
Improving black-box optimization in VAE latent
space using decoder uncertainty

Pascal Notin
Department of Computer Science

University of Oxford
Oxford, UK

pascal.notin@cs.ox.ac.uk

José Miguel Hernández-Lobato
Department of Engineering
University of Cambridge

Cambridge, UK
jmh233@cam.ac.uk

Yarin Gal
Department of Computer Science

University of Oxford
Oxford, UK

yarin@cs.ox.ac.uk

Abstract

Optimization in the latent space of variational autoencoders is a promising ap-
proach to generate high-dimensional discrete objects that maximize an expensive
black-box property (e.g., drug-likeness in molecular generation, function approxi-
mation with arithmetic expressions). However, existing methods lack robustness
as they may decide to explore areas of the latent space for which no data was
available during training and where the decoder can be unreliable, leading to the
generation of unrealistic or invalid objects. We propose to leverage the epistemic
uncertainty of the decoder to guide the optimization process. This is not trivial
though, as a naive estimation of uncertainty in the high-dimensional and structured
settings we consider would result in high estimator variance. To solve this problem,
we introduce an importance sampling-based estimator that provides more robust
estimates of epistemic uncertainty. Our uncertainty-guided optimization approach
does not require modifications of the model architecture nor the training process. It
produces samples with a better trade-off between black-box objective and validity
of the generated samples, sometimes improving both simultaneously. We illustrate
these advantages across several experimental settings in digit generation, arithmetic
expression approximation and molecule generation for drug design.

1 Introduction

We consider the task of optimizing an expensive black-box objective function taking inputs in a
high-dimensional discrete space. This could be for example finding new molecules for drug design,
or automatically generating a computer program that matches a desired output. Solving this task
directly in the original space (e.g., with discrete local search methods such as genetic algorithms) may
be challenging given the complex structure and high dimensionality of the data. Recently, Variational
autoencoders (VAEs) [1, 2] have been successfully leveraged to model a wide range of discrete data
modalities — from natural language [3], to arithmetic expressions [4], computer programs [5] or
molecules [6]. By learning a lower-dimensional continuous representation of objects in their latent
space, VAEs allow to transform the original discrete optimization problem into a simpler continuous
optimization one in latent space. For example, this can be achieved via Bayesian Optimization in
the latent space, or via gradient ascent with a jointly-trained neural network predicting the black box

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

property from the latent space representation [6, 7]. Initial methods in this area have suffered from
the fact that the search in latent space may explore areas for which no data was available at train time,
and therefore where the decoder network of the VAE will be unreliable [8]: seemingly good candidate
points in latent space may be decoded into objects that are invalid, unrealistic or low quality.

Figure 1: Uncertainty-guided optimization in VAE latent space The goal of black-box optimiza-
tion in latent space is to attain regions with high values of the back-box objective after decoding,
while avoiding the regions that lead to invalid decodings (left). Standard Bayesian Optimization in
latent space may query these suboptimal areas (e.g., regions on left hand side, center). High decoder
uncertainty regions overlap with regions leading to invalid decodings (right), so that censoring high
uncertainty points helps guiding the optimization towards the most promising latent points.

While several methods have been introduced to promote validity of decoded objects (§2.1), they either
focus on modifying the generative model learning procedure or adapting the decoder architecture to
satisfy the syntactic requirements of the data modality of interest. We propose instead to quantify
and leverage the uncertainty of the decoder network to guide the optimization process in latent space
(Fig. 1). This approach does not require any change to the model training nor architecture, and can
easily be integrated within several optimization frameworks. It results in a better trade-off between
the values of the black-box objective and the validity of the newly generated objects, sometimes
improving both simultaneously.

To be effective, this method requires robust estimates of model uncertainty for high dimensional
structured data. Existing methods for uncertainty estimation in this domain often rely on heuristics or
make independence assumptions to make computations tractable (§2.2). We demonstrate that such
assumptions are not appropriate in our setting, and propose new methods for uncertainty estimation
in high dimensional structured data instead.

Our contributions are as follows:

• We introduce an algorithm to quantify the uncertainty of high-dimensional discrete data,
and use it to estimate the uncertainty of the decoder (§3);

• We show how the uncertainty of the decoder can be incorporated across several optimization
frameworks, including gradient ascent and Bayesian optimization (§4);

• We illustrate our approach in a digit generation setting — a simple setup to provide intuition
for the method — then quantify its benefits in the more complex tasks of arithmetic expres-
sions approximation and molecule generation, covering a diverse set of decoder architectures
across experiments (Convolutional, Recurrent and Graph Neural Networks) (§5).

2 Background

2.1 Optimization of high-dimensional discrete objects with generative models

Focusing on molecular generation, Gómez-Bombarelli et al. [6] propose to train a VAE to learn
a distribution over the so-called SMILES representation of molecules (ie. linear sequences of
characters) [9], and subsequently perform the optimization in the latent space. Since the SMILES

2

representation follows strict syntactic requirements that are not explicitly enforced by the generative
model, promising points in latent space may be decoded into invalid molecules. To improve the
validity of decoded sequences, Kusner et al. [4] and Dai et al. [5] develop task-specific grammar
rules into the VAE decoder, focusing on use cases in molecular and computer program generation.
However, crafting the corresponding rules requires domain-specific knowledge, needs to be designed
from scratch for each new task, and may not be straightforward to elicit in the first place (e.g., digit
generation example in 5.1). Griffiths and Hernández-Lobato [10] and Liu et al. [11] propose instead to
formulate the problem as a constrained Bayesian Optimization and chance-constrained optimization
task respectively to simultaneously optimize the target property as well as the probability to generate
valid sequences. These two approaches require nonetheless access to a function that quantifies the
validity or realism of objects in the training data, which is not readily available in many practical
applications. A different line of research has focused on representing high-dimensional structured
objects as graphs instead [12, 13]. The Junction Tree VAE (JT-VAE) [14] generates systematically
valid molecular graphs, by first generating a tree-structured scaffold over a finite set of molecular
clusters, and then assembling these clusters back into molecules with a message passing network. The
MolDQN [15] casts the optimization problem as a reinforcement learning task (double Q-learning),
which allows in turn to more naturally extend to simultaneous optimization of different objectives.
GraphAF [16] combines the strengths of autoregressive and flow-based approaches to efficiently
generate realistic and valid molecular graphs. Lastly, Tripp et al. [17] show that the black-box
optimization performance can be further enhanced by iteratively retraining the generative model on
the points selected during optimization, with weights that depend on their objective function value.

Our approach deviates from all the above in that it is is representation-agnostic (works with se-
quences or graphs), does not require domain-knowledge to craft custom rules or constraints, does not
change the model architecture nor the learning procedure and can be combined with several of these
approaches to reach even stronger optimization performance (see § 5).

2.2 Quantifying model uncertainty

Adopting a Bayesian viewpoint, the overall uncertainty of a model in a given region of the input
space can be broken down into two types of uncertainty [18]:

• Epistemic uncertainty: Uncertainty due to lack of knowledge about that particular region
of the input space — the posterior predictive distribution is broad in that region due to lack
of information that can be reduced by collecting more data;

• Aleatoric uncertainty: Uncertainty due to inherent stochasticity/noise in the observations
in that region — collecting additional data would not further reduce that uncertainty.

We denote input points as x, outputs as y and the training data as D. The total uncertainty U of
a model at an input point x is typically measured by the predictive entropy, ie. the entropy of the
predictive posterior distribution P py|x,Dq:

Upxq “ HpP py|x,Dqq “
ÿ

y

´P py|x,Dq logP py|x,Dqdy. (1)

Denoting P pθ|Dq the posterior distribution over model parameters θ, we can further decompose the
predictive entropy U as the sum of two terms:

Upxq “ pHpP py|x,Dqq ´ EP pθ|DqpHpP py|x, θqqq
looooooooooooooooooooooooomooooooooooooooooooooooooon

Mutual Information M

`EP pθ|DqpHpP py|x, θqqq
looooooooooooomooooooooooooon

Expected entropy E

(2)

The first term — the Mutual Information M between model parameters θ and the prediction y — is a
measure of epistemic uncertainty, as it quantifies the magnitude of the change in model parameters
that would result from observing y. If the model is uncertain about its prediction for y, the change in
model coefficients from observing y should be high. Conversely, if the model is confident about its
prediction for y, model parameters will not vary from observing y:

Mpxq “ HpP py|x,Dqq ´ EP pθ|DqpHpP py|x, θqqq. (3)

The second term — the Expected Entropy E — is a measure of the residual uncertainty, ie. the
aleatoric uncertainty:

Epxq “ EP pθ|DqpHpP py|x, θqqq. (4)

3

In high dimensional settings, an exact estimation of these different quantities is not tractable, therefore,
several approximations and heuristics have been introduced. The softmax variance, i.e. the variance
of predictions across model parameters, has been shown to approximate epistemic uncertainty well in
certain settings [19–21].

In the context of sequential data, the inherent structure in the data generating process often introduces
strong dependencies between the output dimensions, e.g., the tokens in a generated sentence. In cases
where there exist weak correlations between tokens, quantifying the different types of uncertainties
above can be made tractable by ignoring these dependencies [22], in which case the predictive
entropy for a sequence y “ py1, y2, ..., yLq may be approximated as the sum of token-level predictive
entropies over the L tokens:

Upxq “
L
ÿ

l“1

EP py|x,DqrlogP pyl|x, ykăl,Dqs «
L
ÿ

l“1

EP pyl|x,ykăl,DqrlogP pyl|x, ykăl,Dqs. (5)

Unlike the standard expectation definition which integrates over all y, here only yl is integrated
over, and we condition on ykăl, which are obtained from a sample from P py|x,Dq. The process is
repeated for several of these samples and an average is finally computed to reduce variance.

While the above has been shown to work well in certain experiments [22], valuable information
is being discarded when we ignore dependencies across tokens. These dependencies are likely to
be informative in applications such as the ones considered in §5.3.1. Naive Monte Carlo-based
approximations are expected to perform poorly in high dimensions since the majority of samples
will be in regions with negligible contribution to the sum (Appendix A). In an active learning setting,
Kirsch et al. [23] derive an importance sampling-based estimator of total uncertainty to mitigate these
issues. In Natural Language Processing, alternative approaches using domain-specific metrics such
as the BLEU score have been suggested [24], but these are difficult to extend to other domains.

3 Importance sampling estimator

We consider discrete output points y that belong to a high-dimensional structured object space S
(e.g., long sequences, large graphs), of cardinality |S|. An exact estimation of the Mutual Information
between outcomes y and model parameters θ (equation 3) is impractical because the expectation
involves a sum over exponentially many possible outcomes for y P S.

In lieu of the heuristics previously discussed, we obtain a principled approximation to the Mutual
Information via Monte Carlo estimation using importance sampling, with an adequately chosen
importance distribution.

We denote qpθq « P pθ|Dq the learnt approximation to the posterior, and assume we can approximate
expectations over model parameters by sampling M independent samples from qpθq. We can then
re-write the Mutual Information M in equation 3 as follows:

Mpxq « ´

|S|
ÿ

s“1

ps log ps `
1

M

M
ÿ

m“1

|S|
ÿ

s“1

ps,m log ps,m “

|S|
ÿ

s“1

«

1

M

M
ÿ

m“1

ps,m log ps,m ´ ps log ps

ff

loooooooooooooooooooooomoooooooooooooooooooooon

hpysq

(6)
where ps and ps,m are shorthands, respectively, for P py “ ys|x,Dq — the posterior predictive
distribution — and P py “ ys|x, θ “ θmq— the probability of a given output ys P S given x and a
sample θm from the approximate posterior distribution over model parameters qpθq.

We can then obtain a tractable approximation to equation 6 via importance sampling:

Mpxq “

|S|
ÿ

s“1

hpysq ¨
1

p̄pysq
¨ p̄pysq “ Ep̄

„

hpyq ¨
1

p̄pyq

«
1

N

N
ÿ

s“1

„

hpỹsq ¨
1

p̄pỹsq

(7)

with ỹs „ p̄p.q, where p̄ is the importance distribution.

We choose the importance distribution to be the approximate posterior predictive defined over the
outputs. We generate an outcome ỹs by first sampling a set of parameters θ̃0 from the approximate
posterior, and then generating ỹs from a model defined by that set of parameters θ̃0. This distribution

4

will sample mostly from regions in S with high probability under the true posterior predictive for
input x. This is in contrast to a naive sum over all possible outcomes y, many of which will have a
negligible contribution to the sum. This gives rise to an estimator of Mutual information (obtained
with Algorithm 1) with lower variance than its naive Monte Carlo counterpart (see Appendix A).

Algorithm 1: Importance sampling estimator of MI
for s “ 1 to N do

Sample θ̃0 „ qpθq ; ỹs „ P py|x, θ “ θ̃0q ;
for m “ 1 to M do

Sample θ̃m „ qpθq ; Compute ps,m = P py “ ỹs|z, θ “ θ̃mq ;
end for
Compute ps “ 1

M

řM
m“1 ps,m; hs “ 1

M

řM
m“1pps,m log ps,mq ´ ps log ps ;

end for
Return Mpxq = 1

N

řN
s“1

”

hs ¨
1
ps

ı

4 Uncertainty-guided optimization in VAE latent space

Black box optimization in VAE latent space. We want to optimize the black-box objective O over
a high dimensional discrete object space S. We train a VAE, with encoder g and decoder f , to
learn a continuous lower-dimensional embedding of objects in S. The optimization of O is then
performed in latent space and the best candidates are subsequently decoded into the original space.
As discussed in § 2.1, this may lead to invalid or unrealistic decodings when the decoder f operates in
regions different from the ones seen during training. We propose to detect this regime by quantifying
the epistemic uncertainty of the decoder for latent points z (note the notation change compared to
§ 3 where we used x to denote inputs in the general setting): avoiding regions with high epistemic
uncertainty for the decoder will make the overall optimization process more efficient by avoiding
invalid decodings. We next discuss how we can leverage the uncertainty of the decoder to guide the
optimization process for two approaches commonly used in latent optimization settings.

Bayesian Optimization with an uncertainty-aware surrogate model or uncertainty censoring.
We first train a surrogate model, e.g., a Gaussian Process [25], to predict Opxq based on its latent
representation z. We then perform Bayesian Optimization using an appropriate acquisition function
(e.g., Upper Confidence Bound or Expected Improvement heuristic). There are two main ways to
incorporate the decoder uncertainty to guide this process. The first approach consists in training
the surrogate model on an objective that penalizes points with high uncertainty (e.g., optimizing
Opxq ´ α ¨Mpzq). Another method is to censor proposal points z that would have a Mututal
Information Mpzq above a predefined uncertainty threshold T (e.g., highest value observed on the
training data) at each step of a batch Bayesian Optimization process (see Algorithm 2).

Algorithm 2: Bayesian Optimization with uncertainty censoring
1: Uncertainty threshold T , number of new points to generate N .
2: Sample M points uniformly at random from the train set, with latent tensor Z and property vector P .
3: for i “ 1 to N do
4: Train single task GP on pZ,P q and generate B candidate points pzkqkPv1,Bw with predicted properties

pfkqkPv1,Bw by sequentially maximizing the Expected Improvement.
5: Compute decoder uncertainty Mpzkq for k P v1, Bw.
6: if Dk P v1, Bw s.t. Mpzkq ď T then
7: Set new candidate index k˚ “ argmaxkpfkq s.t. Mpzkq ď T ;
8: else
9: k˚ “ argminkpMpzkqq.

10: end if
11: Decode new candidate zk˚ and obtain true property pk˚ of decoded candidate.
12: pZ,P q Ð Concatenate pzk˚ , pk˚q and pZ,P q.
13: end for

Uncertainty-constrained gradient ascent. A common architecture design when performing black-
box optimization in latent space is to jointly train the VAE with an auxiliary network h (Fig.9) that

5

predicts the value of the black box objective Opxq from the encoding z of x in latent space [6, 7, 14].
This construct is particularly useful in constrained optimization settings in which we want to perform
a local search in latent space to maximize O while remaining close to a known input object. The
joint training consists of optimizing the sum of the VAE loss (i.e., the ELBO) and the loss from
the black-box objective prediction (e.g., MSE loss for a continuous output O) via gradient descent,
backpropagating gradients through the entire architecture. To optimize objects under this framework
(see Algorithm 3), we start from a set of initial points in latent space z — either a random sample
of latent points, or a subset of points x that we encode in the latent space (z “ gpxq). We then
compute the gradient ∇zh of the auxiliary network with respect to z and perform gradient ascent
z Ð z`α ¨∇zh. We repeat this process a few times until satisfying a stopping criteria (e.g., threshold
on predicted values hpzq or after a fixed number of gradient updates). Finally, we decode the latest
latent positions to obtain the set of candidates x̃ “ fpzq and measure their actual properties Opx̃q.
We can further improve the quality of the candidate set by censoring the moves in latent during
gradient ascent that would result in a value of uncertainty above a predefined threshold T .

Algorithm 3: Uncertainty-constrained gradient ascent
1: Uncertainty threshold T , number of gradient updates N , gradient scale α.
2: Sample M points from the train set, with latent tensor Z “ pzkqkPv1,Mw and property vector P .
3: Compute ∇zhpZq, where h is the auxiliary network predicting P from Z.
4: for i “ 1 to N do
5: for k “ 1 to M do
6: if Mpzk ` α∇zhpzkqq ď T then
7: zk Ð zk ` α∇zhpzkq.
8: end if
9: end for

10: end for
11: Decode final positions Z˚.
12: Obtain true properties P˚ of decoded points.

5 Experimental results

After describing the common experimental setting across applications, we demonstrate the effective-
ness of using the uncertainty of the decoder to guide the optimization for constrained digit generation.
Our objective is to illustrate the concepts introduced above in a simple and intuitive example. We then
move on to quantify the benefits of our approach in the more complex cases of arithmetic expression
approximation and molecular generation for drug design.

Uncertainty estimators and baselines Across all experiments, we quantify the Mutual Information
between outputs and decoder parameters with both the Importance sampling estimator (IS-MI)
described in §3 and based on the token independence approximation (TI-MI) described in §2.2.
Sampling from model parameters is achieved via Monte Carlo dropout [26]. We compare optimization
results with two baselines: the standard approach that fully ignores decoder uncertainty, and an
approach in which we censor proposal points with low probability under the prior distribution
(standard normal) of the VAEs in latent space (referred to as ‘NLLP’).

Optimization We perform uncertainty-guided optimization in latent space as per the two approaches
described in §4. For Bayesian Optimization, we train a single task Gaussian Process as our surrogate
model based on a random subset of training points embedded in latent space and their corresponding
black-box objective values. We then perform several iterations of batch Bayesian Optimization using
the Expected Improvement heuristic as our acquisition function. At each iteration we select a batch
of 20 latent vectors by sequentially maximizing the acquisition function. We select the point with the
highest predicted target value for which the decoder uncertainty is below a predefined threshold (e.g.,
99th percentile of decoder uncertainty values observed on the training set) or the one with lowest
uncertainty if no point in the batch is below the threshold. We re-train the surrogate model with
the newly generated point at each step. For gradient ascent, we randomly sample points from the
training set, embed them in latent space, and use these as our starting positions. We then compute the
gradient of the auxiliary property network with respect to latent positions and accept proposal moves
along these directions if the decoder uncertainty at the corresponding position in latent is below a
predefined threshold (e.g., 99th percentile of decoder uncertainty on the training set). For practical

6

considerations, we suggest to always start with a high value for the threshold to not unnecessarily
constrain the optimization, and move to stricter uncertainty constraints if the validity or quality is
not high enough for the particular use case considered (see Table 10 for an analysis on the impact of
that hyperparameter choice). All optimization experiments reported below are carried out 10 times
independently with different random seeds.

5.1 Illustrative example in digit generation

Setup In this first setting, our objective is to generate valid images of the digit 3 that are as thick as
possible. We train a VAE model generating images of the digit 3 jointly with an auxiliary network
predicting their thickness. We use a ‘Conv-Deconv’[27] architecture for the VAE and a 3-layer
feedforward network for property prediction. The underlying data consist of grayscale images of the
digit 3 extracted from the MNIST dataset [28] that we discretize to form tensors of binary values. We
use the sum of pixel intensities across a given image as a proxy for the thickness of the corresponding
digit. An unconstrained optimization in the latent space would ultimately lead to the generation of
invalid white ‘blobs’. To avoid this failure mode and promote validity of the resulting candidate set,
we leverage the uncertainty of the decoder network. In order to assess the validity of objects, we
independently train a deep Convolutional Neural Network to classify images of the digit 3 (binary
classification).

Results Latent points with high decoder uncertainty lead to a higher rate of invalid decoded digits
(Appendix B.3), which help avoid the aforementioned failure mode during optimization. For both
Bayesian Optimization and gradient ascent, we observe that the decoder uncertainty constraints help
ensuring the generated digits remain valid, while preserving the ability of the optimization algorithm
to increase the thickness (Fig.2).

Figure 2: Top 5 decoded digits after optimiza-
tion Leveraging decoder uncertainty helps pre-
venting the generation of invalid digits.

Method Top 10 avg. Ò Validity (%) Ò
No uncertainty ´0.96˘ 0.04 77%˘ 0.6%

NLLP ´0.97˘ 0.05 76%˘ 0.8%
TI-MI ´0.72˘ 0.06 96%˘ 0.5%
IS-MI -0.70˘ 0.04 98%˘ 0.5%

Figure 3: Arithmetic expressions approxi-
mation results Mutual Information-based con-
straints during Bayesian optimization in latent
space help promoting higher validity % of de-
codings while increasing black-box objective
values. Uncertainty threshold values used for
censoring candidate points are based on decoder
uncertainty values observed on the training data
(95th percentile).

5.2 Arithmetic expressions approximation

Setup We follow an experimental design similar to Kusner et al. [4], in which we seek to optimize
univariate arithmetic expressions generated by a formal grammar (rules and examples are provided in
Appendix C). The objective is to find an expression that minimizes the mean squared error (MSE)
with respect to a predefined target expression (1{3 ˚ x ˚ sinpx ˚ xq). More specifically, since the
presence of exponentials in expressions may results in very large MSE values, the black-box objective
is defined as ´logp1 `MSEq. We train a ‘Character VAE’ (CVAE) [4] on 80, 000 expressions
generated by the formal grammar, then perform optimization in the latent space.

Results We observe that methods leveraging the decoder uncertainty result in almost always valid
decodings, and reach higher average values of the black box objective for valid decoded expressions
compared to baselines (Fig. 3; gradient ascent results in Appendix C.4). In particular, censoring
candidate points based on their probability under the standard normal prior does not help promoting

7

validity of decodings at all. In this setting with relatively short sequences (arithmetic expressions have
at most 19 characters), leveraging the TI-MI or IS-MI estimators leads to comparable performance.

5.3 Molecule generation for drug discovery

Molecular generation for drug design seeks to identify new molecules satisfying desired chemical
properties. Molecules are typically either represented as sequences of characters, using their SMILES
representation [9], or as graphs of atoms [12]. We demonstrate the effectiveness of the approach
described in § 4 for these two different representations: experiments with the ‘Character VAE’
(CVAE) for molecules [6] leverage the SMILES representation, while experiments with the JT-VAE
[14] are based on a graph representation of molecules. For both architectures, we trained our models
on a set of 250k drug-like molecules from the ZINC dataset [29].

5.3.1 Character VAE (CVAE)

Setup We jointly train a CVAE model, which learns to encode and decode molecules SMILES strings,
along with an auxiliary property network that predicts a target property of these molecules. Following
prior work [4, 5, 14], we define the black-box objective as the octanol-water partition coefficient
penalized by the synthetic accessibility score and the number of long cycles, (Appendix D.1) and we
refer to it as ‘Penalized logP’ for brevity. Since the SMILES representation of molecules follows a
strict syntax that determines whether a given expression is valid or not, we are interested in generating
molecules that simultaneously maximize the target property and represent valid SMILES expressions.

Figure 4: CVAE latent space visualization. We apply Principal Component Analysis on the
embedding of the full training data and keep the first 2 components. We then create a grid on the
resulting 2D-space and measure the penalized logP (a), decoder uncertainty (b) and the proportion of
valid decodings in that region (c) (a & c averaged over 300 decodings; b measured via IS by sampling
100 times from the importance distribution, and averaging over 100 samples of model parameters.;
for a, white squares correspond to regions where none of the 300 decodings are valid). We observe a
strong overlap between decoder uncertainty (b) and validity of decodings (c).

Results We first verify that our estimator is able to discriminate points in-distribution (low uncertainty)
vs out-of-distribution (high uncertainty). We consider 4 distinct sets of points in latent: embeddings
into latent space of a random sample from the train and test sets, random samples from the VAE prior
(standard normal) and random samples “far from the prior” (we sample from an isotropic gaussian
with standard deviation equal to 10). As can be seen on Fig.5a, uncertainty estimates for the first 3
sets strongly overlap while being disjoint from the estimates corresponding to points far from the prior.
Furthermore, we observe a strong correlation between low decoder uncertainty and regions that lead
to valid SMILES decodings (Fig. 4). This is corroborated by the analysis described in Fig. 5c: when
considering latent points “far from the prior”, points for which the decoder uncertainty is lower than
a predefined threshold (e.g., maximum value observed on training data) will lead to a significantly
higher proportion of valid decoded molecules compared to latent points with uncertainty above the
threshold. This is critical as it allows to censor points that will likely lead to invalid decodings, even
when we move far from the prior in latent space.

For the Bayesian Optimization experiments, we investigate the impact of different bounds on the
space we optimize within, as well as different uncertainty thresholds. As we increase the bounds, we
typically reach higher optima, at the cost of a higher fraction of invalid decodings during search. We

8

Figure 5: Uncertainty estimator. a) Distribution of decoder uncertainty values (IS-MI) for 1k
samples for 4 distinct sets (train & test set samples embedded in latent space; samples from the prior;
samples far from the prior). b) Valid decodings (%) as a function of the proportion of samples kept
based on their uncertainty — eliminating points with high uncertainty first (dataset comprised of
50% samples from test set & 50% of samples far from the prior). The IS-MI estimator has superior
ability to identify points leading to invalid decodings. c) Valid decodings (%) for samples from a
normal distribution with increasing standard deviation. Samples with decoder uncertainty below a
predefined threshold (maximum IS-MI value observed on training data) have a much higher rate of
valid decodings. Points above the threshold are very likely to lead to invalid decodings.
Table 1: CVAE - Bayesian Optimization results. Censoring proposal points with high decoder
uncertainty values with the IS-MI estimator helps increase validity across experiments. As we
increase the bounds on the Bayesian Optimization search space, validity % generally decreases but
remains 5-10x higher when leveraging IS-MI compared to baselines. This is critical as is helps
uncover molecules with very high penalized logP values.

Search Decoder Penalized logP Validity
bounds uncertainty Top 1 Ò Avg. top 10 Ò (%) Ò

5 None 4.0˘ 0.2 2.5˘ 0.2 22%˘ 1.4%
NLLP 4.2˘ 0.2 2.7˘ 0.1 30%˘ 1.3%
TI-MI 4.1˘ 0.3 2.3˘ 0.1 21%˘ 0.8%
IS-MI 4.5˘ 0.2 3.0˘ 0.1 33%˘ 1.8%

10 None 3.9˘ 1.2 ´2.3˘ 2.8 1%˘ 0.4%
NLLP 2.9˘ 0.8 0.5˘ 0.8 3%˘ 0.7%
TI-MI 5.9˘ 3.6 1.1˘ 1.5 2%˘ 0.4%
IS-MI 6.6˘ 0.6 1.6˘ 0.8 11%˘ 0.8%

15 None 10.3˘ 4.3 5.0˘ 2.6 1%˘ 0.3%
NLLP 3.9˘ 2.5 0.8˘ 1.2 1%˘ 0.3%
TI-MI 6.7˘ 3.8 6.4˘ 3.9 1%˘ 0.3%
IS-MI 27.6˘ 2.2 9.9˘ 1.3 5%˘ 0.7%

obtain higher validity % and penalized logP values when leveraging the decoder uncertainty (Table 1).
In this setting, the token-level independence assumption (TI-MI) leads to poor performance compared
to the importance sampling-based estimator (IS-MI). Results are also robust to the choice of decoder
uncertainty thresholds (D.4).

5.3.2 Junction Tree VAE (JT-VAE)

Setup We train a Junction Tree VAE model (JT-VAE) [14] using the same dataset of 250k molecules
(ZINC) and black-box objective (penalized logP) as for the CVAE experiments. All molecules
generated by the JT-VAE are valid by design. However, not all generated molecules will be of
high quality, which we assess with the quality filters proposed by Brown et al. [30] that aim at
ruling out “compounds which are potentially unstable, reactive, laborious to synthesize, or simply
unpleasant to the eye of medicinal chemists.” We show that it is straightforward to attain state-of-the-
art performance in terms of penalized logP values with the basic optimization approaches described
in § 4 by moving sufficiently ‘far away’ in latent, but that in doing so we tend to generate molecules

9

Table 2: JT-VAE - Gradient ascent results. We obtain state-of-the-art performance in terms of
penalized logP via gradient ascent. However, most generated molecules are of very low quality (only
1% pass the quality filters from Brown et al. [30]). Leveraging the uncertainty of the decoder (IS-MI)
during optimization helps generating molecules with high penalized logP and high quality. NLLP
constraints help maintain high quality but lead to suboptimal black-box objective values. Results
with different hyperparameters and threshold values for each method are reported in Table 13.

Decoder Penalized logP - Before filters Quality top 10 Penalized logP - Passing filters
uncertainty Top 1 Ò Avg. top 10 Ò (%) Ò Top 1 Ò Avg. top 10 Ò

None 23.7˘ 1.3 17.0˘ 0.6 1%˘ 1% 1.2˘ 1.2 0.3˘ 0.3
NLLP 3.0˘ 0.1 2.5˘ 0.1 82%˘ 6% 3.0˘ 0.1 2.0˘ 0.2
IS-MI 8.4˘ 10.8 6.0˘ 0.3 89%˘ 3% 7.7˘ 0.7 5.3˘ 0.3

that never pass quality filters. Factoring in decoder uncertainty during optimization helps generate
new molecules with both high penalized logP values and high quality.

Using notations from § 3, sampling a new object ỹs is achieved by successively decoding from the
junction tree decoder and then the graph decoder. We then decompose log ps,m – the log probability
of the sampled graph molecule – as the sum of the log probabilities corresponding to the different
predictions made by the junction tree decoder and graph decoder, namely the topology and node
predictions in the junction tree decoder, and the subgraph prediction in the graph decoder.
We replicate the analysis described in 5.3.1 with the 4 distinct datasets in latent space (i.e., train, test,
prior and far from prior) and observe similar results: the histogram of decoder uncertainty values for
points “far from the prior” is disjoint from the other three histograms (Appendix E.3), confirming the
ability of the estimator to identify out-of-distribution points.

Results Both gradient ascent (Table 2) and Bayesian Optimization (Appendix E.4) allow to generate
new molecules with state-of-the-art performance in terms of penalized logP (Table 12). However,
the majority of these molecules do not pass quality filters. Leveraging decoder uncertainty leads to
the generation of high logP and high quality molecules. Using likelihood under the prior (NLLP) to
achieve the same is detrimental to optimization performance.

6 Discussion and conclusion

Strengths Leveraging the uncertainty of the decoder is a simple yet effective approach to promote
the validity or quality of objects generated while optimizing a given black-box property in VAE
latent space. It is model architecture-agnostic and does not require model re-training. The only
requirement is the ability to sample from decoder parameters – which we have achieved in this work
via Monte Carlo dropout given its practical simplicity. In several of the experimental settings, using
the decoder uncertainty also helped attain substantially higher values of the black-box objective during
optimization (§ 5.3.1 in particular), as the optimization procedure was effectively guided to avoid
exploring regions systematically leading to invalid decodings and focusing on more promising regions
instead. Lastly, the importance sampling-based estimator introduced in this work is general-purpose
and may be relevant to other applications that would benefit from reliable epistemic uncertainty
estimates for complex high-dimensional data (e.g., active learning or anomaly detection).

Limitations While the algorithm for our estimator is easily parallelizable, it nonetheless results in a
computational overhead at each optimization step (which depends on several factors eg., number of
samples, decoder architecture, hardware used). In the settings considered in our work (eg., molecular
generation), the costs resulting from this overhead are however negligible in comparison to the costs
stemming from evaluating the black-box objective (eg., wet lab experiment, expensive simulator).

Future directions Developing an approach to backpropagate through the decoder uncertainty esti-
mator may provide compelling alternatives to algorithms presented in § 4. Leveraging the uncertainty
of the property network jointly with constraints on the decoder uncertainty may make the search in
latent even more robust to invalid decodings. Lastly, our approach may also be used jointly with
approaches performing weighted VAE re-training during optimization [17], potentially leading to
stronger optimization performance.

10

Acknowledgments

P.N. is supported by GSK and the UK Engineering and Physical Sciences Research Council (EPSRC
ICASE award no. 18000077). J.M.H.-L. acknowledges support from a Turing AI Fellowship under
grant EP/V023756/1. Y.G. holds a Turing AI Fellowship (Phase 1) at the Alan Turing Institute, which
is supported by EPSRC grant reference V030302/1.

References
[1] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. CoRR, abs/1312.6114, 2014.

[2] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approxi-
mate inference in deep generative models. In ICML, 2014.

[3] Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Józefowicz, and Samy Bengio.
Generating sentences from a continuous space. In CoNLL, 2016.

[4] Matt J. Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational autoencoder. In
ICML, 2017.

[5] Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, and Le Song. Syntax-directed variational autoencoder
for structured data. In ICLR, 2018.

[6] Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel Hernández-Lobato, Benjamín
Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel, Ryan P. Adams, and
Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous representation of molecules.
ACS Central Science, 4(2):268–276, Jan 2018. ISSN 2374-7951. doi: 10.1021/acscentsci.7b00572. URL
http://dx.doi.org/10.1021/acscentsci.7b00572.

[7] John Bradshaw, Brooks Paige, Matt J. Kusner, Marwin H. S. Segler, and José Miguel Hernández-Lobato.
A model to search for synthesizable molecules. In NeurIPS, 2019.

[8] David Janz, Jos van der Westhuizen, and José Miguel Hernández-Lobato. Actively learning what makes a
discrete sequence valid, 2017.

[9] David Weininger. Smiles, a chemical language and information system. 1. introduction to methodology
and encoding rules. J Chem Inf Comput Sci, 28(1):31–36, 1988. doi: 10.1021/ci00057a005. URL
http://dx.doi.org/10.1021/ci00057a005.

[10] Ryan-Rhys Griffiths and José Miguel Hernández-Lobato. Constrained bayesian optimization for automatic
chemical design using variational autoencoders. Chemical Science, 2020.

[11] Xianggen Liu, Jian Peng, Qiang Liu, and Sen Song. A chance-constrained generative framework for
sequence optimization. In ICML, 2020.

[12] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timothy
Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. Convolutional networks on graphs for learning molecular
fingerprints. In Advances in Neural Information Processing Systems, 2015.

[13] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative models
of graphs. In ICLR, 2018.

[14] Wengong Jin, Regina Barzilay, and T. Jaakkola. Junction tree variational autoencoder for molecular graph
generation. In ICML, 2018.

[15] Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N. Zare, and Patrick Riley. Optimization of molecules
via deep reinforcement learning. Scientific Reports, 9(1), Jul 2019. ISSN 2045-2322. doi: 10.1038/
s41598-019-47148-x. URL http://dx.doi.org/10.1038/s41598-019-47148-x.

[16] Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graphaf: a
flow-based autoregressive model for molecular graph generation. In ICLR, 2020.

[17] Austin Tripp, Erik Daxberger, and José Miguel Hernández-Lobato. Sample-efficient optimization in
the latent space of deep generative models via weighted retraining. In Advances in Neural Information
Processing Systems, 2020.

[18] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer vision?
In NIPS, 2017.

11

http://dx.doi.org/10.1021/acscentsci.7b00572
http://dx.doi.org/10.1021/ci00057a005
http://dx.doi.org/10.1038/s41598-019-47148-x

[19] Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of neural networks. 2017 IEEE
Symposium on Security and Privacy (SP), pages 39–57, 2017.

[20] Reuben Feinman, Ryan R. Curtin, Saurabh Shintre, and Andrew B. Gardner. Detecting adversarial samples
from artifacts, 2017.

[21] Lewis Smith and Yarin Gal. Understanding measures of uncertainty for adversarial example detection.
ArXiv, abs/1803.08533, 2018.

[22] Andrey Malinin and Mark John Francis Gales. Uncertainty estimation in autoregressive structured
prediction. In ICLR, 2021.

[23] Andreas Kirsch, Joost R. van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse batch acquisition
for deep bayesian active learning. In NeurIPS, 2019.

[24] Tim Xiao, Aidan Gomez, and Yarin Gal. Wat heb je gezegd? detecting out-of-distribution translations with
variational transformers. Bayesian Deep Learning Workshop at NIPS 2019, 2019.

[25] Andrew Mchutchon and Carl Rasmussen. Gaussian process training with input noise. In J. Shawe-Taylor,
R. Zemel, P. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems, volume 24. Curran Associates, Inc., 2011. URL https://proceedings.neurips.cc/
paper/2011/file/a8e864d04c95572d1aece099af852d0a-Paper.pdf.

[26] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In ICML, 2015.

[27] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, and Alexander Lerchner. Beta-VAE: Learning basic visual concepts with a constrained
variational framework. 5th International Conference on Learning Representations, ICLR 2017 - Conference
Track Proceedings, 2017. ISSN 1078-0874.

[28] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998.

[29] J. J. Irwin, T. Sterling, Michael M. Mysinger, Erin S. Bolstad, and R. Coleman. Zinc: A free tool to
discover chemistry for biology. Journal of Chemical Information and Modeling, 52:1757 – 1768, 2012.

[30] Nathan Brown, Marco Fiscato, Marwin H.S. Segler, and Alain C. Vaucher. Guacamol: Benchmarking
models for de novo molecular design. Journal of Chemical Information and Modeling, 59(3):1096–1108,
Mar 2019. ISSN 1549-960X. doi: 10.1021/acs.jcim.8b00839. URL http://dx.doi.org/10.1021/
acs.jcim.8b00839.

[31] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980,
2015.

[32] Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad Ghavamzadeh,
Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U. Rajendra Acharya, and et al. A review of uncertainty
quantification in deep learning: Techniques, applications and challenges. Information Fusion, 76:243–297,
Dec 2021. ISSN 1566-2535. doi: 10.1016/j.inffus.2021.05.008. URL http://dx.doi.org/10.
1016/j.inffus.2021.05.008.

[33] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of
neural machine translation: Encoder–decoder approaches. In SSST@EMNLP, 2014.

[34] Ksenia Korovina, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswanger, Barnabas Poczos, Jeff Schnei-
der, and Eric P. Xing. Chembo: Bayesian optimization of small organic molecules with synthesizable
recommendations. In AISTATS, 2019.

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

12

https://proceedings.neurips.cc/paper/2011/file/a8e864d04c95572d1aece099af852d0a-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/a8e864d04c95572d1aece099af852d0a-Paper.pdf
http://dx.doi.org/10.1021/acs.jcim.8b00839
http://dx.doi.org/10.1021/acs.jcim.8b00839
http://dx.doi.org/10.1016/j.inffus.2021.05.008
http://dx.doi.org/10.1016/j.inffus.2021.05.008
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[36] Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, Andrew Gordon
Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization.
In Advances in Neural Information Processing Systems 33, 2020. URL http://arxiv.org/abs/
1910.06403.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contribu-
tions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See in particular § 3 for modeling
assumptions and § 6 for a discussion of the limitations of the approach.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Appendix F.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? [Yes] We are open sourcing the
code in the repository at the following address: https://github.com/pascalnotin/
uncertainty_guided_optimization.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes] Detailed information for datasets and model hyperparameter values used across
experiments are detailed in Appendix B-E (one section dedicated to each experimental setting)
and G (reproducibility).

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs,
internal cluster, or cloud provider)? [Yes] See Appendix G.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] See Appendix G.
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re us-

ing/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable informa-

tion or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?
[N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB)
approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]

13

http://arxiv.org/abs/1910.06403
http://arxiv.org/abs/1910.06403
https://github.com/pascalnotin/uncertainty_guided_optimization
https://github.com/pascalnotin/uncertainty_guided_optimization

	Introduction
	Background
	Optimization of high-dimensional discrete objects with generative models
	Quantifying model uncertainty

	Importance sampling estimator
	Uncertainty-guided optimization in VAE latent space
	Experimental results
	Illustrative example in digit generation
	Arithmetic expressions approximation
	Molecule generation for drug discovery
	Character VAE (CVAE)
	Junction Tree VAE (JT-VAE)

	Discussion and conclusion
	Analysis of variance of uncertainty estimators
	Digit generation experiments
	Data
	Model details
	Uncertainty estimator
	Optimization details

	Arithmetic expression experiments
	Data
	Model details
	Uncertainty estimators
	Detailed optimization results

	Molecule generation experiments with CVAE
	Data
	Model details
	Uncertainty estimators
	Detailed optimization results

	Molecule generation experiments with JTVAE
	Data
	Model architecture
	Uncertainty estimators
	Detailed optimization results

	Additional discussion
	Reproducibility

