
rotation, and scaling to each instance. Next, we identify
the indices of voxels that overlap with the s transformed
instances as C. The mask S is then constructed as:

S =

R×Θ×Z⋃
r=1,θ=1,z=1

1[(r, θ, z) ∈ C]. (4)

Scene Swapping. We then illustrate how PieAug achieves
scene-level augmentation, including scene swapping, which
involves dividing the voxels evenly along a chosen axis
(height or angle) and swapping them alternately. We achieve
this by selecting all voxels along the radial axis, as well as
one of the height or angle axes, and then freely choosing a
number of slices from the remaining axis. For example, the
mask for selecting b slices from the angle axis is defined as:

S(r, θ, z) =

{
1, if θ ∈ O
0, otherwise

(5)
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Here, O denotes the set of indices corresponding to the
selected b angle slices. A similar masking strategy can be
applied to height slices.

Remarks. With the instance-level and scene-level aug-
mentation capabilities described above, PieAug generalizes
most existing LiDAR-based augmentation techniques. For
example: 1) Panoptic-PolarNet: perform instance-level aug-
mentation by sampling instances based on their semantic
labels and applying transformations using translation and
XY-plane rotation. 2) PolarMix (instance branch): perform
instance-level augmentation by selecting instances based
on their labels and applying transformations by rotating
duplicated instances multiple times along the Z-axis. 3) Po-
larMix (scene branch): perform scene-level augmentation
by selecting half of the slices along the azimuth angle. 4)
LaserMix: perform scene-level augmentation by selecting
slices at different inclination angles. As a result, PieAug
offers greater flexibility in combining instance-level and
scene-level augmentations by performing multiple augmen-
tation rounds with different voxel indices. Furthermore,
due to the synchronized transformations applied to both
modalities, PieAug ensures well-aligned LiDAR and image
augmentations.

3.2. Geometric-Guided Token Fusion
Since cylindrical voxelization results in voxels of varying
sizes (larger in regions farther from the central origin), this
poses two key challenges for generating multi-modal tokens:
1) how to align image features with LiDAR features, and 2)
how to effectively fuse. To address these issues, we propose
Geometric-guided Token Fusion (GTF), as illustrated in
Fig. 3, which leverages the rich geometric information from
LiDAR to guide alignment and enable effective fusion.

Specifically, we align features at the voxel level by project-
ing all physical points within a voxel vi onto the image
plane and averaging their corresponding image features to
create an aggregated representation:

F̃2D
i =

1

Ni

∑Ni

j
F2D(π(pj)). (6)

We refer to the paired voxel-wise LiDAR feature F3D
i and

image feature F̃2D
i as the contents of the i-th multi-modal

token. Notably, aggregating image features by projecting all
physical points within a voxel preserves feature validity. As
shown in Fig. 3(a), using only the voxel centroid can lead to
misalignment, as the projected location may not correspond
accurately to the relevant image region.

Position embedding (PE) has proven effective in aligning
features from different modalities (Yan et al., 2023). How-
ever, due to the varying sizes of cylindrical voxels, encoding
only the voxel centroid is suboptimal, as a single point may
not sufficiently represent the voxel’s perceptive field. Even
when using physical points for PE, capturing the full per-
ceptive field of a voxel or its corresponding image region

image coord.

view image

✘
✓ ✓

LiDAR coord.
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virtual center

image patch
LiDAR voxel
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✓: sufficient field
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(c) module structure of SPE
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Figure 3. (a) and (b) illustrate two challenges in LiDAR–image
fusion introduced by cylindrical voxelization. In (a), relying on a
virtual voxel center can lead to projection errors, which become
more pronounced for larger voxels and cause mismatches between
LiDAR and image data. This motivates the use of physical points.
In (b), canonical PE (row 1) overlooks the varying sizes of voxel
and image features, while focusing solely on the region of physical
points (row 2) limits the receptive field. Hence, we introduce a
scale-aware PE that uses extreme points, as shown in (c).

remains inadequate, as illustrated by the red region in the
second row of Fig. 3(b). This limitation arises because phys-
ical points provide only a partial representation of objects
in both the LiDAR and image domains, especially at greater
distances where LiDAR points are sparsely distributed. To
address this issue, we propose a unified Scale-aware Posi-
tion Embedding (SPE) for both LiDAR and image tokens.
SPE ensures consistent perception of perceptive fields by
incorporating shared scale embeddings to both modalities,
as shown in the third row of Fig. 3(c).

Specifically, as illustrated in Fig. 3(c), we introduce an
extreme point set, denoted as v̂i = {p̂j}8j=1, consisting of
the eight corners of each cylindrical voxel to represent its
scale. In the LiDAR space, these extreme points define
the spatial partitioning of the scene. In the image space,
they outline potential perceptive field regions, particularly
in areas with sparse LiDAR points, allowing for a more
adaptive perception range. In SPE, each cylindrical voxel is
embedded with both its scale and centroid position:

si = ψ(Avg(v̂i)) + ϕ(||v̂i −Avg(v̂i)||2), (7)
where Avg(·) denote the averaging method and and || · || is
L2 norm operation in Cartesian space. ψ represents a mixed-
parameterized positional encoding function (Xiao et al.,
2025), which embeds the centroid position in both Cartesian
and polar spaces. ϕ is a multi-layer perceptron (MLP) that
projects the scale feature into the same dimension as the
centroid embedding. With SPE, the final fused multi-modal
token Ffuse

i for i-th cylindrical voxel is obtained by:

Ffuse
i = Cat[(F3D

i ⊕ si), (F̃
2D
i ⊕ si)]. (8)

3.3. Prior-Based Query Generation
Previous works, such as P3Former (Xiao et al., 2025), ini-
tialize queries by a set of learnable parameters. However,
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Table 1. Preliminary study of positional embedding for objects of
thing classes. We conduct the experiment on our LiDAR branch.
“GT” denotes using the ground truth center position, while “Noise”
denotes adding Gaussian noise with a kernel size of 3 to the GT
center position. “th” and “st” is the thing and stuff classes.

Modality GT Noise PQ mIoU PQth PQst

LiDAR 77.0 75.9 77.8 75.7
LiDAR ✓ 83.2 82.3 88.5 74.4
LiDAR ✓ ✓ 81.8 79.8 86.8 73.6

such queries tend to prioritize easier samples while neglect-
ing more challenging ones. Additionally, preliminary results
have validated that accurate positional embedding signifi-
cantly enhances the model’s ability to locate objects. As
demonstrated in Table 1, applying the ground truth center
position for thing classes resulted in a 6.2% improvement
in overall PQ and a 10.7% improvement in PQ for thing
classes specifically. Even adding noise on the position, the
improvement is still significant.

Inspired by this observation, we propose the Prior-based
Query Generation (PQG) module to explicitly leverage
texture features from the image domain, and geometric infor-
mation from LiDAR domain as prior knowledge to generate
well-informed initializations for instance queries. Specifi-
cally, we design three groups of queries: geometric-prior,
texture-prior, and no-prior queries.

Geometric-Prior Query. Potential geometric-prior in-
stances are those for which LiDAR features exhibit min-
imal degradation, allowing geometric characteristics to pro-
vide sufficient information for accurate positional hints.
Compared to the rich texture features captured in images,
LiDAR features offer more precise location predictions.
Therefore, we generate location hints for geometric-prior
queries by predicting a center heatmap and performing Non-
Maximum Suppression (NMS) sampling according to con-
fidence scores and range radius threshold. Specifically, we
predict the class-agnostic heatmap in the polar Bird’s-Eye-
View (BEV) space using a structure similar to (Yin et al.,
2021; Bai et al., 2022). For each selected instance proposal
(identified by its coordinates in the center heatmap), we lift
it into 3D space by averaging all valid voxels across the
height dimension.

Texture-Prior Query. For objects that are small or located
far from the sensor, geometric information often becomes
unreliable, making accurate location prediction difficult. To
address this issue, we use texture information from images
to discover potential texture-prior instances. First, we ex-
tract mask proposals using the pre-trained image segmenta-
tion models Grounding-DINO and SAM (Liu et al., 2023a;
Kirillov et al., 2023). We then lift each 2D mask into a
3D frustum and collect all the 3D points that fall within it.
To mitigate noise caused by overlapping along the depth
dimension, we cluster these points into several groups using

the unsupervised DBSCAN (Ester et al., 1996) algorithm.
Finally, the centroids of these clusters serve as location hints
for texture-prior instances.

Given location hints from both modalities, we apply Far-
thest Point Sampling (FPS) to obtain a fixed number lpr of
location hints. It is worth noting that for large objects easily
recognizable by both LiDAR and images, global sampling
provides a holistic view and reduces redundant candidate
proposals. Similar to the positional embedding used for
multi-modal tokens, we apply SPE to embed both the query
location and scale features. We then extract the query con-
tent by indexing into the corresponding voxel features Ffuse,
and finally add the SPE to this content to form the final
query representation.

No-Prior Query. We hypothesize that instances without
advanced priors exhibit a specific feature representation
paradigm, allowing them to be recognized through a set of
learnable parameters. We set the number of no-prior queries
as llt. This implicit paradigm learning enables the model
to search within a smaller candidate pool and effectively
identify potential instances.

All geometric-, texture-, and no-prior queries are concate-
nated and fed into the transformer decoder for “thing” class
prediction, i.e., 3D instance segmentation. Semantic queries
are initialized following the approach in P3Former, with
auxiliary semantic supervision applied. These semantic
queries are used to predict segmentation results. We fol-
low the process in P3Former to combine the instance and
semantic predictions into the final panoptic segmentation.

4. Experimental Results
4.1. Experimental Setting

Datasts. nuScenes (Caesar et al., 2020; Fong et al., 2022) is
a large-scale, multi-modal dataset designed for autonomous
driving, containing data from a 32-beam LiDAR, 5 radars,
and 6 RGB cameras. It includes 40,157 frames of outdoor
scenes, with 34,149 frames labeled for training and valida-
tion, and the remaining reserved for testing. The panoptic
annotations cover 10 “thing” classes, 6 “stuff” classes, and
1 class for noisy labels. SemanticKITTI (Behley et al.,
2019; 2021) is an outdoor dataset derived from KITTI Vi-
sion Benchmark (Geiger et al., 2012). It includes data from
a 64-beam LiDAR sensor and two front-view cameras, in-
cluding 8 “thing” classes and 11 “stuff” classes, comprising
19,130 frames for training, 4,071 frames for validation, and
20,351 frames for testing.

Evaluation Metrics. Consistent with the standard
works (Kirillov et al., 2018; Zhang et al., 2023; Xiao et al.,
2025), panoptic quality (PQ) is selected as the primary met-
ric. PQ is defined as the product of segmentation quality
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Table 2. Comparison of panoptic segmentation performance on the nuScenes validation set. Top results are shown in bold. “M.”
indicates which modality (or modalities) each method uses. “P.-PCSCNet” is the LiDAR branch of “P.-FusionNet” (Song et al., 2024).

Method M. PQ PQ† RQ SQ PQth RQth SQth PQst RQst SQst mIoU

DS-Net (Hong et al., 2021) L 42.5 51.0 50.3 83.6 32.5 38.3 83.1 59.2 70.3 84.4 70.7
EfficientLPS (Sirohi et al., 2021) L 62.0 65.6 73.9 83.4 56.8 68.0 83.2 70.6 83.6 83.8 65.6
P.-PolarNet (Zhou et al., 2021) L 67.7 71.0 78.1 86.0 65.2 74.0 87.2 71.9 84.9 83.9 69.3
P.-PHNet (Li et al., 2022a) L 74.7 77.7 84.2 88.2 74.0 82.5 89.0 75.9 86.9 86.8 79.7
CFNet (Li et al., 2023c) L 75.1 78.0 84.6 88.8 74.8 82.9 89.8 76.6 87.3 87.1 79.3
CenterLPS (Mei et al., 2023) L 76.4 79.2 88.0 86.2 77.5 88.4 87.1 74.6 87.3 84.9 77.1
LCPS (Zhang et al., 2023) L 72.9 77.6 82.0 88.4 72.8 80.5 90.1 73.0 84.5 85.5 75.1
P.-PCSCNet (Song et al., 2024) L 72.7 75.4 84.8 86.4 71.2 82.9 86.6 75.1 84.2 84.2 69.8
P3Former (Xiao et al., 2025) L 75.9 78.9 84.7 89.7 76.9 83.3 92.0 75.4 87.1 86.0 76.8
IAL (our LiDAR branch) L 77.0 79.6 85.1 90.2 77.8 83.8 92.6 75.7 87.3 86.2 75.9

LCPS (Zhang et al., 2023) L+C 79.8 84.0 88.5 89.8 82.3 89.6 91.7 75.6 86.5 86.7 80.5
P.-FusionNet (Song et al., 2024) L+C 77.2 79.3 87.2 87.8 77.5 87.7 88.2 76.2 85.9 86.0 73.4
IAL (ours) L+C 82.3 84.7 89.7 91.5 85.3 90.6 94.1 77.3 88.2 87.2 80.6

Table 3. Comparison on the nuScenes test set. Top and runner-up results are marked in bold and underline, respectively. “*” indicates
the use of additional temporal frames and detection annotations. Our method is evaluated without test-time augmentation or ensembling.

Method M. PQ PQ† RQ SQ PQth RQth SQth PQst RQst SQst mIoU

EfficientLPS (Sirohi et al., 2021) L 62.4 66.0 74.1 83.7 57.2 68.2 83.6 71.1 84.0 83.8 66.7
P.-PolarNet (Zhou et al., 2021) L 63.6 67.1 75.1 84.3 59.0 69.8 84.3 71.3 83.9 84.2 67.0
P.-PHNet (Li et al., 2022a) L 80.1 82.8 87.6 91.1 82.1 88.1 93.0 76.6 86.6 87.9 80.2
CPSeg (Li et al., 2023a) L 73.2 76.3 82.7 88.1 72.9 81.3 89.2 74.0 85.0 86.3 73.7
MaskPLS (Marcuzzi et al., 2023) L 61.1 64.3 68.5 86.8 54.3 58.8 87.8 72.4 84.5 85.1 74.8
LCPS (Zhang et al., 2023) L 72.8 76.3 81.7 88.6 72.4 80.0 90.2 73.5 84.6 86.1 74.8
LidarMultiNet* (Ye et al., 2023) L 81.4 84.0 88.9 91.3 83.9 89.9 93.1 77.3 87.1 88.2 82.2
IAL (our LiDAR branch) L 75.1 77.7 83.0 90.1 75.0 80.9 92.4 75.2 86.5 86.4 73.3

4DFormer (Athar et al., 2023) L+C 78.0 81.4 86.6 89.7 80.0 87.8 90.9 74.6 84.5 87.6 80.4
LCPS (Zhang et al., 2023) L+C 79.5 82.3 87.7 90.3 81.7 88.6 92.2 75.9 86.3 87.3 78.9
IAL (ours) L+C 82.0 84.3 89.3 91.6 84.8 90.2 93.8 77.5 87.8 87.8 79.9

(SQ) and recognition quality (RQ):

PQ =

∑
TP IoU
|TP|︸ ︷︷ ︸

SQ

× |TP|
|TP|+ 1

2 |FP|+ 1
2 |FN|︸ ︷︷ ︸

RQ

, (9)

where IoU denotes the Intersection over Union, TP denotes
True Positives and so as for others. Theses metrics can
be further extended to “thing” and “stuff” classes, denoted
as PQth, PQst, RQth, RQst, SQth, and SQst. We also report
PQ† (Porzi et al., 2019), which replaces PQ with mIoU for
stuff classes.

Implementation Details. We follow standard practice
(Zhou et al., 2021; Li et al., 2022a; Xiao et al., 2025) to rep-
resent point clouds by discretizing the 3D space into cylin-
drical voxels of size [480× 360× 32]. The LiDAR branch
is built upon the architecture of P3former. For nuScenes,
the polar coordinate range is defined as [−50m, 50m] ×
[0, 2π]× [−5m, 3m], while for SemanticKITTI, the height
range is adjusted to [−4m, 2m]. All images are resized to
640 × 360. For augmentation, we employ the following
strategies: instance pasting and scene-swapping (split the
scene along the height and angle axes, with the number
of splits randomly chosen from [3, 4, 5] each time). We
set the ratio of application for these three augmentation

strategies to 0.4:0.05:0.05, respectively. Additionally, we
perform basic transformations including random rotation,
flipping, and scaling. We set the number of prior-based
and no-prior instance queries to lpr = llt = 128. We use
AdamW (Kingma & Ba, 2014) as the optimizer, with a
default weight decay of 0.01. The entire model is trained
from scratch with a batch size of 2, using 4 NVIDIA A40
GPUs. The training spans 80 epochs for nuScenes and 36
epochs for SemanticKITTI. The initial learning rate is set to
0.0008 and decays by half at epochs [60,75] for nuScenes
and [30,32] for SemanticKITTI, respectively. All model
results listed in the following sections are NOT employed
with any test-time augmentation (TTA) method.

4.2. Benchmark Results

nuScenes. We present comprehensive comparison results
for LiDAR panoptic segmentation performance on the
nuScenes validation and test sets, as shown in Table 2
and Table 3. Due to the limited number of multi-modal
methods, currently only LCPS (Zhang et al., 2023) and
Panoptic-FusionNet (Song et al., 2024), we also include
LiDAR-only methods for comparison. Notably, our method
IAL achieves the best performance across all metrics on
the validation set and ranks first or second on most metrics
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Table 4. Comparison of panoptic segmentation performance on the
SemanticKITTI validation set. Top results are shown in bold.

Method M. PQ PQ† RQ SQ mIoU

P.-PolarNet L 59.1 64.1 70.2 78.3 64.5
DS-Net L 57.7 63.4 68.0 77.6 63.5
EfficientLPS L 59.2 65.1 69.8 75.0 64.9
P.-PHNet L 61.7 – – – 65.7
CenterLPS L 62.1 67.0 72.0 80.7 –
LCPS L 55.7 65.2 65.8 74.0 61.1
P3Former L 62.6 66.2 72.4 76.2 –
IAL (LiDAR) L 62.0 65.1 71.9 76.0 64.9

LCPS L+C 59.0 68.8 68.9 79.8 63.2
IAL (ours) L+C 63.1 66.3 72.9 81.4 66.0

in the test set. Specifically, IAL outperforms LCPS and
Panoptic-FusionNet by a significant margin of 2.5% and
5.1% in PQ on the validation set, as shown in Table 2. This
improvement is attributed to superior performance in both
recognition (surpassing the two previous works by 1.2%
and 2.5% in RQ, respectively) and segmentation (surpassing
them by 1.7% and 3.7% in SQ). Furthermore, our model
demonstrates superior performance on both “thing” and
“stuff” classes, achieving a 7.8% and 1.1% improvement in
metrics compared to the latest work, Panoptic-FusionNet.
Compared to the LiDAR-only baseline (using the same aug-
mentation strategies as P3Former adopts), IAL achieves a
5.3% improvement, primarily due to a 7.5% increase from
thing classes, demonstrating the effectiveness of image as-
sistance in detecting and recognizing objects. In Table 3,
IAL also demonstrates superior performance, achieving the
highest scores across most metrics on the nuScenes leader-
board. These outstanding results highlight the effectiveness
of our modules for modality alignment and compensation.

SemanticKITTI presents a significant challenge due to its
use of only two front-view cameras, limiting the availability
of image features to support LiDAR. As shown in Table 4,
despite these constraints, our IAL achieves a 4.1% improve-
ment in PQ over the state-of-the-art multi-modal baseline
LCPS, demonstrating the robustness of our method even
under limited image supervision.

4.3. Ablation Studies

To validate the effectiveness of our proposed components,
we conduct comprehensive ablation studies on the overall
proposal framework in Table 5 and provide detailed analyses
for each individual module in Table 6. All experiments are
conducted on the nuScenes validation set using the same
hyper-parameters for fair comparison.

As shown in Table 5, compared to the baseline that uses
only basic point cloud transformations (row 1), PieAug im-
proves PQ by 2.7%, benefiting from better input alignment
and enriched scene context. Building on this, GTF further
boosts PQ by 2.7% and RQ by 2.1%, demonstrating that

Table 5. Ablation study of the proposed modules in our framework.
“PIE” denotes the PieAug module.

PIE GTF PQG PQ PQ† RQ SQ mIoU

75.7 78.1 84.4 88.3 73.8
✓ 78.4 81.0 86.9 90.0 78.2
✓ ✓ 81.1 83.5 89.0 90.9 80.2
✓ ✓ ✓ 82.3 84.7 89.7 91.5 80.6

Table 6. Ablation study of PQG module. “Geo.”, “Tex.”, and “NP.”
represent geometric prior, texture prior, and no-prior queries, re-
spectively. We set the total number of queries to 256 for a fair
comparison. In configurations combining prior (geometric or tex-
ture) and no-prior queries, 128 queries are allocated to each set.

Geo. Tex. NP. PQ PQth PQst mIoU

✓ 81.2 83.8 76.8 79.8
✓ ✓ 81.3 83.9 77.0 80.0

✓ ✓ 81.1 83.4 77.2 80.0
✓ ✓ 80.7 83.0 77.0 80.0
✓ ✓ ✓ 82.3 85.3 77.3 80.6

Table 7. Comparison of augmentation strategies. “Img” indicates
whether image-synchronized augmentation is applied.

Method Img PQ PQ† RQ SQ mIoU

PolarMix 80.3 82.8 87.9 91.0 78.6
LaserMix 80.6 83.0 88.5 90.8 79.3
PieAug (ours) 81.4 83.7 89.1 91.0 80.1
PieAug (ours) ✓ 82.3 84.7 89.7 91.5 80.6

unified scale embedding and accurate projection enhance
multi-modal representations. Finally, incorporating the PQG
module brings an additional 1.2% gain in PQ, validating
our hypothesis that initializing queries with modality priors
leads to more precise object predictions than using purely
learnable parameters.

The effectiveness of the PQG module is validated in Table 6.
Rows 1–3 show comparable performance, suggesting that
purely learnable queries tend to overfit easy or redundant
samples, even when uni-modal priors are available. Row 4
shows a slight drop, likely due to an excessive number of
prior-based queries exceeding the number of ground-truth
instances, resulting in more false positives. In contrast, our
design (row 5) assigns strong geometric and texture priors
to confident regions, while reserving learnable queries for
harder, low-prior cases. This balanced allocation improves
the model’s ability to handle both easy and difficult samples,
leading to superior overall performance.

4.4. Augmentation Methods Comparison
As shown in Table 7, we compare PieAug with LiDAR-
only augmentation methods, including PolarMix (instance
pasting and scene mixing) and LaserMix (inclination an-
gle splitting) by 2.0% and 1.7% in PQ. Even with LiDAR-
only augmentation, PieAug achieves superior performance,
demonstrating its effectiveness as a generalized framework.
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Ground Truth LCPS [23’ICCV] IAL (LiDAR Branch) IAL

barrier bus car pedestrian truck drivable surface sidewalk terrain man-made vegetation

Figure 4. Qualitative comparison of our method with the preliminary multi-modal panoptic segmentation baseline, LCPS. To highlight
the differences, we mark false positive and false negative predictions, which affect recognition quality, as well as well-matched and
mismatch points in true positive predictions, which impact segmentation quality. GT is colorized by semantic label. Best viewed in color.

GT IALIAL (LiDAR)image

Figure 5. Visualization of instance predictions. Red circles high-
light instances where the LiDAR branch fails to segment correctly,
but our multi-modal method succeeds. Best viewed in color.

4.5. Qualitative Results and Discussion
We present qualitative evaluations on nuScenes validation
set. As illustrated in the error maps in Fig. 4, our method
notably reduces false positives (red points) and false nega-
tives (green points) compared to LCPS. Furthermore, IAL
outperforms its LiDAR branch in detecting remote objects
(highlighted in the black boxes) and recognizing ambiguous
classes (in yellow boxes), leveraging the assistance of image
data. In Fig. 5, we compare instance prediction with GT, Li-
DAR branch, and IAL alongside the corresponding images.
IAL showcases significant performance improvements in:
(1) distinguishing multiple objects when they are clustered
together (rows 1 and 2); (2) detecting distant objects (row
3); (3) recognizing false positive objects (rows 4 and 5).

5. Conclusion
This paper proposes IAL, a multi-modal 3D panoptic seg-
mentation framework that harmonizes LiDAR and im-
ages through PieAug (synchronized augmentation), GTF
(geometry-guided fusion), and PQG (prior-based queries).
IAL directly predicts panoptic results via a transformer
decoder, eliminating post-processing and achieving state-
of-the-art performance on nuScenes (82.3% PQ) and Se-
manticKITTI (63.1% PQ). Texture-prior queries enhance
small/distant object recognition, while geometric-prior
queries improve large/nearby instance localization.
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Impact Statement
This paper aims to enhance multi-modal 3D panoptic seg-
mentation. There are minor potential societal consequences
of our work, none of which we feel must be specifically
highlighted here.
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Supplementary Materials
The supplementary materials are organized as follows: Sec. A extends the ablation study with token fusion stage; Sec. B
provides additional qualitative results to visualize the improvements brought by each module; Sec. C analyzes the efficiency
of IAL; Sec. D investigates how image inputs enhance LiDAR under perturbations from lighting and weather conditions;
Sec. E discusses the potential broader impact of IAL; and Sec. F outlines current limitations and future work.

A. Ablation Study of Token Fusion
To analyze the effectiveness of the Geometric-guided Token Fusion (GTF) module, we divide GTF into two components:
Token Selection (Sel) and Token Positional Embedding (PE). The full version of GTF uses all physical points within a
cylindrical voxel (denoted as “set”) for token selection and embeds the scale between all extreme points (“scl”) to indicate
perception regions. Alternative designs degrade token selection to a virtual center (“ctr”) and positional embedding to the
center or extreme points (“ext”) of the voxel. All results are evaluated using the same experimental setting as the ablation
studies in the main manuscript.

Table 8 reveals that using a point set rather than the virtual center for every token to construct the image feature contributes
up to a 0.9% increase in PQ performance, and an up to 0.7% improvement in RQ. This verifies that precise LiDAR-image
projection helps LiDAR voxels find corresponding image patches, and image features assist in recognition. For positional
embedding, using scale-aware embedding indicates the potential perception regions of both LiDAR and image tokens,
achieving the highest performance. This advanced improvement diminishes when scaling is degraded to using extreme
points or solely the center of the voxel.

Table 8. Ablation study of the GTF module. “Sel” and “PE” denote the designs for token selection and positional embedding, respectively.
We evaluate different configurations for component ablation: “ctr” represents the voxel virtual center, “set” refers to physical points within
a voxel, and “-”, “ctr”, “ext”, and “scl” indicate not implementing PE, the use of center, extreme, or scale embeddings.

Sel PE PQ PQ† RQ SQ mIoU

ctr – 78.4 81.0 86.9 90.0 78.2
ctr ctr 79.7 82.2 87.8 90.5 78.3
ctr ext 79.7 82.3 87.7 90.6 78.5
ctr scl 80.4 82.7 88.3 90.7 78.4
set – 79.3 81.7 87.5 90.3 77.7
set ctr 80.6 83.0 88.4 90.8 80.1
set ext 80.0 82.4 88.0 90.6 77.9
set scl 81.1 83.5 89.0 90.9 80.2

B. Qualitative Results for Modular Performance
We present qualitative evaluations of the ablation studies for the GTF and PQG modules on the nuScenes validation set, as
illustrated in the error maps in Fig. 6. With the assistance of the GTF module (comparing column 3 with column 2), our
model demonstrates improved performance in distinguishing ambiguous objects, such as recognizing barriers and pedestrians
from the background (highlighted in yellow boxes in rows 2 and 5), as well as differentiating buses and trucks from cars
(rows 3-5). These classes often share similar geometric appearances, especially when point clouds are sparse. However,
images provide rich texture features that help distinguish each class, even in limited regions. The GTF module enhances
LiDAR voxel data by embedding it with more accurate image features, allowing for better receptive field estimation for
each cylindrical voxel and facilitating a strong alignment of LiDAR and image features. The PQG module further enhances
object perception, as shown by the comparison between column 4 and column 3, especially for small-scale and remote
objects highlighted in black boxes. Even for small objects like pedestrians, bicycles, cars, and trailers, which have few
points, the PQG module succeeds in accurate detection, demonstrating its superior performance by utilizing both geometric
and texture priors, as well as the learnable capability of no-prior queries.
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Ground Truth ✘GTF ✘PQG ✓GTF ✘PQG ✓GTF ✓ PQG

barrier bus car pedestrian truck drivable sidewalk terrain man-made vegebicycle trailerconstveh

Figure 6. Qualitative comparison of the ablation study for GTF and PQG modules. To emphasize the differences, we mark false positive
and false negative predictions, which affect recognition quality, as well as well-matched and mismatch points in true positive predictions,
which impact segmentation quality. GT is colorized by semantic label. Best viewed in color.

C. Time and Memory Cost
We compare inference speed, model size, and performance between our method and the main baseline, LCPS. We also
report a lightweight variant (denoted by *), which excludes the 2D mask pre-processing step (Grounding-DINO and SAM)
to highlight the efficiency of our framework’s major components. All latency measurements are conducted on a single
NVIDIA A40 GPU with batch size 1. For a fair comparison, we measure LCPS latency using its official codebase on our
hardware. As shown in Table 9, our method achieves over 2× faster inference and a +2.5% gain in PQ compared to LCPS.
Even when including the mask generation time, our approach remains comparable in speed.
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Table 9. Comparison of models in terms of inference speed (FPS), model size (#Params), and Panoptic Quality (PQ). * denotes the result
of core components of our model. All latency measurements are conducted on the same device.

Model FPS #Params (M) PQ

LCPS 1.7 77.7 79.8

IAL 4.0∗ 81.8∗ 82.3
0.9 859.9 82.3

Table 10. Performance on the full nuScenes validation set and its nighttime/rain subsets. Best results are highlighted in bold.

Model Full Val Set Night Split Rain Split

# of scan 6,019 602 1,088

LCPS 79.8 64.3 76.8
IAL (LiDAR branch) 77.0 63.2 73.1
IAL (full model) 82.3 70.5 81.2

D. Image Assists LiDAR Under Adverse Conditions
We evaluate the performance of our IAL on the nighttime and rain splits of the nuScenes val set. In the nighttime scenario,
image quality is significantly degraded; in the rain scenario, both LiDAR and image encounter perturbations. As shown
in Table 10, IAL (row 4) outperforms LCPS (row 2) not only on the full set but also under each adverse condition. We
further ablate cross-modal interaction by comparing the full IAL to its LiDAR-only branch (row 3). Even under the
degraded nighttime and rain splits, the full model gains +7.3% and +8.1% on PQ, respectively, confirming the image’s
effective assistive role for LiDAR. This improvement can be attributed to two main factors: 1. Modality-synchronized
augmentation (PieAug), which exposes the model to more diverse samples, including nighttime and rain scenarios, by
mixing synchronized LiDAR and image data. This allows the model to generalize better to rare conditions like nighttime
scenes. 2. The combination of three types of queries in our PQG module, where no-prior queries complement the texture-
prior and geometric-prior queries, helping the model to effectively identify potential instances. Additionally, pre-trained
Grounding-DINO and SAM further stabilise 2D mask generation under distribution shifts thanks to their large-scale training.

E. Potential Broader Impact of This Work
Based on the details in the paper, the broader impacts of this work can be highlighted as follows:

• The proposed multi-modal 3D panoptic segmentation framework (IAL) advances the field of autonomous driving by
improving object detection and segmentation through the integration of LiDAR and image data. This technology has
direct implications for the safety, accuracy, and efficiency of autonomous vehicles, particularly in complex, real-world
environments. By addressing challenges such as the sparsity of LiDAR data and the difficulty of recognizing small or
distant objects, this work enhances perception systems, enabling more reliable decision-making in autonomous driving.

• Furthermore, the advancements in modality-synchronized augmentation (PieAug) and geometric-guided token fusion
(GTF) represent significant contributions to the broader field of sensor fusion in robotics and autonomous systems.
These innovations could be adapted for other applications requiring high-precision environmental understanding, such
as robotics, agriculture, and urban planning.

• As with all AI technologies, ethical considerations should be taken into account, particularly concerning privacy,
security, and the potential for job displacement in industries such as transportation and logistics. However, the broader
societal impact is generally positive, particularly in terms of enhancing public safety and reducing the risks associated
with human error in driving.
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F. Limitations
While our work achieves strong results across key metrics, it is important to acknowledge certain limitations. Specifically,
the sampling method in our Query Initialization (PQG) module relies on a relatively simple and generic approach. While
our work demonstrates strong performance across key metrics, it is important to note that the extraction of texture-prior
queries relies on generic, large-scale pre-trained models rather than methods specifically designed for this task or benchmark.
Although this approach ensures broad applicability, it may not fully leverage task-specific characteristics that could further
enhance performance. Nevertheless, through our carefully designed PQG module, we still achieve competitive results. In
future work, we plan to explore more specialized sampling methods tailored to the task, which could further improve the
quality of texture-prior queries and overall performance.
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