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ABSTRACT

This study proposes FlexiVoice, a text-to-speech (TTS) synthesis system capa-
ble of flexible style control with zero-shot voice cloning. The speaking style is
controlled by a natural-language instruction and the voice timbre is provided by
a speech reference in zero-shot manner. FlexiVoice is built with an LLM core,
which takes text as input, and also takes an optional natural language instruc-
tion and an optional speech reference to control style and timbre, respectively.
FlexiVoice is equipped with a novel Progressive Post-Training (PPT) scheme
that progressively unlocks accurate and flexible controllability. In particular, it
first employs Direct Preference Optimization (DPO) to enable FlexiVoice to ac-
curately follow both natural language instruction and speech reference simultane-
ously. It then uses a multi-objective Group Relative Policy Optimization (GRPO)
to disentangle style instruction, reference timbre, and textual content. Finally, it
adapts instruction GRPO for more advanced instruction following. Experimen-
tal results show that FlexiVoice surpasses competing baselines and demonstrates
strong capability in decoupling control factors. Human evaluations further con-
firm its naturalness, controllability, and robustness. Audio samples are available
at https://flexi-voice.github.io/.

1 INTRODUCTION
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Figure 1: An overview of FlexiVoice that supports diverse style generation with arbitrary voice
timbres. It takes an optional natural language instruction for style and an optional reference speech
for timbre. It consists of Pre-Training and Progressive Post-Training (PPT) stages. The PPT process
includes three processes, S1: Multi-modality DPO, S2: Decoupling GRPO, S3: Instruction GRPO.
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Recent advances in text-to-speech (TTS) have been largely driven by the emergence of Large Lan-
guage Models (LLMs) and refined post-training techniques. A notable breakthrough is zero-shot
TTS (Du et al., 2024; Zhou et al., 2025), which enables voice cloning with only a short reference
speech, effectively capturing and reproducing a speaker’s timbre. Beyond timbre, controlling speak-
ing style has become an important challenge. One direction, exemplified by Vevo (Zhang et al.,
2025c) and IndexTTS2 (Zhou et al., 2025), employs two separate speech references to control tim-
bre and style separately. Another line of work, instruction-based TTS (Vyas et al., 2023; Zhou et al.,
2024b; Ji et al., 2024b), leverages natural language instructions to specify the target style. How-
ever, existing instruction-driven models often struggle either to faithfully follow the instructions or
to maintain stable timbre consistency.

Achieving flexible style control in zero-shot TTS presents a unique challenge: the ’Style-Timbre-
Content Conflict’. In standard supervised training, models tend to over-rely on the strong acoustic
priors from the reference speech (timbre leakage) or infer prosody from the text (content leakage),
often ignoring the explicit style instruction. Merely applying instruction conditioning is insufficient
to resolve these entangled modalities. Therefore, a robust framework is required not just to con-
dition the model, but to actively decouple these factors and enforce instruction adherence against
conflicting acoustic cues.

In this work, we propose FlexiVoice, a TTS system that can flexibly control the speaking style with
a zero-shot voice. In particular, it can take a natural language instruction and a reference speech
or one of them for flexible controllability. The natural language instruction aims to control speak-
ing styles (e.g. emotion, speaking speed) and the speech reference is to control timbre for speaker
identity. FlexiVoice is built on top of a pre-trained large language model (LLM). The LLM core
equips FlexiVoice with a robust and comprehensive instruction-following ability. To achieve flexi-
ble controllability, we first construct a large-scale and diverse speech dataset with natural language
instructions, named FlexiVoice-Instruct. The FlexiVoice-Instruct dataset is annotated with the help
of LLM. We then pre-train FlexiVoice with Emilia (He et al., 2024) and FlexiVoice-Instruct. In
post-training, we propose a novel Progressive Post-Training (PPT) framework. Unlike general
LLM alignment, PPT is specifically designed to resolve the modality conflicts in TTS through a
systematic curriculum. It consists of three stages: (1) Multi-modality DPO establishes the initial
alignment for instruction adherence; (2) Decoupling GRPO introduces a multi-objective optimiza-
tion with conflicting data scenarios to mathematically enforce the separation of style from timbre
and content; and (3) Instruction GRPO leverages an audio-language model (ALM) reward to gen-
eralize this capability to complex, open-ended instructions. This progressive formulation transforms
the instruction-following task from simple conditioning into a rigorous disentanglement process.

We evaluate FlexiVoice from flexible controllability and instruction-following ability aspects, using
emotion datasets and the InstructTTSEval (Huang et al., 2025) benchmark. The experimental results
show that FlexiVoice can decouple speaking style (e.g. emotion) and speaker identity. In comparison
with baselines, it achieves large gains in instruction adherence and robustness on the multi-modality
control evaluation, and demonstrates strong performance on complex instruction tasks. Human
evaluation results further confirm the naturalness and robustness of the generated speech.

The contributions are summarized as follows:

• We propose FlexiVoice, a TTS system that enables flexible and precise style control for zero-
shot voice synthesis. The speaking style is controlled by an optional natural language instruc-
tion and the timbre is guided by an optional reference speech. It enables any combination of
style and timbre for flexible control.

• We develop a large-scale and diverse speech dataset with natural language instructions,
FlexiVoice-Instruct. The annotations are created using an LLM (i.e. Deepseek-V3 (Liu et al.,
2024a)) based on the speech properties. It has a broad coverage of human-like instructions,
including expressive scenarios.

• We propose a Progressive Post-Training (PPT) framework, a novel curriculum learning ap-
proach tailored for controllable TTS. By strategically sequencing preference alignment and
multi-objective optimization, PPT explicitly solves the Style-Timbre-Content conflict, achiev-
ing robust disentanglement that standard training paradigms fail to handle.
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2 RELATED WORK

Controllable Speech Synthesis Research on controllable speech synthesis has mainly followed
two directions. (i) Zero-shot TTS clones timbre from short reference speech (Chen et al., 2024;
Wang et al., 2024; Zhou et al., 2025; Zhang et al., 2025c), while partially controlling speak-
ing style. (ii) Instruction-based TTS uses natural-language prompts to specify style; for instance,
PromptTTS (Guo et al., 2023) and PromptStyle (Liu et al., 2023) enable text-guided style control
but within limited spaces, and Parler-TTS (Lyth & King, 2024) scales conditioning with weak la-
bels without supporting timbre control. More recent systems, such as VoxInstruct (Zhou et al.,
2024b), AudioBox (Vyas et al., 2023), ControlSpeech (Ji et al., 2024b), and CosyVoice2 (Du et al.,
2024), combine instruction with reference speech, but still lack robust disentanglement and broad
style diversity. These limitations highlight the need for a unified framework that processes multi-
modal inputs, generates speech following instruction-defined style, preserves timbre, and explicitly
addresses disentanglement.

Instruction-Speech Dataset Instruction-based TTS has driven datasets that couple text descrip-
tions with speech. TextrolSpeech (Ji et al., 2024a) introduced large prompt–speech pairs with five
style factors; Audiobox (Vyas et al., 2023) broadened the paradigm to multi-modal audio genera-
tion, though its lack of public release limited accessibility. Parler-TTS (Lyth & King, 2024) scaled
weak labels for speaker/style/conditions to tens of thousands of hours. SpeechCraft (Jin et al., 2024)
and ParaSpeechCaps (Diwan et al., 2025) enriched granularity with automatic captioning and di-
verse paralinguistic attributes. Nonetheless, most corpora come from homogeneous sources and
emphasize templated descriptions, leaving insufficient coverage of natural, diverse instructions. Our
dataset targets higher-quality, more natural annotations to strengthen instruction-following.

Reinforcement Learning in Speech Synthesis Reinforcement learning has recently been ex-
plored to improve controllability in speech synthesis. INTP (Zhang et al., 2025a) applies DPO to
challenging zero-shot cases for better intelligibility. Emo-DPO (Gao et al., 2025) extends preference
alignment to emotional control. Vevo2 (Zhang et al., 2025b) employs multi-objective post-training
to jointly enhance intelligibility and prosody across both speech and singing. These works highlight
the promise of RL-based alignment for targeted aspects of TTS. In contrast, our approach adopts a
progressive curriculum that leverages reinforcement learning to explicitly address modality disen-
tanglement and complex instruction following, thereby enabling broader controllability in zero-shot
multi-modality TTS.

3 OVERVIEW OF FLEXIVOICE

FlexiVoice is built on top of an LLM similar to other recent TTS systems (Du et al., 2024; Zhou et al.,
2025). In FlexiVoice, a speech tokenizer converts speech into discrete tokens as inputs and outputs of
an LLM. The LLM core processes the input text, natural-language instruction, and reference tokens
to generate discrete speech tokens. The generated tokens are transformed into Mel-spectrogram
features via flow matching (Lipman et al., 2023), and finally converted into waveform audio with
a vocoder. A detailed description is provided in Appendix A.1. FlexiVoice is first pre-trained on a
large-scale dataset as FlexiVoice-Base and then post-trained using a progressive strategy.

3.1 PRE-TRAINING

FlexiVoice-Base is a pre-trained model of FlexiVoice. It is pre-trained using Emilia (He et al., 2024)
and a diverse set of instruction speech dataset as listed in Appendix A.2.

Emilia (He et al., 2024) is a large-scale, multilingual, and diverse speech dataset that covers a
broad spectrum of speaking styles and scenarios, and primarily supports the fundamental ability
of speech generation. To further enable instruction-guided TTS, we construct a high-quality and
diverse dataset, FlexiVoice-Instruct, consisting of natural-language instructions across various sce-
narios. The processing pipeline is detailed in Section 4. In addition, we enrich the pre-training phase
with existing instruction–speech corpora (Diwan et al., 2025) and specialized resources featuring at-
tributes such as emotion, age, and debate, with processing details provided in Appendix A.2. We
also incorporate NVSpeech (Liao et al., 2025), which provides paralinguistic tags and expressive
coverage. Together, these resources form the pre-training corpus for our model.

3
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Following the traditional pre-training strategy for TTS systems (Du et al., 2024; Zhou et al., 2025),
we only train the LLM core and keep other modules frozen, without incorporating the reference
speech during pre-training. As shown in Figure 3, the text and instruction are first formatted by the
LLM input template. The paired ground-truth speech is preprocessed by a frozen speech tokenizer
into discrete tokens, which are used to compute loss with generated tokens during pretraining. To
ensure consistency in input format, we apply Speak the following text as the default instruction
when encountering data from Emilia (He et al., 2024) and NVSpeech (Liao et al., 2025) that lacks
an explicit instruction.

3.2 POST-TRAINING

We propose a Progressive Post-Training (PPT) scheme to disentangle speaking style and timbre
and to enable FlexiVoice to have complex instruction-following ability. It is inspired by Curriculum
Learning (Bengio et al., 2009), which starts from simpler objectives and gradually advances to harder
ones for stable optimization and better generalization. After pre-trianing, FlexiVoice-Base has solid
zero-shot TTS capability but still struggles with multi-modality inputs and complex instructions.
PPT is to advance FlexiVoice-base for generalization and better performance. This progressive
curriculum ultimately yields a robust multi-modality instruction TTS model, FlexiVoice.

PPT has three stages:

• S1 aligns multi-modality controllability of instruction and reference speech in controlled
emotion-centric tasks with explicit labels.

• S2 disentangles the timbre and style in reference speech, and the content and style in target
text, within the same scenario as S1,

• S3 extends to complex real-world instructions that are more ambiguous and harder to align.

3.2.1 S1: MULTI-MODALITY CONTROLLABILITY

S1 mainly employs DPO to empower FlexiVoice processing style instruction and timbre reference
at the same time. The first two stages target emotional instructions to reduce task complexity and
explicitly address the core issue. We restrict instructions to templates like Use {label} emotion to
read it, with labels chosen from Neutral, Happy, Angry, Sad, and Surprised.

For emotion-related tasks, paired preference data can be directly obtained from Speech Emotion
Recognition (SER) datasets. We use the Emotional Speech Dataset (ESD) (Zhou et al., 2021), where
the same speaker reads identical sentences with different emotions. Following Gao et al. (2025),
for each data point, we assign a target emotion label (e.g., Happy) via an instruction template (all
templates are listed in Appendix A.5), select a sentence with the target emotion as the preferred
sample, the identical sentence with a different emotion (e.g., Angry) as the dis-preferred one, and
use a neutral sample from the same speaker as the reference speech (an example pair is provided in
Appendix A.5).

DPO directly aligns the model’s emotional output with the instruction and reference speech without
requiring an explicit reward model (Rafailov et al., 2023). The preference dataset D consists of
tuples (x, yw, yl), where x includes instruction, text, and reference; yw is the “winner” response that
matches the instruction, and yl is the “loser.” The DPO loss is defined as:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
where πθ is the policy model and πref is the reference model, both initialized from FlexiVoice-Base.

3.2.2 S2: DECOUPLING OF REFERENCE SPEECH AND TARGET TEXT

S2 focuses on FlexiVoice’s decoupling capability in scenarios where speech reference and target
text contain styles conflicting with instructions. After DPO training, the model follows emotional
instructions well under neutral references, but interference remains when references or texts them-
selves are emotion-laden, conflicted with the target emotion defined in the instruction. To explicitly
suppress these effects, we adopt a multi-objective GRPO formulation by constructing conflicting
training scenarios (e.g., Happy instruction vs. Sad reference). The reward rser (defined below) acts

4
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as a style constraint, penalizing the model if it leaks style from the reference or text. Conversely, rsv
acts as a timbre constraint, ensuring speaker identity is preserved. By optimizing the joint advan-
tage, the model is forced to decouple these factors to maximize the total reward. We use the same
instruction templates, combine neutral and emotional clips from SER datasets as reference speech,
and sample texts from NCSSD (Liu et al., 2024b) (details in Appendix A.4).

Rewards are defined as follows: (1) rser ∈ (0, 1), the probability score for the instructed emotion
given by the emotion recognition result from Emotion2vec-Large (Ma et al., 2024); (2) rsv ∈ {0, 1},
the speaker verification result from CAM++ (Wang et al., 2023) to ensure timbre consistency. Fol-
lowing Zhang et al. (2025b), the advantage with multi-objective rewards is:

Ai
emo =

riser − mean(riser)
std(riser)

+
risv − mean(risv)

std(risv)

where i indexes the i-th completion among K candidates for the same input x.

3.2.3 S3: ENHANCEMENT ON COMPLEX INSTRUCTION-FOLLOWING

The final stage enhances instruction following on complex, real-world directives beyond emotion
tasks. Since paired preference data are infeasible at this scale, we directly employ GRPO. Unlike
the first stage, where rewards are available from SER models, assessing the consistency between
speech and open-ended instructions is more difficult. Huang et al. (2025) shows that Gemini-2.5-pro
provides reliable judgments aligned with human preferences, but its use in GRPO is cost-prohibitive.
We instead adopt the open-sourced Kimi-Audio-7B-Instruct (Ding et al., 2025) as the reward model
due to its strong speech comprehension. It is prompted to output a binary yes/no decision on whether
the generated speech matches the instruction, which is mapped into a reward rllm ∈ {1, 0}.

For this stage, we use only instruction and text as inputs, discarding references, since references
may conflict with open-ended constraints (e.g., gender) and destabilize training. Details of the data
construction process are given in Appendix A.4.

To mitigate catastrophic forgetting, we mix a small portion of S2-GRPO data during this stage. Thus,
the final GRPO training becomes a multi-task, multi-objective optimization. The single-objective
advantage in this stage (left) and the final advantages (right) are:

Ai
ins =

rillm − mean(rillm)

std(rillm)
, Ai =

{
Ai

emo for inputs in S2,
Ai

ins for inputs in S3.

4 FLEXIVOICE-INSTRUCT DATASET

4.1 OVERVIEW

To equip the model with fundamental instruction-following capability in the pre-training phase, it is
essential to build a large-scale instruction–speech dataset covering diverse styles and scenarios. We
therefore construct a high-quality and diverse dataset totaling 4,316 hours, where speech-related tex-
tual metadata is processed with an LLM-based annotator. This approach enables efficient generation
of natural, high-level instructions that better reflect real human usage patterns.

4.2 MAIN PROCESS

We employ two data sources, Emilia and game voice acting, using a unified processing strategy:

Emilia (He et al., 2024) is a large-scale, diverse, in-the-wild speech dataset. Because the audio orig-
inates from video platforms and podcasts, some entries include source metadata such as video titles
and tag lists. Combined with transcriptions, these cues allow us to infer speaking style and scene
context, enabling the generation of open-ended instructions even without direct speech analysis. We
employ Deepseek-V3 (Liu et al., 2024a) for instruction annotation. To filter noisy samples (e.g.,
URLs or conflicting metadata–transcription pairs), the LLM is prompted to evaluate the informa-
tional value of metadata for style and scenario inference, ensuring higher data quality.

To enhance expressiveness and stylistic richness, game voice acting data from two popular games
is additionally incorporated. A distinctive feature of this data is the strong link between speaking

5
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Prompt

Infer the speaker’s

Style / Context based on 

metadata, and deduce the 

style description

at the time of utterance 

based on transcription, 

ultimately summarizing its 

informational value ...

Instruction
Serene and informative 

documentary narration about 

botanical gardens, delivered with 

a calm and educational tone.

Instruction
With an elegantly playful tone, 

slyly hinting at some carefully 

orchestrated prank.

Figure 2: Processing flow and examples for FlexiVoice-Instruct. For both sources, we use the speech
transcription and related meta information to prompt LLM to generate natural and human-like de-
scriptions, as the instruction in our pre-training stage.

style and character personality. LLMs, trained on large-scale web corpora, can often recognize these
characters and capture their iconic styles. We thus use Deepseek-V3 (Liu et al., 2024a) to generate
instructions conditioned on both transcription and character name. Concretely, we first supply the
full character list and let the LLM identify those it can reliably recognize. For known characters, we
prompt the LLM to infer personality and speaking style from the name, then refine the description
using the transcription. As with Emilia, we incorporate an informational value check to filter noisy
annotations. Prompts are provided in Appendix A.3, while the overall processing flow and examples
are shown in Figure 2.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Benchmarks To evaluate the model’s multi-modality controllability as well as its capacity to fol-
low complex real-world instructions, we employ one self-constructed dataset and one open-source
benchmark. For multi-modal control and disentanglement, we define two task types with two dif-
ficulty levels each, focusing on instruction-based emotional TTS, as summarized in Table 1. For
complex instruction following, we adopt the InstructTTSEval (Huang et al., 2025) benchmark.

Table 1: Tasks for multi-modality control and disentanglement evaluation. There are two tasks with
two difficulties, with an example for each task.

Task Type Difficulty Text Reference Example

Single Modality:
Text-Only (TO)

Easy Neutral -
Instruction: Speak it using happy emotion.
Text: Today is Monday.
Reference Speech: -

Hard Emotional -
Instruction: Speak it using happy emotion.
Text: I‘m so sad that it’s raining outside.
Reference Speech: -

Multi-Modality:
Text and Reference (TR)

Easy Neutral Neutral
Instruction: Speak it using happy emotion.
Text: Today is Monday.
Reference Speech: [A neutral voice]

Hard Neutral Emotional
Instruction: Speak it using happy emotion.
Text: Today is Monday.
Reference Speech: [A sad voice]

The first evaluation set is built from MEAD (Wang et al., 2020) (English) and CSEMOTIONS (Tian
et al., 2025) (Chinese). In TR tasks, reference speech is randomly selected as either neutral or con-
flicting emotional clips from the same speaker as the ground-truth. For TO-hard, the text is replaced
with sentences carrying emotions different from the target, so no ground-truth audio exists for this
case. We retain five emotion categories from both datasets and randomly sample 500 examples each
for English and Chinese, ensuring balanced coverage of target emotions.

6
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Table 2: Multi-modality controllability and disentanglement evaluation result in different tasks and
two languages.

Model
Text-Only as input (TO) Text and Reference Speech as input (TR)
Easy Hard Easy Hard

ACC-I↑ E-SIM↑ ACC-I↑ ACC-T↓ ACC-I↑ E-SIM↑ SV↑ ACC-I↑ ACC-R↓ E-SIM↑ SV↑
EN

Groud-truth 93.4 1.00 - - 93.4 1.00 - 93.4 0.6 1.00 -
Parler-TTS 44.6 0.72 12.2 42.0 - - - - - - -
PromptStyple 43.8 0.70 14.0 33.6 - - - - - - -
PromptTTS 57.8 0.79 15.0 41.0 - - - - - - -
CosyVoice2 - - - - 65.6 0.85 99.8 61.0 14.4 0.84 99.8
VoxInstruct 70.6 0.84 17.8 41.2 58.5 0.81 89.0 49.7 23.9 0.80 90.6
FlexiVoice-Base 72.4 0.83 39.4 30.6 58.8 0.81 99.2 48.8 32.2 0.78 99.4
FlexiVoice 97.4 0.89 89.4 6.6 89.4 0.90 91.0 78.2 10.6 0.87 95.8

ZH
Groud-truth 61.6 1.00 - - 61.6 1.00 - 61.6 4.4 1.00 -
CosyVoice2 - - - - 44.4 0.84 99.8 47.8 15.3 0.79 100.0
VoxInstruct 48.6 0.76 29.0 21.2 19.4 0.75 46.8 18.7 23.2 0.73 59.8
FlexiVoice-Base 78.4 0.76 66.8 14.2 25.2 0.78 99.6 22.4 38.0 0.74 99.2
FlexiVoice 99.8 0.72 98.4 0.8 81.8 0.85 98.8 75.8 13.2 0.80 98.4

The second benchmark, InstructTTSEval (Huang et al., 2025), serves as a comprehensive test set
for complex instruction following beyond simple emotions. It comprises 1,000 English and 1,000
Chinese samples covering 12 distinct speech attributes: gender, pitch, texture, clarity, fluency, speed,
accent, age, volume, emotion, tone, and personality. These attributes are encapsulated in instruc-
tions across three task levels—Acoustic-Parameter Specification (APS), Descriptive-Style Directive
(DSD), and Role-Play (RP)—allowing us to rigorously evaluate the model’s versatility in handling
diverse and fine-grained style controls.

Metrics For the first evaluation set, we use Emotion2vec-Large (Ma et al., 2024) for SER and
emotion embedding extraction. We report instruction-following accuracy with respect to the target
emotion (ACC-I, ↑), and in the hard settings also report accuracy against conflicting emotions from
text or reference (ACC-T, ACC-R, ↓), where lower is better. Cosine similarity between emotion
embeddings of ground-truth and generated speech (E-SIM, ↑) further reflects adherence. To ver-
ify timbre preservation in TR tasks, we use CAM++ (Wang et al., 2023) for speaker verification
accuracy (SV, ↑). We also evaluate intelligibility and perceptual quality: word error rate for En-
glish (WER, ↓, ASR by Whisper-Large-V3) and character error rate for Chinese (CER, ↓, ASR by
Paraformer-zh), speech quality MOS (Q-MOS, 1–5, ↑), and Comparative MOS (CMOS, –2 to 2,
↑). Details of the subjective setup are provided in Appendix A.9.

For complex instruction following, we follow InstructTTSEval (Huang et al., 2025), which uses
Gemini as the judge model to assess consistency, and report macro-average accuracy.

Baselines We compare FlexiVoice against representative open-source instruction TTS systems,
including Parler-TTS (Lyth & King, 2024), reproducible variants (Ji et al., 2024b) of Prompt-
Style (Liu et al., 2023) and PromptTTS (Guo et al., 2023), VoxInstruct (Zhou et al., 2024b), and
CosyVoice2 (Du et al., 2024), which jointly processes natural-language instructions and reference
speech. In addition, we report results from InstructTTSEval (Huang et al., 2025), which cover both
the above open-source systems and closed-source commercial models (gemini-2.5-flash-preview-tts,
gemini-2.5-pro-preview-tts, gpt-4o-mini-tts, and Hume), and we further include MiMo-Audio-7B-
Instruct, a recent large audio-language model with strong instruction-following capability.

5.2 DECOUPLING ABILITY OF FLEXIVOICE

From Table 2, we observe that FlexiVoice demonstrates strong capabilities in handling multi-
modality inputs and disentangling content, timbre, and style across both English and Chinese tasks.
The discussion is organized into four perspectives.

7
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Table 3: WER scores and subjective evaluation results in the first evaluation set.

Model
Text-Only as input (TO) Text and Reference Speech as input (TR)

Easy Easy Hard
WER↓ Q-MOS↑ CMOS↑ WER↓ Q-MOS↑ CMOS↑ WER↓ Q-MOS↑ CMOS↑

EN
Groud-truth 4.50 3.16 ±0.07 0.00 4.50 3.50 ±0.13 0.00 4.50 4.26 ±0.22 0.00
CosyVoice2 - - - 3.71 3.50 ±0.36 -0.75 ±0.32 3.60 3.68 ±0.43 -0.88 ±0.21

VoxInstruct 7.29 3.02 ±0.34 -0.75 ±0.44 14.44 2.10 ±0.23 -1.50 ±0.19 12.61 2.66 ±0.63 -0.86 ±0.36

FlexiVoice-Base 5.01 3.72 ±0.14 -0.12 ±0.39 5.31 3.90 ±0.26 -1.25 ±0.29 6.55 3.82 ±0.29 -0.56 ±0.31

FlexiVoice 5.99 4.08 ±0.29 0.91 ±0.20 5.23 3.62 ±0.25 0.89 ±0.30 6.99 4.06 ±0.35 0.78 ±0.40

ZH
Groud-truth 4.55 3.78 ±0.14 0.00 4.55 3.38 ±0.14 0.00 4.55 3.92 ±0.07 0.00
CosyVoice2 - - - 0.78 3.54 ±0.27 -1.14 ±0.24 0.89 3.58 ±0.39 0.36 ±0.29

VoxInstruct 3.37 3.18 ±0.28 -1.60 ±0.30 10.04 2.62 ±0.28 -1.88 ±0.09 9.40 3.04 ±0.17 -1.62 ±0.19

FlexiVoice-Base 5.01 4.10 ±0.26 0.75 ±0.40 3.08 3.74 ±0.28 -1.50 ±0.23 5.63 3.66 ±0.06 -0.88 ±0.45

FlexiVoice 7.59 4.04 ±0.23 0.60 ±0.41 4.34 3.79 ±0.26 -0.36 ±0.24 7.02 3.76 ±0.29 0.57 ±0.44

Multi-modality Control Comparing the easy sets of these two tasks, under the guidance of the
instruction, TO-easy only includes the text condition (where the model uses a random timbre), while
TR-easy incorporates both text and reference speech as multi-modality condition inputs (where the
model uses the reference’s timbre). Most baselines cannot support both simultaneously, and even
those that do, together with FlexiVoice-Base, show a large gap, particularly for Chinese. After
progressive post-training, FlexiVoice achieves substantial gains, reaching 97.4% ACC-I in English
and 99.8% in Chinese on TO-easy, surpassing ground-truth in some cases. On TR-easy, it maintains
strong accuracy (89.4% EN, 81.8% ZH) while preserving speaker consistency, highlighting robust
multi-modality control capacity.

Target Text Disentanglement For the two difficulty levels of TO, the easy level uses neutral text
while the hard level employs text with emotions differing from the instruction. The purpose is to
test whether the model can ignore conflicting emotional cues in text. Baselines and FlexiVoice-
Base generally fail here, showing low ACC-I and high ACC-T, indicating they are biased toward
the text’s implied style. In contrast, FlexiVoice substantially improves disentanglement, achieving
89.4% ACC-I with only 6.6% ACC-T in English, and 98.4% vs. 0.8% in Chinese. Notably, the
Chinese gap between easy and hard settings is reduced to just 1.4%, showing FlexiVoice’s strong
ability to ensure style is controlled by instruction alone.

Reference Speech Disentanglement For TR, the easy task uses neutral speech as the timbre refer-
ence, while the hard uses emotionally charged reference speech differing from the instruction. Most
baselines exhibit large drops in accuracy and high ACC-R, showing disruption by reference’s style.
FlexiVoice alleviates this issue, achieving 78.2% ACC-I (EN) and 75.8% (ZH) with correspondingly
low ACC-R (10.6% EN, 13.2% ZH). This demonstrates that FlexiVoice effectively disentangles ref-
erence timbre from style, preserving timbre while adhering to instruction-defined emotion.

Trade-off between Style Control and Speaker Verification We notice that in certain scenar-
ios (e.g., TR tasks in Table 2), the pre-trained FlexiVoice-Base exhibits slightly higher SV scores
compared to the final FlexiVoice. This is an expected phenomenon inherent to the task of style
synthesis. The FlexiVoice-Base model, lacking explicit disentanglement capabilities, tends to clone
the prosody of the reference speech directly. While this yields high speaker similarity, it fails to
follow the style instructions (as evidenced by its low ACC-I scores). In contrast, FlexiVoice must
significantly modify acoustic features (such as pitch and energy) to satisfy the target style instruction
(e.g., converting a sad reference speech into a happy voice). These necessary prosodic alterations
inevitably result in a minor numerical reduction in the cosine similarity of speaker embeddings. Cru-
cially, FlexiVoice maintains high SV scores while achieving superior instruction adherence, demon-
strating that it successfully prioritizes style control without compromising the fundamental speaker
identity.

Intelligibility and Subjective Evaluation Table 3 presents intelligibility and perceptual quality.
FlexiVoice exhibits a marginal increase in WER/CER compared to FlexiVoice-Base. This phe-
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Table 4: Complex instruction-following evaluation results on InstructTTSEval, for closed-source
and open-source models on both languages.

Model InstructTTSEval-EN InstructTTSEval-ZH
APS DSD RP Avg. APS DSD RP Avg.

Groud-truth 96.2 89.4 67.2 84.3 90.9 86.7 69.8 82.5
Closed-sourced

Gemini-flash 92.3 93.8 80.1 88.7 88.2 90.9 77.3 85.4
Gemini-pro 87.6 86.0 67.2 80.3 89.0 90.1 75.5 84.8
GPT-4o-mini-TTS 76.4 74.3 54.8 68.5 54.9 52.3 46.0 51.1
Hume 83.0 75.3 54.3 71.1 - - - -

Open-sourced
ParlerTTS 60.0 45.9 31.2 45.7 - - - -
PromptStyle 57.4 46.4 30.9 38.2 - - - -
VoxInstruct 54.9 57.0 39.3 50.4 47.5 52.3 42.6 47.5
PromptTTS 64.3 47.2 31.4 47.6 - - - -
MiMo-Aduio-7B-Instruct 80.6 77.6 59.5 72.6 75.7 74.3 61.5 70.5
FlexiVoice-Base 63.6 75.0 60.6 66.4 56.7 59.1 59.5 58.4
FlexiVoice 81.2 85.2 71.4 79.3 71.0 71.8 69.7 70.8

nomenon is consistent with prior findings (Li et al., 2023), which indicate that standard ASR models
often degrade on highly expressive or emotional speech due to significant prosodic variations. How-
ever, this does not imply a loss of intelligibility for human listeners. As evidenced by the consistently
higher Q-MOS scores (e.g., 4.08 vs. 3.72 in EN-TO-Easy), FlexiVoice maintains superior percep-
tual clarity while delivering richer stylistic expression. In addition, the positive CMOS (up to +0.9)
indicates better overall expressiveness and instruction adherence, ensuring that the quality of gener-
ated speech remains unaffected at the same time. In contrast, baselines often obtain negative CMOS,
showing lower preference in human judgments compared with the groud-truth. These results con-
firm that FlexiVoice not only achieves superior disentanglement but also maintains naturalness and
quality close to ground-truth.

5.3 COMPLEX INSTRUCTION-FOLLOWING ABILITY

InstructTTSEval (Huang et al., 2025) defines three levels of complex instruction following. These
tasks range from low-level acoustic control to open-ended style generation and character imitation,
thereby testing different aspects of instruction adherence. As shown in Table 4, the pre-trained model
FlexiVoice-Base already performs competitively, especially on DSD (75.0 EN) and RP (60.6 EN),
due to alignment between these tasks and the natural instructions present in our constructed dataset.
After applying the Progressive Post-Training strategy, FlexiVoice achieves consistent gains across
all task types. On English tasks, it improves by over 12 points on APS (81.2 vs. 63.6) and nearly 11
points on RP (71.4 vs. 60.6), reaching an overall average of 79.3, close to Gemini-pro (80.3). On
Chinese tasks, FlexiVoice attains 70.8 average accuracy, surpassing MiMo-Audio-7B-Instruct (70.5)
and reducing the gap to Gemini models. Overall, FlexiVoice consistently outperforms all open-
source baselines and narrows the gap with closed-source commercial systems, demonstrating robust
instruction-following ability in complex, real-world scenarios. Furthermore, empirical results in
Appendix A.8 confirm that FlexiVoice also excels in fine-grained control of non-emotional attributes
like speaking speed and pitch, significantly outperforming baselines in correlation analysis.

5.4 EFFECTIVENESS OF PROGRESSIVE POST-TRAINING

To rigorously validate the necessity of the proposed Progressive Post-Training (PPT) scheme, we
conduct comprehensive ablation studies comparing different training orders and optimization strate-
gies. The results are summarized in Table 5.

Importance of Training Order We first investigate whether the order of stages matters. As shown
in the first block of Table 5, starting directly with complex instruction alignment (+S3) yields poor
performance (InstructTTSEval Avg. 72.3 vs. Ours 79.3). This suggests that without the fundamental
alignment provided by S1, the model struggles to optimize for the sparse and high-level rewards in
S3. Furthermore, the alternative order +S3→S1→S2 results in significantly lower performance on
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Table 5: Ablation study of FlexiVoice on different training orders and strategies. We compare the
Pre-trained model (Base), the effect of starting with Instruction GRPO (S3 first), Joint Training, and
our proposed Progressive Post-Training (PPT) strategy (S1 → S2 → S3).

Training Strategy Decoupling Set (EN) InstructTTSEval (EN)
TO

Easy
TO

Hard
TR

Easy
TR

Hard Avg. APS DSD RP Avg.

FlexiVoice-Base 72.4 39.4 58.8 48.8 54.9 63.6 75.0 60.6 66.4
Alternative Training Order

+ S3 72.8 59.0 48.6 38.2 54.7 73.3 78.8 64.7 72.3
+ S3 → S1 96.0 79.6 80.8 72.6 82.3 74.3 81.2 67.5 74.3
+ S3 → S1 → S2 94.8 80.2 86.8 75.8 84.4 74.9 81.4 68.2 74.8

Joint Training
+ S1 → S2 + S3 (Joint) 94.8 80.8 86.2 74.6 84.1 78.3 80.5 67.8 75.5

Progressive Post-Training (PPT)
+ S1 96.0 81.4 83.3 72.2 83.2 63.4 79.3 64.2 69.0
+ S1 → S2 96.4 88.0 89.4 80.2 88.5 66.8 80.3 67.9 71.7
+ S1 → S2 → S3 (Ours) 97.7 89.4 89.4 78.2 88.7 81.2 85.2 71.4 79.3

complex instructions (74.8) compared to our approach. This indicates that applying the fundamen-
tal DPO (S1) after complex instruction training causes catastrophic forgetting of the fine-grained
instruction-following capabilities learned in S3. These findings confirm that S1 acts as a necessary
”cold start” foundation, establishing robust multi-modal responsiveness before the model tackles
more advanced disentanglement and generalization tasks.

Progressive vs. Joint Training Another key question is whether S2 and S3 could be optimized
simultaneously, since they both apply GRPO algorithm. We compare our progressive approach
against a joint training strategy (+S1→S2+S3), where the decoupling and instruction objectives
are combined. The results show that joint training underperforms the progressive strategy on both
benchmarks (Decoupling Avg. 84.1 vs. 88.7; InstructTTSEval Avg. 75.5 vs. 79.3). We attribute this
to the conflicting nature of the gradients: S2 enforces strict constraints to suppress style leakage us-
ing fixed classifiers, while S3 encourages open-ended style generalization via ALM-based rewards.
Optimizing them jointly leads to interference, preventing the model from mastering either task at
the same time.

Cumulative Gains of Our PPT Strategy The final block of Table 5 demonstrates the step-by-
step efficacy of our proposed path. The Multi-modality DPO (+S1) first yields large gains on basic
controllability (+28.3 Decoupling Avg.). Subsequently, the Decoupling GRPO (+S2) significantly
boosts the model’s ability to separate style from content and timbre, raising the Decoupling Avg.
to 88.5. Finally, the Instruction GRPO (+S3) further enhances the model’s capability on complex,
real-world instructions (+7.6 on InstructTTSEval Avg.) while maintaining the high disentanglement
capability achieved in the previous stage. The full PPT curriculum achieves the best balance across
all metrics, representing substantial improvements over the base model and validating the progres-
sive design as a stable and effective optimization path.

6 CONCLUSION

In this work we introduce FlexiVoice, a TTS system for multi-modality control that uses natural-
language instructions for style and reference speech for timbre, supported by a high-quality in-
struction–speech dataset and a Progressive Post-Training (PPT) paradigm. PPT first strengthens the
multi-modality controllability and disentanglement of instruction, text, and reference via emotion-
centric DPO/GRPO, then scales to complex instruction following with an ALM-based reward, yield-
ing stable optimization and broad generalization. Experiments show consistent gains on disentan-
glement (e.g., large ACC-I improvements with low interference from text/reference) and strong
performance on InstructTTSEval, where FlexiVoice surpasses competed baselines and narrows the
gap to closed-source systems, while maintaining naturalness and robustness in human evaluations.
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7 ETHICS STATEMENT

This work investigates controllable text-to-speech with multi-modality inputs. The instruc-
tion–speech dataset was created from publicly available or licensed resources, filtered to remove
offensive, biased, or harmful content. No personal or sensitive user data were collected or pro-
cessed. While advances in speech synthesis can potentially be misused (e.g., generating deceptive
or harmful audio), our study focuses on improving controllability, robustness, and transparency for
research purposes, and we encourage responsible use of the proposed methods. All authors have read
and adhered to the ICLR Code of Ethics , and confirm that this research complies with standards of
fairness, privacy, and research integrity.

8 REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our work. Detailed descriptions of the
model architecture, training objectives, and evaluation protocols are provided in the main text and
appendix. We will release the instruction–speech dataset, model checkpoints, and all training and in-
ference code to facilitate replication and further research. Hyperparameter settings, data processing
procedures, and evaluation scripts will also be included in the release materials.
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A APPENDIX

A.1 MODEL STRUCTURE

As illustrated in Section 3, our model mainly contains two stages: auto-regressive LLM and flow
matching. In the first stage, the model receives the inputs of text, instruction, and reference speech.
The text and instructions are formatted according to the LLM’s input template, with the reference
speech transcription concatenated before the text. We use the semantic code extracted from Dual-
Codec (Li et al., 2025) to represent the speech in discrete form within our system. Therefore, the
reference speech will first be converted into discrete tokens via DualCodec, and the tokens resulting
from processing the formatted text and instructions through the LLM encoder will be concatenated
to the front. Together, they will serve as input for the auto-regressive LLM. Here we employ Phi-
3.5-mini-instruct (Abdin et al., 2024) due to its suitability for multi-modal tasks. We first expand
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Mel Spectrogram 
Extractor

Text Instruction

<|system|>
You are a powerful AI assistant for speech generation. You need
to speak the provided text. If there is an instruction, please
speak the text following the instruction.<|end|>
<|user|>
instruction: Say this in a kind and slightly cheerful tone.
text: [reference text] Nice to meet you. I'm FlexiVoice.
<|end|>
<|assistant|>

Speech
TokenizerReference

LLM

Flow Matching

Vocoder

Figure 3: The complete structure of FlexiVoice.

its vocabulary (equivalent to DualCodec’s vocabulary size, 16384), then use the parameters of a text
LLM as the initial state for pre-training and post-training, illustrated as the main part in our work.

Mainstream TTS works (Du et al., 2024; Zhou et al., 2025; Zhang et al., 2025a) chose flow match-
ing (Lipman et al., 2023) as the decoder because of its high-quality reconstruction of speech details.
For the second stage in this work, we employ a flow matching module trained on Emilia (He et al.,
2024) to convert generated code into mel-spectrum, using reference speech code as the condition.
Finally, the mel-spectrum is converted into the target audio via a vocoder (using Vocos (Siuzdak,
2023) in this case). The model structure is shown in Figure 3

A.2 DATA PROCESS FOR PRE-TRAINING

Table 6: Instruction-speech datasets used in pre-training stage.

Source Dur (h) Description
ParaSpeechCaps (Diwan et al., 2025) 2847 Open-sourced style-prompted speech data
ChildMandarin (Zhou et al., 2024a) 41 Speech clips of child’s voice
Debatts (Huang et al., 2024) 67 Speech clips with debating style
Emotion set* 117 Speech clips with different emotions
KeSpeech (Tang et al., 2021) 1541 Speech clips with different dialects, ages, and genders
L2-ARCTIC (Zhao et al., 2018) 27 Speech corpus of non-native English
NVSpeech (Liao et al., 2025) 775 Paralinguistic tagged speech data
FlexiVoice-Instruct 4316 Expressive speech with high-level instructions
* Including CREMA-D (Cao et al., 2014), EMNS (Noriy et al., 2023), ESD (Zhou et al., 2021), IEMOCAP (Busso et al., 2008),

M3ED (Zhao et al., 2022), MELD (Poria et al., 2019), MSP-Podcast (Lotfian & Busso, 2019), RAVDESS (Livingstone & Russo,
2018).

For ParaSpeechCaps (Diwan et al., 2025), due to its bottom-up data annotation process, some speech
entries possess a detailed acoustic feature dictionary alongside a summarized description. For these
data points, we concatenate the feature dictionaries together and randomly sample descriptions. For
other data, we utilize their descriptions as instructions.

For ChildMandarin (Zhou et al., 2024a), Detatts (Huang et al., 2024), and the emotion set, since they
are all single-label datasets (boy, debate scene, emotion label), we pre-generated several instruction
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templates using Deepseek-V3 (Liu et al., 2024a) (e.g., “Speak in the voice of {label},” “Imagine
you are in a debate scene,” “Express the emotion of {label}”). Then, for each speech data point, we
randomly selected a template and filled in the corresponding label.

KeSpeech (Tang et al., 2021) and L2-ARCTIC (Zhao et al., 2018) are both multi-label datasets. For
example, each speech in KeSpeech has three attributes: age, gender, and accent. For each attribute
triplet across the entire dataset, we use Deepseek-V3 (Liu et al., 2024a) to generate three Chinese
instructions and three English instructions, which are then randomly applied to the entire dataset.

For NVSpeech, which is a speech corpus with paralinguistic tags, we do not apply any instruction
but use their tags to enlarge the vocabulary size of our core LLM module to guarantee expressive
paralinguistic generation. All of the instruction-speech paired datasets in the pre-training stage are
listed in Table 6.

A.3 PROMPTS IN INSTRUCTION DATA CONSTRUCTION

For data source of Emilia

Role and Tasks
You are a multilingual text analysis expert tasked with generating voice descriptions
required for users’ Instruction TTS tasks. Your core responsibility is: Generating
voice descriptions based on text and metainfo (including but not limited to scenarios,
styles, emotions, etc.)

Detailed Description
- The metainfo includes the video title and a list of video tags from which the audio
originates. If the title is irrelevant (e.g., URLs, gibberish, etc.), ignore the
title.
- The scene and speaking style can be inferred from the tags and title, but in case of
conflict, prioritize the text content.
- Output a concise description of the speech in natural human language instructions.
- Use colloquial, vivid phrasing. Vary sentence structures to avoid template-like
patterns.
- Determine whether valid or rich speech descriptions can be generated based on the
text and meta information and classify the information value (high/medium/low).

Input/Output Specifications
Input Structure:
{

"speech transcript": "The speech text to analyze",
"metainfo": {"title": [Title of the source video], "tags": [Tag list of the

source video]}
}
Output Requirement:
{

"description": "Natural language description of the speech style",
"value": "information value (high/medium/low)"

}

Example
Example Input:
{

"speech transcript": "This match currently shows Ma Chao with four kills, nearly
6,000 in gold.",

"metainfo": {"title": "Honor of Kings KPL Autumn Finals", "tags":
"Game,esports,Honor of Kings,LGD,KPL,DYG"}
}
Example Output:
{

"description": "Professional and passionate esports commentary, delivered with
excitement and enthusiasm.",

"value": "high"
}

Core Constraints
- When metainfo conflicts with text, prioritize text content.

- Prohibit any unfounded speculation; prohibit all uncertain detail descriptions.

- The example outputs are for reference only; do not rigidly adhere to their phrasing.
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For data source of game voice acting

Role and Tasks
You are a multilingual text analysis expert tasked with generating voice descriptions
required for users’ Instruction TTS tasks. Your core responsibility is: Generating
voice descriptions based on text and metainfo (including but not limited to scenarios,
styles, emotions, etc.)

Detailed Description
- Metainfo refers to a specific character in [GameName], whose dialogue is the speech
transcript.
- Infer the character’s speaking style based on their name and output a description of
the speech.
- When the speaking style conflicts with the text’s expressed style, prioritize the
text.
- Do NOT include specific character names in the description.
- Use colloquial, vivid phrasing. Vary sentence structures to avoid template-like
patterns.
- Determine whether valid or rich speech descriptions can be generated based on the
text and meta information and classify the information value (high/medium/low).

Input/Output Specifications
Input Structure:
{

"speech transcript": "Speech transcript (dialogue from a [GameName] character)",
"metainfo": "Source information (character name in [GameName])"

}
Output Requirement:
{

"description": "Natural language description of the speech style",
"value": "information value (high/medium/low)"

}

Example
Example Input:
{

"speech transcript": "As long as the content is interesting, these experts can
help spice it up.",

"metainfo": "Yae Miko"
}
Example Output:
{

"description": "With a hint of playful elegance in her tone, as if she had long
seen through the other’s thoughts yet chose to hint at them subtly.",

"value": "high"
}

Core Constraints
- When metainfo conflicts with text, prioritize text content.

- Prohibit any unfounded speculation; prohibit all uncertain detail descriptions.

- The example outputs are for reference only; do not rigidly adhere to their phrasing.

A.4 DATA CONSTRUCTION FOR GRPO TRAINING

Decoupling Task The training set is constructed from the recording subset of NCSSD (Liu et al.,
2024b), comprising about 20,000 Chinese and 10,000 English dialogue speech samples. We selected
this dataset primarily because its transcriptions align closely with everyday conversations and im-
plicitly carry emotional tendencies in most cases. We randomly assign emotion labels to each data
point, thereby generating two types of data: those where the instruction and transcription emotions
align, and those where they conflict. This approach helps guide the model to learn the ability to
decouple content and style within text. Simultaneously, we randomly assign neutral and emotional
speech from the pre-training data’s emotion set (6) to each data point with a 90% and 10% prob-
ability, respectively, as reference speech. This enables the model to learn to decouple timbre and
style from the references. We utilize half of the Chinese data and all of the English data, forming
approximately 20,000 balanced data points as the GRPO training set for the decoupling phase.

Complex Instruction To enhance the model’s performance in complex instruction-following
tasks, we constructed a rich and diverse GRPO training dataset. Specifically, for each language
(Chinese and English), we first randomly sampled 1,000 existing instruction-text inputs from the
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pre-training data to ensure optimization stability. Next, we prompted Deepseek-V3 (Liu et al.,
2024a) to randomly generate 6,000 instructions across three distinct configurations: (1) Generate
detailed and comprehensive acoustic feature descriptions in dictionary format, (2) Generate natural
language descriptions incorporating 3/4/5/6 explicit acoustic features, (3) Freely generate instruc-
tions for arbitrary scenarios consistent with human usage patterns. Collectively, we generated 14,000
instruction-text paired inputs as GRPO training data for the second stage.

A.5 DETAILS IN EMOTIONAL CONTROL DPO

Instruction Templates

• Say the sentence with the emotion of {label}.
• Say this with a {label} tone.
• Speak this sentence in a {label} manner.
• Deliver this text with {label} emotion.
• Use a {label} voice.
• Express this sentence with {label} feeling.
• Read it with {label} inflection.
• Recite this with {label} sentiment.
• Voice this in a {label} style.
• {label} (Use only one emotion label)

• 用{label}的情感说出这句话。
• 以{label}的情绪表达这句话。
• 带着{label}的情感说出这个文本。
• 使用{label}的情感。
• 以{label}的心情表达这句话。
• 用{label}的情感色彩说出这句文本。
• 带着{label}的感情说出这句话。
• 用{label}的情感基调传达此句。
• 以{label}的情绪状态说出这句话。
• {label}

One Paired Sample (emo=angry, speaker id=0013)

{
”prompt text”: ”Chapter eleven on the doorstep.”,
”prompt wav path”: ”Emotion Speech Dataset/0013/Neutral/0013 000267.wav”,
”target text”: ”What are you waiting for? man.”,
”instruction”: ”Say this with a angry tone.”,
”chosen wav path”: ”Emotion Speech Dataset/0013/Angry/0013 000697.wav”
”rejected wav path”: ”Emotion Speech Dataset/0013/Sad/0013 001397.wav”

}

A.6 REWARD SELECTION IN DECOUPLING GRPO

In decoupling GRPO, we first use a SER signal as one of the rewards to control the correct emotion
synthesis. With the reference speech input, we also need to guarantee that the generated result is
from the same speaker with the reference. There are two choices: speaker verification signal (0 or
1) and speaker similarity signal (values between 0 and 1), using CAM++ (Wang et al., 2023) and
WavLM-large-finetuned (Chen et al., 2022) respectively. Given the DPO optimized model, we train
the multi-objective GRPO using SER reward with two separate speaker-related rewards for four
epochs, then test them on two difficulty levels of TR in the decoupling evaluation set, as shown in
Figure 4.

Results show that models using speaker verification as the reward signal achieve significant improve-
ments, while those using speaker similarity yield largely unchanged or even reduced performance.
This occurs because models computing speaker embeddings (WavLM in this case) do not rely solely
on speech timbre but incorporate additional acoustic features beyond timbre, such as pitch and emo-
tion. When humans speak with varying emotions, acoustic attributes like pitch, speech rate, and
volume inevitably differ. Consequently, expressive emotion delivery yields high SER reward scores
but low speaker similarity signals. This phenomenon can thus be interpreted as a conflict between
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Figure 4: Comparison of results for two reward signals in decoupling GRPO, on the decoupling
evaluation set’s TR-easy (left) and TR-hard (right) tasks.

SER reward and speaker similarity reward, hindering the normal optimization process of the multi-
objective GRPO task.

Speaker verification signals, as a more loose form of speaker similarity, can accommodate models
that generate more expressive emotional speech while ensuring speaker identity. Therefore, we
select speaker verification as one of the final reward signals in the S1 GRPO stage.

A.7 VALIDATION OF REWARD MODELS

For the complex instruction following in Stage 3 (S3), we require a robust reward model to evaluate
open-ended generation. While Gemini-2.5-Pro serves as the Gold Standard judge in the InstructTT-
SEval benchmark and aligns well with human preference (Huang et al., 2025), employing it directly
as a reward model for GRPO is impractical due to its prohibitive inference costs and high latency dur-
ing online sampling. Consequently, we propose utilizing Kimi-Audio-7B-Instruct as a cost-effective
surrogate.

To validate the reliability of this substitution, we assess the alignment between Kimi-Audio-7B
and Gemini-2.5-Pro. We conduct the evaluation on the InstructTTSEval dataset, measuring the
agreement of their judgments using the Macro-F1 score under the same prompt used in our training.
As shown in Table 7, Kimi-Audio-7B achieves solid agreement (Macro-F1 > 0.60) with Gemini
across all task types in both English and Chinese. These results demonstrate that Kimi-Audio-7B
effectively captures the preference patterns of the larger model, providing valid and efficient signals
for optimizing complex instruction adherence.

Table 7: Agreement evaluation (Macro-F1) between our surrogate reward model (Kimi-Audio-7B)
and the gold-standard judge (Gemini-2.5-Pro) on InstructTTSEval. The high consistency validates
the effectiveness of using Kimi-Audio as a reward model.

Metric English (EN) Chinese (ZH)
APS DSD RP APS DSD RP

Macro-F1 0.62 0.62 0.65 0.60 0.64 0.63

A.8 EVALUATION ON NON-EMOTIONAL STYLE CONTROL

While our main experiments focus on emotional expression and complex instruction following, the
claim of controlling flexible style necessitates validation on fine-grained prosodic attributes beyond
emotion. To address this, we conducted specific evaluations on Speaking Speed and Pitch control.
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Table 8: Spearman Correlation Coefficient evaluation on Speaking Speed and Pitch control.

Model Speed Correlation Pitch Correlation
EN ZH EN ZH

ParlerTTS 0.61 0.22 0.68 0.79
PromptTTS 0.24 - 0.12 -
PromptStyle 0.05 - 0.24 -
VoxInstruct 0.75 0.49 0.31 0.15

FlexiVoice-Base 0.62 0.47 0.66 0.52
FlexiVoice 0.86 0.78 0.91 0.90

We constructed a test set comprising 100 samples for English and 100 for Chinese. For each sample,
we synthesized speech conditioned on instructions corresponding to three distinct levels:

• Speed: Fast, Normal, Slow (e.g., instruction: Read this sentence quickly.)

• Pitch: High, Normal, Low (e.g., instruction: Speak with a high-pitched voice.)

To quantify the controllability, we calculated the Spearman Correlation Coefficient between the
instruction levels (mapped to 1, 2, 3) and the extracted acoustic features of the generated audio.
Specifically, we measured phoneme duration (phonemes per second) for speed and median F0 for
pitch. A higher correlation indicates that the model more accurately follows the gradient of the
instruction.

As shown in Table 8, FlexiVoice achieves the highest correlation scores across both languages and
attributes. Notably, it significantly outperforms the baseline models and the pre-trained FlexiVoice-
Base, demonstrating that our Progressive Post-Training (PPT) strategy effectively enhances fine-
grained physical parameter control alongside abstract emotional styles, even we do not apply any
targeted optimization on speed or pitch.

A.9 SUBJECTIVE EVALUATION CONFIGURATION

Subjective evaluations are carried out by a group of compensated participants, all of whom had
strong speech and audio expertise. We selected two baseline models with relatively comprehensive
task support, our pre-trained model, and FlexiVoice for subjective evaluation. For each task in each
language, we randomly select five paired samples from each model and the ground-truth. To ensure
reliability, every audio sample was independently rated by at least three different individuals for
both subjective evaluation.

Q-MOS Participants are asked to evaluate the overall quality of each generated speech sample on
a 5-point scale, considering aspects such as clarity, naturalness, and absence of distortion/artifacts,
ignoring the style instruction and timbre reference. The meaning of each score is defined as follows:

• 5 - Speech is highly natural, clear, and pleasant to listen to. No noticeable artifacts or distor-
tions. Comparable to professionally recorded human speech.

• 4 – Speech is generally natural and intelligible, with only minor imperfections or occasional
artifacts that do not interfere with understanding or listening comfort.

• 3 – Speech is intelligible but has moderate issues such as slight distortion, unnatural prosody,
or mild background noise. Quality is acceptable but clearly below high-standard human record-
ings.

• 2 – Speech is somewhat difficult to understand due to significant artifacts, distortions, or un-
natural delivery. Quality issues noticeably affect the listening experience.

• 1 – Speech is largely unintelligible or highly unnatural, with severe artifacts or distortions that
make evaluation difficult.
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CMOS In this task, participants are asked to compare two audio samples (one ground-truth and
one generated by a model) under the condition of a given target emotion. The primary focus is on
the richness and naturalness of emotional expression, which reflects the instruction-following and
decoupling ability of the models.

The additional evaluation rules are: (1) When no reference speech is provided, ignore timbre consis-
tency. (2) When reference speech is provided, timbre similarity is a secondary criterion (acceptable
as long as both samples sound like the same speaker). (3) Slight mispronunciations or noise should
be disregarded; the main comparison is the accuracy and expressiveness of emotion. And the scoring
scale is defined as follows: (Note that the order of paired audio demonstrations is random.)

• +2 - Audio B is much better than Audio A in conveying the target emotion.
• +1 – Audio B is slightly better than Audio A in emotional expression.
• 0 – Both samples are comparable in terms of emotional richness and naturalness.
• −1 – Audio A is slightly worse than Audio B in emotional expression.
• −2 – Audio A is much worse than Audio B in emotional expression.

A.10 REPRODUCIBILITY DETAILS

To facilitate the replication of our results and future research, we provide detailed specifications
regarding the computational resources and training configurations for the Progressive Post-Training
(PPT) scheme. FlexiVoice is built upon the Phi-3.5-mini-instruct backbone, which comprises ap-
proximately 3.8 billion parameters. All training stages are conducted on 8× NVIDIA A800 (80GB)
GPUs. The total training time for the post-training pipeline is approximately 3.5 days.

Specifically, the S1 (Multi-modality DPO) stage serves as an efficient alignment foundation, com-
pleting in approximately 2 hours. We train the model for 3 epochs with a learning rate of 1× 10−5

and a KL penalty coefficient β = 0.1. The S2 (Decoupling GRPO) stage, which involves online
sampling to enforce disentanglement, requires approximately 36 hours. For this stage, we employ a
group size of G = 8, training for 2 epochs with a learning rate of 1×10−5 and β = 0.1. Finally, the
S3 (Instruction GRPO) stage utilizes a group size of G = 6 to accommodate complex instruction
following and runs for 2 epochs. Due to the complexity of the ALM-based reward calculation, this
stage takes approximately 42 hours.

A.11 LLM USAGE

Large Language Models (LLMs) were used solely as an assistive tool for grammar correction and
language polishing of the manuscript. They did not contribute to research ideation, methodology,
experiments, analyses, or the generation of scientific content. All conceptual and technical contri-
butions are entirely those of the authors.
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