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1.  IntroducƟon 

Diagnostic classification models (DCMs), also known as cognitive diagnostic models (CDMs), 
have gained increasing attention in fields such as educational assessment and psychological 
evaluation (Chen, 2017). Unlike traditional models like the Rasch model or item response 
theory (IRT), which assume continuous and unidimensional latent traits, DCMs identify discrete, 
multidimensional latent skills or attributes required to answer test items correctly (Madison & 
Bradshaw, 2018; DeCarlo, 2011). Consequently, DCMs yield students’ attribute mastery profiles 
(Oka & Okada, 2022). 

In addition to diagnostic profiles, DCMs estimate item and structural parameters that 
describe the probability of correct responses and the distribution of attribute mastery in the 
population (Yamaguchi & Templin, 2022). However, these parameter estimates often fall on the 
boundaries (e.g., 0 or 1), even when the true values lie in the interior of the parameter space 
(DeCarlo, 2011). These boundary problems are particularly common when the sample size is 
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small, the number of attributes is large, or the Q-matrix is suboptimal (Clogg & Eliason, 1987; 
Yamaguchi & Templin, 2022).  

To address this, Posterior Mode Estimation (PME) incorporates informative priors to 
regularize parameter estimates and reduce overfitting (Galindo-Garre & Vermunt, 2006). 
However, PME still estimates item and structural parameters, which may reduce efficiency 
(Yamaguchi & Templin, 2022). Collapsed Gibbs Sampling (CGS), in contrast, avoids estimating 
these parameters by marginalizing them out, focusing instead on directly estimating latent 
attributes (Porteous et al., 2008).  

Despite methodological advancements, limited research has compared the performance 
of JMLE, PME, and CGS under consistent conditions. This study conducts simulation 
experiments to evaluate the estimation accuracy, boundary problem occurrence, and 
computational efficiency of the three methods across varying data conditions. R, Python, and 
Mplus are used for data generation and analysis. 

2.  The model and Boundary Problem 

This study employs the Deterministic Inputs, Noisy “And” (DINA) model, a widely used 
framework within DCMs. The DINA model defines the probability of a correct response as a 
function of latent attribute mastery, specified by a binary Q matrix, and item properties. Suppose 
N denotes examinee sample size and K denotes the total number of latent attributes that are 
measured by a test. In the Q matrix, each element qik indicates whether item i measures 
attribute k. If attribute k is measured by item i, qik = 1; otherwise, qik = 0. Let 
௘ߙ ൌ ሺߙ௘ଵ, ,௘ଶߙ … , ௘௞ߙ ௘௄ሻ denote the eth examinee’s mastery profile, withߙ ൌ 1 if examinee e 
has mastered attribute k, and 0 otherwise, and i = 1, . . . N. In a DINA model, the probability of 
providing a correct response X to item i for each examinee e was determined by: 

ܲሺܺ௘௜ ൌ ,௘ߙ|1 ,௜ݏ ݃௜ሻ ൌ ሺ1 െ ௜ሻఎ೐೔݃௜ݏ
ଵିఎ೐೔                                                       (1) 

where ݏ௜ is the slipping parameter, ݃௜ is the guessing probability parameter, and 

௘௜ߟ ൌ ∏ ሺܽ௘௜௤೔ೖሻ
௄
௞ୀଵ                                                                                             (2) 

is an indicator of whether the examinee e has mastered all required attributes for the item i to 
answer it correctly (the “deterministic” feature of the model). 

The DINA model assumes a conjunctive relationship between attributes, meaning that 
an examinee must master all the required attributes of an item to have a higher probability of 
answering it correctly. This strict assumption makes the model particularly sensitive to data 
sparsity and response inconsistencies, often leading to extreme parameter estimates when 
using standard estimation methods. Given an examinee’s attribute profile, the probability of 
correctly answering an item depends on the item’s slipping parameter (ݏ௜) and guessing 
probability parameter (݃௜). These parameters introduce stochasticity into the deterministic 
structure of the model, allowing for response patterns that do not strictly adhere to the mastery 
assumptions. However, in practice, these parameters are highly susceptible to boundary 
problems—where estimates converge to extreme values of 0 or 1 due to sparse or unbalanced 
response patterns. For items that are frequently answered correctly by examinees with only 
partial attribute mastery, the estimation process tends to drive guessing probabilities toward 1, 
even when the true guessing rate should be moderate. Similarly, items that are rarely answered 
correctly can result in slipping probabilities approaching 1, implying that even fully 
knowledgeable examinees are highly prone to incorrect responses.  
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3.  EsƟmaƟon Methods and Algorithms 

3. 1  Joint Maximum Likelihood EsƟmaƟon (JMLE) 

Joint Maximum Likelihood Estimation (JMLE) is a traditional estimation approach that 
simultaneously estimates item parameters and latent attribute profiles by maximizing the 
likelihood function of the observed responses. Generally, its estimation process can be 
implemented using iterative algorithms such as the Newton-Raphson algorithm and the 
Expectation-Maximization (EM) algorithm. 

The Newton-Raphson algorithm updates item parameters (slipping and guessing) 
directly by utilizing the gradient (first derivative) and Hessian matrix (second derivative) of the 
log-likelihood function. This method offers faster convergence under well-behaved likelihood 
surfaces, but it requires careful numerical implementation due to the risk of instability, especially 
when parameter estimates are near the boundaries of the parameter space (i.e., close to 0 or 
1). The update formula for a generic parameter θ is given by: 

ሺ௧ାଵሻߠ ൌ ሺ௧ሻߠ െ ቂడ
మ௟௢௚௅ሺఏሻ

డఏమ
ቃ
ିଵ
ቂడ௟௢௚௅ሺఏሻ

డఏ
ቃ                                                          (3) 

where log L(θ) is the log-likelihood function of the observed data.  

Although Newton-Raphson provides faster convergence in theory, in practice the EM 
algorithm is more commonly used in DCMs due to its numerical stability and the discrete nature 
of latent attribute profiles. In the EM algorithm, the estimation begins by initializing the item 
parameters and the latent attribute profiles for all examinees. The algorithm proceeds in two 
steps, an expectation step (E-step) and a maximizing step (M-step). E-step: The expected 
complete-data log-likelihood is computed by estimating the probabilities of each examinee’s 
attribute profile given the current estimates of item parameters and the observed responses. 
This step involves calculating the probability of each latent class membership for each 
examinee. M-step: The item parameters are updated by maximizing the expected log-likelihood 
obtained from the E-step. In particular, the slipping and guessing parameters are updated for 
each item based on the expected classification of examinees, adjusting the probability of 
observing correct or incorrect responses conditional on attribute mastery. This EM cycle 
continues iteratively until the parameter estimates converge, typically defined by a sufficiently 
small change in the log-likelihood or parameter values between iterations.  

3. 2  Posterior Mode EsƟmaƟon (PME) 

Posterior Mode Estimation (PME) is a Bayesian approach, defined as: 

Pሺθ∣Xሻ	∝	PሺX∣θሻ	Pሺθሻ                                                                                        (4) 

where P(θ∣X) represents the posterior distribution, P(X∣θ) is the likelihood function, and P(θ) is 
the prior distribution. In practical applications, PME identifies the mode of the posterior 
distribution by maximizing the log-posterior: 

log	Pሺθ∣Xሻ	ൌ	log	PሺX∣θሻ	൅	log	Pሺθሻ                                                               (5) 

To constrain slipping and guessing probabilities to realistic values, PME employs Beta priors, 
such as: 
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 ܲሺݏ௜ሻ~ܽݐ݁ܤሺߙ௦,  ௦ሻ                                                                                           (6)ߚ

ܲሺ݃௜ሻ~ܽݐ݁ܤ൫ߙ௚,        ௚൯                                                                                         (7)ߚ

where ߙ௦,	ߚ௦and ߙ௚, ߚ௚ are hyperparameters that shape the prior distribution. These priors 
prevent parameters from being overly influenced by sparse or unbalanced data. For instance, a 
Beta(2, 2) prior penalizes boundary values near 0 or 1, encouraging parameter estimates to 
remain within a reasonable range. By enforcing prior constraints, PME effectively ensures 
numerical stability and prevents overfitting to rare patterns in the data (Galindo-Garre & 
Vermunt, 2006), makes it particularly useful for stabilizing estimation in small-sample scenarios 
or when the Q-matrix is mis-specified. 

PME is computationally efficient because it builds upon existing MLE algorithms. 
Specifically, algorithms such as EM or Newton-Raphson can be adapted to include the prior 
term (log P(θ)) in the objective function, ensuring smooth parameter updates. The PME 
implementation typically iterates through two main steps: (1) calculate the log-posterior for each 
parameter by combining the log-likelihood and the log-prior, and (2) use numerical optimization 
methods to maximize the posterior distribution. Compared to fully Bayesian methods like 
Markov Chain Monte Carlo (MCMC), PME avoids the computational burden of iterative 
sampling while still leveraging prior information (Schafer, 1997). 

The practical benefits of PME extend beyond its computational efficiency. For example, 
PME effectively stabilizes parameter estimates in CDMs, particularly under challenging 
conditions such as sparse response data or complex Q-matrices with overlapping attributes. In 
these scenarios, MLE often fails due to insufficient observations for certain item-response 
patterns, resulting in slipping probabilities that approach 1 for difficult items or guessing 
probabilities that inflate to 1 for overly easy items. By incorporating priors, PME smooths these 
estimates, ensuring they reflect both theoretical plausibility and empirical data. As demonstrated 
by DeCarlo (2010), PME outperforms MLE in recovering item parameters under such 
conditions, yielding more accurate and interpretable estimates of diagnostic classification 
accuracy.                        

3. 3  Collapsed Gibbs Sampling (CGS) 

While PME effectively addresses boundary problems by incorporating prior distributions into 
parameter estimation, CGS provides an efficient Bayesian approach for parameter estimation in 
DCMs, addressing boundary problems by avoiding direct estimation of item-specific parameters 
such as slipping and guessing. Unlike methods like MLE or PME, CGS focuses on the 
estimation of examinees’ latent attributes while integrating over item parameters during the 
sampling process. This marginalization inherently reduces the risk of parameter estimates 
sticking to boundary values. 

The key idea of CGS is to reduce the dimensionality of the parameter space by 
marginalizing item-specific parameters, thereby concentrating the sampling process on latent 
attribute profiles. The joint posterior distribution of the model is 

ܲሺߙ, ܺ, Θ, Πሻ 	∝ ܲሺܺ|ߙ, Θሻ	ܲሺΘሻܲሺߙ|ΠሻܲሺΠሻ																																																(8)	

where ߙ represents the latent attribute profiles, X denotes the observed responses, Θ includes 
item parameters (e.g., slipping and guessing), and Π represents structural parameters such as 
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the class mixing probabilities. In CGS, the item parameters Θ and structural parameters Π are 
integrated out to obtain a collapsed posterior distribution: 

ܲሺߙ, ܺሻ 	ൌ ∬ܲሺߙ, ܺ, Θ, Πሻ݀Θ݀Π.																																																																						(9)	

The derivation of the parameter marginalization in the model follows the approach outlined in 
Sato (2016) and Suyama and Sugiyama (2017). This marginalization eliminates the need to 
directly estimate Θ and Π, which are often prone to extreme boundary values in MLE or PME 
frameworks. This eliminates focuses estimation solely on latent attribute profiles. 

However, the calculation of eq.(9) is not obvious and computationally difficult. Therefore, 
we use the Gibbs sampling algorithm (Geman & Geman, 1984) to generate random samples of 
parameters from their conditional distributions. CGS operates through iterative sampling, 
updating each examinee’s latent attribute profile ߙ௘ conditioned on the observed responses and 
the current state of all other examinees’ profiles. The conditional posterior for ߙ௘ is given by: 

   	ܲሺߙ௘|ܺ௘, ௘ሻିߙ ∝ ܲሺܺ௘|ߙ௘ሻܲሺߙ௘|ିߙ௘ሻ																																																											(10)	

where ܺ௘ represents the response vector for examinee e, and ିߙ௘ denotes the latent profiles of 
all other examinees. This decomposition allows the sampling of ߙ௘ based on its contribution to 
the likelihood ܲሺܺ௘|ߙ௘ሻ and the prior distribution informed by the collective profile ܲሺߙ௘|ିߙ௘ሻ. 
The likelihood ܲሺܺ௘|ߙ௘ሻ incorporates the influence of slipping and guessing probabilities on 
examinee responses: 

  ܲሺܺ௘|ߙ௘ሻ ൌ ∏ ሾܲሺܺ௘௜ ൌ ,௘ߙ|1 ܳ௜ሻ௑೐೔ܲሺܺ௘௜ ൌ ,௘ߙ|0 ܳ௜ሻଵି௑೐೔ሿ
௡
௜ୀଵ 											ሺ11ሻ	

where ܺ௘௜ is the response to item i, and ܳ௜ is the item’s Q-matrix row. By marginalizing ݏ௜ and 
݃௜, the likelihood avoids boundary issues associated with their direct estimation. The prior 
ܲሺߙ௘|ିߙ௘ሻ reflects the probability of ߙ௘ given the population-level latent class distribution. This 
distribution is governed by mixing proportions Π, which are updated iteratively to ensure 
coherence with the sampled profiles. 

Regarding the detailed algorithm, CGS approach builds upon the standard Gibbs 
sampling but modifies the process by collapsing over item parameters, reducing the 
dimensionality of the estimation problem. It begins by assigning initial values to latent attribute 
profiles, either randomly or based on prior knowledge. Given these profiles, class proportions 
are assigned Dirichlet priors to maintain a probabilistic structure in the latent classification 
process. Unlike PME, which explicitly estimates slipping and guessing probabilities, CGS 
conditions latent attribute updates on observed responses while integrating over the unknown 
item parameters. For each iteration, the sampling process first updates the latent attribute 
profile of each examinee based on the conditional posterior distribution, incorporating the 
responses and the current state of other examinees’ profiles. Next, class proportions are 
updated using a Dirichlet posterior, ensuring a smooth and stable representation of latent class 
distributions. To ensure robust estimation, CGS employs a burn-in period, during which initial 
samples are discarded to allow the Markov Chain to converge to a stationary distribution. Once 
convergence is achieved, the posterior samples are aggregated to obtain the final estimates of 
latent attribute mastery.  

4.  SimulaƟon Design 
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To evaluate the performance of JMLE, CGS and PME in mitigating boundary problems within 
the DINA model, a series of Monte Carlo simulations were conducted. The study systematically 
varied key experimental conditions, including sample size (N), number of attributes (K), number 
of items (I), and item quality, to assess how these factors influence classification accuracy and 
parameter stability. 

First, dichotomous response data were generated based on the DINA model described 
in Eq. (1) for each simulated dataset under various conditions, including four key factors. First, 
item quality (slipping and guessing probabilities) was assigned. High-quality items were 
characterized by ݏ௜ = ݃௜ = 0.1, ensuring strong discriminative power, whereas low-quality items 
had ݏ௜ = ݃௜ = 0.3, increasing response variability and reducing classification precision. Second, 
sample size was examined at two levels (N = 100 and N = 1000) to assess the impact of data 
availability on estimation accuracy. Third, the number of attributes was set at either K = 4 or K = 
8, with higher attribute dimensionality expected to exacerbate boundary issues due to increased 
model complexity. Fourth, the number of items varied between I = 20 and I = 40 to explore how 
test length influences estimation performance. These factors were fully crossed, yielding 16 
experimental conditions, with multiple replications per condition to ensure statistical reliability. 

After the response data were generated, latent attribute profiles were estimated using 
DCMs. Three estimation approaches were applied to each dataset. Estimation procedures 
recover the underlying true attribute profiles, allowing for direct comparison between estimated 
and true classifications. Classification accuracy was assessed using the Correct Classification 
Rate (CCR), defined as the proportion of examinees whose estimated attribute profiles perfectly 
matched their true profiles: 

ܴܥܥ ൌ ଵ

ே
∑ ො௘ߙሺܫ ൌ ௘ሻேߙ
௘ୀଵ 																																																																																	(12)	

where I(⋅) is an indicator function that equals 1 when the estimated profile matches the true 
profile and 0 otherwise. To further investigate the occurrence of boundary problems, each 
experimental condition was monitored for instances in which estimated s or g values exceeded 
0.9999 or fell below 0.0001. The boundary problem occurrence rate (BPOR) was computed as: 

ܴܱܲܤ ൌ ଵ

ூ
∑ ௜ݏሺܫ ൏ ௜ݏ	ݎ݋	0.0001 ൐ 	ݎ݋	0.9999 ௜݃ ൏ 	ݎ݋	0.0001 ௜݃ ൐ 0.9999ሻே
௘ୀଵ 						(13)	

where the numerator counts the number of items for which boundary estimates occurred, and 
the denominator represents the total number of items in the dataset. This metric was 
averaged across multiple replications to obtain an overall estimate of the frequency with which 
boundary issues arose for each estimation method. 

5.  Result and Conclusion 

Simulation results show that JMLE and CGS generally yield higher correct classification rates 
(CCR) than PME under low-dimensional settings (e.g., K = 4), especially when item quality is 
high. For instance, with N = 1000 and I = 40, CGS and JMLE achieved CCRs above 0.90, while 
PME remained near 0.52.  

In contrast, under high-dimensional conditions (e.g., K = 8), all methods performed 
poorly, though PME showed slightly more stable performance in some scenarios. Regarding 
boundary problems, PME consistently achieved the lowest boundary problem occurrence rate 
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(BPOR), benefiting from prior regularization. CGS avoided boundary issues entirely due to 
marginalization of item parameters. In terms of computational efficiency, PME was generally the 
fastest in simple conditions, while CGS demonstrated stable but moderate runtime. JMLE 
showed higher computational cost in complex scenarios but was occasionally competitive in 
favorable settings.  

Overall, CGS offers a good balance between classification accuracy and computational 
stability, while PME provides robustness against boundary issues, especially in high-
dimensional or sparse-data conditions. 

Table 1. Correct Classification Rate (CCR) and Boundary Problem Occurrence 
Rate (BPOR) Across Simulation Conditions for JMLE, CGS and PME 

 CCR  BPORa 
Conditions JMLE CGS PME  JMLE PME 

K = 4, N = 100,  High-Qualityb, I = 20 0.83 0.82 0.48  0.31 0.28 
                                                  I = 40   0.88 0.88 0.46  0.28 0.21 
                             Low-Quality, I = 20  0.35 0.28 0.33  0.45 0.34 
                                                  I = 40 0.51 0.46 0.34  0.44 0.36 

           N = 1000,  High-Quality, I = 20 0.82 0.82 0.51  0.36 0.22 
                                                   I = 40   0.91 0.92 0.52  0.23 0.17 
                              Low-Quality, I = 20  0.40 0.35 0.38  0.38 0.25 
                                                   I = 40 0.53 0.52 0.45  0.37 0.23 

K = 8,  N = 100,  High-Quality,   I = 20 0.28 0.29 0.35  0.46 0.37 

                                                   I = 40   0.31 0.29 0.26  0.42 0.33 
                            Low-Quality,   I = 20  0.04 0.02 0.11  0.51 0.38 
                                                   I = 40 0.09 0.08 0.15  0.52 0.31 

           N = 1000,  High-Quality, I = 20 0.29 0.27 0.30  0.39 0.28 
                                                   I = 40   0.32 0.33 0.37  0.42 0.35 
                             Low-Quality,  I = 20  0.04 0.05 0.06  0.53 0.39 
                                                   I = 40 0.07 0.06 0.11  0.49 0.36 
a. No BPOR for CGS estimation because the parameters have been integrated out.  
b. “High-Quality” refers to high-quality items (s = g = 0.1); “Low-Quality” refers to low-
quality items (s = g = 0.3). 

 

Table 2. Computation Efficiency (CE) Accounted by Seconds Across 
Simulation Conditions for JMLE, CGS and PME 

                      CEa 
Conditions JMLE CGS PME 

K = 4, N = 100,  High-Qualityb, I = 20 0.64 0.23 0.20 
                                                  I = 40   0.58 0.19 0.24 
                             Low-Quality, I = 20 3.03 3.70 3.68 
                                                  I = 40 0.77 0.50 0.47 

 
           N = 1000,  High-Quality, I = 20 0.59 0.21 0.42 
                                                   I = 40   0.69 0.29 0.27 
                              Low-Quality, I = 20 2.79 1.22 1.18 
                                                   I = 40 1.01 0.75 0.89 
  
K = 8,  N = 100,   High-Quality,  I = 20 0.74 0.46 0.37 
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                                                   I = 40   0.96 0.79 0.59 
                             Low-Quality,  I = 20 1.88 1.33 1.43 
                                                   I = 40 1.22 1.21 1.67 
    
           N = 1000,  High-Quality, I = 20 3.52 3.28 3.15 
                                                   I = 40   2.59 3.25 3.14 
                             Low-Quality,  I = 20 14.10 15.08 16.02 
                                                   I = 40 45.33 50.53 51.32 

                           a “CE” is defined as the average seconds spend (repeated 10 times).  
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