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Abstract

We present the first finite-sample analysis of policy evaluation in robust average-
reward Markov Decision Processes (MDPs). Prior work in this setting have es-
tablished only asymptotic convergence guarantees, leaving open the question of
sample complexity. In this work, we address this gap by showing that the ro-
bust Bellman operator is a contraction under a carefully constructed semi-norm,
and developing a stochastic approximation framework with controlled bias. Our
approach builds upon Multi-Level Monte Carlo (MLMC) techniques to estimate
the robust Bellman operator efficiently. To overcome the infinite expected sample
complexity inherent in standard MLMC, we introduce a truncation mechanism
based on a geometric distribution, ensuring a finite expected sample complexity
while maintaining a small bias that decays exponentially with the truncation level.

Our method achieves the order-optimal sample complexity of Õ(ǫ−2) for robust
policy evaluation and robust average reward estimation, marking a significant ad-
vancement in robust reinforcement learning theory.

1 Introduction

Reinforcement learning (RL) has achieved notable success in domains such as robotics [33], fi-
nance [17], healthcare [42], transportation [1], and large language models [30] by enabling agents
to learn optimal decision-making strategies through interaction with an environment. However, in
many real-world applications, direct interaction is impractical due to safety concerns, high costs, or
limited data collection budgets [32, 19]. This challenge is particularly evident in scenarios where
agents are trained in simulated environments before being deployed in the real world, such as in
robotic control and autonomous driving. The mismatch between simulated and real environments,
known as the simulation-to-reality gap, often leads to performance degradation when the learned
policy encounters unmodeled uncertainties. Robust reinforcement learning (robust RL) addresses
this challenge by formulating the learning problem as an optimization over an uncertainty set of
transition probabilities, ensuring reliable performance under worst-case conditions. In this work, we
focus on the problem of evaluating the robust value function and robust average reward for a given
policy using only data sampled from a simulator (nominal model), aiming to enhance generalization
and mitigate the impact of transition uncertainty in real-world deployment.

Reinforcement learning problems under infinite time horizons are typically studied under two pri-
mary reward formulations: the discounted-reward setting, where future rewards are exponentially
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discounted, and the average-reward setting, which focuses on optimizing long-term performance.
While the discounted-reward formulation is widely used, it may lead to myopic policies that un-
derperform in applications requiring sustained long-term efficiency, such as queueing systems, in-
ventory management, and network control. In contrast, the average-reward setting is more suitable
for environments where decisions impact long-term operational efficiency. Despite its advantages,
robust reinforcement learning under the average-reward criterion remains largely unexplored. Ex-
isting works on robust average-reward RL primarily provide asymptotic guarantees [36, 38, 37],
lacking algorithms with finite-time performance bounds. This gap highlights the need for principled
approaches that ensure robustness against model uncertainties while maintaining strong long-term
performance guarantees.

Solving the robust average-reward reinforcement learning problem is significantly more challenging
than its non-robust counterpart, with the primary difficulty arising in policy evaluation. Specifically,
the goal is to compute the worst-case value function and worst-case average reward over an entire
uncertainty set of transition models while having access only to samples from a nominal transition
model. In this paper, we investigate three types of uncertainty sets: Contamination uncertainty sets,
total variation (TV) distance uncertainty sets, and Wasserstein distance uncertainty sets. Unlike
the standard average-reward setting, where value functions and average rewards can be estimated
directly from observed trajectories [40, 2, 12, 13, 14], the robust setting introduces an additional
layer of complexity due to the need to optimize against adversarial transitions. Consequently, con-
ventional approaches based on direct estimation such as [40, 2, 12, 13, 14] immediately fail, as they
do not account for the worst-case nature of the problem. Overcoming this challenge requires new
algorithmic techniques that can infer the worst-case dynamics using only limited samples from the
nominal model.

1.1 Challenges and Contributions

A common approach to policy evaluation in robust RL is to solve the corresponding robust Bellman
operator. However, robust average-reward RL presents additional difficulties compared to the ro-
bust discounted-reward setting. In the discounted case, the presence of a discount factor induces a
contraction property in the robust Bellman operator [39, 44], facilitating stable iterative updates. In
contrast, the average-reward Bellman operator lacks a contraction property with respect to any norm
even in the non-robust setting [43], making standard fixed-point analysis inapplicable. Due to this
fundamental limitation, existing works on robust average-reward RL such as [38] rely on asymp-
totic techniques, primarily leveraging ordinary differential equation (ODE) analysis to examine the
behavior of temporal difference (TD) learning. These methods exploit the asymptotic stability of
the corresponding ODE [6] to establish almost sure convergence but fail to provide finite-sample
performance guarantees. Addressing this limitation requires novel analytical tools and algorithmic
techniques capable of providing explicit finite-sample bounds for robust policy evaluation and opti-
mization.

In this work, we first establish and exploit a key structural property of the robust average-reward
Bellman operator with uncertainty set P under the ergodicity of the nominal model: it is a con-
traction under some semi-norm, denoted as ‖ · ‖P , where the detailed construction is specified in
Theorem 4.2 and (15). Constructing ‖ · ‖P is not straightforward, because ergodicity alone only
guarantees that the chain mixes over multiple steps and fails to produce a single-step contraction
for familiar measures such as the span semi-norm. To overcome this, we group together all the
worst-case transition dynamics under uncertainty into one compact family of linear mappings, and
observe that their “worst-case gain” over any number of steps stays strictly below 1. From this we
build an extremal norm, which by construction shrinks every non-constant component by the same
fixed factor in a single step. Finally, we add a small “quotient” correction that exactly annihilates
constant shifts, producing a semi-norm that vanishes only on constant functions but still inherits
the one-step shrinkage. The above construction yields a uniform, strict contraction for the robust
Bellman operator.

This fundamental result above enables the use of stochastic approximation techniques similar to [43]
to analyze and bound the error in policy evaluation, overcoming the lack of a standard contraction
property that has hindered prior finite-sample analyses. Building on this insight, we develop a novel
stochastic approximation framework tailored to the robust average-reward setting. Our approach
simultaneously estimates both the robust value function and the robust average reward, leading to
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an efficient iterative procedure for solving the robust Bellman equation. A critical challenge in this
framework under TV and Wasserstein distance uncertainty sets is accurately estimating the worst-
case transition effects, which requires computing the support function of the uncertainty set. While
previous works [4, 5, 38] have leveraged Multi-Level Monte Carlo (MLMC) for this task, their
MLMC-based estimators suffer from infinite expected sample complexity due to the unbounded
nature of the required geometric sampling, leading to only asymptotic convergence. To address this,
we introduce a truncation mechanism based on a truncated geometric distribution, ensuring that the
sample complexity remains finite while maintaining an exponentially decaying bias. With these
techniques, we derive the first finite-sample complexity guarantee for policy evaluation in robust

average-reward RL, achieving an optimal Õ(ǫ−2) sample complexity bound. The main contributions
of this paper are summarized as follows:

• We prove that under the ergodicity assumption of the nominal model, the robust average-reward
Bellman operator is a contraction with respect to a suitably constructed semi-norm (Theorem
4.2). This key result enables the application of stochastic approximation techniques for policy
evaluation.

• We prove the convergence of stochastic approximation under the semi-norm contraction and under
i.i.d. with noise with non-zero bias (Theorem B.1) as an intermediate result.

• We develop an efficient method for computing estimates for the robust Bellman operator under
TV distance and Wasserstein distance uncertainty sets. By modifying MLMC with a truncated
geometric sampling scheme, we ensure finite expected sample complexity while keeping variance
controlled and bias decaying exponentially with truncation level (Theorem 5.1-5.4).

• We propose a novel temporal difference learning method that iteratively updates the robust value
function and the robust average reward, facilitating efficient policy evaluation in robust average-
reward RL. We establish the first non-asymptotic sample complexity result for policy evaluation

in robust average-reward RL, proving an order-optimal Õ(ǫ−2) complexity for policy evaluation

(Theorem 6.1), along with a Õ(ǫ−2) complexity for robust average-reward estimation (Theorem
6.2).

2 Related Work

The theoretical guarantees of robust average-reward reinforcement learning have been studied by the
following works. [36] takes a model-based perspective, approximating robust average-reward MDPs
with discounted MDPs and proving uniform convergence of the robust discounted value function as
the discount factor approaches one, employing dynamic programming and Blackwell optimality ar-
guments to characterize optimal policies. [38] proposes a model-free approach by developing robust
relative value iteration (RVI) TD and Q-learning algorithms, proving their almost sure convergence
using stochastic approximation, martingale theory, and Multi-Level Monte Carlo estimators to han-
dle non-linearity in the robust Bellman operator. While these studies provide fundamental insights
into robust average-reward RL, they do not establish explicit convergence rate guarantees due to the
lack of contraction properties in the robust Bellman operator. In addition, [31, 35] study the policy
optimization of average-reward robust MDPs assuming direct queries of the sub-gradient informa-
tion.

Policy evaluation in robust discounted-reward reinforcement learning with finite sample guarantees
has been extensively studied, with the key recent works [39, 44, 25, 24, 23] focusing on solving
the robust Bellman equation by finding its fixed-point solution. This approach is made feasible by
the contraction property of the robust Bellman operator under the sup-norm, which arises due to the
presence of a discount factor γ < 1. However, this fundamental approach does not directly extend
to the robust average-reward setting, where the absence of a discount factor removes the contraction
property under any norm. As a result, existing robust discounted methods cannot be applied in the
robust average-reward RL setting.

Recently, a growing body of concurrent work has established finite-sample guarantees for robust
average-reward reinforcement learning. Model-based approaches include [29, 10], and [28] devel-
ops a model-free value-iteration method under contamination and ℓp-ball uncertainty sets. While
these results significantly advance the area, the specific problem of policy evaluation in robust
average-reward MDPs has not yet been addressed in terms of sample complexity. Our work tar-
gets this gap.
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3 Formulation

3.1 Robust average-reward MDPs.

For a robust MDP with state space S and action space A while |S| = S and |A| = A, the transition
kernel is assumed to be in some uncertainty set P . At each time step, the environment transits to the
next state according to an arbitrary transition kernel P ∈ P . In this paper, we focus on the (s, a)-
rectangular compact uncertainty set [27, 22], i.e., P =

⊗
s,a Pa

s , where Pa
s ⊆ ∆(S), and ∆ denotes

the probability simplex. Popular uncertainty sets include those defined by the contamination model
[21, 39], total variation [26], and Wasserstein distance [15].

We investigate the worst-case average-reward over the uncertainty set of MDPs. Specifically, define
the robust average-reward of a policy π as

gπ
P(s) , min

κ∈
⊗

n≥0
P

lim
T →∞

Eπ,κ

[
1

T

T −1∑

t=0

rt|S0 = s

]
, (1)

where κ = (P0, P1...) ∈⊗n≥0 P . It was shown in [36] that the worst case under the time-varying

model is equivalent to the one under the stationary model:

gπ
P(s) = min

P∈P
lim

T →∞
Eπ,P

[
1

T

T −1∑

t=0

rt|S0 = s

]
. (2)

Therefore, we limit our focus to the stationary model. We refer to the minimizers of (2) as the
worst-case transition kernels for the policy π, and denote the set of all possible worst-case transition

kernels by Ωπ
g , i.e., Ωπ

g , {P ∈ P : gπ
P

= gπ
P}, where gπ

P
denotes the average reward of policy π

under the single transition P ∈ P:

gπ
P

(s) , lim
T →∞

Eπ,P

[
1

T

T −1∑

n=0

rt|S0 = s

]
. (3)

We focus on the model-free setting, where only samples from the nominal MDP denoted as P̃ (the
centroid of the uncertainty set) are available. We investigate the problem of robust policy evaluation
and robust average reward estimation, which means for a given policy π, we aim to estimate the
robust value function and the robust average reward. Throughout this paper, we make the following
standard assumption regarding the structure of the induced Markov chain.

Assumption 3.1. The Markov chain induced by π is irreducible and aperiodic for the nominal model

P̃.

In contrast to many current works on robust average-reward RL [36, 38, 37, 31, 28], Assumption 3.1
requires only that the center of the uncertainty set be irreducible and aperiodic. We note that when
the radius of uncertainty sets is small enough, Assumption 3.1 can ensure that P

π is irreducible and
aperiodic for all P ∈ P . This ensures that, under any transition model within the uncertainty set, the
policy π induces a single recurrent communicating class. A well-known result in average-reward
MDPs states that under Assumption 3.1, the average reward is independent of the starting state, i.e.,
for any P ∈ P and all s, s′ ∈ S, we have gπ

P
(s) = gπ

P
(s′). Thus, we can drop the dependence on the

initial state and simply write gπ
P

as the robust average reward. We now formally define the robust
value function V π

PV
by connecting it with the following robust Bellman equation:

Theorem 3.2 (Robust Bellman Equation, Theorem 3.1 in [38]). If (g, V ) is a solution to the robust
Bellman equation

V (s) =
∑

a

π(a|s)
(
r(s, a)− g + σPa

s
(V )

)
, ∀s ∈ S, (4)

where σPa
s
(V ) = minp∈Pa

s
p⊤V is denoted as the support function, then the scalar g corresponds

to the robust average reward, i.e., g = gπ
P , and the worst-case transition kernel PV belongs to the

set of minimizing transition kernels, i.e., PV ∈ Ωπ
g , where Ωπ

g , {P ∈ P : gπ
P

= gπ
P}. Furthermore,

the function V is unique up to an additive constant, where if V is a solution to the Bellman equation,
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then we have V = V π
PV

+ ce, where c ∈ R and e is the all-ones vector in R
S , and V π

PV
is defined as

the relative value function of the policy π under the single transition PV as follows:

V π
PV

(s) , Eπ,PV

[ ∞∑

t=0

(rt − gπ
PV

)|S0 = s

]
. (5)

Theorem 3.2 implies that the robust Bellman equation (4) identifies both the worst-case average
reward g and a corresponding value function V that is determined only up to an additive constant. In
particular, σPa

s
(V ) represents the worst-case transition effect over the uncertainty set Pa

s . Unlike the
robust discounted case, where the contraction property of the Bellman operator under the sup-norm
enables straightforward fixed-point iteration, the robust average-reward Bellman equation does not
induce contraction under any norm, making direct iterative methods inapplicable. Throughout the
paper, we denote e as the all-ones vector in R

S . We now characterize the explicit forms of σPa
s
(V )

for different compact uncertainty sets as follows:

Contamination Uncertainty Set The contamination uncertainty models outliers or rare faults [7].

Specifically, the δ-contamination uncertainty set is Pa
s = {(1 − δ)P̃a

s + δq : q ∈ ∆(S)}, where
0 < δ < 1 is the radius. Under this uncertainty set, the support function can be computed as

σPa
s
(V ) = (1− δ)(P̃a

s)⊤V + δ min
s

V (s), (6)

and this is linear in the nominal transition kernel P̃a
s .

Total Variation Uncertainty Set. The total variation (TV) distance uncertainty set models cate-
gorical misspecification or discretization error [18], and is characterized as Pa

s = {q ∈ ∆(|S|) :
1
2‖q − P̃

a
s‖1 ≤ δ}, define ‖ · ‖sp as the span semi-norm and the support function can be computed

using its dual function [22]:

σPa
s
(V ) = max

µ≥0

(
(P̃a

s)⊤(V − µ)− δ‖V − µ‖sp

)
. (7)

Wasserstein Distance Uncertainty Sets. The Wasserstein distance uncertainty Models smooth
model drift when states have a geometry [11]. Consider the metric space (S, d) by defining some
distance metric d. For some parameter l ∈ [1,∞) and two distributions p, q ∈ ∆(S), define the
l-Wasserstein distance between them as Wl(q, p) = infµ∈Γ(p,q) ‖d‖µ,l, where Γ(p, q) denotes the

distributions over S × S with marginal distributions p, q, and ‖d‖µ,l =
(
E(X,Y )∼µ

[
d(X, Y )l

])1/l
.

The Wasserstein distance uncertainty set is then defined as

Pa
s =

{
q ∈ ∆(S) : Wl(P̃

a
s , q) ≤ δ

}
. (8)

The support function w.r.t. the Wasserstein distance set, can be calculated as follows [15]:

σPa
s
(V ) = sup

λ≥0

(
−λδl + E

P̃a
s

[
inf

y

(
V (y) + λd(S, y)l

)])
. (9)

3.2 Robust Bellman Operator

Motivated by Theorem 3.2, we define the robust Bellman operator, which forms the basis for our
policy evaluation procedure.

Definition 3.3 (Robust Bellman Operator, [38]). The robust Bellman operator Tg is defined as:

Tg(V )(s) =
∑

a

π(a|s)
[
r(s, a)− g + σPa

s
(V )

]
, ∀s ∈ S. (10)

The operator Tg transforms a value function V by incorporating the worst-case transition effect. A
key challenge in solving the robust Bellman equation is that Tg does not satisfy contraction under
standard norms, preventing the use of conventional fixed-point iteration. To cope with this problem,
we establish that Tg is a contraction under some constructed semi-norm. This allows us to further
develop provably efficient stochastic approximation algorithms.
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4 Semi-Norm Contraction of Robust Bellman Operators

Under Assumption 3.1, we are able to establish the semi-norm contraction property. For motivation,
we first establish the semi-norm contraction property of the non-robust average-reward Bellman
operator for a policy π under transition P defined as follows:

T
P

g (V )(s) =
∑

a

π(a|s)
[
r(s, a)− g +

∑

s′

P(s′|s, a)V (s′)
]
, ∀s ∈ S. (11)

Lemma 4.1. Let S be a finite state space, and let π be a stationary policy. If the Markov chain
induced by π under the transition P is irreducible and aperiodic, there exists a semi-norm ‖·‖P with
kernel {ce : c ∈ R} and a constant β ∈ (0, 1) such that for all V1, V2 ∈ R

S and any g ∈ R,

∥∥T
P

g (V1)−T
P

g (V2)
∥∥

P
≤ β‖V1 − V2‖P. (12)

Proof Sketch Under ergodicity, the one-step transition matrix (denoted as P
π) has a unique station-

ary distribution dπ , define the stationary projector E = e
⊤dπ , then the fluctuation matrix (defined

as Qπ = P
π − E) has all eigenvalues strictly inside the unit circle. Standard finite-dimensional

theory (via the discrete Lyapunov equation [20]) would produce a norm ‖ · ‖Q on R
S such that there

is a constant α ∈ (0, 1) such that for any x ∈ R
S , ‖Qπx‖Q ≤ α‖x‖Q. We then build the semi-norm

as follows:

‖x‖P = ‖Qπx‖Q + ǫ inf
c∈R

‖x− ce‖Q, 0 < ǫ < 1− α, (13)

so that its kernel is exactly the constant vectors (the second term vanishes only on shifts of e) and
the first term enforces a one-step shrinkage by β = α + ǫ < 1. A short calculation then shows
‖Pπx‖P ≤ β‖x‖P, yielding the desired contraction, which leads to the overall result.

The concrete proof of Lemma 4.1 including the detailed construction of the semi-norm ‖ · ‖P is
in Appendix A.1, where the properties of irreducible and aperiodic finite state Markov chain are
utilized. Thus, we show the (non-robust) average-reward Bellman operator T

P

g is a strict contraction

under ‖ · ‖P. Based on the above motivations, we now formally establish the contraction property of
the robust average-reward Bellman operator by leveraging Lemma 4.1 and the compactness of the
uncertainty sets.

Theorem 4.2. Under Assumption 3.1, if P is compact, with certain restrictions on the radius of
the uncertainty sets, there exists a semi-norm ‖ · ‖P with kernel {ce : c ∈ R} such that the robust
Bellman operator Tg is a contraction. Specifically, there exist γ ∈ (0, 1) such that

‖Tg(V1)−Tg(V2)‖P ≤ γ ‖V1 − V2‖P , ∀ V1, V2 ∈ R
S , g ∈ R. (14)

Proof Sketch For any P ∈ P , the one-step transition matrix P
π has a unique stationary projector

EP due to ergodicity. Since P is compact, the family of fluctuation matrices {Qπ
P

= P
π −EP : P ∈

P} has joint spectral radius strictly less than 1. By Lemma F.1in [3], one is able to construct an
“extremal norm” (denoted as ‖·‖ext) under which every Qπ

P
contracts by a uniform factor α ∈ (0, 1).

Mimicking the non-robust case in Lemma 4.1, we similarly define

‖x‖P = sup
P∈P
‖Qπ

P
x‖ext + ǫ inf

c∈R

‖x− ce‖ext, 0 < ǫ < 1− α. (15)

The supremum term zeros out if x ∈ {ce : c ∈ R} , and it inherits the uniform one-step shrinkage
by α. Adding the small quotient term fixes the kernel without spoiling γ = α + ǫ < 1, so one shows
at once

‖TP

g (V1)−T
P

g (V2)‖P ≤ γ‖V1 − V2‖P for all P ∈ P (16)

The above leads to the desired results.

The concrete proof of Theorem 4.2 along with the detailed construction of the semi-norm ‖ · ‖P
and the specific radius restrictions on various uncertainty sets are in Appendix A.2. Since all the
uncertainty sets listed in Section 3.1 are closed and bounded in a real vector space, these uncertainty
sets are all compact and satisfy the contraction property in Theorem 4.2. We also note that the
contraction factor γ relates to the joint spectral gap of the family {Qπ

P
: P ∈ P}.
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5 Efficient Estimators for Uncertainty Sets

To utilize the contraction property in Section 4 to obtain convergence rate results, our idea is perform
the following iterative stochastic approximation:

Vt+1(s)← Vt(s) + ηt

(
T̂g(Vt)(s)− Vt(s)

)
, ∀s ∈ S (17)

where the learning rate ηt would be specified in Section 6. The detailed analysis and complexities
of the general stochastic approximation in the form of (17) is provided in Appendix B. Theorem B.1

implies that if T̂g(V ), being an estimator of Tg(V ), could be constructed with bounded variance
and small bias, Vt converges to a solution of the Bellman equation in (4). However, the challenge of

constructing our desired T̂g(V ) lies in the construction of the support function estimator σ̂Pa
s
(V ).

In this section, we aim to construct an estimator σ̂Pa
s
(V ) for all s ∈ S and a ∈ A in various

uncertainty sets. Recall that the support function σPa
s
(V ) represents the worst-case transition effect

over the uncertainty set Pa
s as defined in the robust Bellman equation in Theorem 3.2. The explicit

forms of σPa
s
(V ) for different uncertainty sets were characterized in (6)-(9). Our goal in this section

is to construct efficient estimators σ̂Pa
s
(V ) that approximates σPa

s
(V ) while maintaining controlled

variance and finite sample complexity.

Linear Contamination Uncertainty Set Recall that the δ-contamination uncertainty set is Pa
s =

{(1 − δ)P̃a
s + δq : q ∈ ∆(S)}, where 0 < δ < 1 is the radius. Since the support function can be

computed by (6) and the expression is linear in the nominal transition kernel P̃
a
s . A direct approach

is to use the transition to the subsequent state to construct our estimator:

σ̂Pa
s
(V ) , (1− δ)V (s′) + δ min

x
V (x), (18)

where s′ is a subsequent state sample after (s, a). Hence, the sample complexity of (18) is just one.
Lemma F.3 from [38] states that σ̂Pa

s
(V ) obtained by (18) is unbiased and has bounded variance as

follows:

E
[
σ̂Pa

s
(V )

]
= σPa

s
(V ), and Var(σ̂Pa

s
(V )) ≤ ‖V ‖2 (19)

Nonlinear Contamination Sets Regarding TV and Wasserstein distance uncertainty sets, they

have a nonlinear relationship between the nominal distribution P̃
a
s and the support function σPa

s
(V ).

Previous works such as [4, 5, 38] have proposed a Multi-Level Monte-Carlo (MLMC) method for
obtaining an unbiased estimator of σPa

s
(V ) with bounded variance. However, their approaches

require drawing 2N+1 samples where N is sampled from a geometric distribution Geom(Ψ) with
parameter Ψ ∈ (0, 0.5). This operation would need infinite samples in expectation for obtaining
each single estimator as E[2N+1] =

∑∞
N=0 2N+1Ψ(1 − Ψ)N =

∑∞
N=0 2Ψ(2 − 2Ψ)N → ∞. To

handle the above problem, we aim to provide an estimator σ̂Pa
s
(V ) with finite sample complexity

and small enough bias. We construct a truncated-MLMC estimator under geometric sampling with
parameter Ψ = 0.5 as shown in Algorithm 1.

In particular, if n < Nmax, then {N ′ = n} = {N = n} with probability ( 1
2 )n+1, while {N ′ =

Nmax} has probability
∑∞

m=Nmax
(1/2)m+1 = 2−Nmax . After obtaining N ′, Algorithm 1 then

collects a set of 2N ′+1 i.i.d. samples from the nominal transition model to construct empirical
estimators for different transition distributions. The core of the approach lies in computing the
support function estimates for TV and Wasserstein uncertainty sets using a correction term ∆N ′(V ),
which accounts for the bias introduced by truncation. This correction ensures that the final estimator
maintains a low bias while achieving a finite sample complexity. We now present several crucial
properties of Algorithm 1.

Theorem 5.1 (Finite Sample Complexity). Under Algorithm 1, denote M = 2N ′+1 as the random
number of samples (where N ′ = min{N, Nmax}). Then

E[M ] = Nmax + 2 = O(Nmax). (20)

The proof of Theorem 5.1 is in Appendix C.1, which demonstrates that setting the geometric sam-
pling parameter to Ψ = 0.5 ensures that the expected number of samples follows a linear growth
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Algorithm 1 Truncated MLMC Estimator for TV and Wasserstein Uncertainty Sets

Input: s ∈ S, a ∈ A, Max level Nmax, Value function V

1: Sample N ∼ Geom(0.5)
2: N ′ ← min{N, Nmax}
3: Collect 2N ′+1 i.i.d. samples of {s′

i}2N′+1

i=1 with s′
i ∼ P̃

a
s for each i

4: P̂
a,E
s,N ′+1 ← 1

2N′

∑2N′

i=1 1{s′
2i

}

5: P̂
a,O
s,N ′+1 ← 1

2N′

∑2N′

i=1 1{s′
2i−1

}

6: P̂
a
s,N ′+1 ← 1

2N′+1

∑2N′+1

i=1 1{s′
i
}

7: P̂
a,1
s,N ′+1 ← 1{s′

1}
8: if TV then Obtain σ

P̂
a,1

s,N′+1

(V ), σ
P̂a

s,N′+1

(V ), σ
P̂

a,E

s,N′+1

(V ), σ
P̂

a,O

s,N′+1

(V ) from (7)

9: else if Wasserstein then Obtain σ
P̂

a,1

s,N′+1

(V ), σ
P̂a

s,N′+1

(V ), σ
P̂

a,E

s,N′+1

(V ), σ
P̂

a,O

s,N′+1

(V ) from (9)

10: end if

11: ∆N ′(V )← σ
P̂a

s,N′+1

(V )− 1
2

[
σ

P̂
a,E

s,N′+1

(V ) + σ
P̂

a,O

s,N′+1

(V )
]

12: σ̂Pa
s
(V )← σ

P̂
a,1

s,N′+1

(V ) + ∆N′ (V )
P(N ′=n) , where p′(n) = P(N ′ = n) return σ̂Pa

s
(V )

pattern rather than an exponential one. This choice precisely cancels out the effect of the exponential
sampling inherent in the truncated MLMC estimator, preventing infinite expected sample complex-
ity. This result shows that the expected number of queries grows only linearly with Nmax, ensuring
that the sampling cost remains manageable even for large truncation levels. The key factor enabling
this behavior is setting the geometric distribution parameter to 0.5, which balances the probability
mass across different truncation levels, preventing an exponential increase in sample complexity.

Theorem 5.2 (Exponentially Decaying Bias). Let σ̂Pa
s
(V ) be the estimator of σPa

s
(V ) obtained

from Algorithm 1 then under TV uncertainty set, we have:

∣∣E
[
σ̂Pa

s
(V )− σPa

s
(V )

]∣∣ ≤ 6(1 +
1

δ
)2− Nmax

2 ‖V ‖sp (21)

where δ denotes the radius of TV distance. Under Wasserstein uncertainty set, we have:
∣∣E
[
σ̂Pa

s
(V )− σPa

s
(V )

]∣∣ ≤ 6 · 2− Nmax
2 ‖V ‖sp (22)

Theorem 5.2 establishes that the bias of the truncated MLMC estimator decays exponentially with
Nmax, ensuring that truncation does not significantly affect accuracy. This result follows from ob-
serving that the deviation introduced by truncation can be expressed as a sum of differences between
support function estimates at different level, and each of which is controlled by the ℓ1-distance
between transition distributions. Thus, we can use binomial concentration property to ensure the
exponentially decaying bias.

The proof of Theorem 5.2 is in Appendix C.2. One important lemma used in the proof is the
following Lemma 5.3, where we show the Lipschitz property for both TV and Wasserstein distance
uncertainty sets.

Lemma 5.3. For any p, q ∈ ∆(S), let PT V and QT V denote the TV distance uncertainty set with
radius δ centering at p and q respectively, and let PW and QW denote the Wasserstein distance
uncertainty set with radius δ centering at p and q respectively. Then for any value function V , we
have:

|σPT V
(V )− σQT V

(V )| ≤ (1 +
1

δ
)‖V ‖sp‖p− q‖1 and |σPW

(V )− σQW
(V )| ≤ ‖V ‖sp‖p− q‖1

(23)

We refer the proof of Theorem 5.2 to Appendix C.3.

Theorem 5.4 (Linear Variance). Let σ̂Pa
s
(V ) be the estimator of σPa

s
(V ) obtained from Algorithm

1 then under TV distance uncertainty set, we have:

Var(σ̂Pa
s
(V )) ≤ 3‖V ‖2

sp + 144(1 +
1

δ
)2‖V ‖2

spNmax (24)
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and under Wasserstein distance uncertainty set, we have:

Var(σ̂Pa
s
(V )) ≤ 3‖V ‖2

sp + 144‖V ‖2
spNmax (25)

Theorem 5.4 establishes that the variance of the truncated MLMC estimator grows linearly with
Nmax, ensuring that the estimator remains stable even as the truncation level increases. The proof of
Theorem 5.4 is in Appendix C.4, which follows from bounding the second moment of the estimator
by analyzing the variance decomposition across different MLMC levels. Specifically, by expressing
the estimator in terms of successive refinements of the transition model, we show that the variance
accumulates additively across levels due to the binomial concentration property.

6 Robust Average-Reward TD Learning

Equipped with the methods of constructing σ̂Pa
s
(V ) for all s ∈ S and a ∈ A, we now present

the formal algorithm for robust policy evaluation and robust average reward for a given policy π in
Algorithm 2. Algorithm 2 presents a robust temporal difference (TD) learning method for policy
evaluation in robust average-reward MDPs. This algorithm builds upon the truncated MLMC esti-
mator (Algorithm 1) and the biased stochastic approximation framework in Section B, ensuring both
efficient sample complexity and finite-time convergence guarantees.

The algorithm is divided into two main phases. The first phase (Lines 1-7) estimates the robust value
function. The noisy Bellman operator is computed using the estimator σ̂Pa

s
(Vt) obtained depending

on the uncertainty set type. Then the iterative update follows a stochastic approximation scheme
with stepsize ηt, ensuring convergence while maintaining stability. Finally, the value function is
centered at an anchor state s0 to remove the ambiguity due to its additive invariance. The second
phase (Lines 8-14) estimates the robust average reward by utilizing VT from the output of the first
phase. The expected Bellman residual δt(s) is computed across all states and averaging it to obtain

δ̄t. A separate stochastic approximation update with stepsize βt is then applied to refine gt, ensuring
convergence to the robust worst-case average reward. By combining these two phases, Algorithm 2
provides an efficient and provably convergent method for robust policy evaluation under average-
reward criteria, marking a significant advancement over prior methods that only provided asymptotic
guarantees.

Algorithm 2 Robust Average-Reward TD

Input: Policy π, Initial values V0, g0 = 0, Stepsizes ηt, βt, Max level Nmax, Anchor state s0 ∈ S
1: for t = 0, 1, . . . , T − 1 do
2: for each (s, a) ∈ S ×A do
3: if Contamination then Sample σ̂Pa

s
(Vt) according to (18)

4: else if TV or Wasserstein then Sample σ̂Pa
s
(Vt) according to Algorithm 1

5: end if
6: end for
7: T̂g0

(Vt)(s)←∑
a π(a|s)

[
r(s, a)− g0 + σ̂Pa

s
(Vt)

]
, ∀s ∈ S

8: Vt+1(s)← Vt(s) + ηt

(
T̂g0

(Vt)(s)− Vt(s)
)

, ∀s ∈ S
9: Vt+1(s) = Vt+1(s)− Vt+1(s0), ∀s ∈ S

10: end for
11: for t = 0, 1, . . . , T − 1 do
12: for each (s, a) ∈ S ×A do
13: if Contamination then Sample σ̂Pa

s
(Vt) according to (18)

14: else if TV or Wasserstein then Sample σ̂Pa
s
(Vt) according to Algorithm 1

15: end if
16: end for
17: δ̂t(s)←∑

a π(a|s)
[
r(s, a) + σ̂Pa

s
(VT )

]
− VT (s), ∀s ∈ S

18: δ̄t ← 1
S

∑
s δ̂t(s)

19: gt+1 ← gt + βt(δ̄t − gt)
20: end for return VT , gT
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To derive the sample complexity of robust policy evaluation, we utilize the semi-norm contraction
property of the Bellman operator in Theorem 4.2, and fit Algorithm 2 into the general biased stochas-
tic approximation result in Theorem B.1 while incorporating the bias analysis characterized in Sec-
tion 5. Since each phase of Algorithm 2 contains a loop of length T with all the states and actions
updated together, the total samples needed for the entire algorithm in expectation is 2SATE[Nmax],
where E[Nmax] is one for contamination uncertainty sets and isO(Nmax) from Theorem 5.1 for TV
and Wasserstein distance uncertainty sets.

Theorem 6.1. If Vt is generated by Algorithm 2 and satisfying Assumption 3.1, then if the stepsize

ηt := O( 1
t ), we require a sample complexity ofO

(
SAt2

mix

ǫ2(1−γ)2

)
for contamination uncertainty set and

a sample complexity of Õ
(

SAt2
mix

ǫ2(1−γ)2

)
for TV and Wasserstein distance uncertainty set to ensure an

ǫ convergence of VT . Moreover, these results are order-optimal in terms of ǫ.

Theorem 6.2. If gt is generated by Algorithm 2 and satisfying Assumption 3.1, then if the step-

size βt := O( 1
t ), we require a sample complexity of Õ

(
SAt2

mix

ǫ2(1−γ)2

)
for all contamination, TV, and

Wasserstein distance uncertainty set to ensure an ǫ convergence of gT .

The formal version of Theorems 6.1 and 6.2 along with the proofs are in Appendix D. Theorem 6.1

provides the order-optimal sample complexity of Õ(ǫ−2) for Algorithm 2 to achieve an ǫ-accurate es-
timate of VT . Although Theorem 6.1 claims order-optimal in terms of ǫ, we do not claim tightness in
S, A and γ, and treat sharpening these dependencies as open. The proof of Theorem 6.2 extends the
analysis of Theorem 6.1 to robust average reward estimation. The key difficulty lies in controlling
the propagation of error from value function estimates to reward estimation. By again leveraging the

contraction property and appropriately tuning stepsizes, we establish an Õ(ǫ−2) complexity bound
for robust average reward estimation.

7 Conclusion

This paper provides the first finite-sample analysis for policy evaluation in robust average-reward
MDPs, bridging a gap where only asymptotic guarantees existed. By introducing a biased stochas-
tic approximation framework and leveraging the properties of various uncertainty sets, we establish
finite-time convergence under biased noise. Our algorithm achieves an order-optimal sample com-

plexity of Õ(ǫ−2) for policy evaluation, despite the added complexity of robustness.

A crucial step in our analysis is proving that the robust Bellman operator is contractive under our
constructed semi-norm ‖ · ‖P , ensuring the validity of stochastic approximation updates. We further
develop a truncated Multi-Level Monte Carlo estimator that efficiently computes worst-case value
functions under total variation and Wasserstein uncertainty, while keeping bias and variance con-
trolled. One limitation of this work is that the results require ergodicity to hold in the setting, as
stated in Assumption 3.1. Additionally, scaling the algorithm and results in the paper via function
approximations remains an important open problem.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction accurately reflects the nov-
elty and contributions of this paper. All details can be found either in the rest of the main
text or in the appendix.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The discussion of limitations can be found in the conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.
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limitations that aren’t acknowledged in the paper. The authors should use their best
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The assumptions are clearly stated in the main text, the theorem statements
and some proof sketches are also included in the main text. The formal theorem statements
and their complete proofs are in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: This is a theoretical paper and does not include experiments. The minor
numerical examples added during the rebuttal will be released.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: This is a theoretical paper and does not include experiments. The minor
numerical examples added during the rebuttal will be released.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more de-
tails.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: This is a theoretical paper and does not include experiments. The minor
numerical examples added during the rebuttal will be released.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [NA]

Justification: This is a theoretical paper and does not include experiments. The minor
numerical examples added during the rebuttal will be released.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This is a theoretical paper and does not include experiments. The minor nu-
merical examples added during the rebuttal will be released. The minor numerical examples
added during the rebuttal will be released.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper is theoretical and conform, in every
respect, the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a theoretical work and the algorithm could be applied in different
applications. There is nothing specific that can be highlighted.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This is a theoretical work and the algorithm could be applied in different
applications. There is nothing specific that can be highlighted.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.the paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Semi-Norm Contraction Property of the Bellman Operator

A.1 Proof of Lemma 4.1

For any V1, V2 ∈ R
S and define ∆ = V1 − V2. Denote P

π as the transition matrix under policy π
and the unique stationary distribution dπ , and denote E as the matrix with all rows being identical
to dπ . We further define Qπ = P

π − E. Thus, we would have,

T
π
g (V1)(s)−T

π
g (V2)(s) =

∑

s′∈S
P

π(s′|s)
[
V1(s′)− V2(s′)

]
= P

π ∆(s). (26)

which implies

T
π
g (V1)−T

π
g (V2) = P

π∆ = Qπ∆ + E∆ (27)

We now discuss the detailed construction of the semi-norm ‖ · ‖P. Since P
π is ergodic, according

to the Perron–Frobenius theorem, P
π has an eigenvalue λ1 = 1 of algebraic multiplicity exactly

one, with corresponding right eigenvector e. Moreover, all other eigenvalues λ2 ≥ . . . ≥ λS of P
π

satisfies |λi| < 1 for all i ∈ {2, . . . , S}.
Lemma A.1. All eigenvalues of Qπ lies strictly inside the unit circle.

Proof. Since E = edπ⊤, E is a rank-one projector onto the span of e. Hence the spectrum of E is
{1, 0, . . . , 0}. In addition, we can show P

π and E commute by

P
πE = P

π(e(dπ)⊤) = (e(dπ)⊤) = E

EP
π = e((dπ)⊤

P
π) = e(dπ)⊤ = E

(28)

(29)

Thus, by the Schur’s theorem, P and E are simultaneously upper triangularizable. In a common
triangular basis, the diagonals of P and E list their eigenvalues in descending orders, which are
{λ1, λ2, . . . , λS} and {1, 0, . . . , 0} respectively. Thus, in that same basis, Qπ = P

π − E is also
triangular, with diagonal entries being {λ1 − 1, λ2 − 0, . . . , λS − 0}. Since λ1 = 1, we have the
spectrum of Qπ is exactly {λ2, . . . , λS , 0}. Since we already have |λi| < 1 for all i ∈ {2, . . . , S},
we conclude the proof.

Define ρ(·) to be the spectral radius of a matrix, then Lemma A.1 implies that ρ(Qπ) < 1. Hence

by equivalence of norms in R
|S| it is possible to construct a vector norm ‖ · ‖Q so that the induced

operator norm of Qπ is less than 1, specifically

0 ≤ ρ(Qπ) ≤
∥∥Qπ

∥∥
Q
≤ α < 1. (30)

A concrete construction example is to leverage the discrete-Lyapunov equation [20] of solving M
on the space of symmetric matrices for any ρ(Qπ) < α < 1 as follows:

Qπ⊤MQπ − α2M = −I (31)

Define B := α−1Qπ , then ρ(B) = α−1ρ(Qπ) < 1. We can express M in the form of Neumann
series as

M = α−2I + α−4(Qπ)⊤Qπ + α−6
(
(Qπ)⊤)2

(Qπ)2 + . . .

=

∞∑

k=0

α−2(k+1)
(
(Qπ)⊤)k

(Qπ)k

= α−2
∞∑

k=0

(
B⊤)k

Bk. (32)

We now show that M is bounded. Write B = SJS−1, where J = diag
(
Jm1

(λ1), . . . , Jmr
(λr)

)
is

the Jordan normal form. By the Jordan block power formula [20],

Jm(λ) = λIm + Nm, (33)
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with Nm the nilpotent matrix having ones on the first superdiagonal and Nm
m = 0. Then Bk =

SJkS−1 and Jk = diag
(
Jm1

(λ1)k, . . . , Jmr
(λr)k

)
. For each block and each integer k ≥ m, by

the binomial theorem we have Nm
m = 0 and

Jm(λ)k = (λIm + Nm)k =

m−1∑

j=0

(
k

j

)
λ k−j N j

m. (34)

For k ≥ m, use
(

k
j

)
≤ kj

j! and factor |λ| k:

‖Jm(λ)k‖2 ≤ |λ| k
m−1∑

j=0

kj

j!
|λ|−j‖N j

m‖2 ≤ cm,λkm−1|λ|k, (35)

where cm,λ :=
∑m−1

j=0
|λ|−j

j! ‖N j
m‖2. Thus, let s = maxi mi be the size of the largest Jordan block

of B. Since Jk is block diagonal,

‖Jk‖2 ≤
r∑

i=1

‖Jmi
(λi)

k‖2 ≤
( r∑

i=1

cmi,λi

)
ks−1

(
max

i
|λi|
)k

= CJks−1ρ(B)k (36)

for all k ≥ s, where CJ :=
∑r

i=1 cmi,λi
and ρ(B) = maxi |λi|.

Since similarity does not change eigenvalues but may scale norms by the condition number, we can
derive that

‖Bk‖2 = ‖SJkS−1‖2 ≤ ‖S‖2‖S−1‖2‖Jk‖2 ≤ κ(S) CJks−1ρ(B)k (k ≥ s),

where κ(S) := ‖S‖2‖S−1‖2. By choosing the appropriate constant, the same bound holds for all
k ≥ 0:

∃ CB > 0 such that ‖Bk‖2 ≤ CB ks−1 ρ(B) k (k ≥ 0).

In spectral norm, this implies

‖(B⊤)kBk‖2 = ‖(Bk)⊤Bk‖2 = σmax(Bk)2 = ‖Bk‖2
2 ≤ C2

Bk2(s−1)ρ(B)2k. (37)

Thus, the scalar series
∑∞

k=0 k2(s−1) ρ(B) 2k is in the form of polynomial times geometric with
ratio less than 1, which converges, and the partial sum expression in (32) converges absolutely as a
geometric-type series.

Also, since each term in (32) is positive semi-definite, and the first term α−2I being positive definite,
we can conclude that M being the summation is well-defined and is positive definite. Thus, using
the positive definite M defined in (31), we can define our desired norm ‖ · ‖Q as

‖x‖Q :=
√

x⊤Mx (38)

which implies

‖Qπ‖Q = sup
x6=0

‖Qπx‖Q

‖x‖Q
= sup

x6=0

√
(Qπx)⊤MQπx√

x⊤Mx

(a)

≤ α < 1 (39)

Where (a) is because for any x 6= 0, from (31) we have

(Qx)π⊤MQπx− α2x⊤Mx = −x⊤x ⇒ (Qx)π⊤MQπx = α2x⊤Mx− ‖x‖2
2 (40)

Since ‖x‖2
2 is always non-negative dividing both sides of the second equation of (40) by x⊤Mx and

further taking the square root on both sides yields the inequality of (a).

Based on the above construction of the norm ‖ · ‖Q, define the operator ‖ · ‖P as

‖x‖P :=
∥∥Qπx

∥∥
Q

+ ǫ inf
c∈R

∥∥x− ce
∥∥

Q
(41)

where 0 < ǫ < 1− α.
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Lemma A.2. The operator ‖ · ‖P is a valid semi-norm with kernel being exactly {ce : c ∈ R}.
Furthermore, for all x ∈ R

S , we have
∥∥P

πx
∥∥

P
≤ (α + ǫ)

∥∥x
∥∥

P
.

Proof. Regarding positive homogeneity and nonnegativity, for any scalar λ and x ∈ R
S ,

‖λx‖P =
∥∥Qπ(λx)

∥∥
Q

+ ǫ inf
c

∥∥λx− ce
∥∥

Q
= |λ|

∥∥Qπx
∥∥

Q
+ ǫ |λ| inf

c

∥∥x− ce
∥∥

Q
= |λ| ‖x‖P,

and clearly ‖x‖P ≥ 0, with equality only when both ‖Qπx‖Q = 0 and infc ‖x − c e‖Q = 0.

Regarding triangle inequality, for any x, y ∈ R
S ,

‖x + y‖P =
∥∥Qπ(x + y)

∥∥
Q

+ ǫ inf
c

∥∥x + y − ce
∥∥

Q

≤
∥∥Qπx

∥∥
Q

+
∥∥Qπy

∥∥
Q

+ ǫ inf
a,b

∥∥x− ae + y − be
∥∥

Q

≤
∥∥Qπx

∥∥
Q

+
∥∥Qπy

∥∥
Q

+ ǫ inf
a

∥∥x− ae
∥∥

Q
+ ǫ inf

b

∥∥y − be
∥∥

Q

= ‖x‖P + ‖y‖P.

Regarding the kernel, if x = ke for some k ∈ R, then we have

‖x‖P = ‖kQπ
e‖Q + ǫ inf

c
‖ke− ce‖Q

= ‖k(Pπ − E)e‖Q + ǫ‖ke− ke‖Q

= ‖ke− ke‖Q + ǫ‖0‖Q = 0 (42)

On the other hand, if x /∈ {ce : c ∈ R}, we know that

‖x‖P ≥ ǫ inf
c
‖x− ce‖Q > 0 (43)

Thus, the kernel of ‖ · ‖P is exactly {ce : c ∈ R}. We now show that, for any x ∈ R
S ,

∥∥Qπx
∥∥

P
=
∥∥Qπ(Qπx)

∥∥
Q

+ ǫ inf
c

∥∥Qπx− ce
∥∥

Q

≤ α‖Qπx‖Q + ǫ‖Qπx‖Q

= (α + ǫ)‖Qπx‖Q

≤ (α + ǫ)‖x‖P. (44)

Let β = α + ǫ, by (30) and (41), we have α ∈ (0, 1) and ǫ ∈ (0, 1 − α). Thus, β ∈ (0, 1) and
combining β with the semi-norm ‖ · ‖P confirms Lemma 4.1.

A.2 Proof of Theorem 4.2

We override the terms α, λ and ǫ from the previous section. For any V1, V2 and s ∈ S,

Tg(V1)(s)−Tg(V2)(s) =
∑

a∈A
π(a|s)[σpa

s
(V1)− σpa

s
(V2)]

=
∑

a∈A
π(a|s)[ min

p∈Pa
s

∑

s′∈S
p(s′|s, a)V1(s′)− min

p∈Pa
s

∑

s′∈S
p(s′|s, a)V2(s′)]

≤
∑

a∈A
π(a|s) max

p∈Pa
s

[
∑

s′∈S
p(s′|s, a)V1(s′)−

∑

s′∈S
p(s′|s, a)V2(s′)

]

≤
∑

a

π(a|s)
∑

s′

p̃(V1,V2)(s
′|s, a)

[
V1(s′)− V2(s′)

]
(45)

where p̃(V1,V2) = arg maxp∈Pa
s
[
∑

s′∈S p(s′|s, a)V1(s′) − ∑
s′∈S p(s′|s, a)V2(s′)] and each

p̃(V1,V2) ∈ P for all V1, V2. We now discuss the construction of the desired semi-norm ‖ · ‖P .
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A.2.1 Joint Spectral Radius of Qπ
P

For any P ∈ P , denote P
π as the transition matrix under policy π and the unique stationary dis-

tribution dπ
P

, and denote EP as the matrix with all rows being identical to dπ
P

(we will provide the
conditions for all P

π having a unique stationary distribution later). We further define the following:

Qπ
P

= P
π − EP and Qπ

P = {Qπ
P

: P ∈ P}. (46)

To obtain the desired one-step contraction result under Assumption 3.1 along with proper radius
restrictions, we need to show the conditions of the radius under the different uncertainty sets such
that the joint spectral radius ρ̂(Qπ

P) defined in Lemma F.1 satisfies ρ̂(Qπ
P) < 1, which is necessary

to establish the desired one-step contraction. We first provide an upper bound of the joint spectral
radius as follows:

Lemma A.3. Define the Dobrushin’s coefficient of an n dimensional Markov matrix P as

τ(P ) := 1−min
i<j

n∑

s=1

min(Pis, Pjs), (47)

then the joint spectral radius of the family Qπ
P is upper bounded by the following:

ρ̂(Qπ
P) ≤ inf

m≥1

(
sup

Pi∈P
τ(Pπ

1 · . . . · Pπ
m)

) 1
m

(48)

Proof. We start by first connecting ρ̂(Qπ
P) to the joint spectral radius of the family {Pπ : P ∈ P}.

Define H := {x ∈ R
S : e

⊤x = 0} to be the zero-sum subspace where the space spanned by e is
removed. Furthermore, choose an orthonormal basis U = [u0 UH] ∈ R

S×S with

u0 =
1√
S

e, U⊤
H

UH = IS−1, UHU⊤
H

= Π := IS −
1

S
ee

⊤, e
⊤UH = 0

where Π is the orthogonal projector onto H. Since U is orthogonal, U⊤ = U−1. With the above

notations, for any Qπ
P
∈ Qπ

P , we can construct a similar matrix Q̃π
P

as

Q̃π
P

:= U−1Qπ
P
U =

[
0 α⊤

P

0 BP

]
, where BP := U⊤

H
P

πUH ∈ R
(S−1)×(S−1). (49)

Equivalently, define TP := ΠP
π
∣∣
H

, which operates entirely on H. Then BP is the matrix of TP in

the basis of UH. Since EP = e(dπ
P
)⊤ and U⊤

H
e = 0, we have U⊤

H
EPUH = 0. Hence, the lower-right

block in U⊤
H

Qπ
P
UH is just BP. Consequently, for any sequence P

π
1 , . . . , P

π
k ,

U−1
(
Qπ

Pk
· · ·Qπ

P1

)
U =

[
0 ∗
0 BPk

· · ·BP1

]
. (50)

Hence, by block upper-triangularity [20], the spectral radius of Qπ
Pk
· · ·Qπ

P1
on R

S equals the spec-
tral radius of BPk

· · ·BP1
on H:

ρ
(
Qπ

Pk
· · ·Qπ

P1

)
= ρ
(
BPk
· · ·BP1

)

= ρ
(
U⊤
H

P
π
kUH · · ·U⊤

H
P

π
1 UH

)

= ρ
(
U⊤
H

P
π
kΠP

π
k−1Π · · ·Pπ

2 ΠP
π
1 UH

)

= ρ(TPk
. . . TP1

). (51)

Thus, the spectral radius of the family Qπ
Pk
· · ·Qπ

P1
on R

S equals the spectral radius of P
π
k · · ·Pπ

1 on
H:

ρ
(
Qπ

Pk
· · ·Qπ

P1

)
= ρ(TPk

. . . TP1
) = ρ(ΠP

π
k · · ·Pπ

1

∣∣
H

). (52)

Given (52), we now study the joint spectral radius of PH = {ΠP
π : P ∈ P} on H.

From Lemma F.1, we have that for an arbitrary norm ‖ · ‖H→H on H,

ρ̂(PH) = lim
k→∞

sup
Pi∈P

‖ΠP
π
k . . . P

π
1‖

1
k

H→H
= lim

k→∞
sup

Pi∈P
‖TPk

. . . TP1
‖

1
k

H→H
. (53)
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Divide k into m partitions of blocks with length q and a residue r as k = qm+r, where q, m, r ∈ N,
0 < q ≤ k and 0 ≤ r < q. Furthermore, let Mm := sup

Pi∈P ‖TPm
. . . TP1

‖H→H and K<m :=
max0≤r<m sup

Pi∈P ‖TPr
. . . TP1

‖H→H, then by the submultiplicity of operator norm, we have that
on H,

sup
Pi∈P

‖TPk
. . . TP1

‖H→H ≤Mq
mK<m, (54)

taking power of 1
k and let k →∞ implies

lim
k→∞

sup
Pi∈P

‖TPk
. . . TP1

‖
1
k

H→H
≤ lim

k→∞
M

q

k
mK

1
k
<m. (55)

Since q = ⌊ k
m⌋, we have limk→∞

q
k = 1

m and limk→∞ 1
k = 0, which suggests that for any positive

integer m we have,

lim
k→∞

sup
Pi∈P

‖TPk
. . . TP1

‖
1
k

H→H
≤M

1
m

m =

(
sup

Pi∈P
‖TPm

. . . TP1
‖H→H

) 1
m

, (56)

which implies for any norm ‖ · ‖H→H on H, we have

lim
k→∞

sup
Pi∈P

‖TPk
. . . TP1

‖
1
k

H→H
≤ inf

m≥1

(
sup

Pi∈P
‖TPm

. . . TP1
‖H→H

) 1
m

. (57)

From [16], the Dobrushin’s coefficient is a valid norm (the induced matrix span norm) on the zero-
sum subspace H, which yields (48).

Lemma A.3 provides a quantitative method to relate the joint spectral radius of the family Qπ
P and

the Dobrushin’s coefficient of the family P . Under Assumption 3.1, we next discuss the radius
restrictions of contamination, TV and Wasserstein distance uncertainty sets such that ρ̂(Qπ

P) < 1 is
satisfied.

A.2.2 Discussions on Radius Restrictions

We provide the following Lemma A.4-A.6, which quantifies the radius restrictions regarding all
three uncertainty sets of interests for obtaining the desired results.

Contamination Uncertainty Regarding contamination uncertainty, where the uncertainty set is
characterized as

P :=
{

P : ∀(s, a), P(·|s, a) = (1− δ)P̃(·|s, a) + δ q(·|s, a), q(·|s, a) ∈ ∆(S)
}

, 0 ≤ δ < 1,

For a fixed policy π, the induced state–transition matrix P
π is expressed as

P
π(s, s′) :=

∑

a

π(a|s)P(s′|s, a) = (1− δ)
∑

a

π(a|s)P̃(s′|s, a) + δ
∑

a

π(a|s)q(s′|s, a) (58)

Define the induced uncertainty set Pπ := {Pπ : P ∈ P} and define P̃
π(s, s′) :=∑

a π(a|s)P̃(s′|s, a). Then (58) can be expressed as

Pπ =
{

(1− δ)P̃π + δqπ : qπ row–stochastic
}

. (59)

Lemma A.4. Under the contamination uncertainty set, if the centroid P̃
π is irreducible and aperi-

odic, then the joint spectral radius of Qπ
P defined in (46) is strictly less than 1. Furthermore, P

π is
irreducible and aperiodic for all P ∈ P .

Proof. Since P̃
π is irreducible and aperiodic. Then there exists an m ∈ N such that all entries in

(P̃π)m are strictly positive. For any P
π ∈ Pπ we can write P

π = (1 − δ)P̃π + δqπ with qπ being
row–stochastic, so by multinomial expansion,

(Pπ)m =
(
(1− δ)P̃π + δqπ

)m ≥ (1− δ)m(P̃π)m (entrywise). (60)
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Hence (Pπ)m is strictly positive for all P ∈ P , which implies every P
π ∈ Pπ is primitive with the

same exponent m, which further implies P
π is irreducible and aperiodic for all P ∈ P .

To bound the joint spectral radius, for the same integer m, define the m–step overlap constant of the
centroid as

a0 := min
i<j

∑

s∈S
min

{
(P̃π)is, (P̃π)js

}
∈ (0, 1].

For any length–m product P
π
m · · ·Pπ

1 with P
π
t ∈ Pπ , the same entrywise bound (60) gives

P
π
m · · ·Pπ

1 ≥ (1− δ)m(P̃π)m, whence for all i 6= j, we have

∑

s

min{(Pπ
m · · ·Pπ

1 )is, (Pπ
m · · ·Pπ

1 )js} ≥ (1− δ)ma0. (61)

By the definition of the Dobrushin’s coefficient in (47), the above yields

τ(Pπ
m · · ·Pπ

1 ) ≤ 1− (1− δ)ma0 < 1. (62)

By Lemma A.3,

ρ̂(Qπ
P) ≤ inf

t≥1

(
sup

Pi∈P
τ(Pπ

1 · . . . · Pπ
t )

) 1
t

≤
(
1− (1− δ)ma0

)1/m
< 1.

Therefore, if the center P̃
π is primitive and 0 ≤ δ < 1, without having any additional restrictions

on the radius, we have that all induced kernels in Pπ are irreducible and aperiodic. Furthermore, the
joint spectral radius of Qπ

P satisfies ρ̂(Qπ
P) < 1.

Total Variation (TV) Distance Uncertainty Regarding TV uncertainty, where the uncertainty set
is characterized as

P :=
{

P : ∀(s, a), TV
(
P (·|s, a), P̃(·|s, a)

)
≤ δ

}
, δ ≥ 0,

where TV(p, q) := 1
2‖p − q‖1. For a fixed policy π, the induced state–transition matrix P

π is
expressed as

P
π(s, s′) :=

∑

a

π(a|s)P(s′|s, a) (63)

Then for each state s,

TV
(
P

π(s, ·), P̃
π(s, ·)

)
= TV

(∑

a

π(a|s)P(·|s, a),
∑

a

π(a|s)P̃(·|s, a)
)

≤
∑

a

π(a|s)TV
(
P(·|s, a), P̃(·|s, a)

)

≤ δ, (64)

by convexity of TV(·, ·) in each argument. Hence

Pπ ⊆
{

M row–stochastic : ∀s, TV
(
M(s, ·), P̃

π(s, ·)
)
≤ δ
}

. (65)

Lemma A.5. Under the TV distance uncertainty set, if the centroid P̃
π is irreducible and aperiodic,

then there exists m ∈ N such that (P̃π)m is strictly positive. Define b0 = mini,s((P̃π)m)is > 0,

then if the radius satisfies δ < b0

m , the joint spectral radius of Qπ
P defined in (46) is strictly less than

1. Furthermore, P
π is irreducible and aperiodic for all P ∈ P .

Proof. Define the m–step constant a0 as

a0 = min
i<j

∑

s∈S
min

{
(P̃π)m)is, ((P̃π)m)js

}
∈ (0, 1],

26



then a0 ≥ S b0 where S = |S|.
Regarding the joint spectral radius, for any length-m product P

π
m · · ·Pπ

1 with P
π
t ∈ Pπ . By a

telescoping expansion and nonexpansiveness of TV under right–multiplication by a Markov kernel,

TV
(
(Pπ

m · · ·Pπ
1 )(i, ·), (P̃π)m(i, ·)

)
≤ mδ for all rows i.

Then, for all i 6= j,
∑

s

min{(Pπ
m · · ·Pπ

1 )is, (Pπ
m · · ·Pπ

1 )js} ≥ 1− TV
(
(Pπ

m · · ·Pπ
1 )(i, ·), (Pπ

m · · ·Pπ
1 )(j, ·)

)

≥ a0 − 2mδ, (66)

by the triangle inequality in TV. Hence

τ((Pπ
m · · ·Pπ

1 )) = 1−min
i<j

∑

s

min{(Pπ
m · · ·Pπ

1 )is, (Pπ
m · · ·Pπ

1 )js} ≤ 1− (a0 − 2mδ). (67)

By setting δ < a0

2m , we have sup
Pi∈P τ((Pπ

m · · ·Pπ
1 )) < 1, and by Lemma A.3,

ρ̂
(
Qπ

P
)
≤
(

supPi∈Pτ((Pπ
m · · ·Pπ

1 ))
)1/m

≤
(
1− (a0 − 2mδ)

)1/m
< 1. (68)

Similarly, the same perturbation bound yields

min
s

(Pπ)m
is ≥ min

s
((P̃π))m)is −mδ ≥ b0 −mδ,

so by setting δ < b0

m , we have that (Pπ)m is strictly positive for every P ∈ P; hence all induced

kernels are irreducible and aperiodic. Since a0 ≥ Sb0, we have a0

2m ≥
b0

m for S ≥ 2. Therefore the

condition that δ < b0

m satisfies both requirements.

Wasserstein Distance Uncertainty Regarding Wasserstein uncertainty with p ≥ 1, let (S, d) be
the finite metric space. The uncertainty set can be characterized as

P :=
{

P : ∀(s, a), Wp

(
P (·|s, a), P̃(·|s, a); d

)
≤ δ
}

.

For a fixed policy π, the induced state–transition matrix P
π is expressed as

P
π(s, s′) :=

∑

a

π(a|s)P(s′|s, a) (69)

For each state s, by joint convexity of W p
p (·, ·; d),

W p
p

(
P

π(s, ·), P̃
π(s, ·); d

)
= W p

p

(∑

a

π(a|s)P(·|s, a),
∑

a

π(a|s)P̃(·|s, a); d
)

≤
∑

a

π(a|s) W p
p

(
P(·|s, a), P̃(·|s, a); d

)
≤ δp,

hence Wp

(
P

π(s, ·), P̃
π(s, ·); d

)
≤ δ for all s, i.e.

Pπ ⊆
{

M row–stochastic : ∀s, Wp(M(s, ·), P̃
π(s, ·); d) ≤ δ

}
. (70)

We now draw connection between (70) and the TV version in (65). Since the state space is finite,
denote δmin := minx6=y d(x, y) > 0. Then, for any distributions u, v, we have

W1(u, v; d) ≥ δmin TV(u, v) and Wp(u, v; d) ≥ W1(u, v; d),

which implies that

TV(u, v) ≤ W1(u, v; d)

δmin
≤ Wp(u, v; d)

δmin
. (71)

Therefore we can reduce (70) into a TV distance uncertainty set characterized as follows:

Pπ ⊆
{

M row–stochastic : ∀s, TV
(
M(s, ·), P̃

π(s, ·)
)
≤ δ

δmin

}
. (72)
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Lemma A.6. Under the Wasserstein distance uncertainty set, if the centroid P̃
π is irreducible

and aperiodic, then there exists m ∈ N such that (P̃π)m is strictly positive. Define b0 =
mini,s((P̃π)m)is > 0 and δmin := minx6=y d(x, y) > 0, then if the radius satisfies δ < δminb0

m ,
the joint spectral radius of Qπ

P defined in (46) is strictly less than 1. Furthermore, P
π is irreducible

and aperiodic for all P ∈ P .

Proof. This is a direct corollary of Lemma A.5 under the condition of (72).

Remarks. (i) If d is normalized so δmin = 1, the thresholds simplify accordingly. (ii) One can also
argue via W p

p ≥ δp
min TV, which gives the alternative (more conservative when ε is small) choice

r = δp/δp
min; the linear reduction r = δ/δmin above is sharper and suffices for the bounds.

A.2.3 Extremal Norm Construction

Under the radius conditions of Lemma A.4-A.6, we have that :

r∗ := ρ̂(Qπ
P) < 1 (73)

We follow similar process for constructing our desired semi-norm ‖ · ‖P as in Appendix A.1 by
first constructing a norm such that all Qπ

P
are strictly less then one under that norm. We choose

α ∈ (r∗, 1) and we follow the approach in [41] by constructing an extremal norm ‖ · ‖ext as follows:

‖x‖ext := sup
k≥0

sup
Q1,...,Qk∈Qπ

P

α−k‖QkQk−1 . . . Q1x‖2 where Qπ
P = {Qπ

P
: P ∈ P} (74)

Note that we follow the convention that ‖QkQk−1 . . . Q1x‖2 = ‖x‖2 when k = 0.

Lemma A.7. Under Assumption 3.1 and the radius conditions of Lemma A.4-A.6, the operator
‖ · ‖ext is a valid norm with ‖Qπ

P
‖ext < 1 for all P ∈ P

Proof. We first prove that ‖ · ‖ext is bounded. Following Lemma F.1 and choosing λ ∈ (r∗, α), then
there exist a positive constant C <∞ such that

‖QkQk−1 . . . Q1‖2 ≤ Cλk (75)

Hence for each k and for all x ∈ R
S ,

α−k‖QkQk−1 . . . Q1x‖2 ≤ α−kCλk‖x‖2 = C

(
λ

α

)−k

‖x‖2 −→ 0 as k →∞ (76)

Thus the double supremum in (74) is over a bounded and vanishing sequence, so ‖ · ‖ext bounded.

To check that ‖ · ‖ext is a valid norm, note that if x = 0, ‖x‖ext is directly 0. On the other hand, if
‖x‖ext = 0, we have

sup
k=0

sup
Q1,...,Qk∈Qπ

P

α−k‖QkQk−1 . . . Q1x‖2 = ‖x‖2 = 0⇒ x = 0 (77)

Regarding homogeneity, observe that for any c ∈ R and x ∈ R
S ,

‖cx‖ext = sup
k≥0

sup
Q1,...,Qk∈Qπ

P

α−k‖QkQk−1 . . . Q1(cx)‖2 = |c|‖x‖ext (78)

Regarding triangle inequality, using ‖Qk . . . Q1(x + y)‖2 ≤ ‖Qk . . . Q1x‖2 + ‖Qk . . . Q1y‖2 for
any x, y ∈ R

S , we obtain,

‖x + y‖ext = sup
k≥0

sup
Q1,...,Qk∈Qπ

P

α−k‖QkQk−1 . . . Q1(x + y)‖2 ≤ ‖x‖est + ‖y‖est (79)
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For any P ∈ P , we have

‖Qπ
P
x‖ext = sup

k≥0
sup

Q1,...,Qk∈Qπ
P

α−k‖QkQk−1 . . . Q1(Qπ
P
x)‖2

≤ sup
k≥1

sup
Q1,...,Qk∈Qπ

P

α−(k−1)‖QkQk−1 . . . Q1x‖2

= α sup
k≥1

sup
Q1,...,Qk∈Qπ

P

α−k‖QkQk−1 . . . Q1x‖2

≤ α sup
k≥0

sup
Q1,...,Qk∈Qπ

P

α−k‖QkQk−1 . . . Q1x‖2

= α‖x‖ext (80)

Since P is arbitrary, (80) implies that for any P ∈ P ,

‖Qπ
P
‖ext = sup

x6=0

‖Qπ
P
x‖ext

‖x‖ext
≤ α < 1 (81)

A.2.4 Semi-Norm Contraction for Robust Bellman Operator

We now follow the same method as (41) to construct the semi-norm ‖·‖P . Define the operator ‖·‖P
as

‖x‖P := sup
P∈P

∥∥Qπ
P
x
∥∥

ext
+ ǫ inf

c∈R

∥∥x− ce
∥∥

ext
(82)

where 0 < ǫ < 1− α.

Lemma A.8. The operator ‖ ·‖P is a valid semi-norm with kernel being exactly {ce : c ∈ R} under
Assumption 3.1 and the radius conditions of Lemma A.4-A.6. Furthermore, for all x ∈ R

S , we have∥∥P
πx
∥∥

P ≤ (α + ǫ)
∥∥x
∥∥

P for all P ∈ P .

Proof. Regarding positive homogeneity and nonnegativity, for any scalar λ and x ∈ R
S ,

‖λx‖P = sup
P∈P

∥∥Qπ
P
(λx)

∥∥
ext

+ǫ inf
c∈R

∥∥λx−ce
∥∥

ext
= |λ| sup

P∈P

∥∥Qπ
P
x
∥∥

ext
+ǫ|λ| inf

c∈R

∥∥x−ce
∥∥

ext
= |λ|‖x‖ext

and ‖x‖ext ≥ 0. Regarding triangle inequality, for any x, y ∈ R
S , note that for any P ∈ P ,

‖Qπ
P
(x + y)‖ext ≤ ‖Qπ

P
x‖ext + ‖Qπ

P
y‖ext (83)

Taking supremum over P on both sides yields

sup
P∈P
‖Qπ

P
(x + y)‖ext ≤ sup

P∈P
‖Qπ

P
x‖ext + sup

P∈P
‖Qπ

P
y‖ext (84)

Thus, we have

‖x + y‖P = sup
P∈P

∥∥Qπ
P
(x + y)

∥∥
ext

+ ǫ inf
c

∥∥x + y − ce
∥∥

ext

≤ sup
P∈P
‖Qπ

P
x‖ext + sup

P∈P
‖Qπ

P
y‖ext + ǫ inf

a,b

∥∥x− ae + y − be
∥∥

ext

≤ sup
P∈P
‖Qπ

P
x‖ext + sup

P∈P
‖Qπ

P
y‖ext + ǫ inf

a

∥∥x− ae
∥∥

ext
+ ǫ inf

b

∥∥y − be
∥∥

ext

= ‖x‖P + ‖y‖P .

Regarding the kernel, if x = ke for some k ∈ R, then similar to (42), we have

‖x‖P = sup
P∈P

∥∥Qπ
P
(ke)

∥∥
ext

+ ǫ inf
c
‖ke− ce‖ext = 0 + 0 = 0 (85)

On the other hand, if x /∈ {ce : c ∈ R}, we know that

‖x‖P ≥ ǫ inf
c
‖x− ce‖ext > 0 (86)
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Thus, the kernel of ‖ · ‖P is exactly {ce : c ∈ R}. We now show that, for any x ∈ R
S and P ∈ P ,

∥∥P
πx
∥∥

P = sup
Q∈ Qπ

P

∥∥QP
πx
∥∥

ext
+ ǫ inf

c

∥∥P
πx− ce

∥∥
ext

= sup
Q∈ Qπ

P

∥∥QQπ
P
x + QEPx

∥∥
ext

+ ǫ inf
c

∥∥Qπ
P
x + EPx− ce

∥∥
ext

= sup
Q∈ Qπ

P

∥∥QQπ
P
x‖ext + ǫ inf

c

∥∥Qπ
P
x− ce

∥∥
ext

≤ α sup
Q∈ Qπ

P

∥∥Qx‖ext + ǫ‖Qπx‖ext

= (α + ǫ)‖Qπx‖ext

≤ (α + ǫ)‖x‖P . (87)

Since α ∈ (0, 1) and ǫ ∈ (0, 1 − α). Thus, let γ = α + ǫ then γ ∈ (0, 1). Substituting the above
result back to (45), we obtain

‖Tg(V1)−Tg(V2)‖P ≤ ‖π(a|s)p̃(V1,V2)

[
V1(s′)− V2(s′)

]
‖P ≤ γ‖V1 − V2‖P (88)

B Biased Stochastic Approximation Convergence Rate

In Section 4, we established that the robust Bellman operator is a contraction under the semi-norm
‖ ·‖P , ensuring that policy evaluation can be analyzed within a well-posed stochastic approximation
framework. However, conventional stochastic approximation methods typically assume unbiased
noise, where variance diminishes over time without introducing systematic drift. In contrast, the
noise in robust policy evaluation under TV and Wasserstein distance uncertainty sets exhibits a small
but persistent bias, arising from the estimators of the support functions σ̂Pa

s
(V ) (discussed in Section

5). This bias, if not properly addressed, can lead to uncontrolled error accumulation, affecting the
reliability of policy evaluation. To address this challenge, this section introduces a novel analysis of
biased stochastic approximation, leveraging properties of dual norms to ensure that the bias remains
controlled and does not significantly impact the convergence rate. Our results extend prior work
on unbiased settings and provide the first explicit finite-time guarantees, which are further used to
establish the sample complexity of policy evaluation in robust average-reward RL. Specifically, we

analyze the iteration complexity for solving the fixed equivalence class equation H(x∗) − x∗ ∈ E
where E := {ce : c ∈ R} with e being the all-ones vector. The stochastic approximation iteration
being used is as follows:

xt+1 = xt + ηt

[
Ĥ(xt)− xt

]
, where Ĥ(xt) = H(xt) + wt. (89)

with ηt > 0 being the step-size sequence. We assume that there exist γ ∈ (0, 1) such that

‖H(x)−H(y)‖P ≤ γ ‖x− y‖P , ∀x, y (90)

We also assume that the noise terms ωt are i.i.d. and have bounded bias and variance

E[ ‖wt‖2
P |F t] ≤ A + B ‖xt − x∗‖2

P and
∥∥E[ wt|F t]

∥∥
P ≤ εbias (91)

Theorem B.1. If xt is generated by (89) with all assumptions in (90) and (91) satisfied, then if the
stepsize ηt := O( 1

t ),

E

[
‖xT − x∗‖2

P
]
≤ O

(
1

T 2

)
‖x0 − x∗‖2

P +O
(

A

(1− γ)2T

)
+O

(
xsupεbias log T

1− γ

)
(92)

where xsup := supx ‖x‖P is the upper bound of the ‖ · ‖P semi-norm for all xt.

Theorem B.1 adapts the analysis of [43] and extends it to a biased i.i.d. noise setting. To manage
the bias terms, we leverage properties of dual norms to bound the inner product between the error
term and the gradient, ensuring that the bias influence remains logarithmic in T rather than growing
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unbounded, while also carefully structuring the stepsize decay to mitigate long-term accumulation.
This results in an extra εbias term with logarithmic dependence of the total iteration T .

We perform analysis of the biased-noise extension to the semi-norm stochastic approximation (SA)
problem by constructing a smooth convex semi-Lyapunov function for forming the negative drift
[43, 9] and using properties in dual norms for managing the bias.

B.1 Proof of Theorem B.1

B.1.1 Setup and Notation.

In this section, we override the notation of the semi-norm ‖ · ‖P by re-writing it as the norm ‖ · ‖N
(defined in (96)) to the equivalence class of constant vectors. For any norm ‖ · ‖c and equivalence

class E, define the indicator function δE as

δĒ(x) :=

{
0 x ∈ Ē,

∞ otherwise.
(93)

then by [43], the semi-norm induced by norm ‖·‖c and equivalence class E is the infimal convolution
of ‖ · ‖c and the indicator function δE can be defined as follows

‖x‖c,E
:= (‖ · ‖c ∗inf δE)(x) = inf

y
(‖x− y‖c + δE(y)) = inf

e∈E
‖x− e‖c ∀x, (94)

where ∗inf denotes the infimal convolution operator. Throughout the remaining section, we let E :=
{ce : c ∈ R} with e being the all-ones vector. Since ‖ · ‖P constructed in (82) is a semi-norm with

kernel being E, we can construct a norm ‖ · ‖N such that

‖x‖N ,E
:= (‖ · ‖N ∗inf δE)(x) = ‖x‖P (95)

We construct ‖ · ‖N as follows:

‖x‖N := sup
P∈P

∥∥Qπ
P
x
∥∥

ext
+ ǫ inf

c∈R

∥∥x− ce
∥∥

ext
+ ǫ‖x‖ext (96)

where Qπ
P

and ǫ are defined in (82).

Lemma B.2. The operator ‖ · ‖N defined in (96) is a norm satisfying (95).

Proof. We first verify that ‖ · ‖N is a norm. Regarding positivity, since all terms in (96) are non-
negative, ‖x‖N ≥ 0 for all x ∈ R

S and ‖0‖N = 0. If x 6= 0, since ‖ · ‖ext is a valid norm and
ǫ > 0, we have

‖x‖N ≥ ǫ‖x‖ext > 0.

Regarding homogeneity, For any λ ∈ R, we have

‖λx‖N = sup
P∈P

∥∥Qπ
P
(λx)

∥∥
ext

+ ǫ inf
c

∥∥(λx)− ce
∥∥

ext
+ ǫ‖λx‖ext

= |λ| sup
P∈P

∥∥Qπ
P
x
∥∥

ext
+ ǫ|λ| inf

c

∥∥x− ce
∥∥

ext
+ ǫ|λ|‖x‖ext

= |λ|‖x‖N

Regarding triangle inequality, for any x, y ∈ R
S , we have

‖x + y‖N = sup
P∈P

∥∥Qπ
P
(x + y)

∥∥
ext

+ ǫ inf
c

∥∥(x + y)− ce
∥∥

ext
+ ǫ‖x + y‖ext

≤ sup
P∈P
‖Qπ

P
x‖ext + sup

P∈P
‖Qπ

P
y‖ext + ǫ inf

a,b

∥∥x− ae + y − be
∥∥

ext
+ ǫ(‖x‖ext + ‖y‖ext)

≤ sup
P∈P
‖Qπ

P
x‖ext + sup

P∈P
‖Qπ

P
y‖ext + ǫ inf

a

∥∥x− ae
∥∥

ext
+ ǫ inf

b

∥∥y − be
∥∥

ext
+ ǫ‖x‖ext + ‖y‖ext

= ‖x‖N + ‖y‖N .
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We now show that since Qπ
P
e = 0 for all P ∈ P , by the definition of infimal convolution, we have

that for all x ∈ R
S ,

(‖ · ‖N ∗inf δE)(x) = inf
k∈R

‖x− ke‖N

= inf
k∈R

(
sup
P∈P

∥∥Qπ
P
x− kQπ

P
e
∥∥

ext
+ ǫ inf

c∈R

∥∥x− ce− ke
∥∥

ext
+ ǫ‖x− ke‖ext

)

= inf
k∈R

(
sup
P∈P

∥∥Qπ
P
x
∥∥

ext
+ ǫ inf

c∈R

∥∥x− ce
∥∥

ext
+ ǫ‖x− ke‖ext

)

= sup
P∈P

∥∥Qπ
P
x
∥∥

ext
+ ǫ inf

c∈R

∥∥x− ce
∥∥

ext
+ inf

k∈R

(ǫ‖x− ke‖ext)

= ‖x‖P

We thus restate our problem of analyzing the iteration complexity for solving the fixed equivalence

class equation H(x∗)−x∗ ∈ E, with the operator H : Rn → R
n satisfying the contraction property

as follows:

‖H(x)−H(y)‖N ,E ≤ γ‖x− y‖N ,E , γ ∈ (0, 1), ∀x, y (97)

The stochastic approximation iteration being used is as follows

xt+1 = xt + ηt

[
Ĥ(xt)− xt

]
, where Ĥ(xt) = H(xt) + wt. (98)

We assume:

• E[ ‖wt‖2
N ,E
|F t] ≤ A + B‖xt − x∗‖2

N ,E
(In the robust average-reward TD case, B = 0).

•
∥∥E[wt|F t]

∥∥
N ,E
≤ εbias.

• ηt > 0 is a chosen stepsize sequence (decreasing or constant).

Note that beside the bias in the noise, the above formulation and assumptions are identical to the
unbiased setups in Section B of [43]. Thus, we emphasize mostly on managing the bias.

B.1.2 Semi-Lyapunov ME(·) and Smoothness.

By [43, Proposition 1–2], using the Moreau envelope function M(x) in Definition 2.2 of [8], we
define

ME(x) =
(
M ∗inf δE

)
(x),

so that there exist cl, cu > 0 with

clME(x) ≤ 1

2
‖x‖2

N ,E
≤ cuME(x), (99)

and ME is L-smooth w.r.t. another semi-norm ‖ · ‖s,E . Concretely, L-smoothness means:

ME(y) ≤ME(x) + 〈∇ME(x), y − x〉+ L
2 ‖ y − x‖2

s,E
, ∀x, y. (100)

Moreover, the gradient of ME satisfies 〈∇ME(x), c e〉 = 0 for all x, and the dual norm denoted as
‖ · ‖∗,s,E is also L-smooth:

‖∇ME(x)−∇ME(y)‖∗,s,E ≤ L‖ y − x‖s,E , ∀x, y. (101)

Note that since ‖ · ‖s,E and ‖ · ‖N ,E are semi-norms on a finite-dimensional space with the same

kernel, there exist ρ1, ρ2 > 0 such that

ρ1 ‖z‖N ,E ≤ ‖z‖s,E ≤ ρ2 ‖z‖N ,E , ∀ z. (102)

Likewise, their dual norms (denoted ‖ · ‖∗,s,E and ‖ · ‖∗,N ,E) satisfy the following:

1

ρ2
‖z‖∗,s,E ≤ ‖z‖∗,N ,E ≤

1

ρ1
‖z‖∗,s,E , ∀ z. (103)
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B.1.3 Formal Statement of Theorem B.1

By L-smoothness w.r.t. ‖ · ‖s,E in (100), for each t,

ME(xt+1 − x∗) ≤ME(xt − x∗) +
〈
∇ME(xt − x∗), xt+1 − xt

〉
+ L

2 ‖xt+1 − xt‖2
s,E

. (104)

where xt+1 − xt = ηt[Ĥ(xt)− xt] = ηt[H(xt) + wt − xt]. Taking expectation of the second term
of the RHS of (104) conditioned on the filtration F t we obtain,

E[〈∇ME(xt − x∗),xt+1 − xt〉|F t] = ηtE[〈∇ME(xt − x∗), H(xt)− xt + ωt〉|F t]

= ηt〈∇ME(xt − x∗), H(xt)− xt〉+ ηtE[〈∇ME(xt − x∗), ωt〉|F t]

= ηt〈∇ME(xt − x∗), H(xt)− xt〉+ ηt〈∇ME(xt − x∗),E[ωt|F t]〉. (105)

To analyze the additional bias term 〈∇ME(xt − x∗),E[ωt|F t]〉, we use the fact that for any (semi-
)norm ‖ · ‖ with dual (semi-)norm ‖ · ‖∗ (defined by ‖u‖∗ = sup{〈u, v〉 : ‖v‖ ≤ 1}), we have the
general inequality

〈
u, v

〉
≤ ‖u‖∗ ‖v‖, ∀u, v. (106)

In the biased noise setting, u = ∇ME(xt − x∗) and v = E[wt|F t], with ‖ · ‖ = ‖ · ‖N ,E . So

〈
∇ME(xt − x∗),E[wt|F t]

〉
≤
∥∥∇ME(xt − x∗)

∥∥
∗, N ,E

·
∥∥E[wt|F t]

∥∥
N ,E

. (107)

Since ‖E[wt|F t]‖N ,E ≤ εbias, it remains to bound ‖∇ME(xt − x∗)‖∗,N ,E . By setting y = 0 in

(101), we get

‖∇ME(x)−∇ME(0)‖∗,s,E ≤ L‖x‖s,E , ∀x. (108)

Thus,

‖∇ME(x)‖∗,s,E ≤ ‖∇ME(0)‖∗,s,E + L‖x‖s,E , ∀x. (109)

By (103), we know that there exists 1
ρ2
≤ α ≤ 1

ρ1
such that

‖∇ME(x)‖∗,N ,E ≤ α‖∇ME(x)‖∗,s,E (110)

Thus, combining (109) and (110) would give:

‖∇ME(x)‖∗,N ,E ≤ α
(
‖∇ME(0)‖∗,s,E + L‖x‖s,E

)
, ∀x. (111)

By (102), we know that ‖x‖s,E ≤ ‖x‖N ,E , thus we have:

‖∇ME(x)‖∗,N ,E ≤ α
(
‖∇ME(0)‖∗,s,E + Lρ2‖x‖N ,E

)
, ∀x. (112)

Hence, combining the above with (107), there exist some

G = O
( 1

ρ1
max{Lρ2, ‖∇ME(0)‖∗,s,E}

)
(113)

such that

E

[
〈∇ME(xt − x∗), wt〉|F t

]
=
〈
∇ME(xt − x∗),E[wt|F t]

〉
≤ G

(
1 + ‖xt − x∗‖N ,E

)
εbias.

(114)

Combining (114) with (105) we obtain

E[〈∇ME(xt − x∗), xt+1 − xt〉|F t] ≤ ηt〈∇ME(xt − x∗), H(xt)− xt〉

+ ηtGεbias

(
1 + ‖xt − x∗‖N ,E

)
(115)
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To bound the first term in the RHS of (115), note that

〈∇MĒ(xt − x∗), H(xt)− xt〉 = 〈∇MĒ(xt − x∗), H(xt)− x∗ + x∗ − xt〉
(a)

≤ MĒ(H(xt)− x∗)−MĒ(xt − x∗)

(b)

≤ 1

2cl
‖H(xt)−H(x∗)‖2

c,Ē
−MĒ(xt − x∗)

(c)

≤ γ2

2cl
‖xt − x∗‖2

c,Ē
−MĒ(xt − x∗)

≤
(

γ2cu

cl
− 1

)
MĒ(xt − x∗)

≤ −(1− γ
√

cu/cl)MĒ(xt − x∗), (116)

where (a) follows from the convexity of MĒ , (b) follows from x∗ belonging to a fixed equivalence
class with respect to H and (c) follows from the contraction property of H . Combining (116). (115)
and Lemma F.2 with (104), we arrive as follows:

E

[
ME(xt+1 − x∗)|Ft

]
≤ (1− 2α2ηt + α3η2

t )ME(xt − x∗) + α4η2
t

+ ηtGεbias

(
1 + ‖xt − x∗‖N ,E

)
(117)

Where α2 := (1− γ
√

cu/cl), α3 := (8 + 2B)cuρ2L and α4 := Aρ2L. We now present the formal
version of Theorem B.1 as follows:

Theorem B.3 (Formal version of Theorem B.1). let α2, α3 and α4 be defined in (117), if xt is
generated by (98) with all assumptions in B.1.1 satisfied, then if the stepsize ηt := 1

α2(t+K) while

K := max{α3/α2, 3},

E

[
‖xT − x∗‖2

N ,E

]
≤ K2cu

(T + K)2cl
‖x0 − x∗‖2

N ,E
+

8α4cu

(T + K)α2
2

+
2cuC1C2εbias

α2
(118)

where C1 = G(1+2xsup), C2 = 1
K +log

(
T −1+K

K

)
, G is defined in (113) and xsup := sup ‖x‖N ,E

is the upper bound of the ‖ · ‖P semi-norm for all xt.

Proof. This choice ηt satisfies α3η2
t ≤ α2ηt. Thus, by (117) we have

E
[
ME(xt+1 − x∗)|Ft

]
≤ (1− α2ηt)ME(xt − x∗) + α4η2

t + ηtC1εbias (119)

we define Γt := Πt−1
i=o(1− α2ηt) and further obtain the T -step recursion relationship as follows:

E

[
ME(xT − x∗)

]
≤ ΓT ME(x0 − x∗) + ΓT

T −1∑

t=0

(
1

Γt+1
)[α4η2

t + ηtC1εbias]

= ΓT ME(x0 − x∗) + ΓT

T −1∑

t=0

(
1

Γt+1
)[α4η2

t ] + ΓT

T −1∑

t=0

(
1

Γt+1
)[ηtC1εbias]

= ΓT ME(x0 − x∗) +
α4ΓT

α2

T −1∑

t=0

(
1

Γt+1
)[α2η2

t ]

︸ ︷︷ ︸
R1

+ ΓT

T −1∑

t=0

(
1

Γt+1
)[ηtC1εbias]

︸ ︷︷ ︸
R2

(120)

where the term R1 is identical to the unbiased case in Theorem 3 of [43] which leads to

R1 ≤
K2

(T + K)2
ME(x0 − x∗) +

4α2

(T + K)α2
2

(121)

also, R2 can be bounded by a logarithmic dependence of T

R2 ≤
T −1∑

t=0

[ηtC1εbias] = C1εbias

T −1∑

t=0

1

α2(t + K)
≤ C1C2εbias

α2
(122)
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Combining (121) and (122) with (120) would obtain the following:

E

[
ME(xT − x∗)

]
≤ K2

(T + K)2
ME(x0 − x∗) +

4α2

(T + K)α2
2

+
C1C2εbias

α2
(123)

Combining (123) with (99) yields (118).

C Uncertainty Set Support Function Estimators

C.1 Proof of Theorem 5.1

We have

E[M ] =

Nmax−1∑

n=0

2n+1
P(N ′ = n) + 2Nmax+1

P(N ′ = Nmax)

=

Nmax−1∑

n=0

2n+1
P(N = n) + 2Nmax+1

P(N ≥ Nmax)

=

Nmax−1∑

n=0

(2n+1

2n+1

)
+ 2Nmax+1

P(N ≥ Nmax)

= Nmax + 2Nmax+1
P(N ≥ Nmax)

= Nmax +
2Nmax+1

2Nmax

= Nmax + 2 = O(Nmax). (124)

C.2 Proof of Theorem 5.2

denote σ̂∗
Pa

s
(V ) as the untruncated MLMC estimator obtained by running Algorithm 1 when setting

Nmax to infinity. From [38], under both TV uncertainty sets and Wasserstein uncertainty sets, we
have σ̂∗

Pa
s
(V ) as an unbiased estimator of σPa

s
(V ). Thus,

E
[
σ̂Pa

s
(V )− σPa

s
(V )

]
= E

[
σ̂Pa

s
(V )

]
− E

[
σ̂∗

Pa
s
(V )

]

= E

[
σ

P̂
a,1

s,N′+1

(V ) +
∆N ′(V )

P(N ′ = n)

]
− E

[
σ

P̂
a,1
s,N+1

(V ) +
∆N (V )

P(N = n)

]

= E

[
∆N ′(V )

P(N ′ = n)

]
− E

[
∆N (V )

P(N = n)

]

=

Nmax∑

n=0

∆n(V )−
∞∑

n=0

∆n(V )

=

∞∑

n=Nmax+1

∆n(V ) (125)

For each ∆n(V ), the expectation of absolute value can be bounded as

E [|∆n(V )|] = E

[∣∣∣σ
P̂a

s,n+1
(V )− σPa

s
(V )

∣∣∣
]

+
1

2
E

[∣∣∣σ
P̂

a,E

s,n+1
(V )− σPa

s
(V )

∣∣∣
]

+
1

2
E

[∣∣∣σ
P̂

a,O

s,n+1
(V )− σPa

s
(V )

∣∣∣
]

(126)

By the binomial concentration and the Lipschitz property of the support function as in Lemma 5.3,
we know for TV distance uncertainty, we have

E [|∆n(V )|] ≤ 6(1 +
1

δ
)2− n

2 ‖V ‖sp (127)

and for Wasserstein disance uncertainty, we have

E [|∆n(V )|] ≤ 6 · 2− n
2 ‖V ‖sp (128)
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Thus, for TV distance uncertainty, we have

∣∣E
[
σ̂Pa

s
(V )− σPa

s
(V )

]∣∣ ≤
∞∑

n=Nmax+1

E [|∆n(V )|] ≤ 6(1 +
1

δ
)2− Nmax

2 ‖V ‖sp (129)

and for Wasserstein distance uncertainty, we have

∣∣E
[
σ̂Pa

s
(V )− σPa

s
(V )

]∣∣ ≤
∞∑

n=Nmax+1

E [|∆n(V )|] ≤ 6 · 2− Nmax
2 ‖V ‖sp (130)

C.3 Proof of Lemma 5.3

For TV uncertainty sets, for a fixed V , for any p ∈ ∆(S), define fp(µ) := p(V − µ)− δ‖V − µ‖sp

and µ∗
p := arg maxµ≥0 fp(µ). Thus, we have

σPT V
(V )− σQT V

(V ) = fp(µ∗
p)− fq(µ∗

q) (131)

since, µ∗
p and µ∗

q are maximizers of fp and fq respectively, we further have

fp(µ∗
q)− fq(µ∗

q) ≤ fp(µ∗
p)− fq(µ∗

q) ≤ fp(µ∗
p)− fq(µ∗

p) (132)

Combing (131) and (132) we thus have:

|σPT V
(V )− σQT V

(V )| ≤ max{|fp(µ∗
p)− fq(µ∗

p)|, |fp(µ∗
q)− fq(µ∗

q)|}
= max{|(p− q)(V − µ∗

p)|, |(p− q)(V − µ∗
q)|} (133)

Note that σPT V
(V ) can also be expressed as σPT V

(V ) = px
∗ − δ‖x∗‖sp where x

∗ :=
arg maxx≤V (px − δ‖x‖sp). Let M := maxs x

∗(s) and m := mins x
∗(s), then ‖x‖sp = M −m.

Denote e as the all-ones vector, then x = mins V (s) · e is a feasible solution. Thus,

px
∗ − δ(M −m) ≥ p(min

s
V (s) · e)− δ‖min

s
V (s) · e‖sp = min

s
V (s) (134)

Since p is a probability vector, px
∗ ≤M , using the fact that δ > 0, we then obtain

M − δ(M −m) ≥ min
s

V (s)⇒M −m ≤ M −mins V (s)

δ
(135)

Since x
∗ is a feasible solution, we have

M ≤ max
s

V (s)⇒M −min
s

V (s) ≤ max
s

V (s)−min
s

V (s) = ‖V ‖sp (136)

Combining (135) and (136) we obtain

M −m ≤ ‖V ‖sp

δ
⇒ m ≥M − ‖V ‖sp

δ
≥ min

s
V (s)− ‖V ‖sp

δ
(137)

Where the last inequality is from M ≥ mins V (s), which is a direct result of (135) and the term
δ(M −m) being positive. We finally arrive with

x
∗(j) ∈ [m, M ] ⊆

[
min

s
V (s)− ‖V ‖sp

δ
, max

s
V (s)

]
∀j ∈ S (138)

Thus, ‖x∗‖sp ≤ (1 + 1
δ )‖V ‖sp, which leads to

‖V − µ∗
p‖sp ≤ (1 +

1

δ
)‖V ‖sp, ‖V − µ∗

q‖sp ≤ (1 +
1

δ
)‖V ‖sp (139)

Combining (139) with (133) we obtain the first part of (23).

For Wasserstein uncertainty sets, note that for any p ∈ ∆(S) and value function V ,

σPW
(V ) = sup

λ≥0




g(λ,p)︷ ︸︸ ︷
−λδl + Ep

[
inf
y∈S

(
V (y) + λd(S, y)l

)

︸ ︷︷ ︸
φ(s,λ)

]


 . (140)
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Note that

inf
y∈S

V (y) ≤ φ(s, λ) ≤ V (s) + λd(S, s)l = V (s) (141)

where the first inequality is because λd(S, y)l ≥ 0 for any d and l. We can then bound φ by the span
of V as

|φ(s, λ)| ≤ ‖V ‖sp ∀λ ≥ 0 (142)

We then further have that for any p, q ∈ ∆(S) and λ ≥ 0,

|g(λ, p)− g(λ, q)| ≤
∑

s∈S
|p(s)− q(s)||φ(s, λ)| ≤ ‖p− q‖1‖V ‖sp (143)

using (143) and the fact that |f(λ) − g(λ)| ≤ ǫ ⇒ | supλ f(λ) − supλ g(λ)| ≤ ǫ, we obtain the
second part of (23).

C.4 Proof of Theorem 5.4

For all p ∈ ∆(S), we have σp(V ) ≤ ‖V ‖sp, leading to

Var(σ̂Pa
s
(V )) ≤ E

[(
σ̂Pa

s
(V )

)2
]

+ ‖V ‖2
sp (144)

To bound the second moment, note that

E

[(
σ̂Pa

s
(V )

)2
]

= E

[(
σ

P̂
a,1

s,N′+1

(V ) +
∆N ′(V )

P(N ′ = n)

)2
]

≤ E

[(
‖V ‖sp +

∆N ′(V )

P(N ′ = n)

)2
]

≤ 2‖V ‖2
sp + 2E

[(
∆N ′(V )

P(N ′ = n)

)2
]

≤ 2‖V ‖2
sp + 2

Nmax∑

n=0

(
E[|∆n(V )|]
P(N ′ = n)

)2

P(N ′ = n)

= 2‖V ‖2
sp + 2

Nmax∑

n=0

E[|∆n(V )|]2
P(N ′ = n)

(145)

Under TV distance uncertainty set, by (127), we further have

E

[(
σ̂Pa

s
(V )

)2
]
≤ 2‖V ‖2

sp + 2S

Nmax∑

n=0

36(1 + 1
δ )22−n‖V ‖2

sp

2−(n+1)

= 2‖V ‖2
sp + 144(1 +

1

δ
)2S‖V ‖2

spNmax (146)

Under Wasserstein distance uncertainty set, by (128), we further have

E

[(
σ̂Pa

s
(V )

)2
]
≤ 2‖V ‖2

sp + 2S

Nmax∑

n=0

362−n‖V ‖2
sp

2−(n+1)

= 2‖V ‖2
sp + 144S‖V ‖2

spNmax (147)

D Convergence for Robust TD

D.1 Formal Statement of Theorem 6.1

The first half of Algorithm 2 (line 1 - line 7) can be treated as a special instance of the SA updates in
(98) with the bias and variance of the i.i.d. noise term specified in Section 5. To facilitate deriving
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the bounds of the noise terms, we first analyze the bounds in terms of the l∞ norm, and then translate
the bounds in terms of the ‖ · ‖P semi-norm to obtain the final results.

We start with analyzing the bias and variance of T̂g0
(Vt) for each t. Recall the definition of T̂g0

(Vt)
is as follows:

T̂g0
(Vt)(s) =

∑

a

π(a|s)
[
r(s, a)− g0 + σ̂Pa

s
(Vt)

]
∀s ∈ S

Thus, we have for all s ∈ S,
∣∣∣E
[
T̂g0

(Vt)(s)
]
−Tg0

(Vt)(s)
∣∣∣ ≤

∑

a

π(a|s)
∣∣E[σ̂Pa

s
(Vt)]− σPa

s
(Vt)

∣∣ =
∣∣E[σ̂Pa

s
(Vt)]− σPa

s
(Vt)

∣∣

(148)

Which further implies the bias of T̂g0
(Vt) is bounded by the bias of σ̂Pa

s
(Vt) as follows:

∥∥∥E
[
T̂g0

(Vt)
]
−Tg0

(Vt)
∥∥∥

∞
≤
∣∣E[σ̂Pa

s
(Vt)]− σPa

s
(Vt)

∣∣ (149)

Regarding the variance, note that

E

[
(T̂g0

(Vt)(s)−Tg0
(Vt)(s))2

]

=
(
E

[
T̂g0

(Vt)(s)
]
−Tg0

(Vt)(s)
)2

+ Var
(

T̂g0
(Vt)(s)

)

≤
∣∣E[σ̂Pa

s
(Vt)]− σPa

s
(Vt)

∣∣2 + Var

(
∑

a

π(a|s)σ̂Pa
s
(Vt)

)

=
∣∣E[σ̂Pa

s
(Vt)]− σPa

s
(Vt)

∣∣2 +
∑

a

π(a|s)2Var
(
σ̂Pa

s
(Vt)

)
(150)

To create an upper bound of ‖V ‖sp for all possible V , define the mixing time of any p ∈ P to be

tp
mix := arg min

t≥1

{
max

µ0

∥∥(µ0pt
π)⊤ − ν⊤∥∥

1
≤ 1

2

}
(151)

where pπ is the finite state Markov chain induced by π, µ0 is any initial probability distribution on
S and ν is its invariant distribution. By Assumption 3.1, and Lemma F.4,and for any value function
V , we have

tp
mix < +∞ and ‖V ‖sp ≤ 4tp

mix ≤ 4tmix (152)

where we define tmix := supp∈P tp
mix, then tmix is also finite due to the compactness of P . We now

derive the bounds of biases and variances for the three types of uncertainty sets. Regarding contam-
ination uncertainty sets, according to Lemma F.3, σ̂Pa

s
(V ) is unbiased and has variance bounded by

‖V ‖2. Thu, define tmix according to Lemma F.4 and combining the above result with Lemma F.4,

we obtain that T̂g0
(Vt) is also unbiased and the variance satisfies

E

[∥∥∥T̂g0
(Vt)−Tg0

(Vt)
∥∥∥

2

∞

]
≤ ‖Vt‖2 ≤ 16t2

mix (153)

Regarding TV distance uncertainty sets, using the property of the bias and variance of σ̂Pa
s
(V ) in

Theorem 5.2 and Theorem 5.4 while combining them with Lemma F.4, we have
∥∥∥E
[
T̂g0

(Vt)
]
−Tg0

(Vt)
∥∥∥

∞
≤ 6(1 +

1

δ
)
√

S2− Nmax
2 ‖V ‖sp = 24(1 +

1

δ
)
√

S2− Nmax
2 tmix (154)

and

E

[∥∥∥T̂g0
(Vt)−Tg0

(Vt)
∥∥∥

2

∞

]

≤
(

24(1 +
1

δ
)
√

S2− Nmax
2 tmix

)2

+ 3‖V ‖2
sp + 144(1 +

1

δ
)2S‖V ‖2

spNmax

≤
(

24(1 +
1

δ
)
√

S2− Nmax
2 tmix

)2

+ 48t2
mix + 2304(1 +

1

δ
)2St2

mixNmax (155)
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Similarly, for Wasserstein distance uncertainty sets, we have
∥∥∥E
[
T̂g0

(Vt)
]
−Tg0

(Vt)
∥∥∥

∞
≤ 6
√

S2− Nmax
2 ‖V ‖sp = 24

√
S2− Nmax

2 tmix (156)

and

E

[∥∥∥T̂g0
(Vt)−Tg0

(Vt)
∥∥∥

2

∞

]
≤
(

24
√

S2− Nmax
2 tmix

)2

+ 3‖V ‖2
sp + 144‖V ‖2

spNmax

≤
(

24
√

S2− Nmax
2 tmix

)2

+ 48t2
mix + 2304St2

mixNmax (157)

In order to translate the above bounds from the l∞ norm into the ‖ · ‖P norm, recall that in line 7 of
Algorithm 2, we chose an anchor state s0 set Vt(s0) = 0 for all t to avoid ambiguity. We thus can
draw the following relationship:

Lemma D.1. Let x ∈ R
S satisfy xi = 0 for some fixed index i. Then

‖x‖∞ ≤ ‖x‖sp = max
1≤j≤n

xj − min
1≤j≤n

xj ≤ 2‖x‖∞.

Moreover, since all semi-norms with the same kernel spaces are equivalent, there are constants
cP , CP > 0 so that

cP‖x‖sp ≤ ‖x‖P ≤ CP‖x‖sp ∀x ∈ R
n,

then

cP‖x‖∞ ≤ cP‖x‖sp ≤ ‖x‖P ≤ CP‖x‖sp ≤ 2CP‖x‖∞. (158)

Proof. Since xi = 0, for every j we have −‖x‖∞ ≤ xj ≤ ‖x‖∞. Hence

max
j

xj ≤ ‖x‖∞, min
j

xj ≥ −‖x‖∞,

and so

‖x‖∞ = max{max
j

xj−0, 0−min
j

xj} ≤ ‖x‖sp = max
j

xj−min
j

xj ≤ ‖x‖∞−(−‖x‖∞) = 2 ‖x‖∞.

Since ‖·‖sp and ‖·‖P both have the same kernel of {ce : c ∈ R}, by the equivalence of semi-norms,
it follows that there exists cP and CP such that

cP‖x‖∞ ≤ cP‖x‖sp ≤ ‖x‖P ≤ CP‖x‖sp ≤ 2CP‖x‖∞

as claimed.

With the relationship established above, line 1 - line 7 of Algorithm 2 can be formally treated as a
special instance of the SA updates in (98) with B = 0. We now provide the bias and variance of the
i.i.d. noise for the different uncertainty sets discussed using Lemma D.1 and the estimation bounds
in (153)-(157). For contamination uncertainty sets, we have

εCont
bias = 0 and ACont = 32C2

P t2
mix (159)

for TV distance uncertainty sets, we have

εTV
bias = 48CP(1 +

1

δ
)
√

S2− Nmax
2 tmix = O

(√
S2− Nmax

2 tmix

)
(160)

and

ATV = 2C2
P

(
24(1 +

1

δ
)
√

S2− Nmax
2 tmix

)2

+ 96C2
P t2

mix + 4608C2
P(1 +

1

δ
)2St2

mixNmax

= O
(
t2
mixSNmax

)
(161)

and for Wasserstein distance uncertainty sets, we have

εWass
bias = 48CP

√
S2− Nmax

2 tmix = O
(√

S2− Nmax
2 tmix

)
(162)

and

AWass = 2C2
P
(

24
√

S2− Nmax
2 tmix

)2

+ 96C2
P t2

mix + 4608C2
PSt2

mixNmax

= O
(
t2
mixSNmax

)
(163)
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Theorem D.2 (Formal version of Theorem 6.1). Let α2 := (1 − γ
√

cu/cl), α3 := 8cuρ2L and
α4 := ρ2L, if Vt is generated by Algorithm 2. Define V ∗ to be the anchored robust value function
V ∗ = V π

PV
+ ce for some c such that V ∗(s0) = 0, then under Assumption 3.1 and the radius

conditions of Lemma A.4-A.6, if the stepsize ηt := 1
α2(t+K) while K := max{α3/α2, 3}, then for

contamination uncertainty sets,

E

[
‖VT − V ∗‖2

∞
]
≤ 4K2cuC2

P
(T + K)2clc2

P
‖V0 − V ∗‖2

∞ +
8AContα4cu

(T + K)α2
2c2

P
= O

(
1

T 2
+

t2
mix

T (1− γ)2

)

(164)

for TV distance uncertainty sets,

E

[
‖VT − V ∗‖2

∞
]
≤ 4K2cuC2

P
(T + K)2clc2

P
‖V0 − V ∗‖2

∞ +
8ATVα4cu

(T + K)α2
2c2

P
+

cuC3C2εTV
bias

α2c2
P

= O
(

1

T 2
+

t2
mixNmax

T (1− γ)2
+

t2
mix2− Nmax

2 log T

(1− γ)2

)
(165)

(166)

for Wasserstein distance uncertainty sets,

E

[
‖VT − V ∗‖2

∞
]
≤ 4K2cuC2

P
(T + K)2clc2

P
‖V0 − V ∗‖2

∞ +
8AWassα4cu

(T + K)α2
2c2

P
+

cuC3C2εWass
bias

α2c2
P

= O
(

1

T 2
+

t2
mixNmax

T (1− γ)2
+

t2
mix2− Nmax

2 log T

(1− γ)2

)
(167)

(168)

where the ε and A terms are defined in (159)-(163), C2 = 1
K +log

(
T −1+K

K

)
, C3 = G(1+8CP tmix),

γ is defined in (14), cu, cl are defined in (99), ρ2 is defined in (102), G is defined in (113), and CP , cP
are defined in Lemma D.1.

Proof. By Lemma D.1 and (152), we have that for any value function V its ‖ · ‖P norm is bounded
as follows:

‖V ‖P ≤ 4CP tmix (169)

Substituting the terms of (159)-(163), (169), and Theorem 4.2 to Theorem B.3, we would have for
contamination uncertainty sets,

E

[
‖VT − V ∗‖2

P
]
≤ K2cu

(T + K)2cl
‖V0 − V ∗‖2

P +
8AContα4cu

(T + K)α2
2

= O
(

1

T 2
+

t2
mix

T (1− γ)2

)
(170)

for TV distance uncertainty sets,

E

[
‖VT − V ∗‖2

P
]
≤ K2cu

(T + K)2cl
‖V0 − V ∗‖2

P +
8ATVα4cu

(T + K)α2
2

+
cuC3C2εTV

bias

α2

= O
(

1

T 2
+

St2
mixNmax

T (1− γ)2
+

St2
mix2− Nmax

2 log T

(1− γ)2

)
(171)

(172)

for Wasserstein distance uncertainty sets,

E

[
‖VT − V ∗‖2

P
]
≤ K2cu

(T + K)2cl
‖V0 − V ∗‖2

P +
4AWassα4cu

(T + K)α2
2

+
cuC3C2εWass

bias

α2

= O
(

1

T 2
+

St2
mixNmax

T (1− γ)2
+

St2
mix2− Nmax

2 log T

(1− γ)2

)
(173)

(174)

where the ε and A terms are defined in (159)-(163), C2 = 1
K +log

(
T −1+K

K

)
, C3 = G(1+8CP tmix),

γ is defined in (14), cu, cl are defined in (99), ρ2 is defined in (102), G is defined in (113), and CP
is defined in Lemma D.1. We now translate the result back to the standard l∞ norm by applying
Lemma D.1 again to the above, we obtain the desired results.
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D.2 Proof of Theorem 6.1

We use the result from Theorem D.2, to set E
[
‖VT−V ∗‖2

∞
]
≤ ǫ2. For contamination uncertainty set

we set T = O
(

t2
mix

ǫ2(1−γ)2

)
, resulting in O

(
SAt2

mix

ǫ2(1−γ)2

)
sample complexity. For TV and Wasserstein

uncertainty set, we set Nmax = O
(

log
√

Stmix

ǫ(1−γ)

)
and T = O

(
t2

mix

ǫ2(1−γ)2 log
√

Stmix

ǫ(1−γ)

)
, combining

with Theorem 5.1, this would result in O
(

SAt2
mix

ǫ2(1−γ)2 log2
√

Stmix

ǫ(1−γ)

)
sample complexity.

To show order-optimality, we provide the standard mean estimation as a hard example. Consider the
TD learning of the MDP with only two states S = {s1, s2}, and Pr(s → s1) = p, Pr(s → s2) =
1− p for each s ∈ S with p ∈ (0, 1). Thus, this MDP is indifferent from the actions chosen and we
further define r(s1) = 1, r(s2) = 0. Thus, estimating the relative value functions is equivalent of
estimating p. By the Cramér–Rao or direct variance argument for Bernoulli(p) estimation, we have
that to achieve |p̂N − p|2 ≤ ǫ2 requires N ≥ 1/2ǫ2 = Ω(ǫ−2).

D.3 Formal Statement of Theorem 6.2

To analyze the second part (line 8 - line 14) of Algorithm 2 and provide the provide the complexity

for gt, we first define the noiseless function δ̄(V ) as

δ̄(V ) :=
1

S

∑

s

(
∑

a

π(a|s)
[
r(s, a) + σPa

s
(V )

]
− V (s)

)
(175)

Thus, we have

δ̄t = δ̄(VT ) + νt (176)

where νt is the noise term with bias equal to the bias σ̂Pa
s
(VT )

E[|νt|] =
1

S

∑

s

∑

a

(
π(a|s)E

[ ∣∣σPa
s
(VT )− σ̂Pa

s
(VT )

∣∣ ]) =
∣∣E
[
σ̂Pa

s
(VT )− σPa

s
(VT )

]∣∣ (177)

By the Bellman equation in Theorem 3.2, we have gπ
P = δ̄(V ∗), which implies

∣∣δ̄(VT )− gπ
P
∣∣ =

∣∣δ̄(VT )− δ̄(V ∗)
∣∣

≤ 1

S

∑

s

(
∑

a

π(a|s)
∣∣σPa

s
(VT )− σPa

s
(V ∗)

∣∣+ |VT (s)− V ∗(s)|
)

≤ 1

S

∑

s

(
∑

a

π(a|s)
∣∣σPa

s
(VT )− σPa

s
(V ∗)

∣∣+ |VT (s)− V ∗(s)|
)

≤ 1

S

∑

s

2‖VT − V ∗‖sp

= 2‖VT − V ∗‖sp

≤ 4‖VT − V ∗‖∞ (178)

Where the last inequality is by Lemma D.1. Thus, the following recursion can be formed

|gt+1 − gπ
P | =

∣∣gt + βt(δ̄t − gt)− gπ
P
∣∣

=
∣∣gt − gπ

P + βt(δ̄t − gπ
P + gπ

P − gt)
∣∣

=
∣∣gt − gπ

P + βt(δ̄(V T )− gπ
P + νt + gπ

P − gt)
∣∣

≤ (1− βt) |gt − gπ
P |+ βt(

∣∣δ̄(V T )− gπ
P
∣∣+ |νt|)

≤ (1− βt) |gt − gπ
P |+ βt(4‖VT − V ∗‖∞ + |νt|) (179)

Thus, taking expectation conditioned on the filtration F t yields

E [|gt+1 − gπ
P |] ≤ (1− βt) |gt − gπ

P |+ βt (4E [‖VT − V ∗‖∞] + E[|νt|])
≤ (1− βt) |gt − gπ

P |+ βt

(
4E [‖VT − V ∗‖∞] +

∣∣E
[
σ̂Pa

s
(VT )− σPa

s
(VT )

]∣∣) (180)
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By letting ζt := Πt−1
i=0(1− βt), we obtain the T -step recursion as follows:

E [|gT − gπ
P |] ≤ ζT |g0 − gπ

P |

+ ζT

T −1∑

t=0

(
1

ζt+1
)βt

(
4E [‖VT − V ∗‖∞] +

∣∣E
[
σ̂Pa

s
(VT )− σPa

s
(VT )

]∣∣)

= ζT |g0 − gπ
P |+

T −1∑

t=0

(
ζT

ζt+1
)βt

(
4E [‖VT − V ∗‖∞] +

∣∣E
[
σ̂Pa

s
(VT )− σPa

s
(VT )

]∣∣)

≤ ζT |g0 − gπ
P |+

T −1∑

t=0

βt

(
4E [‖VT − V ∗‖∞] +

∣∣E
[
σ̂Pa

s
(VT )− σPa

s
(VT )

]∣∣)

= ζT |g0 − gπ
P |+

(
4E [‖VT − V ∗‖∞] +

∣∣E
[
σ̂Pa

s
(VT )− σPa

s
(VT )

]∣∣)
T −1∑

t=0

βt (181)

By setting βt := 1
t+1 , we have ζT = 1

T +1 ≤ 1
T and

∑T −1
t=0 βt ≤ 2 log T , (181) implies

E [|gT − gπ
P |] ≤

1

T
|g0 − gπ

P |+
(
8E [‖VT − V ∗‖∞] + 2

∣∣E
[
σ̂Pa

s
(VT )− σPa

s
(VT )

]∣∣) log T (182)

Theorem D.3 (Formal version of Theorem 6.2). Following all notations and assumptions in Theo-
rem D.2, then for contamination uncertainty sets,

E

[
|gT − gπ

P |
]
≤ 1

T
|g0 − gπ

P |+
16KCP

√
cu log T

(T + K)cP
√

cl
‖V0 − V ∗‖∞
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16
√

2AContα4cu log T

α2cP
√

T + K
= O
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1

T
+

log T

T
+

tmix log T√
T (1− γ)

)
. (183)

For TV distance uncertainty sets,

E

[
|gT − gπ

P |
]
≤ 1

T
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P |+
16KCP

√
cu log T

(T + K)cP
√
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+
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+
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√

cuC3C2εTV
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cP
√
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1

δ
)
√
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= O
(

1

T
+

log T

T
+

tmix

√
SNmax log T√
T (1− γ)

+

√
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4 log
3
2 T√
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+
√

S2− Nmax
2 tmix log T

)
.

(184)
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For Wasserstein distance uncertainty sets,

E

[
|gT − gπ

P |
]
≤ 1

T
|g0 − gπ

P |+
16KCP

√
cu log T

(T + K)cP
√
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+
16
√

2AWassα4cu log T
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√
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+

8
√

cuC3C2εWass
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cP
√
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1

T
+

log T

T
+

tmix

√
SNmax log T√
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+

√
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4 log
3
2 T√
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+
√

S2− Nmax
2 tmix log T

)
.

(185)

where all the above variables are defined the same as in Theorem D.2.

Proof. By Theorem D.2, taking square root on both side and utilizing the concavity of square root
function, we have for contamination uncertainty sets,

E

[
‖VT − V ∗‖∞

]
≤ 2KCP

√
cu

(T + K)cP
√

cl
‖V0 − V ∗‖∞ +

2
√

2AContα4cu

α2cP
√

T + K
(186)

for TV distance uncertainty sets,

E

[
‖VT − V ∗‖∞

]
≤ 2KCP

√
cu

(T + K)cP
√

cl
‖V0 − V ∗‖∞ +

2
√

2ATVα4cu

α2cP
√

T + K
+

√
cuC3C2εTV

bias

α2c2
P

(187)

for Wasserstein distance uncertainty sets,

E

[
‖VT − V ∗‖∞

]
≤ 2KCP

√
cu

(T + K)cP
√

cl
‖V0 − V ∗‖∞ +

2
√

2AWassα4cu

α2cP
√

T + K
+

√
cuC3C2εWass

bias

α2c2
P

(188)

Regarding the bound for the absolute bias of σ̂Pa
s

, from Lemma F.3, we have for contamination
uncertainty, ∣∣E

[
σ̂Pa

s
(V )− σPa

s
(V )

]∣∣ = 0 (189)

In addition, combining (129)-(130) with Lemma F.4, we have for for TV distance uncertainty,

∣∣E
[
σ̂Pa

s
(V )− σPa

s
(V )

]∣∣ ≤ 24
√

S(1 +
1

δ
)2− Nmax

2 tmix (190)

and for Wasserstein distance uncertainty, we have
∣∣E
[
σ̂Pa

s
(V )− σPa

s
(V )

]∣∣ ≤ 24
√

S2− Nmax
2 tmix (191)

Combining (186)-(191) with (182) gives the desired result.

D.4 Proof of Theorem 6.2

We use the result from Theorem D.3, to set E

[
|gT − gπ

P |
]
≤ ǫ. For contamination uncer-

tainty sets we set T = O
(

t2
mix

ǫ2(1−γ)2 log tmix

ǫ(1−γ)

)
, resulting in O

(
SAt2

mix

ǫ2(1−γ)2 log tmix

ǫ(1−γ)

)
sam-

ple complexity. For TV and Wasserstein uncertainty set, we set Nmax = O
(

log
√

Stmix

ǫ(1−γ)

)

and T = O
(

t2
mix

ǫ2(1−γ)2 log3
√

Stmix
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)
, combining with Theorem 5.1, this would result in

O
(
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mix

ǫ2(1−γ)2 log4
√

Stmix
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)
sample complexity.

43



E Numerical Validations for Semi-Norm Contractions

In this section, we provide numerical examples that directly verify the one-step strict contraction
across the settings studied. These results empirically support the key structural claims used by our
analysis.

E.1 Evaluations of Lemma 4.1

Lemma A.2 is the technical backbone for Lemma 4.1, as Lemma A.2 constructs the fixed-kernel
semi-norm and provides the one-step contraction for a given P . Therefore, we perform numerical
evaluations on Lemma A.2 to demonstrate the one-step contraction property for Lemma 4.1.

For a kernel P with stationary distribution d, we follow the steps in Appendix A.1 and construct
‖·‖P in (41) with

α = min{0.99, 1+ρ(Q)
2 }, ǫ = 0.25(1− α), (192)

where Q = P − e d⊤. Then the one-step contraction factor is β = α + ǫ < 1.

To generate ergodic matrices with dimension n, let In be the identity matrix and Sn be the cyclic
shift matrix defined by Snei = ei+1 mod n. We provide the following four examples:

• P1 = 0.5 I5 + 0.5 S5

• P2 = 0.6 I6 + 0.4 S6

• P3 = 0.55 I7 + 0.45 S7

• P4 = 0.6 I8 + 0.3 S8 + 0.1 S2
8

We generate 1000 random unit vectors x and compute each ratio
‖Pix‖P

‖x‖P

. The empirical results are

summarized below.

matrix n max span ratio ρ(Q) α ǫ β ratiomin ratiomedian ratiop90 ratiomax

P1 5 1 0.8090 0.9045 0.0239 0.9284 0.3824 0.7950 0.8077 0.8090
P2 6 1 0.8718 0.9359 0.0160 0.9519 0.5197 0.8510 0.8687 0.8718
P3 7 1 0.9020 0.9510 0.0122 0.9633 0.5861 0.8799 0.8976 0.9014
P4 8 1 0.8700 0.9350 0.0162 0.9513 0.4855 0.8226 0.8604 0.8685

Table 1: Empirical one-step contraction ratios for ergodic kernels using the fixed-kernel semi-norm
‖·‖P.

E.2 Evaluations of Theorem 4.2

Lemma A.8 is the key step for Theorem 4.2, as Lemma A.8 proves a uniform one-step contraction
across all P in the uncertainty set. We therefore perform numerical evaluations on Lemma A.8 to
demonstrate the one-step contraction property for Theorem 4.2 under contamination, total variation
(TV), and Wasserstein-1 uncertainty. We select the same P1, P2, P3, and P4 in Appendix E.1 as four
examples of the nominal model.

To numerically approximate ‖·‖P defined in (82), we approximate ‖·‖P by (i) discretizing the un-
certainty set and (ii) using a finite product to approximate the extremal norm. First, we sample a

family {P (i)}m
i=1 ⊂ P of size m and form

Qi := P (i) − e d⊤
P (i) , r̂ = max

i
ρ(Qi).

We set α = min{0.99, (1+ r̂)/2} and choose ǫ ∈ (0, 1−α). To approximate the extremal norm, we
build a library of scaled products of the Qi’s up to maximum length K: for each k = 0, 1, . . . , K we
draw products Mk,j = Qik

· · ·Qi1
; the number of such draws at each k is the “products per length”

(denoted samples_per_k in the tables). This defines the surrogate

‖z‖(K)
ext = max

0≤k≤K,j
α−k‖Mk,jz‖2. (193)
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We then set

‖x‖(K)
P = max

i=1,...,m
‖Qix‖(K)

ext + ǫ min
c∈C
‖x− c e‖(K)

ext . (194)

We generate 50 random unit vectors x for each sampled uncertainty matrix in {P (i)}m
i=1 ⊂ P , and

compute the ratios
‖P (i)x‖P
‖x‖P

. The empirical results of the uncertainty sets studied in our settings

are summarized below.

nominal P̃ n δ m K samples_per_k max span ratio r̂ α ǫ γ ratiomin ratiomedian ratiop90 ratiomax

P1 5 0.15 30 3 25 1 0.8138 0.9069 0.0233 0.9302 0.2210 0.6396 0.8057 0.8134
P2 6 0.15 30 3 25 1 0.8807 0.9403 0.0149 0.9553 0.2957 0.6581 0.8630 0.8785
P3 7 0.15 30 3 25 1 0.9067 0.9534 0.0117 0.9650 0.3217 0.6683 0.8700 0.8901
P4 8 0.15 30 3 25 1 0.8812 0.9406 0.0148 0.9555 0.3739 0.5964 0.8207 0.8624

Table 2: Empirical one-step contraction ratios under contamination uncertainty.

nominal P̃ n δ m K samples_per_k max span ratio r̂ α ǫ γ ratiomin ratiomedian ratiop90 ratiomax

P1 5 0.15 30 3 25 1 0.8280 0.9140 0.0215 0.9355 0.3239 0.7609 0.8239 0.8280
P2 6 0.15 30 3 25 1 0.9013 0.9507 0.0123 0.9630 0.4021 0.7904 0.8862 0.9006
P3 7 0.15 30 3 25 1 0.9175 0.9588 0.0103 0.9691 0.4457 0.7918 0.8962 0.9162
P4 8 0.15 30 3 25 1 0.8805 0.9403 0.0149 0.9552 0.4497 0.7503 0.8449 0.8739

Table 3: Empirical one-step contraction ratios under total variation (TV) uncertainty.

nominal P̃ n δ m K samples_per_k max span ratio r̂ α ǫ γ ratiomin ratiomedian ratiop90 ratiomax

P1 5 0.15 30 3 25 1 0.8184 0.9092 0.0227 0.9319 0.3698 0.7569 0.8141 0.8188
P2 6 0.15 30 3 25 1 0.8900 0.9450 0.0138 0.9587 0.4257 0.7889 0.8774 0.8894
P3 7 0.15 30 3 25 1 0.9110 0.9555 0.0111 0.9666 0.4262 0.7818 0.8827 0.9080
P4 8 0.15 30 3 25 1 0.8758 0.9379 0.0155 0.9534 0.4413 0.7224 0.8518 0.8689

Table 4: Empirical one-step contraction ratios under Wasserstein-1 uncertainty.

E.3 Interpretations

Note that for the above tables, max span ratio denotes the largest one-step span contraction coeffi-
cient over the sampled families. This value equals to 1 for all the settings, meaning no strict one-step
contraction in the span. In contrast, the quantities ratiomin, ratiomedian, ratiop90, and ratiomax

summarize the empirical one-step ratios
||P x||P

||x||P
(in the robust case) and

||P x||P

||x||P

(in the non-robust

case) computed under the constructed semi-norms over all sampled kernels P and random unit direc-
tions x. They report, respectively, the minimum, median, 90th percentile, and maximum observed
value across those tests. In every table we have ratiomax < 1 , so we observe empirical one-step
contraction under our semi-norms even when span does not contract. Moreover, ratiomax ≤ γ (ro-
bust case) or ratiomax ≤ β (non-robust case), which is consistent with the corresponding theoretical
contraction factor guaranteed by our constructions.

F Some Auxiliary Lemmas for the Proofs

Lemma F.1 (Theorem IV in [3]). LetQ be a bounded set of square matrix such that ρ(Q) <∞ for
all Q ∈ Q where ρ(·) denotes the spectral radius. Then the joint spectral radius ofQ can be defined
as

ρ̂(Q) := lim
k→∞

sup
Qi∈Q

ρ(Qk . . . Q1)
1
k = lim

k→∞
sup

Qi∈Q
‖Qk . . . Q1‖

1
k (195)

where ‖ · ‖ is an arbitrary norm.

Lemma F.2 (Lemma 6 in [43]). Under the setup and notation in Appendix B.1.1, if assuming the
noise has bounded variance of E[ ‖wt‖2

N ,E
|F t] ≤ A + B‖xt − x∗‖2

N ,E
, we have

E

[
‖xt+1 − xt‖2

s,E
|F t
]
≤ (16 + 4B)cuρ2η2

t ME(xt − x∗) + 2Aρ2η2
t . (196)

45



Lemma F.3 (Theorem D.1 in [38]). The estimator σ̂Pa
s
(V ) obtained by (18) for contamination

uncertainty sets is unbiased and has bounded variance as follows:

E
[
σ̂Pa

s
(V )

]
= σPa

s
(V ), and Var(σ̂Pa

s
(V )) ≤ ‖V ‖2 (197)

Lemma F.4 (Ergodic case of Lemma 9 in [34]). For any average-reward MDP with stationary
policy π and the mixing time defined as

τmix := arg min
t≥1

{
max

µ0

∥∥(µ0P t
π)⊤ − ν⊤∥∥

1
≤ 1

2

}
(198)

where Pπ is the finite state Markov chain induced by π, µ0 is any initial probability distribution on
S and ν is its invariant distribution. If Pπ is irreducible and aperiodic, then τmix < +∞ and for
the value function V , we have

‖V ‖sp ≤ 4τmix (199)
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