

000 FLEXIVoice: ENABLING FLEXIBLE STYLE CONTROL 001 IN ZERO-SHOT TTS WITH NATURAL LANGUAGE IN- 002 STSTRUCTIONS 003 004

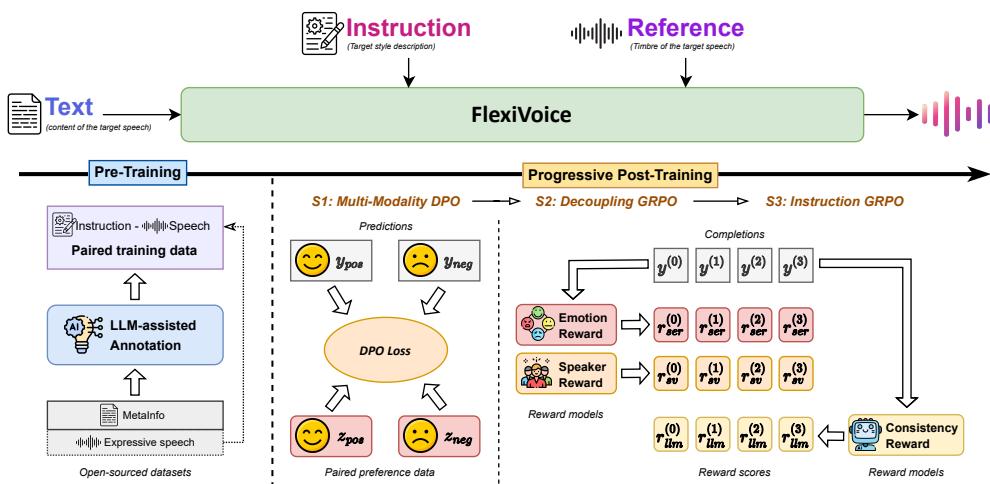
005 **Anonymous authors**

006 Paper under double-blind review

010 ABSTRACT

013 This study proposes **FlexiVoice**, a text-to-speech (TTS) synthesis system **capable of flexible style control with zero-shot voice cloning**. The speaking style is
014 controlled by a natural-language instruction and the voice timbre is provided by
015 a speech reference in zero-shot manner. FlexiVoice is built with an LLM core,
016 which takes text as input, and also takes an optional natural language instruc-
017 tion and an optional speech reference to control style and timbre, respectively.
018 FlexiVoice is equipped with a novel **Progressive Post-Training (PPT)** scheme
019 that progressively unlocks accurate and flexible controllability. In particular, it
020 first employs Direct Preference Optimization (DPO) to enable FlexiVoice to ac-
021 curately follow both natural language instruction and speech reference simultane-
022 ously. It then uses a multi-objective Group Relative Policy Optimization (GRPO)
023 to disentangle style instruction, reference timbre, and textual content. Finally, it
024 adapts instruction GRPO for more advanced instruction following. Experi-
025 mental results show that FlexiVoice surpasses competing baselines and demon-
026 strates strong capability in decoupling control factors. Human evaluations further
027 confirm its naturalness, controllability, and robustness. Audio samples are available
028 at <https://flexi-voice.github.io/>.

031 1 INTRODUCTION



051 Figure 1: An overview of FlexiVoice that **supports diverse style generation with arbitrary voice**
052 **timbres**. It takes an optional natural language **instruction** for style and an optional **reference** speech
053 for timbre. It consists of Pre-Training and Progressive Post-Training (PPT) stages. The PPT process
includes three processes, **S1: Multi-modality DPO**, **S2: Decoupling GRPO**, **S3: Instruction GRPO**.

Recent advances in text-to-speech (TTS) have been largely driven by the emergence of Large Language Models (LLMs) and refined post-training techniques. A notable breakthrough is zero-shot TTS (Du et al., 2024; Zhou et al., 2025), which enables voice cloning with only a short reference speech, effectively capturing and reproducing a speaker’s timbre. Beyond timbre, controlling speaking style has become an important challenge. One direction, exemplified by Vevo (Zhang et al., 2025c) and IndexTTS2 (Zhou et al., 2025), employs two separate speech references to control timbre and style separately. Another line of work, instruction-based TTS (Vyas et al., 2023; Zhou et al., 2024b; Ji et al., 2024b), leverages natural language instructions to specify the target style. However, existing instruction-driven models often struggle either to faithfully follow the instructions or to maintain stable timbre consistency.

Achieving flexible style control in zero-shot TTS presents a unique challenge: the ‘Style-Timbre-Content Conflict’. In standard supervised training, models tend to over-rely on the strong acoustic priors from the reference speech (timbre leakage) or infer prosody from the text (content leakage), often ignoring the explicit style instruction. Merely applying instruction conditioning is insufficient to resolve these entangled modalities. Therefore, a robust framework is required not just to condition the model, but to actively decouple these factors and enforce instruction adherence against conflicting acoustic cues.

In this work, we propose **FlexiVoice**, a TTS system that can **flexibly control the speaking style** with a zero-shot voice. In particular, it can take a natural language instruction and a reference speech or one of them for flexible controllability. The natural language instruction aims to control speaking styles (e.g. emotion, speaking speed) and the speech reference is to control timbre for speaker identity. FlexiVoice is built on top of a pre-trained large language model (LLM). The LLM core equips FlexiVoice with a robust and comprehensive instruction-following ability. To achieve flexible controllability, we first construct a large-scale and diverse speech dataset with natural language instructions, named **FlexiVoice-Instruct**. The FlexiVoice-Instruct dataset is annotated with the help of LLM. We then pre-train FlexiVoice with Emilia (He et al., 2024) and FlexiVoice-Instruct. In post-training, we propose a novel **Progressive Post-Training (PPT)** framework. Unlike general LLM alignment, PPT is specifically designed to resolve the modality conflicts in TTS through a systematic curriculum. It consists of three stages: (1) **Multi-modality DPO** establishes the initial alignment for instruction adherence; (2) **Decoupling GRPO** introduces a multi-objective optimization with conflicting data scenarios to mathematically enforce the separation of style from timbre and content; and (3) **Instruction GRPO** leverages an audio-language model (ALM) reward to generalize this capability to complex, open-ended instructions. This progressive formulation transforms the instruction-following task from simple conditioning into a rigorous disentanglement process.

We evaluate FlexiVoice from flexible controllability and instruction-following ability aspects, using emotion datasets and the InstructTTS-Eval (Huang et al., 2025) benchmark. The experimental results show that FlexiVoice can decouple speaking style (e.g. emotion) and speaker identity. In comparison with baselines, it achieves large gains in instruction adherence and robustness on the multi-modality control evaluation, and demonstrates strong performance on complex instruction tasks. Human evaluation results further confirm the naturalness and robustness of the generated speech.

The contributions are summarized as follows:

- We propose **FlexiVoice**, a TTS system that enables **flexible and precise style control for zero-shot voice synthesis**. The speaking style is controlled by an optional natural language instruction and the timbre is guided by an optional reference speech. It enables any combination of style and timbre for flexible control.
- We develop a large-scale and diverse speech dataset with natural language instructions, **FlexiVoice-Instruct**. The annotations are created using an LLM (i.e. Deepseek-V3 (Liu et al., 2024a)) based on the speech properties. It has a broad coverage of human-like instructions, including expressive scenarios.
- We propose a **Progressive Post-Training (PPT)** framework, a novel curriculum learning approach tailored for controllable TTS. By strategically sequencing preference alignment and multi-objective optimization, PPT explicitly solves the Style-Timbre-Content conflict, achieving robust disentanglement that standard training paradigms fail to handle.

108 **2 RELATED WORK**

110 **Controllable Speech Synthesis** Research on controllable speech synthesis has mainly followed
 111 two directions. (i) *Zero-shot TTS* clones timbre from short reference speech (Chen et al., 2024;
 112 Wang et al., 2024; Zhou et al., 2025; Zhang et al., 2025c), while partially controlling speaking
 113 style. (ii) *Instruction-based TTS* uses natural-language prompts to specify style; for instance,
 114 PromptTTS (Guo et al., 2023) and PromptStyle (Liu et al., 2023) enable text-guided style control
 115 but within limited spaces, and Parler-TTS (Lyth & King, 2024) scales conditioning with weak la-
 116 bels without supporting timbre control. More recent systems, such as VoxInstruct (Zhou et al.,
 117 2024b), AudioBox (Vyas et al., 2023), ControlSpeech (Ji et al., 2024b), and CosyVoice2 (Du et al.,
 118 2024), combine instruction with reference speech, but still lack robust disentanglement and broad
 119 style diversity. These limitations highlight the need for a unified framework that processes multi-
 120 modal inputs, generates speech following instruction-defined style, preserves timbre, and explicitly
 121 addresses disentanglement.

122 **Instruction-Speech Dataset** Instruction-based TTS has driven datasets that couple text descrip-
 123 tions with speech. TextrolSpeech (Ji et al., 2024a) introduced large prompt–speech pairs with five
 124 style factors; Audiobox (Vyas et al., 2023) broadened the paradigm to multi-modal audio genera-
 125 tion, though its lack of public release limited accessibility. Parler-TTS (Lyth & King, 2024) scaled
 126 weak labels for speaker/style/conditions to tens of thousands of hours. SpeechCraft (Jin et al., 2024)
 127 and ParaSpeechCaps (Diwan et al., 2025) enriched granularity with automatic captioning and di-
 128 verse paralinguistic attributes. Nonetheless, most corpora come from homogeneous sources and
 129 emphasize templated descriptions, leaving insufficient coverage of natural, diverse instructions. Our
 130 dataset targets higher-quality, more natural annotations to strengthen instruction-following.

131 **Reinforcement Learning in Speech Synthesis** Reinforcement learning has recently been ex-
 132 plored to improve controllability in speech synthesis. INTP (Zhang et al., 2025a) applies DPO to
 133 challenging zero-shot cases for better intelligibility. Emo-DPO (Gao et al., 2025) extends preference
 134 alignment to emotional control. Vevo2 (Zhang et al., 2025b) employs multi-objective post-training
 135 to jointly enhance intelligibility and prosody across both speech and singing. These works highlight
 136 the promise of RL-based alignment for targeted aspects of TTS. In contrast, our approach adopts a
 137 progressive curriculum that leverages reinforcement learning to explicitly address modality disen-
 138 tanglement and complex instruction following, thereby enabling broader controllability in zero-shot
 139 multi-modality TTS.

140 **3 OVERVIEW OF FLEXIVoice**

142 **FlexiVoice** is built on top of an LLM similar to other recent TTS systems (Du et al., 2024; Zhou et al.,
 143 2025). In FlexiVoice, a speech tokenizer converts speech into discrete tokens as inputs and outputs of
 144 an LLM. The LLM core processes the input text, natural-language instruction, and reference tokens
 145 to generate discrete speech tokens. The generated tokens are transformed into Mel-spectrogram
 146 features via flow matching (Lipman et al., 2023), and finally converted into waveform audio with
 147 a vocoder. A detailed description is provided in Appendix A.1. FlexiVoice is first pre-trained on a
 148 large-scale dataset as **FlexiVoice-Base** and then post-trained using a progressive strategy.

149 **3.1 PRE-TRAINING**

152 **FlexiVoice-Base** is a pre-trained model of FlexiVoice. It is pre-trained using Emilia (He et al., 2024)
 153 and a diverse set of instruction speech dataset as listed in Appendix A.2.

154 Emilia (He et al., 2024) is a large-scale, multilingual, and diverse speech dataset that covers a
 155 broad spectrum of speaking styles and scenarios, and primarily supports the fundamental ability
 156 of speech generation. To further enable instruction-guided TTS, we construct a high-quality and
 157 diverse dataset, **FlexiVoice-Instruct**, consisting of natural-language instructions across various sce-
 158 narios. The processing pipeline is detailed in Section 4. In addition, we enrich the pre-training phase
 159 with existing instruction–speech corpora (Diwan et al., 2025) and specialized resources featuring at-
 160 tributes such as emotion, age, and debate, with processing details provided in Appendix A.2. We
 161 also incorporate NVSpeech (Liao et al., 2025), which provides paralinguistic tags and expressive
 coverage. Together, these resources form the pre-training corpus for our model.

Following the traditional pre-training strategy for TTS systems (Du et al., 2024; Zhou et al., 2025), we only train the LLM core and keep other modules frozen, without incorporating the reference speech during pre-training. As shown in Figure 3, the text and instruction are first formatted by the LLM input template. The paired ground-truth speech is preprocessed by a frozen speech tokenizer into discrete tokens, which are used to compute loss with generated tokens during pretraining. To ensure consistency in input format, we apply *Speak the following text* as the default instruction when encountering data from Emilia (He et al., 2024) and NVSpeech (Liao et al., 2025) that lacks an explicit instruction.

3.2 POST-TRAINING

We propose a **Progressive Post-Training (PPT)** scheme to disentangle speaking style and timbre and to enable FlexiVoice to have complex instruction-following ability. It is inspired by Curriculum Learning (Bengio et al., 2009), which starts from simpler objectives and gradually advances to harder ones for stable optimization and better generalization. After pre-training, FlexiVoice-Base has solid zero-shot TTS capability but still struggles with multi-modality inputs and complex instructions. PPT is to advance FlexiVoice-base for generalization and better performance. This progressive curriculum ultimately yields a robust multi-modality instruction TTS model, **FlexiVoice**.

PPT has three stages:

- **S1** aligns multi-modality controllability of instruction and reference speech in controlled emotion-centric tasks with explicit labels.
- **S2** disentangles the timbre and style in reference speech, and the content and style in target text, within the same scenario as S1,
- **S3** extends to complex real-world instructions that are more ambiguous and harder to align.

3.2.1 S1: MULTI-MODALITY CONTROLLABILITY

S1 mainly employs DPO to empower FlexiVoice processing style instruction and timbre reference at the same time. The first two stages target emotional instructions to reduce task complexity and explicitly address the core issue. We restrict instructions to templates like *Use {label} emotion to read it*, with labels chosen from *Neutral, Happy, Angry, Sad, and Surprised*.

For emotion-related tasks, paired preference data can be directly obtained from Speech Emotion Recognition (SER) datasets. We use the Emotional Speech Dataset (ESD) (Zhou et al., 2021), where the same speaker reads identical sentences with different emotions. Following Gao et al. (2025), for each data point, we assign a target emotion label (e.g., Happy) via an instruction template (all templates are listed in Appendix A.5), select a sentence with the target emotion as the preferred sample, the identical sentence with a different emotion (e.g., Angry) as the dis-preferred one, and use a neutral sample from the same speaker as the reference speech (an example pair is provided in Appendix A.5).

DPO directly aligns the model’s emotional output with the instruction and reference speech without requiring an explicit reward model (Rafailov et al., 2023). The preference dataset \mathcal{D} consists of tuples (x, y_w, y_l) , where x includes instruction, text, and reference; y_w is the “winner” response that matches the instruction, and y_l is the “loser.” The DPO loss is defined as:

$$\mathcal{L}_{\text{DPO}}(\pi_\theta; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_\theta(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_\theta(y_l|x)}{\pi_{\text{ref}}(y_l|x)} \right) \right]$$

where π_θ is the policy model and π_{ref} is the reference model, both initialized from **FlexiVoice-Base**.

3.2.2 S2: DECOUPLING OF REFERENCE SPEECH AND TARGET TEXT

S2 focuses on FlexiVoice’s decoupling capability in scenarios where speech reference and target text contain styles conflicting with instructions. After DPO training, the model follows emotional instructions well under neutral references, but interference remains when references or texts themselves are emotion-laden, conflicted with the target emotion defined in the instruction. To explicitly suppress these effects, we adopt a multi-objective GRPO formulation by constructing conflicting training scenarios (e.g., Happy instruction vs. Sad reference). The reward r_{ser} (defined below) acts

216 as a style constraint, penalizing the model if it leaks style from the reference or text. Conversely, r_{sv}
 217 acts as a timbre constraint, ensuring speaker identity is preserved. By optimizing the joint advan-
 218 tage, the model is forced to decouple these factors to maximize the total reward. We use the same
 219 instruction templates, combine neutral and emotional clips from SER datasets as reference speech,
 220 and sample texts from NCSSD (Liu et al., 2024b) (details in Appendix A.4).

221 Rewards are defined as follows: (1) $r_{ser} \in (0, 1)$, the probability score for the instructed emotion
 222 given by the emotion recognition result from Emotion2vec-Large (Ma et al., 2024); (2) $r_{sv} \in \{0, 1\}$,
 223 the speaker verification result from CAM++ (Wang et al., 2023) to ensure timbre consistency. Fol-
 224 lowing Zhang et al. (2025b), the advantage with multi-objective rewards is:

$$225 \quad A_{emo}^i = \frac{r_{ser}^i - \text{mean}(r_{ser}^i)}{\text{std}(r_{ser}^i)} + \frac{r_{sv}^i - \text{mean}(r_{sv}^i)}{\text{std}(r_{sv}^i)}$$

228 where i indexes the i -th completion among K candidates for the same input x .

230 3.2.3 S3: ENHANCEMENT ON COMPLEX INSTRUCTION-FOLLOWING

231 The final stage enhances instruction following on complex, real-world directives beyond emotion
 232 tasks. Since paired preference data are infeasible at this scale, we directly employ GRPO. Unlike
 233 the first stage, where rewards are available from SER models, assessing the consistency between
 234 speech and open-ended instructions is more difficult. Huang et al. (2025) shows that Gemini-2.5-pro
 235 provides reliable judgments aligned with human preferences, but its use in GRPO is cost-prohibitive.
 236 We instead adopt the open-sourced Kimi-Audio-7B-Instruct (Ding et al., 2025) as the reward model
 237 due to its strong speech comprehension. It is prompted to output a binary yes/no decision on whether
 238 the generated speech matches the instruction, which is mapped into a reward $r_{llm} \in \{1, 0\}$.

239 For this stage, we use only instruction and text as inputs, discarding references, since references
 240 may conflict with open-ended constraints (e.g., gender) and destabilize training. Details of the data
 241 construction process are given in Appendix A.4.

242 To mitigate catastrophic forgetting, we mix a small portion of S2-GRPO data during this stage. Thus,
 243 the final GRPO training becomes a multi-task, multi-objective optimization. The single-objective
 244 advantage in this stage (left) and the final advantages (right) are:

$$246 \quad A_{ins}^i = \frac{r_{llm}^i - \text{mean}(r_{llm}^i)}{\text{std}(r_{llm}^i)}, \quad A^i = \begin{cases} A_{emo}^i & \text{for inputs in S2,} \\ A_{ins}^i & \text{for inputs in S3.} \end{cases}$$

249 4 FLEXIVOICE-INSTRUCT DATASET

251 4.1 OVERVIEW

253 To equip the model with fundamental instruction-following capability in the pre-training phase, it is
 254 essential to build a large-scale instruction–speech dataset covering diverse styles and scenarios. We
 255 therefore construct a high-quality and diverse dataset totaling 4,316 hours, where speech-related tex-
 256 tual metadata is processed with an LLM-based annotator. This approach enables efficient generation
 257 of natural, high-level instructions that better reflect real human usage patterns.

258 4.2 MAIN PROCESS

260 We employ two data sources, Emilia and game voice acting, using a unified processing strategy:

262 Emilia (He et al., 2024) is a large-scale, diverse, in-the-wild speech dataset. Because the audio origi-
 263 nates from video platforms and podcasts, some entries include source metadata such as video titles
 264 and tag lists. Combined with transcriptions, these cues allow us to infer speaking style and scene
 265 context, enabling the generation of open-ended instructions even without direct speech analysis. We
 266 employ Deepseek-V3 (Liu et al., 2024a) for instruction annotation. To filter noisy samples (e.g.,
 267 URLs or conflicting metadata–transcription pairs), the LLM is prompted to evaluate the informa-
 268 tional value of metadata for style and scenario inference, ensuring higher data quality.

269 To enhance expressiveness and stylistic richness, game voice acting data from two popular games
 is additionally incorporated. A distinctive feature of this data is the strong link between speaking

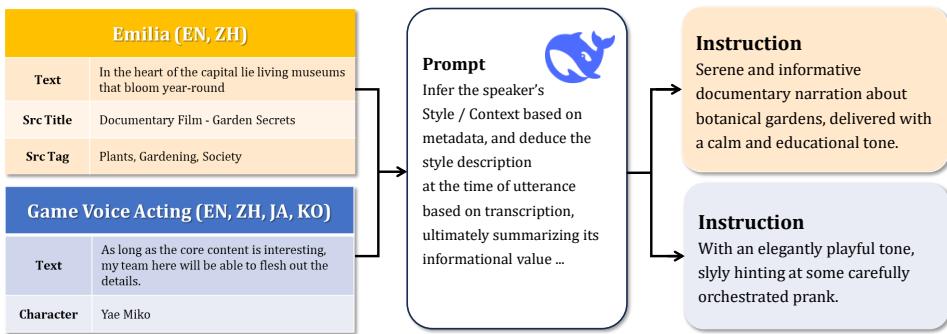


Figure 2: Processing flow and examples for FlexiVoice-Instruct. For both sources, we use the speech transcription and related meta information to prompt LLM to generate natural and human-like descriptions, as the instruction in our pre-training stage.

style and character personality. LLMs, trained on large-scale web corpora, can often recognize these characters and capture their iconic styles. We thus use Deepseek-V3 (Liu et al., 2024a) to generate instructions conditioned on both transcription and character name. Concretely, we first supply the full character list and let the LLM identify those it can reliably recognize. For known characters, we prompt the LLM to infer personality and speaking style from the name, then refine the description using the transcription. As with Emilia, we incorporate an informational value check to filter noisy annotations. Prompts are provided in Appendix A.3, while the overall processing flow and examples are shown in Figure 2.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Benchmarks To evaluate the model’s multi-modality controllability as well as its capacity to follow complex real-world instructions, we employ one self-constructed dataset and one open-source benchmark. For multi-modal control and disentanglement, we define two task types with two difficulty levels each, focusing on instruction-based emotional TTS, as summarized in Table 1. For complex instruction following, we adopt the InstructTTS-Eval (Huang et al., 2025) benchmark.

Table 1: Tasks for multi-modality control and disentanglement evaluation. There are two tasks with two difficulties, with an example for each task.

Task Type	Difficulty	Text	Reference	Example
Single Modality: Text-Only (TO)	Easy	Neutral	-	Instruction: Speak it using happy emotion. Text: Today is Monday. Reference Speech: -
	Hard	Emotional	-	Instruction: Speak it using happy emotion. Text: I'm so sad that it's raining outside. Reference Speech: -
Multi-Modality: Text and Reference (TR)	Easy	Neutral	Neutral	Instruction: Speak it using happy emotion. Text: Today is Monday. Reference Speech: [A neutral voice]
	Hard	Neutral	Emotional	Instruction: Speak it using happy emotion. Text: Today is Monday. Reference Speech: [A sad voice]

The first evaluation set is built from MEAD (Wang et al., 2020) (English) and CSEMOTIONS (Tian et al., 2025) (Chinese). In TR tasks, reference speech is randomly selected as either neutral or conflicting emotional clips from the same speaker as the ground-truth. For TO-hard, the text is replaced with sentences carrying emotions different from the target, so no ground-truth audio exists for this case. We retain five emotion categories from both datasets and randomly sample 500 examples each for English and Chinese, ensuring balanced coverage of target emotions.

324
 325 Table 2: Multi-modality controllability and disentanglement evaluation result in different tasks and
 326 two languages.

Model	Text-Only as input (TO)				Text and Reference Speech as input (TR)							
	Easy		Hard		Easy			Hard				
	ACC-I↑	E-SIM↑	ACC-I↑	ACC-T↓	ACC-I↑	E-SIM↑	SV↑	ACC-I↑	ACC-R↓	E-SIM↑	SV↑	
EN												
Groud-truth	93.4	1.00	-	-	93.4	1.00	-	93.4	0.6	1.00	-	
Parler-TTS	44.6	0.72	12.2	42.0	-	-	-	-	-	-	-	
PromptStyle	43.8	0.70	14.0	33.6	-	-	-	-	-	-	-	
PromptTTS	57.8	0.79	15.0	41.0	-	-	-	-	-	-	-	
CosyVoice2	-	-	-	-	65.6	0.85	99.8	61.0	14.4	0.84	99.8	
VoxInstruct	70.6	0.84	17.8	41.2	58.5	0.81	89.0	49.7	23.9	0.80	90.6	
FlexiVoice-Base	72.4	0.83	39.4	30.6	58.8	0.81	99.2	48.8	32.2	0.78	99.4	
FlexiVoice	97.4	0.89	89.4	6.6	89.4	0.90	91.0	78.2	10.6	0.87	95.8	
ZH												
Groud-truth	61.6	1.00	-	-	61.6	1.00	-	61.6	4.4	1.00	-	
CosyVoice2	-	-	-	-	44.4	0.84	99.8	47.8	15.3	0.79	100.0	
VoxInstruct	48.6	0.76	29.0	21.2	19.4	0.75	46.8	18.7	23.2	0.73	59.8	
FlexiVoice-Base	78.4	0.76	66.8	14.2	25.2	0.78	99.6	22.4	38.0	0.74	99.2	
FlexiVoice	99.8	0.72	98.4	0.8	81.8	0.85	98.8	75.8	13.2	0.80	98.4	

345 The second benchmark, InstructTTSEval (Huang et al., 2025), serves as a comprehensive test set
 346 for complex instruction following beyond simple emotions. It comprises 1,000 English and 1,000
 347 Chinese samples covering 12 distinct speech attributes: *gender, pitch, texture, clarity, fluency, speed,*
 348 *accent, age, volume, emotion, tone, and personality*. These attributes are encapsulated in instruc-
 349 tions across three task levels—Acoustic-Parameter Specification (APS), Descriptive-Style Directive
 350 (DSD), and Role-Play (RP)—allowing us to rigorously evaluate the model’s versatility in handling
 351 diverse and fine-grained style controls.

352 **Metrics** For the first evaluation set, we use Emotion2vec-Large (Ma et al., 2024) for SER and
 353 emotion embedding extraction. We report instruction-following accuracy with respect to the target
 354 emotion (**ACC-I**, ↑), and in the hard settings also report accuracy against conflicting emotions from
 355 text or reference (**ACC-T**, **ACC-R**, ↓), where lower is better. Cosine similarity between emotion
 356 embeddings of ground-truth and generated speech (**E-SIM**, ↑) further reflects adherence. To ver-
 357 ify timbre preservation in TR tasks, we use CAM++ (Wang et al., 2023) for speaker verification
 358 accuracy (**SV**, ↑). We also evaluate intelligibility and perceptual quality: **word error rate for English (WER, ↓, ASR by Whisper-Large-V3)** and **character error rate for Chinese (CER, ↓, ASR by Parafomer-zh)**, speech quality MOS (**Q-MOS**, 1–5, ↑), and Comparative MOS (**CMOS**, -2 to 2,
 361 ↑). Details of the subjective setup are provided in Appendix A.9.

362 For complex instruction following, we follow InstructTTSEval (Huang et al., 2025), which uses
 363 Gemini as the judge model to assess consistency, and report macro-average accuracy.

365 **Baselines** We compare FlexiVoice against representative open-source instruction TTS systems,
 366 including Parler-TTS (Lyth & King, 2024), reproducible variants (Ji et al., 2024b) of Prompt-
 367 Style (Liu et al., 2023) and PromptTTS (Guo et al., 2023), VoxInstruct (Zhou et al., 2024b), and
 368 CosyVoice2 (Du et al., 2024), which jointly processes natural-language instructions and reference
 369 speech. In addition, we report results from InstructTTSEval (Huang et al., 2025), which cover both
 370 the above open-source systems and closed-source commercial models (gemini-2.5-flash-preview-tts,
 371 gemini-2.5-pro-preview-tts, gpt-4o-mini-tts, and Hume), and we further include MiMo-Audio-7B-
 372 Instruct, a recent large audio-language model with strong instruction-following capability.

374 5.2 DECOUPLING ABILITY OF FLEXIVOICE

375 From Table 2, we observe that FlexiVoice demonstrates strong capabilities in handling multi-
 376 modality inputs and disentangling content, timbre, and style across both English and Chinese tasks.
 377 The discussion is organized into four perspectives.

378

379

Table 3: WER scores and subjective evaluation results in the first evaluation set.

380

381

Model	Text-Only as input (TO)			Text and Reference Speech as input (TR)										
	Easy			Easy			Hard							
	WER↓	Q-MOS↑	CMOS↑	WER↓	Q-MOS↑	CMOS↑	WER↓	Q-MOS↑	CMOS↑					
EN														
Groud-truth	4.50	3.16 ± 0.07	0.00	4.50	3.50 ± 0.13	0.00	4.50	4.26 ± 0.22	0.00					
CosyVoice2	-	-	-	3.71	3.50 ± 0.36	-0.75 ± 0.32	3.60	3.68 ± 0.43	-0.88 ± 0.21					
VoxInstruct	7.29	3.02 ± 0.34	-0.75 ± 0.44	14.44	2.10 ± 0.23	-1.50 ± 0.19	12.61	2.66 ± 0.63	-0.86 ± 0.36					
FlexiVoice-Base	5.01	3.72 ± 0.14	-0.12 ± 0.39	5.31	3.90	± 0.26	-1.25 ± 0.29	6.55	3.82 ± 0.29	-0.56 ± 0.31				
FlexiVoice	5.99	4.08	± 0.29	0.91	± 0.20	5.23	3.62 ± 0.25	0.89	± 0.30	6.99	4.06	± 0.35	0.78	± 0.40
ZH														
Groud-truth	4.55	3.78 ± 0.14	0.00	4.55	3.38 ± 0.14	0.00	4.55	3.92 ± 0.07	0.00					
CosyVoice2	-	-	-	0.78	3.54 ± 0.27	-1.14 ± 0.24	0.89	3.58 ± 0.39	0.36 ± 0.29					
VoxInstruct	3.37	3.18 ± 0.28	-1.60 ± 0.30	10.04	2.62 ± 0.28	-1.88 ± 0.09	9.40	3.04 ± 0.17	-1.62 ± 0.19					
FlexiVoice-Base	5.01	4.10	± 0.26	0.75	± 0.40	3.08	3.74 ± 0.28	-1.50 ± 0.23	5.63	3.66 ± 0.06	-0.88 ± 0.45			
FlexiVoice	7.59	4.04 ± 0.23	0.60 ± 0.41	4.34	3.79	± 0.26	-0.36	± 0.24	7.02	3.76	± 0.29	0.57	± 0.44	

382

383

384

385

386

387

388

389

390

391

392

393

394

Multi-modality Control Comparing the easy sets of these two tasks, under the guidance of the instruction, TO-easy only includes the text condition (where the model uses a random timbre), while TR-easy incorporates both text and reference speech as multi-modality condition inputs (where the model uses the reference’s timbre). Most baselines cannot support both simultaneously, and even those that do, together with FlexiVoice-Base, show a large gap, particularly for Chinese. After progressive post-training, FlexiVoice achieves substantial gains, reaching 97.4% ACC-I in English and 99.8% in Chinese on TO-easy, surpassing ground-truth in some cases. On TR-easy, it maintains strong accuracy (89.4% EN, 81.8% ZH) while preserving speaker consistency, highlighting robust multi-modality control capacity.

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

Target Text Disentanglement For the two difficulty levels of TO, the easy level uses neutral text while the hard level employs text with emotions differing from the instruction. The purpose is to test whether the model can ignore conflicting emotional cues in text. Baselines and FlexiVoice-Base generally fail here, showing low ACC-I and high ACC-T, indicating they are biased toward the text’s implied style. In contrast, FlexiVoice substantially improves disentanglement, achieving 89.4% ACC-I with only 6.6% ACC-T in English, and 98.4% vs. 0.8% in Chinese. Notably, the Chinese gap between easy and hard settings is reduced to just 1.4%, showing FlexiVoice’s strong ability to ensure style is controlled by instruction alone.

430

431

Reference Speech Disentanglement For TR, the easy task uses neutral speech as the timbre reference, while the hard uses emotionally charged reference speech differing from the instruction. Most baselines exhibit large drops in accuracy and high ACC-R, showing disruption by reference’s style. FlexiVoice alleviates this issue, achieving 78.2% ACC-I (EN) and 75.8% (ZH) with correspondingly low ACC-R (10.6% EN, 13.2% ZH). This demonstrates that FlexiVoice effectively disentangles reference timbre from style, preserving timbre while adhering to instruction-defined emotion.

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

Trade-off between Style Control and Speaker Verification We notice that in certain scenarios (e.g., TR tasks in Table 2), the pre-trained FlexiVoice-Base exhibits slightly higher SV scores compared to the final FlexiVoice. This is an expected phenomenon inherent to the task of style synthesis. The FlexiVoice-Base model, lacking explicit disentanglement capabilities, tends to clone the prosody of the reference speech directly. While this yields high speaker similarity, it fails to follow the style instructions (as evidenced by its low ACC-I scores). In contrast, FlexiVoice must significantly modify acoustic features (such as pitch and energy) to satisfy the target style instruction (e.g., converting a sad reference speech into a happy voice). These necessary prosodic alterations inevitably result in a minor numerical reduction in the cosine similarity of speaker embeddings. Crucially, FlexiVoice maintains high SV scores while achieving superior instruction adherence, demonstrating that it successfully prioritizes style control without compromising the fundamental speaker identity.

450

451

452

453

454

455

456

Intelligibility and Subjective Evaluation Table 3 presents intelligibility and perceptual quality. FlexiVoice exhibits a marginal increase in WER/CER compared to FlexiVoice-Base. This phe-

432
 433 Table 4: Complex instruction-following evaluation results on InstructTTSEval, for closed-source
 434 and open-source models on both languages.

436 Model	437 InstructTTSEval-EN				438 InstructTTSEval-ZH			
	439 APS	440 DSD	441 RP	442 Avg.	443 APS	444 DSD	445 RP	446 Avg.
Groud-truth	96.2	89.4	67.2	84.3	90.9	86.7	69.8	82.5
Closed-sourced								
Gemini-flash	92.3	93.8	80.1	88.7	88.2	90.9	77.3	85.4
Gemini-pro	87.6	86.0	67.2	80.3	89.0	90.1	75.5	84.8
GPT-4o-mini-TTS	76.4	74.3	54.8	68.5	54.9	52.3	46.0	51.1
Hume	83.0	75.3	54.3	71.1	-	-	-	-
Open-sourced								
ParlerTTS	60.0	45.9	31.2	45.7	-	-	-	-
PromptStyle	57.4	46.4	30.9	38.2	-	-	-	-
VoxInstruct	54.9	57.0	39.3	50.4	47.5	52.3	42.6	47.5
PromptTTS	64.3	47.2	31.4	47.6	-	-	-	-
MiMo-Aduio-7B-Instruct	80.6	77.6	59.5	72.6	75.7	74.3	61.5	70.5
FlexiVoice-Base	63.6	75.0	60.6	66.4	56.7	59.1	59.5	58.4
FlexiVoice	81.2	85.2	71.4	79.3	71.0	71.8	69.7	70.8

447
 448
 449
 450 nomenon is consistent with prior findings (Li et al., 2023), which indicate that standard ASR models
 451 often degrade on highly expressive or emotional speech due to significant prosodic variations. How-
 452 ever, this does not imply a loss of intelligibility for human listeners. As evidenced by the consistently
 453 higher Q-MOS scores (e.g., 4.08 vs. 3.72 in EN-TO-Easy), FlexiVoice maintains superior percep-
 454 tual clarity while delivering richer stylistic expression. In addition, the positive CMOS (up to +0.9)
 455 indicates better overall expressiveness and instruction adherence, ensuring that the quality of gener-
 456 ated speech remains unaffected at the same time. In contrast, baselines often obtain negative CMOS,
 457 showing lower preference in human judgments compared with the groud-truth. These results con-
 458 firm that FlexiVoice not only achieves superior disentanglement but also maintains naturalness and
 459 quality close to ground-truth.

460 5.3 COMPLEX INSTRUCTION-FOLLOWING ABILITY

462 InstructTTSEval (Huang et al., 2025) defines three levels of complex instruction following. These
 463 tasks range from low-level acoustic control to open-ended style generation and character imitation,
 464 thereby testing different aspects of instruction adherence. As shown in Table 4, the pre-trained model
 465 FlexiVoice-Base already performs competitively, especially on DSD (75.0 EN) and RP (60.6 EN),
 466 due to alignment between these tasks and the natural instructions present in our constructed dataset.
 467 After applying the Progressive Post-Training strategy, FlexiVoice achieves consistent gains across
 468 all task types. On English tasks, it improves by over 12 points on APS (81.2 vs. 63.6) and nearly 11
 469 points on RP (71.4 vs. 60.6), reaching an overall average of 79.3, close to Gemini-pro (80.3). On
 470 Chinese tasks, FlexiVoice attains 70.8 average accuracy, surpassing MiMo-Audio-7B-Instruct (70.5)
 471 and reducing the gap to Gemini models. Overall, FlexiVoice consistently outperforms all open-
 472 source baselines and narrows the gap with closed-source commercial systems, demonstrating robust
 473 instruction-following ability in complex, real-world scenarios. Furthermore, empirical results in
 474 Appendix A.8 confirm that FlexiVoice also excels in fine-grained control of non-emotional attributes
 475 like speaking speed and pitch, significantly outperforming baselines in correlation analysis.

476 5.4 EFFECTIVENESS OF PROGRESSIVE POST-TRAINING

477 To rigorously validate the necessity of the proposed Progressive Post-Training (PPT) scheme, we
 478 conduct comprehensive ablation studies comparing different training orders and optimization strate-
 479 gies. The results are summarized in Table 5.

480
 481
 482 **Importance of Training Order** We first investigate whether the order of stages matters. As shown
 483 in the first block of Table 5, starting directly with complex instruction alignment (+S3) yields poor
 484 performance (InstructTTSEval Avg. 72.3 vs. Ours 79.3). This suggests that without the fundamental
 485 alignment provided by S1, the model struggles to optimize for the sparse and high-level rewards in
 S3. Furthermore, the alternative order +S3→S1→S2 results in significantly lower performance on

486
 487 Table 5: **Ablation study of FlexiVoice on different training orders and strategies.** We compare the
 488 Pre-trained model (Base), the effect of starting with Instruction GRPO (S3 first), Joint Training, and
 489 our proposed Progressive Post-Training (PPT) strategy (S1 → S2 → S3).

Training Strategy	Decoupling Set (EN)					InstructTTSEval (EN)			
	TO Easy	TO Hard	TR Easy	TR Hard	Avg.	APS	DSD	RP	Avg.
FlexiVoice-Base	72.4	39.4	58.8	48.8	54.9	63.6	75.0	60.6	66.4
<i>Alternative Training Order</i>									
+ S3	72.8	59.0	48.6	38.2	54.7	73.3	78.8	64.7	72.3
+ S3 → S1	96.0	79.6	80.8	72.6	82.3	74.3	81.2	67.5	74.3
+ S3 → S1 → S2	94.8	80.2	86.8	75.8	84.4	74.9	81.4	68.2	74.8
<i>Joint Training</i>									
+ S1 → S2 + S3 (Joint)	94.8	80.8	86.2	74.6	84.1	78.3	80.5	67.8	75.5
<i>Progressive Post-Training (PPT)</i>									
+ S1	96.0	81.4	83.3	72.2	83.2	63.4	79.3	64.2	69.0
+ S1 → S2	96.4	88.0	89.4	80.2	88.5	66.8	80.3	67.9	71.7
+ S1 → S2 → S3 (Ours)	97.7	89.4	89.4	78.2	88.7	81.2	85.2	71.4	79.3

502
 503 complex instructions (74.8) compared to our approach. This indicates that applying the fundamental
 504 DPO (S1) after complex instruction training causes catastrophic forgetting of the fine-grained
 505 instruction-following capabilities learned in S3. These findings confirm that S1 acts as a necessary
 506 “cold start” foundation, establishing robust multi-modal responsiveness before the model tackles
 507 more advanced disentanglement and generalization tasks.
 508

510 **Progressive vs. Joint Training** Another key question is whether S2 and S3 could be optimized
 511 simultaneously, since they both apply GRPO algorithm. We compare our progressive approach
 512 against a joint training strategy (+S1→S2+S3), where the decoupling and instruction objectives
 513 are combined. The results show that joint training underperforms the progressive strategy on both
 514 benchmarks (Decoupling Avg. 84.1 vs. 88.7; InstructTTSEval Avg. 75.5 vs. 79.3). We attribute this
 515 to the conflicting nature of the gradients: S2 enforces strict constraints to suppress style leakage using
 516 fixed classifiers, while S3 encourages open-ended style generalization via ALM-based rewards.
 517 Optimizing them jointly leads to interference, preventing the model from mastering either task at
 518 the same time.

519
 520 **Cumulative Gains of Our PPT Strategy** The final block of Table 5 demonstrates the step-by-
 521 step efficacy of our proposed path. The Multi-modality DPO (+S1) first yields large gains on basic
 522 controllability (+28.3 Decoupling Avg.). Subsequently, the Decoupling GRPO (+S2) significantly
 523 boosts the model’s ability to separate style from content and timbre, raising the Decoupling Avg.
 524 to 88.5. Finally, the Instruction GRPO (+S3) further enhances the model’s capability on complex,
 525 real-world instructions (+7.6 on InstructTTSEval Avg.) while maintaining the high disentanglement
 526 capability achieved in the previous stage. The full PPT curriculum achieves the best balance across
 527 all metrics, representing substantial improvements over the base model and validating the progressive
 528 design as a stable and effective optimization path.

530 6 CONCLUSION

531
 532 In this work we introduce FlexiVoice, a TTS system for multi-modality control that uses natural-
 533 language instructions for style and reference speech for timbre, supported by a high-quality in-
 534 struction–speech dataset and a Progressive Post-Training (PPT) paradigm. PPT first strengthens the
 535 multi-modality controllability and disentanglement of instruction, text, and reference via emotion-
 536 centric DPO/GRPO, then scales to complex instruction following with an ALM-based reward, yield-
 537 ing stable optimization and broad generalization. Experiments show consistent gains on disentan-
 538 glement (e.g., large ACC-I improvements with low interference from text/reference) and strong
 539 performance on InstructTTSEval, where FlexiVoice surpasses baselines and narrows the
 gap to closed-source systems, while maintaining naturalness and robustness in human evaluations.

540 **7 ETHICS STATEMENT**
 541

542 This work investigates controllable text-to-speech with multi-modality inputs. The instruc-
 543 tion–speech dataset was created from publicly available or licensed resources, filtered to remove
 544 offensive, biased, or harmful content. No personal or sensitive user data were collected or pro-
 545 cessed. While advances in speech synthesis can potentially be misused (e.g., generating deceptive
 546 or harmful audio), our study focuses on improving controllability, robustness, and transparency for
 547 research purposes, and we encourage responsible use of the proposed methods. All authors have read
 548 and adhered to the ICLR Code of Ethics , and confirm that this research complies with standards of
 549 fairness, privacy, and research integrity.

550
 551 **8 REPRODUCIBILITY STATEMENT**
 552

553 We have taken multiple steps to ensure the reproducibility of our work. Detailed descriptions of the
 554 model architecture, training objectives, and evaluation protocols are provided in the main text and
 555 appendix. We will release the instruction–speech dataset, model checkpoints, and all training and in-
 556 ference code to facilitate replication and further research. Hyperparameter settings, data processing
 557 procedures, and evaluation scripts will also be included in the release materials.

558
 559 **REFERENCES**
 560

561 Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
 562 Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko,
 563 Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, Dong-
 564 dong Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang
 565 Dai, Matthew Dixon, Ronen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit
 566 Garg, Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao,
 567 Russell J. Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin
 568 Jin, Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim,
 569 Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Liden,
 570 Xihui Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, Xiaodong Liu, Chong
 571 Luo, Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro
 572 Mendes, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-
 573 Becker, Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo
 574 de Rosa, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim,
 575 Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla,
 576 Xia Song, Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua
 577 Wang, Lijuan Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp
 578 Witte, Haiping Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Ji-
 579 long Xue, Sonali Yadav, Fan Yang, Jianwei Yang, Yifan Yang, Ziyi Yang, Donghan Yu, Lu Yuan,
 580 Chenruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan
 581 Zhang, and Xiren Zhou. Phi-3 technical report: A highly capable language model locally on your
 582 phone, 2024. URL <https://arxiv.org/abs/2404.14219>.

583 Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
 584 *Proceedings of the 26th annual international conference on machine learning*, pp. 41–48, 2009.

585 Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe Kazemzadeh, Emily Mower, Samuel Kim, Jean-
 586 nette N Chang, Sungbok Lee, and Shrikanth S Narayanan. Iemocap: Interactive emotional dyadic
 587 motion capture database. *Language resources and evaluation*, 42(4):335–359, 2008.

588 Huawei Cao, David G Cooper, Michael K Keutmann, Ruben C Gur, Ani Nenkova, and Ragini
 589 Verma. Crema-d: Crowd-sourced emotional multimodal actors dataset. *IEEE transactions on
 590 affective computing*, 5(4):377–390, 2014.

591 Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki
 592 Kanda, Takuya Yoshioka, Xiong Xiao, et al. Wavlm: Large-scale self-supervised pre-training for
 593 full stack speech processing. *IEEE Journal of Selected Topics in Signal Processing*, 16(6):1505–
 1518, 2022.

594 Yushen Chen, Zhikang Niu, Ziyang Ma, Keqi Deng, Chunhui Wang, Jian Zhao, Kai Yu, and Xie
 595 Chen. F5-tts: A fairytaler that fakes fluent and faithful speech with flow matching. *arXiv preprint*
 596 *arXiv:2410.06885*, 2024.

597

598 Ding Ding, Zeqian Ju, Yichong Leng, Songxiang Liu, Tong Liu, Zeyu Shang, Kai Shen, Wei Song,
 599 Xu Tan, Heyi Tang, et al. Kimi-audio technical report. *arXiv preprint arXiv:2504.18425*, 2025.

600

601 Anuj Diwan, Zhisheng Zheng, David Harwath, and Eunsol Choi. Scaling rich style-prompted text-
 602 to-speech datasets, 2025. URL <https://arxiv.org/abs/2503.04713>.

603

604 Zhihao Du, Yuxuan Wang, Qian Chen, Xian Shi, Xiang Lv, Tianyu Zhao, Zhifu Gao, Yexin Yang,
 605 Changfeng Gao, Hui Wang, et al. Cosyvoice 2: Scalable streaming speech synthesis with large
 606 language models. *arXiv preprint arXiv:2412.10117*, 2024.

607

608 Xiaoxue Gao, Chen Zhang, Yiming Chen, Huayun Zhang, and Nancy F Chen. Emo-dpo: Control-
 609 lable emotional speech synthesis through direct preference optimization. In *ICASSP 2025-2025*
 610 *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5.
 IEEE, 2025.

611

612 Zhifang Guo, Yichong Leng, Yihan Wu, Sheng Zhao, and Xu Tan. Prompttts: Controllable text-to-
 613 speech with text descriptions. In *ICASSP 2023-2023 IEEE International Conference on Acoustics,
 614 Speech and Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2023.

615

616 Haorui He, Zengqiang Shang, Chaoren Wang, Xuyuan Li, Yicheng Gu, Hua Hua, Liwei Liu, Chen
 617 Yang, Jiaqi Li, Peiyang Shi, et al. Emilia: An extensive, multilingual, and diverse speech dataset
 618 for large-scale speech generation. In *2024 IEEE Spoken Language Technology Workshop (SLT)*,
 pp. 885–890. IEEE, 2024.

619

620 Kexin Huang, Qian Tu, Liwei Fan, Chenchen Yang, Dong Zhang, Shimin Li, Zhaoye Fei, Qinyuan
 621 Cheng, and Xipeng Qiu. Instructtseval: Benchmarking complex natural-language instruction
 622 following in text-to-speech systems. *arXiv preprint arXiv:2506.16381*, 2025.

623

624 Yiqiao Huang, Yuancheng Wang, Jiaqi Li, Haotian Guo, Haorui He, Shunsi Zhang, and Zhizheng
 625 Wu. Debatts: Zero-shot debating text-to-speech synthesis. *arXiv preprint arXiv:2411.06540*,
 2024.

626

627 Shengpeng Ji, Jialong Zuo, Minghui Fang, Ziyue Jiang, Feiyang Chen, Xinyu Duan, Baoxing Huai,
 628 and Zhou Zhao. Textrolspeech: A text style control speech corpus with codec language text-to-
 629 speech models. In *ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and
 630 Signal Processing (ICASSP)*, pp. 10301–10305. IEEE, 2024a.

631

632 Shengpeng Ji, Jialong Zuo, Wen Wang, Minghui Fang, Siqi Zheng, Qian Chen, Ziyue Jiang,
 633 Hai Huang, Zehan Wang, Xize Cheng, et al. Controlspeech: Towards simultaneous zero-shot
 634 speaker cloning and zero-shot language style control with decoupled codec. *arXiv preprint*
arXiv:2406.01205, 2024b.

635

636 Zeyu Jin, Jia Jia, Qixin Wang, Kehan Li, Shuoyi Zhou, Songtao Zhou, Xiaoyu Qin, and Zhiyong
 637 Wu. Speechcraft: A fine-grained expressive speech dataset with natural language description. In
Proceedings of the 32nd ACM International Conference on Multimedia, pp. 1255–1264, 2024.

638

639 Jiaqi Li, Xiaolong Lin, Zhekai Li, Shixi Huang, Yuancheng Wang, Chaoren Wang, Zhenpeng Zhan,
 640 and Zhizheng Wu. Dualcodec: A low-frame-rate, semantically-enhanced neural audio codec for
 641 speech generation. *arXiv preprint arXiv:2505.13000*, 2025.

642

643 Yuanchao Li, Zeyu Zhao, Ondrej Klejch, Peter Bell, and Catherine Lai. Asr and emotional speech: A
 644 word-level investigation of the mutual impact of speech and emotion recognition. In *Interspeech
 645 2023*, pp. 1449–1453. International Speech Communication Association, 2023.

646

647 Huan Liao, Qinke Ni, Yuancheng Wang, Yiheng Lu, Haoyue Zhan, Pengyuan Xie, Qiang Zhang, and
 648 Zhizheng Wu. Nvspeech: An integrated and scalable pipeline for human-like speech modeling
 649 with paralinguistic vocalizations. *arXiv preprint arXiv:2508.04195*, 2025.

648 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 649 for generative modeling. In *11th International Conference on Learning Representations, ICLR*
 650 2023, 2023.

651 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 652 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 653 *arXiv:2412.19437*, 2024a.

654 Guanghou Liu, Yongmao Zhang, Yi Lei, Yunlin Chen, Rui Wang, Lei Xie, and Zhifei Li. Prompt-
 655 style: Controllable style transfer for text-to-speech with natural language descriptions. In *Proc.*
 656 *Interspeech 2023*, pp. 4888–4892, 2023.

657 Rui Liu, Yifan Hu, Yi Ren, Xiang Yin, and Haizhou Li. Generative expressive conversational speech
 658 synthesis. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 4187–
 659 4196, 2024b.

660 Steven R Livingstone and Frank A Russo. The ryerson audio-visual database of emotional speech
 661 and song (ravdess): A dynamic, multimodal set of facial and vocal expressions in north american
 662 english. *PLoS one*, 13(5):e0196391, 2018.

663 R. Lotfian and C. Busso. Building naturalistic emotionally balanced speech corpus by retrieving
 664 emotional speech from existing podcast recordings. *IEEE Transactions on Affective Computing*,
 665 10(4):471–483, October–December 2019. doi: 10.1109/TAFFC.2017.2736999.

666 Dan Lyth and Simon King. Natural language guidance of high-fidelity text-to-speech with synthetic
 667 annotations, 2024.

668 Ziyang Ma, Zhisheng Zheng, Jiaxin Ye, Jinchao Li, Zhifu Gao, ShiLiang Zhang, and Xie Chen.
 669 emotion2vec: Self-supervised pre-training for speech emotion representation. In *Findings of the*
 670 *Association for Computational Linguistics ACL 2024*, pp. 15747–15760, 2024.

671 Kari Ali Noriy, Xiaosong Yang, and Jian Jun Zhang. Emns/imz/corpus: An emotive single-
 672 speaker dataset for narrative storytelling in games, television and graphic novels. *arXiv preprint*
 673 *arXiv:2305.13137*, 2023.

674 Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Gautam Naik, Erik Cambria, and Rada
 675 Mihalcea. Meld: A multimodal multi-party dataset for emotion recognition in conversations. In
 676 *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pp.
 677 527–536, 2019.

678 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 679 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 680 *in neural information processing systems*, 36:53728–53741, 2023.

681 Hubert Siuzdak. Vocos: Closing the gap between time-domain and fourier-based neural vocoders
 682 for high-quality audio synthesis. *arXiv preprint arXiv:2306.00814*, 2023.

683 Zhiyuan Tang, Dong Wang, Yanguang Xu, Jianwei Sun, Xiaoning Lei, Shuaijiang Zhao, Cheng
 684 Wen, Xingjun Tan, Chuandong Xie, Shuran Zhou, Rui Yan, Chenjia Lv, Yang Han, Wei Zou, and
 685 Xiangang Li. Kespeech: An open source speech dataset of mandarin and its eight subdialects.
 686 In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks*
 687 *Track (Round 2)*, 2021.

688 Fengping Tian, Chenyang Lyu, Xuanfan Ni, Haoqin Sun, Qingjuan Li, Zhiqiang Qian, Haijun Li,
 689 Longyue Wang, Zhao Xu, Weihua Luo, et al. Marco-voice technical report. *arXiv preprint*
 690 *arXiv:2508.02038*, 2025.

691 Apoorv Vyas, Bowen Shi, Matthew Le, Andros Tjandra, Yi-Chiao Wu, Baishan Guo, Jiemin Zhang,
 692 Xinyue Zhang, Robert Adkins, William Ngan, et al. Audiobox: Unified audio generation with
 693 natural language prompts. *arXiv preprint arXiv:2312.15821*, 2023.

694 Hui Wang, Siqi Zheng, Yafeng Chen, Luyao Cheng, and Qian Chen. Cam++: A fast and efficient
 695 network for speaker verification using context-aware masking. In *INTERSPEECH*, 2023.

702 Kaisiyuan Wang, Qianyi Wu, Linsen Song, Zhuoqian Yang, Wayne Wu, Chen Qian, Ran He,
 703 Yu Qiao, and Chen Change Loy. Mead: A large-scale audio-visual dataset for emotional talking-
 704 face generation. In *ECCV*, 2020.

705
 706 Yuancheng Wang, Haoyue Zhan, Liwei Liu, Ruihong Zeng, Haotian Guo, Jiachen Zheng, Qiang
 707 Zhang, Xueyao Zhang, Shunsi Zhang, and Zhizheng Wu. Maskgct: Zero-shot text-to-speech with
 708 masked generative codec transformer. *arXiv preprint arXiv:2409.00750*, 2024.

709
 710 Xueyao Zhang, Yuancheng Wang, Chaoren Wang, Ziniu Li, Zhuo Chen, and Zhizheng Wu. Ad-
 711 vancing zero-shot text-to-speech intelligibility across diverse domains via preference alignment.
 712 *arXiv preprint arXiv:2505.04113*, 2025a.

713
 714 Xueyao Zhang, Junan Zhang, Yuancheng Wang, Chaoren Wang, Yuanzhe Chen, Dongya Jia, Zhuo
 715 Chen, and Zhizheng Wu. Vovo2: Bridging controllable speech and singing voice generation via
 716 unified prosody learning. *arXiv preprint arXiv:2508.16332*, 2025b.

717
 718 Xueyao Zhang, Xiaohui Zhang, Kainan Peng, Zhenyu Tang, Vimal Manohar, Yingru Liu, Jeff
 719 Hwang, Dangna Li, Yuhao Wang, Julian Chan, et al. Vovo: Controllable zero-shot voice imi-
 720 tation with self-supervised disentanglement. *arXiv preprint arXiv:2502.07243*, 2025c.

721
 722 Guanlong Zhao, Sinem Sonsaat, Alif Silpachai, Ivana Lucic, Evgeny Chukharev-Hudilainen, John
 723 Levis, and Ricardo Gutierrez-Osuna. L2-arctic: A non-native english speech corpus. In *Proc.
 724 Interspeech*, pp. 2783–2787, 2018. doi: 10.21437/Interspeech.2018-1110. URL <http://dx.doi.org/10.21437/Interspeech.2018-1110>.

725
 726 Jinming Zhao, Tenggan Zhang, Jingwen Hu, Yuchen Liu, Qin Jin, Xinchao Wang, and Haizhou Li.
 727 M3ed: Multi-modal multi-scene multi-label emotional dialogue database. In *Proceedings of the
 728 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 729 pp. 5699–5710, 2022.

730
 731 Jiaming Zhou, Shiyao Wang, Shiwan Zhao, Jiabei He, Haoqin Sun, Hui Wang, Cheng Liu, Aobo
 732 Kong, Yujie Guo, and Yong Qin. Childmandarin: A comprehensive mandarin speech dataset for
 733 young children aged 3-5. *arXiv preprint arXiv:2409.18584*, 2024a.

734
 735 Kun Zhou, Berrak Sisman, Rui Liu, and Haizhou Li. Seen and unseen emotional style transfer for
 736 voice conversion with a new emotional speech dataset. In *ICASSP 2021-2021 IEEE International
 737 Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 920–924. IEEE, 2021.

738
 739 Siyi Zhou, Yiquan Zhou, Yi He, Xun Zhou, Jinchao Wang, Wei Deng, and Jingchen Shu. Indextts2:
 740 A breakthrough in emotionally expressive and duration-controlled auto-regressive zero-shot text-
 741 to-speech. *arXiv preprint arXiv:2506.21619*, 2025.

742
 743 Yixuan Zhou, Xiaoyu Qin, Zeyu Jin, Shuoyi Zhou, Shun Lei, Songtao Zhou, Zhiyong Wu, and
 744 Jia Jia. Voxinstruct: Expressive human instruction-to-speech generation with unified multilin-
 745 gual codec language modelling. In *Proceedings of the 32nd ACM International Conference on
 746 Multimedia*, pp. 554–563, 2024b.

747 A APPENDIX

748 A.1 MODEL STRUCTURE

749 As illustrated in Section 3, our model mainly contains two stages: auto-regressive LLM and flow
 750 matching. In the first stage, the model receives the inputs of text, instruction, and reference speech.
 751 The text and instructions are formatted according to the LLM’s input template, with the reference
 752 speech transcription concatenated before the text. We use the semantic code extracted from Dual-
 753 Codec (Li et al., 2025) to represent the speech in discrete form within our system. Therefore, the
 754 reference speech will first be converted into discrete tokens via DualCodec, and the tokens resulting
 755 from processing the formatted text and instructions through the LLM encoder will be concatenated
 to the front. Together, they will serve as input for the auto-regressive LLM. Here we employ Phi-
 3.5-mini-instruct (Abdin et al., 2024) due to its suitability for multi-modal tasks. We first expand

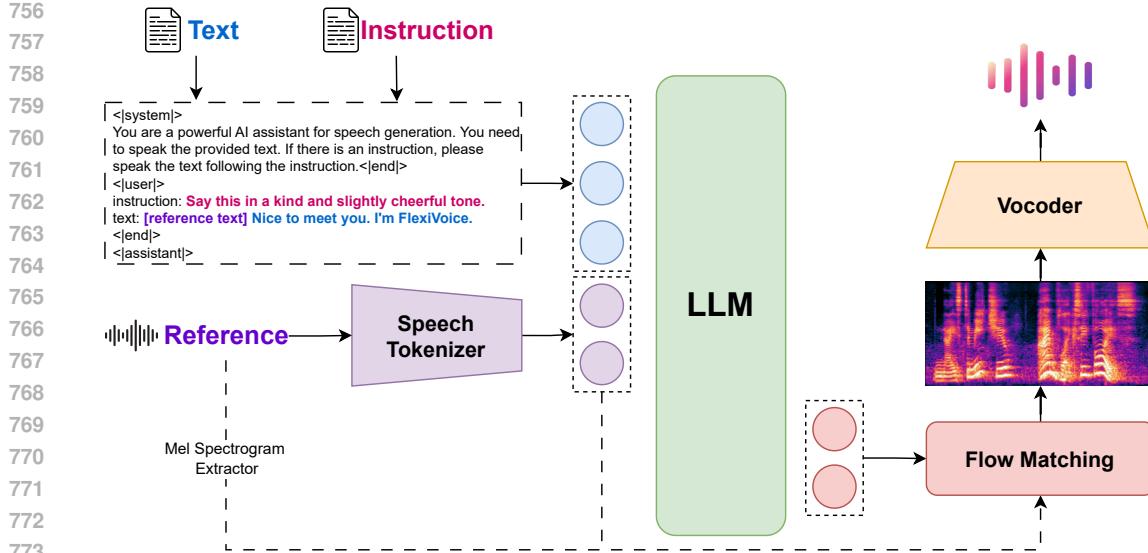


Figure 3: The complete structure of FlexiVoice.

its vocabulary (equivalent to DualCodec’s vocabulary size, 16384), then use the parameters of a text LLM as the initial state for pre-training and post-training, illustrated as the main part in our work.

Mainstream TTS works (Du et al., 2024; Zhou et al., 2025; Zhang et al., 2025a) chose flow matching (Lipman et al., 2023) as the decoder because of its high-quality reconstruction of speech details. For the second stage in this work, we employ a flow matching module trained on Emilia (He et al., 2024) to convert generated code into mel-spectrum, using reference speech code as the condition. Finally, the mel-spectrum is converted into the target audio via a vocoder (using Vocos (Siuzdak, 2023) in this case). The model structure is shown in Figure 3

A.2 DATA PROCESS FOR PRE-TRAINING

Table 6: Instruction-speech datasets used in pre-training stage.

Source	Dur (h)	Description
ParaSpeechCaps (Diwan et al., 2025)	2847	Open-sourced style-prompted speech data
ChildMandarin (Zhou et al., 2024a)	41	Speech clips of child’s voice
Debatts (Huang et al., 2024)	67	Speech clips with debating style
Emotion set*	117	Speech clips with different emotions
KeSpeech (Tang et al., 2021)	1541	Speech clips with different dialects, ages, and genders
L2-ARCTIC (Zhao et al., 2018)	27	Speech corpus of non-native English
NVSpeech (Liao et al., 2025)	775	Paralinguistic tagged speech data
FlexiVoice-Instruct	4316	Expressive speech with high-level instructions

* Including CREMA-D (Cao et al., 2014), EMNS (Noriy et al., 2023), ESD (Zhou et al., 2021), IEMOCAP (Busso et al., 2008), M3ED (Zhao et al., 2022), MELD (Poria et al., 2019), MSP-Podcast (Lotfian & Busso, 2019), RAVDESS (Livingstone & Russo, 2018).

For ParaSpeechCaps (Diwan et al., 2025), due to its bottom-up data annotation process, some speech entries possess a detailed acoustic feature dictionary alongside a summarized description. For these data points, we concatenate the feature dictionaries together and randomly sample descriptions. For other data, we utilize their descriptions as instructions.

For ChildMandarin (Zhou et al., 2024a), Detatts (Huang et al., 2024), and the emotion set, since they are all single-label datasets (boy, debate scene, emotion label), we pre-generated several instruction

810 templates using Deepseek-V3 (Liu et al., 2024a) (e.g., “Speak in the voice of {label},” “Imagine
 811 you are in a debate scene,” “Express the emotion of {label}”). Then, for each speech data point, we
 812 randomly selected a template and filled in the corresponding label.

813 KeSpeech (Tang et al., 2021) and L2-ARCTIC (Zhao et al., 2018) are both multi-label datasets. For
 814 example, each speech in KeSpeech has three attributes: age, gender, and accent. For each attribute
 815 triplet across the entire dataset, we use Deepseek-V3 (Liu et al., 2024a) to generate three Chinese
 816 instructions and three English instructions, which are then randomly applied to the entire dataset.
 817

818 For NVSpeech, which is a speech corpus with paralinguistic tags, we do not apply any instruction
 819 but use their tags to enlarge the vocabulary size of our core LLM module to guarantee expressive
 820 paralinguistic generation. All of the instruction-speech paired datasets in the pre-training stage are
 821 listed in Table 6.

822

823

824 A.3 PROMPTS IN INSTRUCTION DATA CONSTRUCTION

825

826

827

For data source of Emilia

828

Role and Tasks

829

You are a multilingual text analysis expert tasked with generating voice descriptions required for users’ Instruction TTS tasks. Your core responsibility is: **Generating voice descriptions based on text and metainfo (including but not limited to scenarios, styles, emotions, etc.)**

830

Detailed Description

831

- The metainfo includes the video title and a list of video tags from which the audio originates. If the title is irrelevant (e.g., URLs, gibberish, etc.), ignore the title.
- The scene and speaking style can be inferred from the tags and title, but in case of conflict, prioritize the text content.
- Output a concise description of the speech in natural human language instructions.
- Use colloquial, vivid phrasing. Vary sentence structures to avoid template-like patterns.
- Determine whether valid or rich speech descriptions can be generated based on the text and meta information and classify the information value (high/medium/low).

832

Input/Output Specifications

833

Input Structure:

```
{
  "speech transcript": "The speech text to analyze",
  "metainfo": {"title": [Title of the source video], "tags": [Tag list of the
  source video]}
}
```

834

Output Requirement:

```
{
  "description": "Natural language description of the speech style",
  "value": "information value (high/medium/low)"
}
```

835

Example

836

Example Input:

```
{
  "speech transcript": "This match currently shows Ma Chao with four kills, nearly
  6,000 in gold.",
  "metainfo": {"title": "Honor of Kings KPL Autumn Finals", "tags":
  "Game,esports,Honor of Kings,LGD,KPL,DYG"}
```

837

Example Output:

```
{
  "description": "Professional and passionate esports commentary, delivered with
  excitement and enthusiasm.",
  "value": "high"
}
```

838

Core Constraints

839

- When metainfo conflicts with text, prioritize text content.

840

- Prohibit any unfounded speculation; prohibit all uncertain detail descriptions.

841

- The example outputs are for reference only; do not rigidly adhere to their phrasing.

842

843

844

864
865

For data source of game voice acting

866

Role and Tasks867
868
869

You are a multilingual text analysis expert tasked with generating voice descriptions required for users' Instruction TTS tasks. Your core responsibility is: **Generating voice descriptions based on text and metainfo (including but not limited to scenarios, styles, emotions, etc.)**

870

Detailed Description871
872
873
874
875
876
877
878

- Metainfo refers to a specific character in [GameName], whose dialogue is the speech transcript.
- Infer the character's speaking style based on their name and output a description of the speech.
- When the speaking style conflicts with the text's expressed style, prioritize the text.
- Do NOT include specific character names in the description.
- Use colloquial, vivid phrasing. Vary sentence structures to avoid template-like patterns.
- Determine whether valid or rich speech descriptions can be generated based on the text and meta information and classify the information value (high/medium/low).

879

Input/Output Specifications

880

Input Structure:

```
{
    "speech transcript": "Speech transcript (dialogue from a [GameName] character)",
    "metainfo": "Source information (character name in [GameName])"
}
```

883

Output Requirement:

```
{
    "description": "Natural language description of the speech style",
    "value": "information value (high/medium/low)"
}
```

886

Example

887

Example Input:

```
{
    "speech transcript": "As long as the content is interesting, these experts can
help spice it up.",
    "metainfo": "Yae Miko"
}
```

891

Example Output:

```
{
    "description": "With a hint of playful elegance in her tone, as if she had long
seen through the other's thoughts yet chose to hint at them subtly.",
    "value": "high"
}
```

895

896

Core Constraints

897

- When metainfo conflicts with text, prioritize text content.
- Prohibit any unfounded speculation; prohibit all uncertain detail descriptions.
- The example outputs are for reference only; do not rigidly adhere to their phrasing.

900

901

902

A.4 DATA CONSTRUCTION FOR GRPO TRAINING

903

Decoupling Task The training set is constructed from the recording subset of NCSSD (Liu et al., 2024b), comprising about 20,000 Chinese and 10,000 English dialogue speech samples. We selected this dataset primarily because its transcriptions align closely with everyday conversations and implicitly carry emotional tendencies in most cases. We randomly assign emotion labels to each data point, thereby generating two types of data: those where the instruction and transcription emotions align, and those where they conflict. This approach helps guide the model to learn the ability to decouple content and style within text. Simultaneously, we randomly assign neutral and emotional speech from the pre-training data's emotion set (6) to each data point with a 90% and 10% probability, respectively, as reference speech. This enables the model to learn to decouple timbre and style from the references. We utilize half of the Chinese data and all of the English data, forming approximately 20,000 balanced data points as the GRPO training set for the decoupling phase.

915

916

Complex Instruction To enhance the model's performance in complex instruction-following tasks, we constructed a rich and diverse GRPO training dataset. Specifically, for each language (Chinese and English), we first randomly sampled 1,000 existing instruction-text inputs from the

918 pre-training data to ensure optimization stability. Next, we prompted Deepseek-V3 (Liu et al.,
 919 2024a) to randomly generate 6,000 instructions across three distinct configurations: (1) Generate
 920 detailed and comprehensive acoustic feature descriptions in dictionary format, (2) Generate natural
 921 language descriptions incorporating 3/4/5/6 explicit acoustic features, (3) Freely generate instruc-
 922 tions for arbitrary scenarios consistent with human usage patterns. Collectively, we generated 14,000
 923 instruction-text paired inputs as GRPO training data for the second stage.

925 A.5 DETAILS IN EMOTIONAL CONTROL DPO

927 Instruction Templates

- 929 • Say the sentence with the emotion of {label}. • 用{label}的情感说出这句话。
- 930 • Say this with a {label} tone. • 以{label}的情绪表达这句话。
- 931 • Speak this sentence in a {label} manner. • 带着{label}的情感说出这个文本。
- 932 • Deliver this text with {label} emotion. • 使用{label}的情感。
- 933 • Use a {label} voice. • 以{label}的心情表达这句话。
- 934 • Express this sentence with {label} feeling. • 用{label}的情感色彩说出这句文本。
- 935 • Read it with {label} inflection. • 带着{label}的感情说出这句话。
- 936 • Recite this with {label} sentiment. • 用{label}的情感基调传达此句。
- 937 • Voice this in a {label} style. • 以{label}的情绪状态说出这句话。
- 938 • {label} (Use only one emotion label) • {label}

943 One Paired Sample (emo=angry, speaker_id=0013)

```
944 {
 945   "prompt_text": "Chapter eleven on the doorstep.",
 946   "prompt_wav_path": "Emotion_Speech_Dataset/0013/Neutral/0013_000267.wav",
 947   "target_text": "What are you waiting for? man.",
 948   "instruction": "Say this with a angry tone.",
 949   "chosen_wav_path": "Emotion_Speech_Dataset/0013/Angry/0013_000697.wav"
 950   "rejected_wav_path": "Emotion_Speech_Dataset/0013/Sad/0013_001397.wav"
 951 }
 952 }
```

956 A.6 REWARD SELECTION IN DECOUPLING GRPO

958 In decoupling GRPO, we first use a SER signal as one of the rewards to control the correct emotion
 959 synthesis. With the reference speech input, we also need to guarantee that the generated result is
 960 from the same speaker with the reference. There are two choices: speaker verification signal (0 or
 961 1) and speaker similarity signal (values between 0 and 1), using CAM++ (Wang et al., 2023) and
 962 WavLM-large-finetuned (Chen et al., 2022) respectively. Given the DPO optimized model, we train
 963 the multi-objective GRPO using SER reward with two separate speaker-related rewards for four
 964 epochs, then test them on two difficulty levels of TR in the decoupling evaluation set, as shown in
 965 Figure 4.

966 Results show that models using speaker verification as the reward signal achieve significant improve-
 967 ments, while those using speaker similarity yield largely unchanged or even reduced performance.
 968 This occurs because models computing speaker embeddings (WavLM in this case) do not rely solely
 969 on speech timbre but incorporate additional acoustic features beyond timbre, such as pitch and emo-
 970 tion. When humans speak with varying emotions, acoustic attributes like pitch, speech rate, and
 971 volume inevitably differ. Consequently, expressive emotion delivery yields high SER reward scores
 but low speaker similarity signals. This phenomenon can thus be interpreted as a conflict between

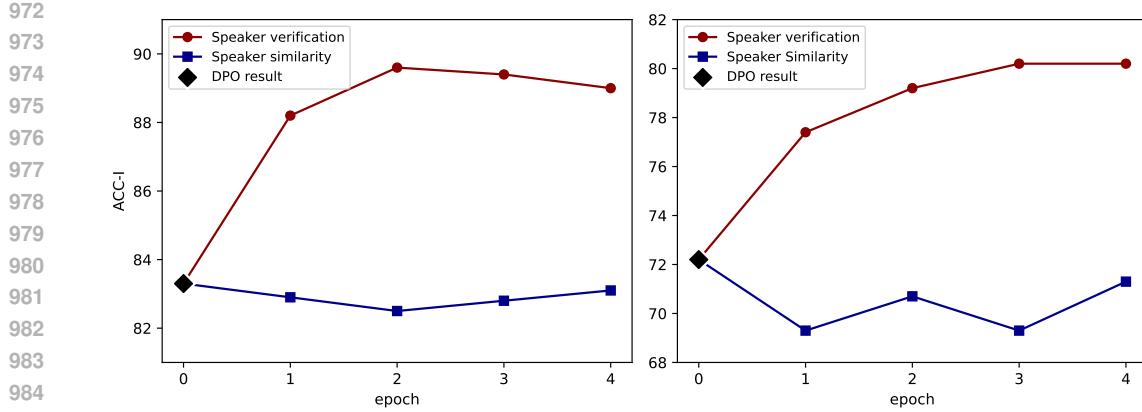


Figure 4: Comparison of results for two reward signals in decoupling GRPO, on the decoupling evaluation set's TR-easy (left) and TR-hard (right) tasks.

SER reward and speaker similarity reward, hindering the normal optimization process of the multi-objective GRPO task.

Speaker verification signals, as a more loose form of speaker similarity, can accommodate models that generate more expressive emotional speech while ensuring speaker identity. Therefore, we select speaker verification as one of the final reward signals in the S1 GRPO stage.

A.7 VALIDATION OF REWARD MODELS

For the complex instruction following in Stage 3 (S3), we require a robust reward model to evaluate open-ended generation. While Gemini-2.5-Pro serves as the Gold Standard judge in the InstructTTS-Eval benchmark and aligns well with human preference (Huang et al., 2025), employing it directly as a reward model for GRPO is impractical due to its prohibitive inference costs and high latency during online sampling. Consequently, we propose utilizing Kimi-Audio-7B-Instruct as a cost-effective surrogate.

To validate the reliability of this substitution, we assess the alignment between Kimi-Audio-7B and Gemini-2.5-Pro. We conduct the evaluation on the InstructTTS-Eval dataset, measuring the agreement of their judgments using the Macro-F1 score under the same prompt used in our training. As shown in Table 7, Kimi-Audio-7B achieves solid agreement ($\text{Macro-F1} > 0.60$) with Gemini across all task types in both English and Chinese. These results demonstrate that Kimi-Audio-7B effectively captures the preference patterns of the larger model, providing valid and efficient signals for optimizing complex instruction adherence.

Table 7: Agreement evaluation (Macro-F1) between our surrogate reward model (Kimi-Audio-7B) and the gold-standard judge (Gemini-2.5-Pro) on InstructTTS-Eval. The high consistency validates the effectiveness of using Kimi-Audio as a reward model.

Metric	English (EN)			Chinese (ZH)		
	APS	DSD	RP	APS	DSD	RP
Macro-F1	0.62	0.62	0.65	0.60	0.64	0.63

A.8 EVALUATION ON NON-EMOTIONAL STYLE CONTROL

While our main experiments focus on emotional expression and complex instruction following, the claim of controlling flexible style necessitates validation on fine-grained prosodic attributes beyond emotion. To address this, we conducted specific evaluations on **Speaking Speed** and **Pitch** control.

1026

1027

Table 8: Spearman Correlation Coefficient evaluation on Speaking Speed and Pitch control.

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

We constructed a test set comprising 100 samples for English and 100 for Chinese. For each sample, we synthesized speech conditioned on instructions corresponding to three distinct levels:

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

- **Speed:** *Fast, Normal, Slow* (e.g., instruction: Read this sentence quickly.)

- **Pitch:** *High, Normal, Low* (e.g., instruction: Speak with a high-pitched voice.)

To quantify the controllability, we calculated the **Spearman Correlation Coefficient** between the instruction levels (mapped to 1, 2, 3) and the extracted acoustic features of the generated audio. Specifically, we measured phoneme duration (phonemes per second) for speed and median F0 for pitch. A higher correlation indicates that the model more accurately follows the gradient of the instruction.

As shown in Table 8, FlexiVoice achieves the highest correlation scores across both languages and attributes. Notably, it significantly outperforms the baseline models and the pre-trained FlexiVoice-Base, demonstrating that our Progressive Post-Training (PPT) strategy effectively enhances fine-grained physical parameter control alongside abstract emotional styles, even we do not apply any targeted optimization on speed or pitch.

A.9 SUBJECTIVE EVALUATION CONFIGURATION

Subjective evaluations are carried out by a group of compensated participants, all of whom had strong speech and audio expertise. We selected two baseline models with relatively comprehensive task support, our pre-trained model, and FlexiVoice for subjective evaluation. For each task in each language, we randomly select five paired samples from each model and the ground-truth. To ensure reliability, every audio sample was independently rated by at least three different individuals for both subjective evaluation.

Q-MOS Participants are asked to evaluate the overall quality of each generated speech sample on a 5-point scale, considering aspects such as clarity, naturalness, and absence of distortion/artifacts, ignoring the style instruction and timbre reference. The meaning of each score is defined as follows:

- **5** – Speech is highly natural, clear, and pleasant to listen to. No noticeable artifacts or distortions. Comparable to professionally recorded human speech.
- **4** – Speech is generally natural and intelligible, with only minor imperfections or occasional artifacts that do not interfere with understanding or listening comfort.
- **3** – Speech is intelligible but has moderate issues such as slight distortion, unnatural prosody, or mild background noise. Quality is acceptable but clearly below high-standard human recordings.
- **2** – Speech is somewhat difficult to understand due to significant artifacts, distortions, or unnatural delivery. Quality issues noticeably affect the listening experience.
- **1** – Speech is largely unintelligible or highly unnatural, with severe artifacts or distortions that make evaluation difficult.

1080
 1081 **CMOS** In this task, participants are asked to compare two audio samples (one ground-truth and
 1082 one generated by a model) under the condition of a given target emotion. The primary focus is on
 1083 the richness and naturalness of emotional expression, which reflects the instruction-following and
 1084 decoupling ability of the models.

1085 The additional evaluation rules are: (1) When no reference speech is provided, ignore timbre consis-
 1086 tency. (2) When reference speech is provided, timbre similarity is a secondary criterion (acceptable
 1087 as long as both samples sound like the same speaker). (3) Slight mispronunciations or noise should
 1088 be disregarded; the main comparison is the accuracy and expressiveness of emotion. And the scoring
 1089 scale is defined as follows: (Note that the order of paired audio demonstrations is random.)

1090 • **+2** - Audio B is much better than Audio A in conveying the target emotion.
 1091 • **+1** - Audio B is slightly better than Audio A in emotional expression.
 1092 • **0** - Both samples are comparable in terms of emotional richness and naturalness.
 1093 • **-1** - Audio A is slightly worse than Audio B in emotional expression.
 1094 • **-2** - Audio A is much worse than Audio B in emotional expression.

1095 **A.10 REPRODUCIBILITY DETAILS**

1096
 1097 To facilitate the replication of our results and future research, we provide detailed specifications
 1098 regarding the computational resources and training configurations for the Progressive Post-Training
 1099 (PPT) scheme. FlexiVoice is built upon the Phi-3.5-mini-instruct backbone, which comprises ap-
 1100 proximately 3.8 billion parameters. All training stages are conducted on $8 \times$ NVIDIA A800 (80GB)
 1101 GPUs. The total training time for the post-training pipeline is approximately 3.5 days.

1102 Specifically, the S1 (Multi-modality DPO) stage serves as an efficient alignment foundation, com-
 1103 pleting in approximately 2 hours. We train the model for 3 epochs with a learning rate of 1×10^{-5}
 1104 and a KL penalty coefficient $\beta = 0.1$. The S2 (Decoupling GRPO) stage, which involves online
 1105 sampling to enforce disentanglement, requires approximately 36 hours. For this stage, we employ a
 1106 group size of $G = 8$, training for 2 epochs with a learning rate of 1×10^{-5} and $\beta = 0.1$. Finally, the
 1107 S3 (Instruction GRPO) stage utilizes a group size of $G = 6$ to accommodate complex instruction
 1108 following and runs for 2 epochs. Due to the complexity of the ALM-based reward calculation, this
 1109 stage takes approximately 42 hours.

1110 **A.11 LLM USAGE**

1111 Large Language Models (LLMs) were used solely as an assistive tool for grammar correction and
 1112 language polishing of the manuscript. They did not contribute to research ideation, methodology,
 1113 experiments, analyses, or the generation of scientific content. All conceptual and technical contrib-
 1114 utions are entirely those of the authors.

1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133