Under review as a conference paper at ICLR 2026

CVEDRL: AN EFFICIENT CODE VERIFIER VIA
DIFFICULTY-AWARE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Code verifier is the key to the post-verification process in large language model
(LLM) code generation. However, supervised fine-tuning (SFT) methods suffer
from dataset scarcity, high error and failure rates, and severe inference delay.
In this work, we adapt reinforcement learning to train an efficient code verifier,
CVeDRL, which substantially alleviates these challenges and balances perfor-
mance and efficiency in only a 0.6B scale. First, we design syntax and function-
ality rewards and employ GRPO to train the base code verifier. However, pre-
liminary experiments indicated that the base model could not produce effective
unit tests for difficult branches and samples. Then we propose Branch-Difficulty-
aware and Sample-Difficulty-aware reinforcement learning based on exponential
reward shaping and static analysis metrics (Halstead Complexity and Maintain-
ability Index). Experimental results show that CVeDRL significantly outperforms
the vanilla model while remaining competitive with state-of-the-art models such
as GPT-4o0-mini and GPT-3.5 in pass rate, assertion failure rate, and code cov-
erage, etc. Furthermore, CVeDRL-0.6B improves inference efficiency by more
than 20x compared with LLM trained with SFT method. Code is available at
https://anonymous.4open.science/r/CVeDRL-DF1A/

1 INTRODUCTION

Recently, large language models (LLMs) have shown impressive capabilities in code generation
(Achiam et al., [2023} |Dubey et al., [2024; Jaech et al., 2024} |Guo et al.| |2025). Although LLMs are
able to quickly generate code solutions, they struggle to produce correct code in a single attempt.
Researchers investigate inference-time scaling methods to alleviate this difficulty, where LLMs first
employ repeated sampling to output multiple code results, and then a code verifier selects the final
best result (Lightman et al., 2024b; [Brown et al.|2024). Consequently, the performance of the code
verifier is the key to the success of the code generation task for large language models (Cobbe et al.,
20215 Lightman et al., 2024b; |Liu et al., 2025; Zhao et al., [2025]).

Code verifiers take the problem description and the candidate code solution as input and leverage
LLMs to generate unit tests, which consist of reasonable input and corresponding output pairs.
By executing candidate code solutions and their unit tests, the execution outcomes are examined
from compilers and interpreters to identify the optimal code solutions among all candidates. In fact,
code verifiers are specific LLMs for code generation, as unit tests are special code snippets. As a
result, instruction supervised fine-tuning (SFT) can endow LLMs with unit test generation ability
and make them qualified code verifiers (Ma et al., |2025). However, there are three challenges in
the SFT strategy. First, large-scale high-quality SFT data is unavailable for unit test generation.
Although Ma et al.| (2025) presents an automatic data pipeline, a lot of incorrect unit tests exist
in the final results. Second, the SFT-based model suffers from a high error rate and failure rate on
generated unit tests. Besides, SFT-based code verifiers have to repeatedly sample multiple unit tests
to mitigate error and failure issues, causing a serious efficiency bottleneck.

The reinforcement learning (RL) training paradigm induces and supervises LLMs to explore ap-
propriate answers through delicate reward signals, which shows substantial potential in the LLM
post-training period (Jaech et al.| 2024} [Shao et al., 2024} |Guo et al.| 2025)). Training efficient code
verifiers by RL is a promising approach to address the above challenges. For one thing, RL training
only needs the problem description and the candidate code, without relying on corresponding unit

Under review as a conference paper at ICLR 2026

tests, which avoids the requirement of high-quality datasets. For another thing, common metrics
such as pass rate and line coverage of unit tests in software engineering can be adapted as RL re-
ward functions, directly reducing error and failure rates during training. In addition, unleashing the
post-training capability of small-scale LLMs and decreasing repeated sampling by RL contribute to
efficiency improvement.

In this work, we adapt reinforcement learning methods to train an efficient code verifier CVeDRL,
which has both performance and efficiency advantages at a scale of 0.6B. To ensure that the gener-
ated unit test cases align with the formatting requirements of test suites and achieve extensive branch
coverage for enhanced test quality, we propose a syntax-functionality composite reward and utilize
Group Reward Policy Optimization (GRPO) [Shao et al.| (2024)) for training. Specifically, we theo-
retically analyze the relationship among test-case pass rates, branch coverage, and the efficacy of
the code verifier. However, preliminary experiments indicated that our initial approach inadequately
distinguished boundary branches and variations in sample difficulty associated with code solutions.
Consequently, we introduce a branch-difficulty-aware mechanism grounded in exponential reward
shaping and sample-difficulty-aware technique with static analysis metrics to handle both problems
respectively.

We perform extensive experiments to verify CVeDRL across three datasets and four policy mod-
els. Experimental results demonstrate that CVeDRL-0.6B significantly improves the performance
of open-source policy models and also enhances the effectiveness of closed-source models. Addi-
tionally, to assess the intrinsic quality of generated unit tests, we directly evaluate various metrics
such as error rates, pass rates, and line coverage across three datasets. CVeDRL-0.6B consistently
outperforms various baseline models in the task of unit test generation, achieving a considerably
higher test-case pass rate on MBPP+ (yielding a 17.55% increase compared to GPT-40-mini) with
marginally higher coverage, and substantiating our theoretical analyses. Furthermore, CVeDRL-
0.6B gains more than 20x inference efficiency improvement on token throughput, compared to the
traditional SFT model CodeRM.

The contributions of our work are as follows:

* We theoretically analyze the interplay among test case pass rates, branch coverage, and the
performance of code verifiers.

* We propose CVeDRL, an efficient code verifier trained by GRPO with syntax and function-
ality rewards, alongside a novel branch-sample difficulty-aware mechanism incorporating
exponential reward shaping and static analysis metrics.

» Extensive experiments demonstrate that CVeDRL-0.6B achieves sota performances on
LLM code verification and unit test generation across six groups of main experiment overall
and improves inference efficiency by more than 20x compared with SFT models.

2 RELATED WORK

Enhancement of code generation via unit testing. Enhancing the reliability of code generation
with unit test cases can be framed as a two-phase process: improving model training and refining
inference. Extensive prior work integrates unit test results into the training process to improve the
accuracy of code generators Liu et al.| (2023a); Dou et al.| (2024). CURE [Wang et al.| (2025c) demon-
strates that co-training tests and code yields more robust behavior in the training phase, and subse-
quent RL variants incorporate real execution feedback from unit test runs to further shape model
policies. Prior research validates codes generated by LLM with automated testing at inference time
with optimal solution selection. For instance, MBR-EXEC |Shi et al.| (2022b)) applies Bayesian risk
decoding to rerank code candidates by their pass rates. CodeRM [Ma et al.| (2025)) leverages a dis-
tilled “test generator” model to produce targeted unit tests that guide solution selection. Building on
these insights, our method combines test accuracy and line-coverage signals within a unified reward
function, thereby both sharpening higher quality of unit test generation and enabling more reliable
optimal code selection at inference.

Reinforcement Learning for LLMs. Recent work systematically frames text generation as a
Markov decision process, adapting the classical RL pipeline to large language models by treating
each token prediction as an action and defining rewards that capture response quality Wang et al.

Under review as a conference paper at ICLR 2026

. Exponential Reward Shaping
Group Relative Policy Optimization (GRPO) =00

a=
*l — a=5

__

: Base Code Verifier RL Sample-Difficulty-aware RL !
' [Syntax Reward]
1
1
I

— a=10

-
[Halstead Complexity] : &

[Exponential Reward]

X - Shaping . 1

[Functionality Reward] [Maintainability Index] 1

__ 1

i i f
— °.9) (- overage
[Problem Description | g (S o 1 Code Solution]
- (b) Exponential Reward
(a) CVeDRL Framework Overview Shaping

Figure 1: (a) We design syntax and functionality rewards and employ GRPO to train the base code
verifier. Base model struggles to produce effective unit test cases for the difficult branches and sam-
ples. Therefore, we propose Branch-Difficulty-aware and Sample-Difficulty-aware reinforcement
learning based on exponential reward shaping and static analysis metrics (Halstead Complexity and
Maintainability Index). (b) Exponential reward shaping modifies the coverage reward function from
a linear format into an exponential format.

(2025a). Prominent architectures extend base models (e.g., Alpaca, LLaMA) via policy-gradient,
proximal policy optimization, and actor-critic algorithmsDong et al.| (2025) to iteratively enhance
coherence and factuality Hu et al.| (2025). Two main reward-model techniques, Reinforcement
Learning from Human Feedback (RLHF) [Christiano et al.| (2023) using curated human preferences
and Reinforcement Learning from Al Feedback (RLAIF)Lee et al.[(2024), have become standard
for aligning outputs with desired behaviors. Direct Preference Optimization (DPO) [Rafailov et al.
(2024) methods bypass explicit reward functions by directly fitting model parameters to preference
data, achieving comparable alignment with lower complexity. Recent extensions of DPO include
Group Robust Preference Optimization (GRPO) Ramesh et al.| (2024), which adaptively re-weights
group-specific losses to ensure worst-case group performance under data imbalance. Balanced Pref-
erence Optimization (BPO) Wang et al.| (2025b) applies dynamic reward-margin balancing to stabi-
lize preference updates in DPO.

Unit test generation. Unit test generation automates the creation of test cases to verify code
correctness, expedite bug detection, and uphold source quality. Traditional approaches often em-
ploy symbolic analysis |Galeotti et al.| (2013)) and meta-heuristic [Harman & Jones| (2001); McMinn
(2004); Harman et al.| (2012)) algorithms to craft tests. LLM-based techniques have garnered atten-
tion for their efficiency, interpretability, and readable outputs Jiang et al.|(2024)). Prior research treat
LLM as an auxiliary part for traditional methods to help the exploration |[Lemieux et al.| (2023)) or
mutation Brownlee et al.| (2023)). More recently, LLM-based methods fall into two main categories:
prompt engineering and model fine-tuning. Prompt engineering frameworks include decomposing
test objectives into sub-questions|Wang et al.| (2024), offering extra static metrics to LLM in prompt
Sepidband et al| (2025), and iteratively incorporating execution feedback into prompt to emulate
human debugging |Pizzorno & Berger| (2025); Chen et al.| (2024); [(Cheng et al.[(2025). Alternatively,
LLMs can be fine-tuned for the specific task of test generation Ma et al.|(2025)); [Eom et al.| (2024).
In this work, we propose a reinforcement learning—based strategy that robustly integrates dynamic
execution feedback with static code analysis to produce high-quality unit tests.

3 METHOD

In this section, we present CVeDRL, which has both performance and efficiency advantages at a
scale of 0.6B. We begin by introducing the Unit Test Majority-Voting Framework and its associated
reliability bound of test case quality. Then we introduce the base code verifier trained by syntax and
functionality rewards for GRPO. To handle boundary conditions, we apply an exponential reward
shaping mechanism that amplifies rewards for covering rare branches. Additionally, we integrate two
static analysis metrics that provide priori code sample complexity assessments, refining the reward
function with static insights.

Under review as a conference paper at ICLR 2026

3.1 UNIT TEST MAJORITY-VOTING FRAMEWORK AND CONFIDENCE BOUND

The unit test majority-voting framework adopts the well-established best-of-N decoding strat-
egy, wherein an LLM policy model first generates N candidate programs for a given program-
ming problem @@ (Cobbe et al.| 2021 [Lightman et al.| 2024a). Formally, we denote these can-
didates as {s1, s2,...,sn}. To assess functional correctness, an auxiliary LLM produces M unit
tests for each (Q,s;) pair, yielding test suites {T3,75,..., T}, where each test suite T, =
{(xj1,9;1), (j2,¥j2), - - - (j,K,, Yj,k,) } contains K; input-output pairs. Here, x;, is the k-
th input and y; . the expected output. Each candidate C; is executed against all tests 7, producing
binary outcomes
|1, if s; passes every case in T},
Pij = 0, otherwise.
These results form a reward vector p; = (p, ,---,P;) for each candidate. Finally, under the

majority-voting criterion (Wang et all 2023), we select the candidate that maximizes the total
number of passed tests:

M
Sopt = arg max E D -

P ie{l N}
j:

To quantify how test-assertion reliability and branch coverage jointly influence the confidence in the
selected program, we derive that the assertion correctness probability p must satisfy the bound

1+./% 1n(11__;1, N)

1+c

where ¢’ denotes the overall probability of correctly selecting a program under the majority-voting
framework, ¢ denotes the prior probability that any individual candidate is functionally correct. N
indicates the total number of generated programs under consideration, M signifies the number of
independent test suites executed for each candidate, while parameter ¢ captures the average branch
coverage. By making these dependencies explicit, the bound provides practical guidelines on how
to trade off candidate-pool size, test-suite count, and test-generation quality to achieve a target post-
selection confidence level ¢’. This result is obtained by applying Hoeffding inequality to the bounded
difference of vote counts of correctness, together with a union bound over all candidate comparisons.
The detailed proof is in Appendix [A]

P =

)

3.2 BASE CODE VERIFIER BY REINFORCEMENT LEARNING

Previous studies|Xie et al.[(2025); Zeng et al.| (2025) demonstrate that the design of ’format-answer’
reward effectively standardizes the format and ordering of model outputs, which guides the rea-
soning process of the model. Inspired by these studies, we propose the basic design of reinforce-
ment fine-tuning framework within CVeDRL that dynamic testing feedback via two complementary
rewards: Syntax Reward and Functionality Reward. Syntax reward enforces specific AST-derived
formatting rules, and Functionality Reward is based on the testing execution results. This approach
significantly mitigates the propensity of models to "hack’ evaluations, standardizing generated code
format with dynamic test execution signals.

Syntax Reward. Inspired by |Guo et al.|(2025), we reexamine the formatting and syntax require-
ments for the unit-testing task and designed a corresponding syntax-based reward. Specifically, the
generated tests must be strictly enclosed within a final Python code block, and traversing the AST
of this test code must reveal at least one class inheriting from unittest.TestCase. Given that
W, is the i*" concatenation response of correct code solution s, the format reward is calculated as
follows:
oy (Wils) = {1.(1)7 %f syntax %s .correct,
—1.0, if syntax is incorrect.

Functionality Reward. Once the syntax is validated, a regex-based extractor retrieves the cor-
rectly structured unit-test snippet u; from the response of model W;. To tailor concepts from
prior RL-based fine-tuning methods for reducing hallucination rates specifically, we refine these

Under review as a conference paper at ICLR 2026

approaches by classifying actual testing execution outcomes to derive reward signals. During unit-
test generation, models exhibit two primary types of hallucinations: (1) Errors, where wrong code
or invalid inputs cause test execution to crash, i.e. both false positives and false negatives; and (2)
Failures, where tests run successfully but incorrectly predict the output from source code s. Because
failures are inherently less severe than errors, we assign distinct negative rewards proportional to
each category. For tests is passed, we introduce branch coverage rate for the reward. The execution-
result reward is computed as follows:

—2.0, if u; is error towards s
T func(Ui,) = ¢ —1.5, if u; is failure towards s
“+cov(u;, s), if u; is passed

In light of GRPO |Shao et al.| (2024), for question ¢ = ¢(s) with corresponding code solution given
as the input to LLM, the model samples a group of outputs {o;}$; from the old policy 7g,,, then
optimize the policy with the following objective iteratively:

G
s 1 . .
T (0,{0:}21) = Equr(@). {0} ~ma,,, (10) {G > min [m(e, Ootalq) o, clip(ri (0, Ooial), a)ao”
i=1

= BEq~P(@Q), oy ~ma,yy (la) [P (o [Trer)]

mo(0i | 9)
i(0,001alq) = ———~,
O Odlt) = 2 oiT 0
where clip(z, €) := min(max(z,1 — €),1 + €), mp is theaa optimal policy. a,, is the advantage

term of i output calculated by the following formula:

o, =

i

i {rsyn(Wi|s), if syntax is incorrect
P

Oy, Tsyn(Wil8) + T punc(us,), if syntax is correct

[

where pi,, and o, is the mean and standard deviation.

3.3 BRANCH-DIFFICULTY-AWARE REINFORCEMENT LEARNING

The Base Code Verifier employs a linear coverage-based reward, which leads the model to favor gen-
erating happy-path test cases and to overlook many boundary conditions. We attribute this behavior
to the diminishing reward at high coverage levels, resulting in insufficient exploration incentives. To
encourage the model to focus more on boundary conditions and other atypical execution paths, we
adopt an empirical yet efficient reward design with coverage awareness:

Tcov(u%s) = (e(x - 1)_1[exp(a X cov(ui,s)) - 1]

where cov(u;, s) € [0, 1] is the coverage rate of unit-test case with a given code, and o > 0 is a tun-
able hyperparameter controlling the tail-heaviness of the curve. 7., remains nearly linear for small
« but stays flat at low coverage and then rises sharply as « increases. Under this scheme, branches
with low coverage (i.e. rare or non-typical paths) receive a much larger incremental reward com-
pared to those already well covered, thereby shifting the focus of policy toward discovering bound-
ary conditions and other special cases after the main path is mastered. By integrating 7o, (u;, $)
into our reward signal, we empirically observe that the model devotes additional generation effort to
hard-to-reach logic, resulting in more balanced and comprehensive unit-test suites.

3.4 SAMPLE-DIFFICULTY-AWARE REINFORCEMENT LEARNING

A key limitation of relying solely on dynamic feedback, such as pass/fail signals or code coverage
metrics, is that these measures only become available after the model has already generated and
attempted to execute a candidate solution. Consequently, they offer no guidance in distinguishing
between “trivial failures” (e.g., minor input mismatches or off-by-one errors) and genuinely chal-
lenging code fragments that demand deeper reasoning. To address this gap, we introduce a static
difficulty prior that quantifies intrinsic complexity of each solution before any execution takes place.
Specifically, for all code solution, we compute two complementary static metrics of each code during
preprocessing: Halstead Complexity(D) and the difficulty of Maintainability(D).

Under review as a conference paper at ICLR 2026

Halstead Complexity, by quantifying the variety and frequency of operators and operands, serves as
a metric for the cognitive load required to parse and is widely utilized for code difficulty analysis
Hariprasad et al.| (2017). The formulation is D H = ’7—21 X % where 7; and 752 denote the counts
of distinct operators and operands in the source code, and N5 is the total number of operand oc-
currences. This metric captures the cognitive burden imposed by syntactic diversity and operand
repetition. To mitigate the influence of extreme outliers, we collect the set of all D values across
our training corpus and determine the 95 percentile with a clipped min—max normalization Dys. We
then perform a clipped min—max normalization to get Halstead difficulty Dy :

Dy = mm(b71§95)/1§95~

Maintainability Index (MI) [Coleman et al.|(1994) further captures the anticipated effort and risk of
future modifications, which is a four-metric polynomial equation for measuring how maintainable
the code is. Recent work |[Zheng et al.[(2024) on MI is applied to the study of code sample differen-
tiation benchmark. The formulation is as follows: MI = max{0, 100 x (171 —5.2InV — 0.23G —
16.21n L + 50sin(v/2.4C))/171}, where V denotes the Halstead Volume, which quantifies the size
and information content of the code; G is the Cyclomatic Complexity; L represents lines of code and
C is the percentage of comment lines. Since higher MI values indicate easier maintenance (lower
difficulty), we invert and rescale it into a unified difficulty measure of maintainability:

MI
Dy =max{0, 1 — —1} € |0,1].
v =max{0, 1= 7} e 0,1
Low-maintainability code often deviates from the idiomatic patterns observed during pretraining,
thereby undermining the transferability of learned representations and increasing hallucination rates.
To emphasize the synergy between code comprehension and maintenance difficulty, we deviate a
geometric mean of two metrics Dy and Djy:

D= DHXD]V[E[O,l]

where indicates the co-occurrence of high values in both dimensions, i.e. only code that is both hard
to comprehend and hard to maintain yields a large difficulty.

Motivated by the imperative to distinguish genuinely challenging code fragments from trivial fail-
ures prior to execution, we introduce the static difficulty D into our reward. Formally, we define the
total augmented execution reward 7 ¢,,,. With exponential reward shaping in coverage:

—2.0, if w; is error towards s;
T func(ui, s) = ¢ —1.0 — (1-=D), ifu; is failure towards s;
Teow(Uiys) - (1+ D), if u; is passed,

where LLM receives larger positive feedback when the execution is passed with harder code func-
tions, while failures incur softened penalties. This design ensures that the agent allocates a greater
exploration effort and learning capacity to high-complexity regions of the code space, thereby im-
proving overall policy robustness on complex unit-testing tasks with static difficulty awareness.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Our experiment includes two components: Validation-Coder Performance and CVeDRL Test Quality
evaluation. In the evaluation of validation in coder, we employ unit-test reward signals to select
among candidate code solutions produced by coder models, which reveals effectiveness of each
model on the validation-coder task. In the test quality evaluation, we execute all generated unit tests
and report metrics for each large model’s output, thereby providing a direct assessment of test-case
quality (see in Table [2)). We select a compact 0.6B parameter model for CVeDRL training primarily
to ensure it can serve as a sufficiently fast and efficient code verifier.

Datasets. We utilize four benchmarks to comprehensively evaluate unit-test generation: HU-
MANEVAL+ (Liu et al., [2023b), MBPP+ (Liu et al.}[2023b), LIVECODEBENCH (Jain et al., [2024)),

Under review as a conference paper at ICLR 2026

Policy Model LLM Scale] ER%| FR%| PR%1 BC%1 AN/
Method Scal
et P Llama3 Llama3 - Gpy3 sGPT-dom HumanEval+
GPT-40 - 1.98 17.21 80.81 96.91 5.35
HumanEval 198 1721 80.81
: _____ GPT-3.5 - 3.14 2632 7054 9673 4.13
Vanilla - 5343 7310 6744 8257 LLaMA3.1 8.0B 10.88 37.19 51.93 94.60 3.97
MBR-E - 60.18 75.47 70.53 85.31 CodeRM 8.0B 244 6473 32.83 96.97 7.15
CodeT ~ 6522 7614 7392 8552
Llama3.1 70B 7195 7841 7988 8548 Qwen3 0.6B 20.70 44.82 34.43 73.19 4.38
CodeRM 8.0B 72.13 78.66 78.13 86.49 Qwen3 32B 9.43 25.31 6526 89.53 8.17
Qwen3 0.6B 55.75 7391 916 8301 CVeDRL 0.6B 1.27 12.79 85.94 97.53 2.41
Qwen3 32B 70.64 7852 7845 86.58 MBPP+
CVeDRL 0.6B 7214 7872 7896 87.05
GPT-40 - 3.98 29.89 66.13 9691 6.12
WL H o GPT-3.5 - 5.14 40.15 5471 96.65 5.97
Vanilla - 49.17 69.28 70.15 71.32 LLaMA3.1 8.0B 15.79 47.53 36.68 95.93 4.13
MBR-E _ 49.98 69.75 7049 72.12 CodeRM 8.0B 2.44 5286 44770 97.11 7.88
CodeT - 5907 69.88 6993 7328
Llama3.] 70B 6524 7177 7587 7501 Qwen3 0'2615’ ﬁ‘}é 3%'53 42'?9 92‘3& —3'35
CodeRM 80B 6663 7253 7598 75.18 Qwen3 3 42 3139 57.19 92. :
CVeDRL 0.6B 0.53 15.79 83.68 97.37 3.13
Qwen3 0.6B 5101 70.19 7286 73.74
Qwen3 32B 6543 7261 7571 75.04 LeetCode
CVeDRL 0.6B 66:79 7360 7621 76.93 GPT o - 377 2514 7209 8764 577
LiveCodeBench GPT-3.5 - 3.53 37.28 59.19 86.53 5.63
Vanilla - 11.74 25.19 20.48 34.90 LLaMA3.1 8.0B 12.47 5477 32.76 81.49 3.88
MBRE 2 B 2051 37 CodeRM ~ 80B 370 58.16 38.14 8537 643
]SOdCT31 7(;B {ggg %gg; ggsg ggéi Qwen3 0.6B 37.31 42.26 2043 6147 3.76
amans. . o . .
Qwen3 32B 23.18 27.63 49.19 78.62 7.34
Cod-RM 80B 1524 2781 2181 3.8 CVeDRL 0.6B 3.49 2098 7553 91.61 2.84
Qwen3 0.6B 1252 2547 2191 37.18
Qwen3 32B 1517 2795 2286 3851))
CVeDRL 0.6B 1675 27.96 23.09 3931 Table 2: The direct testing results of CVe-

DRL and other baselines with metrics includ-

Table 1: The result for code verification of CVe- ing Error Rate(ER), Failure Rate(FR), Pass

DRL and other baselines over three code gen-
eration benchmarks. The top two performances
for each dataset and policy model are marked in
bold and underlined.

Rate(PR), Branch Coverage(BC) and Assertion
Number(AN) across three datasets. Top two per-
formances for each dataset and policy model are
marked in bold and underlined.

and LEETCODE |greengerong| (2023). Following the methodology of CodeRM Ma et al.|(2025)), we
select 168 function-style problems from LiveCodeBench created between January and September
2024. These tasks are known to challenge large models, making them suitable for stress-testing re-
ward signals. To assess generation performance in broader contexts, we filter 2,360 LeetCode prob-
lems following VALTEST [Taherkhani & Hemmati|(2024) to exclude system-design questions, class-
based interfaces, and interactive I/0. We yield 542 problems each defined by a single Python func-
tion signature with a return value. During training, we use the CODERM(Ma et al.| [2025)) dataset,
which contains over 50,000 questions selected through a dedicated processing pipeline, and ensures
that most of the chosen large model solutions are both appropriate and correct.

Metrics. We report five metrics for test quality evaluation:(1) Pass Rate (PR): the proportion of
tests that execute without assertion errors. (2) Failure Rate (FR): the probability that a generated test
runs successfully but the model’s expected output is incorrect. (3) Error Rate (ER): the probability
that the testing doesn’t gives any coverage or failure report due to errors. (4) Branch Coverage (BC):
the ratio of executed branches or lines covered by the tests. (5) Assertion Number (AN): the number
of assertions within the unittest class. For the evaluation of validation, we adopt the pass-of-n metric
under a unit-test majority voting framework, where the final solution is selected based on the number
of test cases it successfully passes.

Baseline Models. In the evaluation of Validation-Coder Performance, we select four high-
accuracy policy models including GPT-3.5, GPT-40-mini|Achiam et al.| (2023)), LLaMA-70B Dubey
et al.| (2024), and LLaMA-8B Dubey et al.| (2024). For reward model inference, the baselines in-
clude CodeT |Chen et al.| (2023), MBR-E [Shi et al.| (2022a),and CodeRM-8B Ma et al.| (2025). We
also evaluate LLaMA-70B as a reward model to compare performance against larger unaligned mod-
els, and vanilla method with random selection of code solutions. For the evaluation of test quality,
we employ GPT-40|Achiam et al.[(2023)), GPT-3.5 |Brown et al.[(2020), and LLaMA3-8B itellama3-

Under review as a conference paper at ICLR 2026

report as baseline models. To assess the gains provided by the CVeDRL training method, we report
baseline model performance on both the direct evaluation and application evaluation tasks. We adopt
Qwen3-0.6B-Base as the backbone model for training CVeDRL.

4.2 MAIN RESULTS

Validation-Coder Performance. Table [Il summarizes the outcomes of our code-verification ex-
periments across three benchmark datasets. Following the majority-voting scheme, each model’s
candidate solutions are verified by running a fixed set of generated test cases. Compared to the pre-
trained Qwen3-0.6B-base model, CVeDRL-0.6B significantly improves the best-of-n performance
on all benchmarks. Against the LLaMA-70B with much larger scale, CVeDRL-0.6B yields greater
gains in nearly every experiment, demonstrating that its generated unit tests more effectively dis-
criminate correct solutions. For example, when using CVeDRL-0.6B as the reward model to select
among GPT-40-mini outputs on the MBPP+ dataset, the accuracy rises from 71.32% to 76.93%, an
improvement of 5.61%. CVeDRL attains first-tier performance across all evaluated policy models
and datasets, with most of its metrics lying within a narrow margin of the second-best baselines.
These findings indicate a potential performance ceiling inherent to the policy models and demon-
strate that CVeDRL, as a code verifier, can effectively select superior solutions to further elevate
policy model outputs. Although larger models (e.g., 1B or 3B parameters) could potentially offer
improved accuracy, the chosen 0.6B scale strikes an optimal balance between verification perfor-
mance and inference efficiency.

Test Quality of CVeDRL. Combining coverage reports with static code-analysis tools, we di-
rectly executed the generated tests and computed five evaluation metrics, the results of which are
summarized in Table 2] for three benchmark datasets. By incorporating negative rewards for as-
sertion errors and positive, difficulty-weighted coverage rewards during training, CVeDRL-0.6B
maintains an exceptionally low failure rate and high line coverage, thereby robustly improving the
quality of generated unit tests. On the MBPP+ dataset, CVeDRL-0.6B significantly outperforms ev-
ery compared model, with the pass rate (PR) exceeding that of the next best model GPT-40 by 16%.
Notably, CVeDRL-0.6B also produces significantly fewer assertions, indicating that our method
minimizes redundant test cases while sustaining coverage levels and thus further reduces testing
overhead. Moreover, Table [2| shows that CVeDRL-0.6B produces the highest-quality test suites on
MBPP+, and correspondingly achieves the best reward-model performance from table[T|on that task
compared to all baselines. This correlation between test-generation quality and reward-model effec-
tiveness suggests a tight link between coverage gain and solution selection, which we analyze in
detail in Appendix

4.3 SAMPLING EFFICIENCY OF CVEDRL

AMU,] AL] Tt AEC|
(GB) (s/iter) (tok/kPar/s) (W)
CodeRM 8.0B 43.07 1.7823 0.296 293.6
Qwen3 4.0B 41.70 4.1951 0.529 294.0
Qwen3 0.6B 4097 1.3415 6.752 276.4

CVeDRL 0.6B 40.97 0.6622 7.083 246.2

HumanEval, Llama3-8B MBPP, GPT-40-m LLM Scale
T T T T T T

|

T

[
=
=N

|
T
|
3
N
% Problem Solved

% Problem Solved
T
[
3
[}

| | L |
100 1 5 10 50 10

5 0 S 5

Number of Cases Number of Cases Table 3: Inference efficiency comparison across
[e cvepRL-06 —— amas 1108 —o— codernss | models. For each model, we compare four key
metrics: Average Memory Utilization (AMU),
Average Latency (AL), Tokens Throughput
(TT),and Average Energy Consumption (AEC).
All results were obtained on the MBPP+ bench-
mark with 10 inference sampling per question.

Figure 2: Performance of three unit-test genera-
tors at different test-case scales, with LLaMA3-
8B on HumanEval+ and GPT-40-mini on
MBPP+ as policy model separately.

Figure 2 illustrates the performance of three unit-test generators under varying test-suite scales
across two policy models and datasets. Both plots demonstrate that increasing the number of sam-
pled test cases generally improves reward-model efficacy, although the magnitude of improvement
differs. Notably, CVeDRL-0.6B reaches its performance plateau with as few as 10 test cases in both

Under review as a conference paper at ICLR 2026

experimental settings, indicating minimal gains when sampling up to 100 cases under a majority-
voting selection criterion. When using LLaMA3-8B as the policy model on HumanEval, all three
reward models perform comparably at a scale of 100, but CVeDRL-0.6B significantly outperforms
the other two baselines at a scale of 5. Similarly, with GPT-40-mini as policy model on MBPP+,
CVeDRL-0.6B consistently surpasses the other reward models at every scale. This is because the
unit tests generated by CVeDRL are of high quality. As derived from the confidence bound, fewer
majority-voting candidates are required, which accelerates the inference process. The detailed dis-
cussion is provided in the Appendix [A]

4.4 INFERENCE EFFICIENCY OF CVEDRL

The results in Table [3|reveal clear scale-dependent trade-offs between resource utilization, latency,
per-parameter throughput and energy efficiency. Relative to the SFT-trained CodeRM, CVeDRL-
0.6B boosts token throughput from 0.296 to 7.083, which is an improvement of more than 20x.
CVeDRL-0.6B further halves the latency from 0.66s/iter to 1.34s/iter compared with base model and
marginally increases per-parameter throughput. CVeDRL-0.6B maintains competitive performance
while significantly reducing computational requirements, thereby achieving a favorable trade-off
between precision and latency, which aligns with the primary objective of rapidly verifying large
amounts of generated code.

4.5 ABLATION STUDY

Model SYN BDA SDA Mbpp+ Humaneval+
PR%! BC%! AN, PR%! BC%! AN|
CodeRM 4470 9711 783 3283 9697 7.5
» % x_ 5153 8511 323 4199 9241 317
v « x 6947 8979 3.5 6813 0483 3.64
CVeDRL X v 7996 9214 347 8414 9455 3.88
v / x 7142 9675 308 7915 9741 275
v /v 8368 9737 313 8594 9753 241

Table 4: Ablation study on the MBPP+ benchmark to disentangle the contributions of the exponent-
shaped exploration for syntax reward(”SYN”), branch-difficulty aware RL(“BDA”) and the static
analysis reward for sample-difficulty aware RL(“SDA”).

We perform an ablation on CVeDRL-0.6B (Table |4) to isolate the effects of our exponent-shaped
exploration for syntax reward, Branch-Difficulty aware RL and static analysis reward for Sample-
Difficulty aware RL. For comparison of training methodologies, we also evaluate CodeRM-8B, a
model trained on the same dataset but using supervised fine-tuning as training method. Static alone
substantially improves pass rate by steering the agent toward appropriately difficult tasks, while ex-
ponential shaping significantly boosts code coverage by rewarding exploration of sparsely exercised
branches. Significantly, combining both yields the highest overall performance, demonstrating their
complementary benefits.

5 CONCLUSION

We introduce CVeDRL, a unified reinforcement learning framework that leverages static code com-
plexity metrics and test results to guide effective unit-test generation and code solution verifica-
tion. Through theoretical analyses, we establish explicit relationships between test-case pass rates,
branch coverage, and overall verification performance. By integrating syntax and functionality con-
siderations with branch-sample difficulty-aware mechanism, CVeDRL adeptly generates concise
and comprehensive test suites capable of generalizing effectively across branches and complex code
solutions. Experimental verification of diverse code generation benchmarks illustrates that CVeDRL
achieves top-tier performance among various policy models. Overall, CVeDRL exemplifies the po-
tential of reinforcement learning in advancing the efficiency and reliability of unit test generation,
laying a strong foundation for future research directions in code verifiers.

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023. URL https://arxiv.org/abs/2303.08774.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, and Sandhini Agarwal. Lan-
guage models are few-shot learners, 2020. URL https://arxiv.org/abs/2005.14165.

Alexander E. I. Brownlee, James Callan, Karine Even-Mendoza, Alina Geiger, Carol Hanna, Justyna
Petke, Federica Sarro, and Dominik Sobania. Enhancing Genetic Improvement Mutations Us-
ing Large Language Models, pp. 153—159. Springer Nature Switzerland, December 2023.
ISBN 9783031487965. doi: 10.1007/978-3-031-48796-5_13. URL http://dx.doi.org/10.1007/
978-3-031-48796-5_13.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. Codet: Code generation with generated tests. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=ktrw68Cmu9c|

Yinghao Chen, Zehao Hu, Chen Zhi, Junxiao Han, Shuiguang Deng, and Jianwei Yin. Chatunitest:
A framework for llm-based test generation, 2024. URL https://arxiv.org/abs/2305.04764.

Xiang Cheng, Fan Sang, Yizhuo Zhai, Xiaokuan Zhang, and Taesoo Kim. Rug: Turbo Llm for Rust
Unit Test Generation . In 2025 IEEE/ACM 47th International Conference on Software Engineer-
ing (ICSE), pp. 2983-2995, Los Alamitos, CA, USA, May 2025. IEEE Computer Society. doi:
10.1109/ICSE55347.2025.00097. URL https://doi.ieeecomputersociety.org/10.1109/ICSES5347.
2025.00097.

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences, 2023. URL https://arxiv.org/abs/1706.03741.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021. URL https://arxiv.org/abs/
2110.14168.

Don Coleman, Dan Ash, Bruce Lowther, and Paul Oman. Using metrics to evaluate software system
maintainability. Computer, 27(8):44—-49, August 1994. ISSN 0018-9162. doi: 10.1109/2.303623.
URL https://doi.org/10.1109/2.303623.

Heng Dong, Kefei Duan, and Chongjie Zhang. Enhancing decision-making of large language models
via actor-critic, 2025. URL https://arxiv.org/abs/2506.06376.

Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu Zhou, Wei Shen, Junjie Shan, Caishuang
Huang, Xiao Wang, Xiaoran Fan, Zhiheng Xi, Yuhao Zhou, Tao Ji, Rui Zheng, Qi Zhang, Xuan-
jing Huang, and Tao Gui. Stepcoder: Improve code generation with reinforcement learning from
compiler feedback, 2024. URL https://arxiv.org/abs/2402.01391,

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024. URL https://arxiv.org/abs/2407.21783.

Jueon Eom, Seyeon Jeong, and Tackyoung Kwon. Fuzzing javascript interpreters with coverage-
guided reinforcement learning for llm-based mutation. In Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2024, pp. 1656-1668, New
York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400706127. doi: 10.
1145/3650212.3680389. URL https://doi.org/10.1145/3650212.3680389.

10

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2005.14165
http://dx.doi.org/10.1007/978-3-031-48796-5_13
http://dx.doi.org/10.1007/978-3-031-48796-5_13
https://openreview.net/forum?id=ktrw68Cmu9c
https://arxiv.org/abs/2305.04764
https://doi.ieeecomputersociety.org/10.1109/ICSE55347.2025.00097
https://doi.ieeecomputersociety.org/10.1109/ICSE55347.2025.00097
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.1109/2.303623
https://arxiv.org/abs/2506.06376
https://arxiv.org/abs/2402.01391
https://arxiv.org/abs/2407.21783
https://doi.org/10.1145/3650212.3680389

Under review as a conference paper at ICLR 2026

Juan Pablo Galeotti, Gordon Fraser, and Andrea Arcuri. Improving search-based test suite genera-
tion with dynamic symbolic execution. In IEEE International Symposium on Software Reliability
Engineering (ISSRE), pp. 360-369. IEEE, 2013.

greengerong. leetcode. Hugging Face Datasets, 2023. URL https://huggingface.co/datasets/
greengerong/leetcode.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025. URL https://arxiv.org/abs/
2501.12948.

T Hariprasad, G Vidhyagaran, K Seenu, and Chandrasegar Thirumalai. Software complexity analy-
sis using halstead metrics. In 2017 International Conference on Trends in Electronics and Infor-
matics (ICEI), pp. 1109-1113, 2017. doi: 10.1109/ICOEI.2017.8300883.

Mark Harman and Bryan F. Jones. Search-based software engineering. Information and Software
Technology, 43(14):833-839, 2001. doi: 10.1016/S0950-5849(01)00127-5.

Mark Harman, Sahar A. Mansouri, and Yuanyuan Zhang. Search-based software engineering:
Trends, techniques and applications. ACM Computing Surveys, 45(1), December 2012. doi:
10.1145/2362456.2362458.

Jian Hu, Xibin Wu, Wei Shen, Jason Klein Liu, Zilin Zhu, Weixun Wang, Songlin Jiang, Hao-
ran Wang, Hao Chen, Bin Chen, Weikai Fang, Xianyu, Yu Cao, Haotian Xu, and Yiming
Liu. Openrlhf: An easy-to-use, scalable and high-performance rlhf framework, 2025. URL
https://arxiv.org/abs/2405.11143,

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024. URL
https://arxiv.org/abs/2403.07974.

Zongze Jiang, Ming Wen, Jialun Cao, Xuanhua Shi, and Hai Jin. Towards understanding
the effectiveness of large language models on directed test input generation. In Proceed-
ings of the 39th IEEE/ACM International Conference on Automated Software Engineering,
ASE 24, pp. 1408-1420, New York, NY, USA, 2024. Association for Computing Machinery.
ISBN 9798400712487. doi: 10.1145/3691620.3695513. URL https://doi.org/10.1145/3691620.
3695513.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu, Colton
Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, and Sushant Prakash. Rlaif vs. rlhf: Scaling
reinforcement learning from human feedback with ai feedback, 2024. URL https://arxiv.org/abs/
2309.00267.

Caroline Lemieux, Jeevana Priya Inala, Shuvendu K. Lahiri, and Siddhartha Sen. Codamosa: Es-
caping coverage plateaus in test generation with pre-trained large language models. In Proceed-
ings of the 45th International Conference on Software Engineering, ICSE °23, pp. 919-931.
IEEE Press, 2023. ISBN 9781665457019. doi: 10.1109/ICSE48619.2023.00085. URL https:
//do1.0rg/10.1109/ICSE48619.2023.00085.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The
Twelfth International Conference on Learning Representations, 2024a. URL https://openreview.
net/forum?1d=v8LOpN6EO:.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The
Twelfth International Conference on Learning Representations, 2024b. URL https://openreview.
net/forum?id=v8LOpN6EO1.

11

https://huggingface.co/datasets/greengerong/leetcode
https://huggingface.co/datasets/greengerong/leetcode
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2405.11143
https://arxiv.org/abs/2403.07974
https://doi.org/10.1145/3691620.3695513
https://doi.org/10.1145/3691620.3695513
https://arxiv.org/abs/2309.00267
https://arxiv.org/abs/2309.00267
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.1109/ICSE48619.2023.00085
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi

Under review as a conference paper at ICLR 2026

Jiate Liu, Yiqin Zhu, Kaiwen Xiao, Qiang Fu, Xiao Han, Wei Yang, and Deheng Ye. RItf: Rein-
forcement learning from unit test feedback, 2023a. URL https://arxiv.org/abs/2307.04349.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and LINGMING ZHANG. Is your code generated
by chatGPT really correct? rigorous evaluation of large language models for code generation.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023b. URL https:
/lopenreview.net/forum?id=1qvx610Cu7.

Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu.
Inference-time scaling for generalist reward modeling. arXiv preprint arXiv:2504.02495, 2025.

Zeyao Ma, Xiaokang Zhang, Jing Zhang, Jifan Yu, Sijia Luo, and Jie Tang. Dynamic scaling of unit
tests for code reward modeling, 2025. URL https://arxiv.org/abs/2501.01054.

Phil McMinn. Search-based software test data generation: a survey. Software Testing, Verification
and Reliability, 14(2):105-156, 2004. doi: 10.1002/stvr.295.

Juan Altmayer Pizzorno and Emery D. Berger. Coverup: Effective high coverage test generation for
python, 2025. URL https://arxiv.org/abs/2403.16218.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2024. URL https://arxiv.org/abs/2305.18290.

Shyam Sundhar Ramesh, Yifan Hu, Iason Chaimalas, Viraj Mehta, Pier Giuseppe Sessa,
Haitham Bou Ammar, and Ilija Bogunovic. Group robust preference optimization in reward-free
rlhf, 2024. URL https://arxiv.org/abs/2405.20304,

Melika Sepidband, Hamed Taherkhani, Song Wang, and Hadi Hemmati. Enhancing llm-based code
generation with complexity metrics: A feedback-driven approach, 2025. URL https://arxiv.org/
abs/2505.23953.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.03300.

Freda Shi, Daniel Fried, Marjan Ghazvininejad, Luke Zettlemoyer, and Sida I. Wang. Natu-
ral language to code translation with execution. In Yoav Goldberg, Zornitsa Kozareva, and
Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 3533-3546, Abu Dhabi, United Arab Emirates, December 2022a. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.231. URL https:
/laclanthology.org/2022.emnlp-main.231.

Freda Shi, Daniel Fried, Marjan Ghazvininejad, Luke Zettlemoyer, and Sida I. Wang. Natu-
ral language to code translation with execution. In Yoav Goldberg, Zornitsa Kozareva, and
Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 3533-3546, Abu Dhabi, United Arab Emirates, December 2022b. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.231. URL https:
//aclanthology.org/2022.emnlp-main.231/.

Hamed Taherkhani and Hadi Hemmati. Valtest: Automated validation of language model generated
test cases, 2024. URL https://arxiv.org/abs/2411.08254,

Shuhe Wang, Shengyu Zhang, Jie Zhang, Runyi Hu, Xiaoya Li, Tianwei Zhang, Jiwei Li, Fei Wu,
Guoyin Wang, and Eduard Hovy. Reinforcement learning enhanced Ilms: A survey, 2025a. URL
https://arxiv.org/abs/2412.10400.

Sizhe Wang, Yongqi Tong, Hengyuan Zhang, Dawei Li, Xin Zhang, and Tianlong Chen. Bpo:

Towards balanced preference optimization between knowledge breadth and depth in alignment,
2025b. URL https://arxiv.org/abs/2411.10914.

12

https://arxiv.org/abs/2307.04349
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://arxiv.org/abs/2501.01054
https://arxiv.org/abs/2403.16218
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2405.20304
https://arxiv.org/abs/2505.23953
https://arxiv.org/abs/2505.23953
https://arxiv.org/abs/2402.03300
https://aclanthology.org/2022.emnlp-main.231
https://aclanthology.org/2022.emnlp-main.231
https://aclanthology.org/2022.emnlp-main.231/
https://aclanthology.org/2022.emnlp-main.231/
https://arxiv.org/abs/2411.08254
https://arxiv.org/abs/2412.10400
https://arxiv.org/abs/2411.10914

Under review as a conference paper at ICLR 2026

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1PLINIMMrw.

Yinjie Wang, Ling Yang, Ye Tian, Ke Shen, and Mengdi Wang. Co-evolving 1lm coder and unit
tester via reinforcement learning, 2025¢c. URL https://arxiv.org/abs/2506.03136.

Zejun Wang, Kaibo Liu, Ge Li, and Zhi Jin. Hits: High-coverage llm-based unit test generation via
method slicing, 2024. URL https://arxiv.org/abs/2408.11324,

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yugian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
learning, 2025. URL https://arxiv.org/abs/2502.14768.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild, 2025.
URL https://arxiv.org/abs/2503.18892,

Jian Zhao, Runze Liu, Kaiyan Zhang, Zhimu Zhou, Junqgi Gao, Dong Li, Jiafei Lyu, Zhouyi Qian,
Biqing Qi, Xiu Li, et al. Genprm: Scaling test-time compute of process reward models via gener-
ative reasoning. arXiv preprint arXiv:2504.00891, 2025.

Jiasheng Zheng, Boxi Cao, Zhengzhao Ma, Ruotong Pan, Hongyu Lin, Yaojie Lu, Xianpei Han,
and Le Sun. Beyond correctness: Benchmarking multi-dimensional code generation for large
language models, 2024. URL https://arxiv.org/abs/2407.11470.

A PASS—COVERAGE TRADE-OFF IN AUTOMATED CODE VERIFICATION

A.1 SINGLE-TEST ASSUMPTIONS

In this subsection, we derive a concise relationship between the probability that a candidate program
passes a test suite and the average branch coverage of the suite. We begin by introducing the notation
for the single—test-case scenario, and then generalize our findings to the multi-test context via the
mean coverage.

Let ¢ be the prior probability that a candidate program is correct and p is the probability that a single

generated test returns PASS on correct code, i.e., that the test’s own assertion is valid. r;; is the

probability that the test suite covers the j-th defective path (branch) of candidate ¢, where n; denotes

the number of defective paths in candidate . ¢ means branch coverage, typically approximated by
1 n . .

c= Py Z;“:'l 73 0 < ¢ < 1. Then we come up with three assumptions as follows:

1=

Model Assumptions. We employ the following simplifying assumptions:

(a) Correct code passes all exercised paths. That is, if the test exercises any path of correct
code, it will pass with probability p, and with probability 1 — p it fails due solely to a faulty
assertion (a false negative).

(b) Erroneous code has at least one faulty path. If the test exercises one of these faulty paths
and its assertion is valid, the error is revealed (the test fails as intended); otherwise the test
yields a false positive.

(c) Suite-level passing criterion. A program is declared to pass the entire test suite and thus
be emitted as a candidate if and only if it passes every individual test (the simplified
pass_of_nrule).

Single-Test Pass Probabilities. Under these assumptions, let C' be the event “program is correct”.
Then for a single test we have

P(pass |C) = p, P(pass |C) = 1—pr,

13

https://openreview.net/forum?id=1PL1NIMMrw
https://arxiv.org/abs/2506.03136
https://arxiv.org/abs/2408.11324
https://arxiv.org/abs/2502.14768
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2407.11470

Under review as a conference paper at ICLR 2026

where

n;

T = E Tij
j=1

is the total probability that the test covers any one of the defective paths in candidate i. In practice,
one often replaces R; by the average coverage s, yielding the approximation

P(pass | C) ~ 1 —pec.

Posterior Probability of Correctness. Given that a candidate program has passed the test, we
apply Bayes’ theorem to update our belief:

P(pass | C) P(C)

P(pass | C) P(C) + P(pass | C) P(C)
qp

qp+(1—q)(1—pri)’

P(C | pass) =

Threshold for Improved Posterior. We are particularly interested in the condition under which
the posterior probability of correctness exceeds the prior:

P(C|pass)>q = p> lim'
Substituting the mean coverage approximation R; = s yields the practical threshold
1
P> +c

In other words, provided that the single-test reliability p exceeds the reciprocal of one plus the
average coverage, passing the test suite will increase our confidence that the program is indeed
correct. This completes the derivation of the basic formula relating pass probability and coverage
under our simplified single-test assumptions. Extensions to multiple independent tests follow by
replacing p and r; with their compounded quantities across the suite.

A.2 MAJORITY VOTING FRAMEWORK

In this section, we extend our analysis to a majority-voting scheme. Let N be the number of candi-
date programs (best-of-IN) and M be the number of independently generated test suites per candi-
date. K denotes the number of I/O pairs in each suite, i.e. the number of assumptions across suites.

Per-Suite Pass Probability. When each suite contains K /O pairs, all assertions must pass for
the suite to be considered successful. Hence

a.= p~ for a correct program,

aw = (1—pc)f for an incorrect program.

where 1 — pc is the probability that either the defect path is not covered or the assertion fails to
detect the error. We simplify our model in K = 1.

Binomial Model for Passing Suites. For any fixed candidate, the number of suites that pass fol-
lows a binomial distribution:
p ~ Binomial(M7 a)

where

o, if the program is correct,
o =
Qy, if the program is incorrect.

Under majority voting, we select the candidate with

Sopt = arg_max p;.
=1,..,

14

Under review as a conference paper at ICLR 2026

Reliability via Concentration Bounds. To ensure that the probability of selecting a wrong pro-
gram is at most §, we require

P(sopt is correct) > 1-46.
We now show how this follows from a Hoeffding-type concentration inequality applied to the dif-
ference in suite-pass counts between the true correct program and any incorrect one.

For each test index t € {1,..., M} and each wrong candidate j € {1,..., W N} where the wrong
proportion of N code solutions is W, define the indicator variables

Xt = 1tesl t passes on the correct solution
yj"t =]—tesl t passes on wrong solution j -
By construction these are independent and identically distributed (i.i.d.), with
Plxy=1)=ac, Ply;;=1)=ow,

where o, and «,, are the per-suite pass probabilities for correct and incorrect code, respectively.

Let

M M
gc:ZXn gj:Zyj,t»
t=1 t=1

M

M
di=g —g = (x—y;.) =D 7
t=1

t=1

where each summand z;; = x; —y, , satisfies z; ; € [—1, 1]. The expectation of the gap is

Eld;] = Elzj¢] = M(ac — aw) = MA.

By the one-sided Hoeffding bound for bounded independent random variables,

P(d; <0) = P(d; — E[d;] < —MA)

2(MA)?
< EXP(_ Zi‘ilu—(—l)w)

= exp(—%“) =:p.

Hence for each wrong candidate j, the probability that it ties or outperforms the correct program is
at most 3.

Then we calculate the union bound over all wrong candidates. Let £ be the event that any of the
W' N wrong programs achieves s; > s., which indicates s, is incorrect. By the union bound,

P(E) < WNB = WN exp(— MQN).
Imposing the reliability target P(£) < ¢ gives

2 ln@
M

WN exp(—MTM) <d = A >

Recalling that A = o, — a,, and P(sopt is correct) > 1 -9, we obtain the required “safety margin”

In W
— >
Gem G =\ oy
Operational bound for K = 1. In the single-case suite model (KX = 1), we have o, = p and

. =1 —pec, hence
A=p-(1-pc)=p(l+c) -1

15

Under review as a conference paper at ICLR 2026

Table 5: Estimated minimal number of independent test suites per candidate M (rounded) for
N = 100 with branch coverage ¢ of CVeDRL in Table [I] varying assertion reliability p. As an
illustrative example, we adopt CVeDRL as the verifier and GPT-40-m as the code generator, which
is demonstrated in Table

Dataset p=070 p=080 p=0.85
HumanEval+ (¢ = 0.8257 — ¢’ = 0.8705, ¢ = 0.96) 71 30 21
MBPP+ (¢ = 0.7132 — ¢’ =0.7693, ¢ = 0.97) 67 29 20

Then we have
In N
plte)—1 > 1125 .

S

Substitution yields the practical requirement

1 E
b= 1+c¢ ’

Finally, if we denote by ¢’ = 1 — 0 the overall probability of correct selection with majority voting
framework and replace the fraction of wrong solutions W by its expectation E[W]| = 1 — g, the

bound becomes
1A)
p >

- 1+¢

()

Inference setting with majority-voting framework and confidence bound. As an example, we
show how the confidence bound quantifies the trade-off between test quality and the reduction in
required test suites M per candidate when selecting among multiple program proposals. The numer-
ical entries in Table [5| (¢, ¢’, ¢, p) is obtained from the experimental tables, where the prior ¢ is the
baseline (‘“Vanilla”) correctness rate measured for the policy column, and the posterior target ¢’ is
the improved correctness rate reported under CVeDRL (the “CVeDRL” row) from Table[I] The cov-
erage parameter ¢ was taken from the verifier branch coverage statistics (BC) in Table[2]and used as
a proxy for average branch coverage (hence ¢ ~ 0.96 for HumanEval+ and ¢ ~ 0.97 for MBPP+).
The per-assertion reliability p was treated as the variable in the sensitivity grid reported in Table [5]
The operational bound (%) indicates that
L2 In({=%N)
(14+cp—1) :

Improving the verifier (as CVeDRL does) reduces the minimal required number of independent
suites M through two channels: (i) raising the effective assertion reliability p (signalled by higher
PR and lower ER/FR) and (ii) increasing measured coverage c (higher BC). Both actions enlarge
the denominator ((1 + ¢)p — 1)? and thus shrink M (the dependence is approximately quadratic
in the effective margin). However, the inequality also highlights a countervailing effect: specifying
a higher target post-selection confidence ¢’ increases the logarithmic numerator ln(11:5,), and
therefore raises the required M. Fundamentally, we set N = M = 100 during inference time. In
this case, the number of samples M required for CVeDRL to attain the target correctness rate ¢’ is
substantially less than 100. Notably, CVeDRL nearly reaches the desired performance at M ~ 10
as illustrated in Figure 2] which clearly surpasses the capability of other code verifiers. As shown
in Table [5] CVeDRL achieves a pass rate close to 85%, with the required number of majority-
voting candidates being around 20. This indicates that the target performance can be reached when
M = 20, which is more than three times fewer samples than those required by a verifier with a unit
test accuracy of p = 0.70 for both dataset.

A.3 CONCLUSION
In summary, our analysis reveals that the interplay between test-assertion reliability p and average

branch coverage s fundamentally determines the posterior confidence in a candidate program’s cor-
rectness. A single test suffices to improve confidence only when p > 1/(1 + ¢). With majority

16

Under review as a conference paper at ICLR 2026

voting framework across M independent suites and N candidates, the pass rate of unit-test gener-
ated by LLMs requires a stronger condition (). These bounds quantify explicit trade-offs. More
test suites or higher coverage can compensate for imperfect assertions, whereas larger candidate
pools or stricter error tolerances demand more reliable tests. This provides principled guidelines for
designing automated testing pipelines that balance resource expenditure against desired selection
reliability. Specifically, the analysis is utilized for choosing the crucial hyperparameter M which is
relative to acceleration.

B ADDITIONAL DISCUSSIONS

B.1 IMPACT OF ANCILLARY LLM COMPONENTS

To investigate how the choice of base model influences the effectiveness of the CVeDRL training
method, we include Qwen2.5-Coder-0.5B as a benchmark against Qwen3. Additionally, we perform
an ablation study by disabling Qwen3’s chain-of-thought capability using the /no_think tag. Fi-
nally, motivated by prior findings that large LLMs struggle with static code analysis, we augment the
prompts with conditional branch information to assess whether this auxiliary context yields further
performance gains.

The ablation study in Table [6] indicates that prompting primarily guides the model toward correct
solutions with fewer attempts, while chain-of-thought (CoT) encourages broader exploration at the
expense of efficiency. In the smaller Qwen2.5 model, prompts reduce the average number of tri-
als but slightly lower overall pass rate, whereas disabling prompts yields higher pass rate with
more attempts. Although Qwen2.5 shows reduced pass rate and coverage relative to Qwen3, it
requires fewer generated assertions and nonetheless significantly outperforms GPT-40, highlight-
ing the superiority of the CVeDRL training methodology. The ablation results show that introduc-
ing chain-of-thought (CoT) consistently harms overall performance, lowering both pass rate and
coverage. Moreover, adding conditional prompts has no appreciable effect on branch coverage but
nonetheless reduces the model’s success rate. These findings indicate that while CoT and extra
prompt constraints aim to guide reasoning, they in fact impede efficiency without delivering cover-
age benefits.

Table 6: Ablation of Prompt and CoT on Validation-Coder Performance

Base Prompt CoT PR% BC% AN
Qwen2.5 v \ 71.68 96.79 2.09
Qwen2.5 X \ 7543 96.86 2.53
Qwen3 X X 82.01 97.14 2091
Qwen3 X v 80.37 96.15 3.47
Qwen3 v X 7998 97.21 3.13
Qwen3 v v o 7971 96.54 3.64
GPT-40 \ \ 66.13 9691 6.12

B.2 LIMITATION

Partial code support. In real-world code generation tasks such as code completion, the generated
code is often partial and thus cannot be directly validated by unit tests. Although the sample-branch
syntax/functionality reward we propose can be adapted to handle partial programs and library-level
(test-suite) training once a suitable development environment and dependencies are provisioned,
this capability has not yet been integrated into our pipeline. Future work will close this gap by incor-
porating partial-code validation into the pipeline and extending the approach to support additional
programming languages and broader library ecosystems.

Unit test adaptability. While our experiments show that the current unit tests generated by CVe-
DRL are effective at filtering incorrect code, the verifier itself cannot distinguish the intrinsic cor-

17

Under review as a conference paper at ICLR 2026

rectness of the code solution. Future work should incorporate code mutation or auxiliary principles
to alleviate this limitation.

C TRAINING CONFIGURATION

Framework and Algorithm. We fine-tune the Qwen3-0.6B and Qwen2.5-Coder-0.5B checkpoint
with the verl RL library using Group Relative Policy Optimization (GRPO). verl is an open-
source reinforcement-learning framework designed for post-training fine-tuning of large language
models, providing a hybrid single- and multi-controller programming model for scalable PPO and
GRPO workflows. It features modular APIs that decouple computation and data dependencies and
integrates seamlessly with PyTorch FSDP, Megatron-LM, vLLM, and other LLM infrastructures
for efficient, production-ready deployments. GRPO eliminates the separate value network and up-
dates the policy by comparing each sampled trajectory to the within-group reward baseline, thereby
reducing both memory footprint and wall-clock cost.

Dataset. All prompts are taken from the publicly-available CodeRM-UnitTest corpus, which pro-
vides 17,600 training items and 59,600 held-out test items. The CodeRM-UnitTest dataset is a cu-
rated collection of over 77 000 synthetic Python unit tests, derived from CodeFeedback-Filtered-
Instruction and TACO, and provided in Parquet format for training test-guided code-reward models.
It serves as the primary training and evaluation corpus for lightweight unit-test generator models like
CodeRM-8B, enabling rigorous performance benchmarks under real execution feedback. Because
every roll-out requires real execution of unit tests, we randomly subsample 3,000 test cases for val-
idation to keep evaluation under two hours per checkpoint. Experiments ran on 2 x NVIDIA A100
40 GB GPUs (FP16) with total training time of roughly 48 hours. Table [/| summarises the hyper-
parameters that most influence optimization and compute. All other settings follow the official ver1
GRPO recipe.

Parameter Value
Learning rate 1x10°°
Global prompt batch size 32
Rollouts per prompt 2

Max prompt / response length 6 150/ 2 048 tokens
Mini-batch / micro-batch size 16/ 8

KL loss coefficient 0.001 (low-variance)
Entropy coefficient 0 (disabled)

GRPO clip ratio 0.2 (default)

Total epochs 1000

Gradient checkpointing enabled

FSDP offload disabled

Table 7: Salient hyper-parameters used in GRPO fine-tuning.

D EXPERIMENTAL DETAILS

Policy models. We evaluate four instruction-tuned policy models of different capacity and
provider type: Llama3-8B-Instruct, Llama3-70B-Instruct, GPT-3.5-turbo, and GPT-40-mini. Each
model produces at most 100 candidate code solutions per prompt. Decoding and verification are run
on 4 x NVIDIA A100-40 GB GPUs.

Baselines. We consider three verification-oriented baselines that exploit unit-test feedback to dis-
criminate among candidate programs.

* Vanilla: the top-1 sample of the policy model without any reranking.

e MBR-E: minimum-Bayes-risk decoding that ranks candidates by the empirical risk com-
puted from the execution outcomes of LLM-generated test cases (we use the “hard-loss”
variant).

18

Under review as a conference paper at ICLR 2026

* CodeT: dual-execution agreement that measures both (i) consistency between candidate
programs and their generated tests and (ii) cross-candidate concordance.

Besides the three test-driven methods discussed above, we measure performance against four
capacity-oriented baselines: an 8B reward model CodeRM-8B for score-based reranking, a strong
70B code LLM Llama3-70B-Instruct, the supervised-fine-tuned backbone Qwen3-0.6B (Base), and
our model CVeDRL-0.6B.

* CodeRM-8B : an 8B-parameter reward model that assigns a scalar quality score to each
candidate; we select the highest-scoring solution.

e Llama3.1-70B : a strong open-source coder whose single best sample is taken as a stan-
dalone baseline.

* Qwen3-0.6B (Base): the supervised-fine-tuned version of our backbone model, without
reinforcement learning.

* CVeDRL-0.6B : our method, trained with GRPO on weighted data (see Appendix [C).

Datasets. To obtain a representative view of unit-test generation, we aggregate four publicly
available benchmarks: HumanEval+ and MBPP+, LiveCodeBench from Jan to Sep 2024, and the
algorithm-oriented subset of LeetCode. Together, they cover both synthetic interview-style problems
and organically authored, in-the-wild code, furnishing a diverse test bed for large-language-model
(LLM) evaluation.

* LivecodeBench : Following the CodeRM protocol, we retain the 168 function-style tasks
released between January — September 2024, because these newer problems have empiri-
cally proved the most challenging for current LLMs.

* LeetCode : Starting from 2,360 publicly accessible problems, we apply the VALTEST fil-
tering rules to discard system-design, class-interface, and interactive I/O questions. The
remaining 542 tasks each expose one Python function signature with a deterministic return
value, enabling uniform test-harness construction.

For every benchmark we normalise signatures, strip extraneous boilerplate, and compile tests into
a unified execution harness so that success rate, failure rate, branch coverage, and Pass@N can be
measured consistently across datasets.

Experimental Rationale. HUMANEVAL+ and MBPP+ are retained in both the CVeDRL Test
Quality and Validation-Coder Performance studies in main result because their moderate task counts,
authoritative reference solutions, and fine-grained coverage tooling permit reliable intrinsic scor-
ing while keeping the compute requirements of iterative Pass@N evaluation tractable. The filtered
LEETCODE subset is confined to the Test Quality analysis. Its larger problem set and costly edge-
case generators provide valuable stress-testing for success, error, and coverage metrics, but render
exhaustive validation-coder search computationally infeasible. Conversely, LIVECODEBENCH ap-
pears only in the Validation-Coder study. Its developer-written tests supply a strong external oracle
for synthesis evaluation, yet their heterogeneity prevents fair aggregation with coverage-based qual-
ity metrics.

Due to the constraints of the double-blind review policy, the model weights are not publicly released
at this stage.

19

Under review as a conference paper at ICLR 2026

[Original Prompt](Input)
Below is a question and it's corresponding code answer. Please write test cases to check the correctness of the code answer. You need to
use the unittest library in Python and create a test class for testing.

question

Subodhians are taught to add multi-digit numbers from right-to-left one digit at a time.Many find the \"'carry\" operation -in which 1 is
carried from one digit position to be added to the next - to be a significant challenge. Your job is to count the number of carry operations
for each of addition problem so that educators may assess their difficulty.\n\nFor the input first line contains n number of records which is
less then 1000. And then each line contains two numbers with spacing between them.

#it# code solution
def count_carry_operations(a: str, b: str) > int:
Ensure both strings are of equal length by padding with leading zeros
max_len = max{len(a}, len{b}}
a = a.zfill(max_len)
b = b.zfill{max_len}

carry_count=0
carry=0

Iterate from the last digit to the first
foriinrange(max_len -1, -1, -1}:
digit_sum = int(a[i]} + int(b[il} + carry
if digit_sum »>=10:
carry=1
carry_count+=1
else:
carry=0

return carry_count

[Unit Test Output](Model Response) Test Coverage
Here is the test case for the “‘count_carry_operations’ function:

[100%]
“python coverage: platform linux, python 3.10.16-final-0

impaort unittest
Name Stmts Miss Cover Missing

class TestCountCarryOperations(unittest.TestCase}):
def test_examplel(self): srcpy 13 0 100%
self.assertEqual{count_carry_operations("123", "456"}, 0}

TOTAL 13 0 100%
def test_example2(self): 3 passed in 0.02s
self.assertEqual{count_carry_operations("555", "555"}, 3}

{'coverage': '100%', 'uncovered_lines": {'src.py": "'}, 'failure": False,

def test_example3(self): ‘error: False, 'assertion_info'": {'assertEqual': 3}}
self.assertEqual(count_carry_operations("123", "594"}, 1} {'coverage": 1.0, 'assertion_info': {'assertEqual': 3}}
if _name__=='_main_"
unittest.mainf) Answer score: 1.0

Format score: 1.0

Total score: 2.0
This test case checks the function with the provided sample
inputs and outputs.<|endoftext |>

Figure 3: A case of the training pipeline for CVeDRL.

20

	Introduction
	Related Work
	Method
	Unit Test Majority-Voting Framework and Confidence Bound
	Base Code Verifier by Reinforcement Learning
	Branch-Difficulty-aware Reinforcement Learning
	Sample-Difficulty-aware Reinforcement Learning

	Experiments
	Experimental Setup
	Main Results
	Sampling Efficiency of CVeDRL
	Inference Efficiency of CVeDRL
	Ablation Study

	Conclusion
	Pass–Coverage Trade‐off in Automated Code Verification
	Single‐Test Assumptions
	Majority Voting Framework
	Conclusion

	Additional Discussions
	Impact of Ancillary LLM Components
	Limitation

	Training Configuration
	Experimental Details

