
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

Q*: IMPROVING MULTI-STEP REASONING FOR LLMS
WITH DELIBERATIVE PLANNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated impressive capability across
various natural language tasks. However, the auto-regressive generation process
makes LLMs prone to produce errors, hallucinations and inconsistent statements
when performing multi-step reasoning. In this paper, by casting multi-step reason-
ing of LLMs as a heuristic search problem, we aim to alleviate the pathology by
introducing Q*, a general, versatile and agile framework for guiding LLMs decod-
ing process with deliberative planning. By learning a plug-and-play Q-value model
as heuristic function for estimating expected future rewards, Q* can effectively
guide LLMs to select the most promising next reasoning step without fine-tuning
LLMs for the targeted task, which avoids the significant computational overhead
and potential risk of performance degeneration on other tasks. Extensive experi-
ments on GSM8K, MATH and MBPP datasets demonstrate the superiority of our
method, contributing to improving the reasoning capability of existing open-source
LLMs. Furthermore, the testing-time scaling law indicates that Q* can leverage
increased computational power to improve reasoning performance.

Figure 1: Performance comparison of Q* with other baselines. Q* can serve as an efficient testing-
time alignment technique which significantly improves the performance of open-source LLMs on
math reasoning tasks (GSM8K: 36.2%→54.0%; 65.4%→80.8%, MATH: 52.1%→55.4%) and
code generation task (MBPP: 74.6%→77.0%) without modifying the model’s parameters.

1 INTRODUCTION

Large Language Models (LLMs) have exhibited impressive capabilities in solving various reasoning
tasks encoded in natural languages, including math word problems (Ahn et al., 2024; Cobbe et al.,
2021; Hendrycks et al., 2021; Wang et al., 2023; Yu et al., 2023; Luo et al., 2023a), code generation
(Luo et al., 2023b; Roziere et al., 2023; CodeGemma Team et al., 2024) and planning (Xie et al., 2024;
Liu et al., 2023; Guan et al., 2023). Unfortunately, even the most advanced LLMs still face significant
challenges and are prone to introduce errors, hallucinations and inconsistent statements as the number
of reasoning steps grows due to their auto-regressive nature (Valmeekam et al., 2023; Stechly et al.,
2024). In fact, the auto-regressive generation process of LLMs can be characterized by “System 1"
(Daniel, 2011), a mode of thought which is fast, instinctive but less accurate. Most of recent works
focus on improving LLMs’ “System 1” capability by (1) constructing sophisticated prompts with

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

extensive expertise to trigger the potential capacities of LLMs without modifying their parameters
(Wei et al., 2022; Wang et al., 2022; Fu et al., 2022; Zhou et al., 2022), (2) fine-tuning LLMs with
massive task-specific corpora at the price of significant computational burdens and the potential risk
of performance degeneration on other tasks (Yu et al., 2023; Luo et al., 2023a; Azerbayev et al., 2023;
Yue et al., 2023), or (3) training reward models to rank the candidate responses (Lightman et al.,
2023; Uesato et al., 2022; Wang et al., 2023; Khalifa et al., 2023).

On the other hand, solving complex reasoning problems requires more in-depth, deliberative and
logical thinking steps, i.e., the “System 2” mode (Daniel, 2011). Taking solving math word problems
as an example, any incorrect intermediate reasoning step (e.g., calculation errors, mis-interpretations)
can potentially lead to incorrect final answers. Prior attempts (Yao et al., 2023; Feng et al., 2023; Hao
et al., 2023; Zhuang et al., 2023) for enhancing “System 2” reasoning capability includes performing
deliberation with basic tree search algorithms (e.g., BFS or DFS), Monte Carlo Tree Search (MCTS)
(Browne et al., 2012), and A* (Hart et al., 1968). Nonetheless, the utility functions used in these
methods often require laborious expertise to design for each specific task, which are difficult to
be extended to new scenarios. Furthermore, deliberation with MCTS would require significant
number of rollouts before finding high-quality responses when solving the problems with many
reasoning steps, which substantially slows down the overall decoding process. Very recently, OpenAI
released its o1 series (OpenAI, 2024), an LLM capable of solving complex reasoning tasks by
leveraging increased computational resources at the inference time to achieve better problem-solving
performance. Unfortunately, as a propertied model, it is still unclear how o1 produces the long
internal chain-of-thought which is the key of its superior performance.

In light of this, we propose Q*, a general, versatile and agile framework for improving the multi-step
reasoning capability of LLMs with deliberative planning. Different from the existing deliberation
methods, our method does not rely on domain knowledge to design the heuristic function. Besides, by
leveraging plug-and-play Q-value models as heuristic function, Q* can effectively solve various tasks
via guiding LLMs to select the most promising next step without fine-tuning LLMs beforehand, which
avoids the significant computational overhead and potential risk of performance degeneration in other
tasks. Finally, Q* considers only one single step when performing deliberation, which is much cheaper
than completing rollouts in MCTS. In short, Q* can serve as an efficient testing-time alignment
technique for LLMs which consistently improves the performance on various complex reasoning
tasks, as evidenced by Fig. 1. Specifically, the main contributions of our work are summarized as
follows:

• We formalize the multi-step reasoning of LLMs as a Markov Decision Process (MDP) where
the state is the concatenation of input prompt and the reasoning steps generated so far, the
action is the next reasoning step and the reward measures how well the task is solved.

• We present several general approaches to estimate the optimal Q-value of state-action
pairs, i.e., offline reinforcement learning, best-of-K sampling and MCTS planning. It is
noteworthy that our methods only need the ground-truth of training problems and can be
flexibly applied to various reasoning tasks without modification.

• We cast solving multi-step reasoning tasks as a heuristic search problem, where the objective
is to find the most proper reasoning trace with maximum utility. Built upon A* search, our
deliberation framework, Q*, leverages plug-and-play Q-value models as heuristic function
and guides LLMs to select the most promising next reasoning step in best-first fashion.

• We conduct extensive experiments on math reasoning and code generation tasks, which
demonstrates that Q* can significantly improve the multi-step reasoning capability of existing
open-source LLMs. Furthermore, the testing-time scaling law of Q* exhibits performance
improvement over generated tokens, indicating that Q* can continuously refine its solution
with the increased computational cost.

2 RELATED WORKS

Alignment in LLMs. Alignment has become an important technique to prevent the output of
LLMs deviates from human’s expectation. Supervised Fine-Tuning (SFT) is probably the most
fundamental alignment approach that directly minimizes the cross-entropy loss between the output
and ground-truth. Reinforcement learning from Human Feedback (RLHF) (Ouyang et al., 2022),

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

on the other hand, firstly learns a reward model (RM) from human preferences and then optimizes
the SFT model with reinforcement learning algorithms to maximize the cumulative rewards from
RM. Direct Preference Optimization (DPO) (Rafailov et al., 2023) aligns LLMs directly according to
the ranking information from human feedback without explicitly learning RM. Recently, Aligner (Ji
et al., 2024) came out as a model-agnostic alignment method by learning to re-write LLMs’ output.
Compared to these methods, Q* achieves the goal of alignment with distinct merits. Different from
SFT and Aligner, Q* does not rely on massive human annotated preference pairs which are expensive
to collect; different from RLHF and DPO, Q* does not modify the parameters of LLMs, which avoids
the potential risk of performance degeneration on other tasks. In short, Q* can serve as an efficient
testing-time alignment technique by searching the most proper chain-of-thought for a given reasoning
task.

Enhancing LLMs with planning. Tree-of-thoughts (ToT) (Yao et al., 2023) improves the LLMs’
reasoning capability by exploring the intermediate steps towards problem solving with basic tree-
search algorithms. In the same vein, A* search and MCTS have been applied to serve as a planning
technique to enhance the performance of LLMs when solving challenging complex reasoning prob-
lems (Feng et al., 2023; Hao et al., 2023; Zhuang et al., 2023; Hazra et al., 2024). Unfortunately, the
utility function used in these methods is either constructed from LLMs’ feedback (e.g., Yao et al.
(2023); Hao et al. (2023)), which could be highly-inaccurate in complex problems, or specific to each
individual task (e.g., Zhuang et al. (2023); Hazra et al. (2024)). Moreover, planning with MCTS
often requires to perform costly rollout, which can significantly slow down the overall decoding
process. In contrast, Q* solely relies on training a Q-value model to guide LLMs to select the most
promising next reasoning step and the pipeline can be easily applied to various reasoning tasks
without modification. Besides, we consider only a single step each time in Q*, which is much cheaper
than a complete rollout in common MCTS-based methods.

LLMs for math reasoning & code generation. Math reasoning and code generation require LLMs
to perform multi-step reasoning on relations, quantities and logics which are inherently challenging.
Current techniques include: 1) prompt engineering which triggers the potential capacities of LLMs
with sophisticated prompts (Wei et al., 2022; Wang et al., 2022; Fu et al., 2022; Zhou et al., 2022;
Huang et al., 2023; Shinn et al., 2023). However, constructing such prompt needs extensive expertise
and case-by-case tuning, which is difficult to generalize to different tasks; 2) Fine-tuning LLMs with
massive math/code corpus (Yu et al., 2023; Luo et al., 2023a; Azerbayev et al., 2023; Yue et al.,
2023; Roziere et al., 2023; CodeGemma Team et al., 2024; Team, 2024), which usually comes at the
price of significant computational burden and may compromise the performance on other tasks; 3)
training RMs/verifiers to rank the candidate solutions without providing any guidance in intermediate
steps (Lightman et al., 2023; Uesato et al., 2022; Wang et al., 2023; Khalifa et al., 2023). Differently,
Q* leverages a plug-and-play Q-value model to direct the deliberation process of LLMs, which
effectively provides guidance for each intermediate step without modifying the parameters of LLMs.
Moreover, by casting multi-step reasoning of LLMs as a heuristic search problem, our method can be
generalized to various reasoning tasks without laborious prompt engineering. Besides, OpenAI’s o1
(OpenAI, 2024) demonstrates its superior performance in various tasks including math reasoning and
code generation. However, as a propertied model, it is unclear how o1 generates the long internal
chain-of-thought which is essential to successfully solving a problem. In contrast, Q* provides an
alternative yet efficient way to implement testing-time deliberation for LLMs, and we will release
codes if the paper is accepted.

3 PRELIMINARY

3.1 FORMULATE THE MULTI-STEP REASONING OF LLMS AS AN MDP

Taking the question q as input, the answer generation process of LLMs can be broken down into
multiple reasoning steps, where the final answer sequence a can be treated as the concatenation of
these T single-step reasoning steps, formulated as a = [a1; a2; . . . ; aT]. Each step at can be a single
line or fixed number of tokens outputted by LLMs. Under this perspective, we can conceptualize
the multi-step reasoning process of LLMs as a Markov Decision Process (MDP) ⟨S,A, T ,R, γ⟩,
where the state st ∈ S denotes the concatenation of the input question and the partial reasoning
trace already generated by timestep t − 1 (i.e., st = [q; a1; . . . ; at−1]) with the special definition

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

s1 = q, the action at ∈ A denotes the next reasoning step generated by LLMs taking the current
state st as input, the deterministic state transition T from the current state st to the next state st+1 is
accomplished through a simple operation of concatenation,R is the reward function to measure how
well the question is solved and γ is the discount factor. The reward function is often outcome-based.
That is, it gives reward by comparing the final results with ground-truth:

R(st, at) =
{
1 t = T ∧ [st; at] matches the ground-truth
0 otherwise

, (1)

In particular, we will assign a reward of 1 if the generated code passes all test cases (for code
generation tasks) or the final answer matches the ground-truth (for math reasoning tasks), which is a
common practise in previous studies (Wang et al., 2023; Lightman et al., 2023). Finally, the policy
πθ is embodied by an LLM, which produces reasoning sequence conditioned on the input question:

πθ(at|st) = LLM(at|st), πθ(a|q) =
T∏

t=1

πθ(at|st). (2)

Given the MDP and LLM policy πθ, the value of state-action pair (st, at) is given by a Q-function

Qπθ (st, at) = Eπθ

[∑T
t′=t γ

T−t′R(st′ , at′)
]
. The Q-function of an optimal policy π∗ is called

optimal Q-function and satisfies the Bellman optimality equation:

Q∗(st, at) = R(st, at) + γ max
at+1∈A

Q∗(st+1, at+1), (3)

which gives the value of starting state st, taking action at and then following the optimal policy π∗.

3.2 A* SEARCH

A* (Hart et al., 1968) is an important heuristic search algorithm in deliberative planning (Bonet &
Geffner, 2001), multi-agent pathfinding (Silver, 2005), and constraint reasoning (Pezeshki et al.,
2022). Originally, A* is proposed for finding the shortest path from source s to goal g in path
planning problems. It associates each frontier vertex n with a value f(n) = g(n) + h(n), where
g(n) is the accumulated path cost from source s and h(n) is a heuristic value that estimates the cost
of the shortest path from n to goal g. The algorithm adopts a best-first search strategy, i.e., in each
iteration it always picks the vertex with minimum f -value to explore until reaching the goal. When
the heuristic h(·) is admissible (Russell & Norvig, 2016), A* guarantees to find the optimal path.

4 Q*: A GENERAL, VERSATILE AND AGILE DELIBERATION FRAMEWORK
FOR LLMS

Most of modern LLMs generate natural languages in an auto-regressive way, i.e., predict the next
token in a sequence given the previously generated tokens (cf. Eq. (2)). Therefore, when applied to
multi-step reasoning problem, LLMs can potentially introduce errors, hallucinations and inconsistent
statements in the subsequent reasoning trace if any previous step is incorrect, which may fail to solve
the current problem. Indeed, given the fact that LLMs produce each token with limited computation
resources, there is no way to devote more computational efforts to solve difficult problems. In
short, LLMs cannot perform in-depth deliberation which is essential for solving complex multi-step
reasoning problems.

We address this issue by presenting Q*, a general, versatile and agile deliberation framework based
on A* to effectively guide LLMs to select the most promising next step when performing multi-step
reasoning without costly fine-tuning LLMs for each task beforehand. In more detail, we cast finding
the most proper reasoning sequence for a given problem as a heuristic search process, where each
state st is associated with a f -value estimating how much utility will be attained if we expand st:

f(st) = g(st) + λh(st), (4)

where g(st) denotes the aggregated utility from the initial state s1; h(st) is the heuristic value for
measuring the probability of reaching the correct answer derived from st; λ is a coefficient to balance
the importance of g(st) and h(st) terms.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Overview of Q*. (a): the deliberation process of Q*. Each state is associated with an
f -value which is the weighted sum of the aggregated utility (cf. Eq. (5)) and the heuristic value
(cf. Eq. (6)). (b-d): estimating the optimal Q-value with offline reinforcement learning, best-of-K
sampling and MCTS planning.

Specifically, we propose to use process-based reward functionRP that encodes the prior knowledge
or preference of the reasoning task to compute the aggregated utility g(st). That is,

g(st) = Agg(RP (s1), . . . ,RP (si), . . . ,RP (st)), (5)

where Agg ∈ {min,max,
∑

, [−1]}, with [−1] standing for assigning the reward of last state as the
utility, is the aggregation function to summarize the rewards in the path from s1 to st, and si−1 is
the prefix of si, 1 < i ≤ t. Such process-based reward functionRP could be learned from human
feedback (Lightman et al., 2023; Uesato et al., 2022; Wu et al., 2023), ground-truth (Wang et al., 2023;
Khalifa et al., 2023), rules, or simply be the logits of a reasoning step which reflects the confidence
of the LLM. Furthermore, we use the optimal Q-value of state st (cf. Eq. (3)) as the heuristic value
h(st). In other words, the f -value is given by:

f(st) = g(st) + λmax
at∈A

Q∗(st, at). (6)

Since enumerating all possible next reasoning steps is intractable, in practice one can restrict the
alternatives to the top-K of all step candidates returned by LLM, and thus Eq. (6) is written as
f(st) = g(st) + λmaxat∈top-K(πθ(·|st)) Q

∗(st, at).

4.1 ESTIMATION OF OPTIMAL Q-VALUE

A critical challenge of implementing Q* is to estimate the optimal Q-value of state-action pairs
(cf. Eq. (6)) with a frozen LLM policy πθ which could be suboptimal on the given reasoning
problems. Specifically, we aim to learn a proxy Q-value model Q̂ to approximate Q∗ from a dataset
D = {qi, {a(j)i }Mj=1}Ni=1, where qi is a training problem and a

(j)
i is the j-th trajectory sampled from

the LLM policy πθ with a particular technique. Formally:

Q̂ = argmin
Q

1

NMT

N∑
i=1

M∑
j=1

∑
at∈a

(j)
i

(Q(st, at)− ŷ(st, at))
2
, (7)

where st = [qi; a1; . . . ; at−1] is the partial reasoning trace by timestep t− 1 in a
(j)
i and ŷ(st, at) is

the label that approximates the true optimal Q-value, specifically Q∗(st, at).

In more detail, we effectively construct the dataset D and Q-value labels ŷ(st, at) for question qi in
the following ways.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Offline reinforcement learning. For each training problem qi, we directly sample M reasoning
trajectories {a(j)i }Mj=1 from the LLM policy, where each trajectory a

(j)
i ∼ πθ(·|qi). After that, we

learn the proxy Q-value model Q̂ using Fitted Q-iteration (Riedmiller, 2005). Specifically, for each
iteration ℓ, we construct Q-value label as:

ŷℓ(st, at) =

{
R(st, at) t = T

R(st, at) + γmaxat+1∈top-K(πθ(·|st+1)) Q̂ℓ−1(st+1, at+1) otherwise
, (8)

where Q̂ℓ−1 is the proxy Q-value model learned in iteration ℓ− 1. Then, we train a new proxy model
Q̂ℓ according to Eq. (7). Such two phases will be alternated for L iterations, and we use Q̂L as the
proxy Q-value model when performing deliberation.

Best-of-K sampling. Similar to offline RL, we will firstly construct the dataset D by randomly
rolling out trajectories with πθ. Then starting with each state-action pair (st, at) in a trajectory
a
(j)
i , we perform random sampling with the LLM policy πθ to complete it into K full trajectories
{τk}Kk=1, where τk ∼ πθ(·|[st; at]). After that, we use the best reasoning trajectory with the highest
accumulated rewards to construct the Q-value label:

ŷ(st, at) = R(st, at) + max
(st′ ,at′)∈τk

[
T∑

t′=t+1

γT−t′R(st′ , at′)

]
. (9)

MCTS planning. For each training problem qi, we perform canonical MCTS (Browne et al., 2012)
to collect reasoning trajectories {a(j)i }Mj=1 and the corresponding Q-value labels. Starting from
s1 = qi, we incrementally build a search tree Γi in which each node and edge respectively correspond
to a state and an action through four phases: (1) Selection. recursively selecting the most promising
child node until leaf node with UCB1 bound (Auer et al., 2002); (2) Expansion. sampling K ′

different next reasoning steps using the LLM policy πθ and generating K ′ new child nodes on top of
the leaf node; (3) Simulation. performing rollout from the new nodes with the LLM policy πθ until
terminal states to produce complete trajectories; (4) Backpropagation. updating the value of each
edge in the path from the root to the leaf node with the reward of the trajectory (cf. Eq. (1)). Finally,
we retrieve reasoning trajectories {a(j)i }Mj=1 by performing depth-first search on Γi to collect all paths
from the root to the terminal nodes, and use the value of each edge as Q-value label ŷ(st, at).

4.2 DELIBERATIVE PLANNING WITH A*

Once obtaining the proxy Q-value model Q̂, we can plug it to Eq. (6) to compute the f -value of each
state and perform best-first search with A*. Alg. 1 illustrates the deliberative planning process.

Algorithm 1 Deliberative planning for LLMs with A*

Input: question q, LLM policy πθ, proxy Q-value model Q̂
Output: best reasoning trajectory s∗

1: unvisited← {q}, visited← ∅, terminal states ST ← ∅
2: while unvisited ̸= ∅ and termination condition is not met do
3: s← argmaxs′∈unvisited f(s

′)
4: unvisited← unvisited\{s}, visited← visited ∪ {s}
5: if s is a terminal state then
6: ST ← ST ∪ {s}
7: continue
8: for each a ∈ top-K(πθ(·|s)) do
9: s′ ← [s; a]

10: if s′ /∈ visited then unvisited← unvisited ∪ {s′}
11: s∗ ← argmaxs′∈ST

f(s′)
12: return s∗

Specifically, we maintain a set for storing state candidates to be explored, denoted as unvisited,
which initially only contains the input question q, and another set visited to record the visited states.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Each step we pick the state s with the maximum f -value from the set unvisited and expand it by
querying the top-K alternatives with the LLM policy πθ if it is not a terminal state (i.e., a complete
reasoning trajectory). After that, both visited and unvisited sets will be updated and this process
repeats until the termination condition is met or all states are visited. Finally, Q* will return the best
reasoning trajectory s∗ = [q; a∗1; . . . ; a

∗
T] among the set of collected terminal states, denoted as ST ,

as the final result.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate the effectiveness of Q* on two math reasoning and one code generation tasks,
where the dataset statistics have been summarized in Table 1. 1) GSM8K (Cobbe et al., 2021) is a
dataset of grade school math problems, where the solution is given in a one-line-per-step format with
an exact numerical answer in the last line; 2) MATH (Hendrycks et al., 2021) is a dataset consisting of
math problems of high school math competitions, where the solutions are given in a format that mixes
latex code and natural language; 3) MBPP (Austin et al., 2021) is an entry-level Python programming
dataset, where the questions are coding challenges along with a test case that defines the function
format. The solutions are Python code that is excepted to pass the pre-collected test cases.

Table 1: Statistics of datasets.

Dataset GSM8K MATH MBPP

Domain Math Reasoning Math Reasoning Code Generation
Training 5000 8000 374
Testing 1319 5000 500

Average Steps 4.5 11.0 7.0

Table 2: Comparisons of different methods for Q-value estimation.

Dataset (Domain) Base Model Q-value Estimation Planning Accuracy

GSM8K (Math Reasoning) Llama-2-7b-MetaMath Offline RL Q* 68.2%
GSM8K (Math Reasoning) Llama-2-7b-MetaMath Best-of-K Q* 79.8%
GSM8K (Math Reasoning) Llama-2-7b-MetaMath MCTS planning Q* 70.1%

MBPP (Code Generation) CodeQwen1.5-7b-Chat Offline RL Q* 76.4%
MBPP (Code Generation) CodeQwen1.5-7b-Chat Best-of-K Q* 77.0%
MBPP (Code Generation) CodeQwen1.5-7b-Chat MCTS planning Q* 76.6%

Implementation Details. The implementation of Q* method mainly includes three steps:

1) Q-value estimation. As discussed in Section 4.1, we propose several ways for estimating the
optimal Q-values, and by comparing the performance of these estimation methods, as shown in the
Table. 2, we find that best-of-K sampling could be the most effective and robust way to collect
precise Q-value labels. Specifically, for each training question qi, we will firstly perform sampling
to obtain M = 160 complete trajectories {a(j)i }Mj=1with the LLM policy πθ, under the setting of
high temperature, e.g., τ = 0.9 for math reasoning and τ = 0.2 for code generation, and split each
trajectory into a series of step-level states according to the newline token “\n”. Then, for each
state-action pair in a trajectory, denoted as (st, at), we perform best-of-K sampling with the same
LLM to generate complete trajectories {τk}Kk=1 where K = 16, and then select the best reasoning
trajectory with the highest accumulated rewards as the Q-value label of the current state-action pair.
Besides, we use γ = 1 as the discount factor. Therefore, the optimal Q-value of a state-action pair
(st, at) will be assigned as 1 if and only if it has the potential to generate a trajectory that matches the
ground-truth, i.e., the answer is correct in math reasoning or the code program can pass all test cases
in code generation. Finally, we will initialize the Q-value models (QVMs) using the same base model
as the LLM policy πθ and train them as regressors to approximate the optimal Q-values.
2) Utility aggregation. For GSM8K dataset, we adopt a process reward model (PRM) trained on
PRM800K (Lightman et al., 2023) to modelRP to provide an intermediate signal for each reasoning
step, and use min as the aggregation function; For MATH dataset, we set g(st) = 0 for all passed
states {si}ti=1 in each trajectory for fairness, because PRM800K contains data samples constructed

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Comparison of Q* and other baselines on GSM8K dataset.

Base Model SFT Post-Training Planning Accuracy

GPT-3.5 (5-shot) (Achiam et al., 2023) Unknown PPO (RM) (Ouyang et al., 2022) - 57.1%
ChatGPT-instruct (0-shot) (Shridhar et al., 2023) Unknown PPO (RM) (Ouyang et al., 2022) - 71.3%
ChatGPT-turbo (0-shot) (Shridhar et al., 2023) Unknown PPO (RM) (Ouyang et al., 2022) - 77.7%

GPT-4 (0-shot) (Shridhar et al., 2023) Unknown PPO (RM) (Ouyang et al., 2022) - 91.9%
GPT-4 (5-shot) (Achiam et al., 2023) Unknown PPO (RM) (Ouyang et al., 2022) - 92.0%

Llama-2-7b (0-shot) - - - 14.6%
Llama-2-7b (0-shot) WizardMath(Luo et al., 2023a) - - 54.9%
Llama-2-7b (0-shot) MetaMath(Yu et al., 2023) - - 65.4%
Llama-2-7b (0-shot) MetaMath(Yu et al., 2023) PPO (PRM) Ouyang et al. (2022) - 67.2%
Llama-2-7b (0-shot) MetaMath(Yu et al., 2023) PPO (QVM) Ouyang et al. (2022) - 67.6%
Llama-2-7b (0-shot) MetaMath(Yu et al., 2023) - Best-of-N (PRM) 72.1%
Llama-2-7b (0-shot) MetaMath(Yu et al., 2023) - Best-of-N (QVM) 74.5%
Llama-2-7b (0-shot) MetaMath(Yu et al., 2023) - MCTS (QVM) 77.6%
Llama-2-7b (0-shot) MetaMath(Yu et al., 2023) - Q* (QVM) 79.8%
Llama-2-7b (0-shot) MetaMath(Yu et al., 2023) - Q* (PRM+QVM) 80.8%

from MATH testing set and there is a potential risk of data leakage; For MBPP dataset, we tokenize
the code generated so far with function tokenize.generate_tokens and give a penalty of
-0.5 if TokenError is raised, which is often the case that there are mismatched delimiters (e.g.,
parentheses, quotation marks) and invalid indention in the code. We use [−1] as the aggregation
function to cancel the previous penalties since the code is generated on-the-fly and mismatched
delimiters may be fixed in subsequent steps.
3) A* planning. For GSM8K and MATH datasets, we treat a single line outputted by the LLM
as an action, while the action in MBPP dataset is defined as a code snippet with 24 tokens when
planning. Besides, when computing the f -values defined in Eq. (6) in all experiments, we set λ = 1
and expand each state with K = 6 actions at each reasoning step. Finally, following the common
practice of Best-of-N (Lightman et al., 2023), we perform planning to collect N = 6 trajectories for
each question, and select the one with the maximum f -value as the final result for evaluation.

5.2 ESTIMATIONS OF OPTIMAL Q-VALUE

We first compare the performance of QVMs trained with three different approaches presented
in Section 4.1. Specifically, for offline RL and best-of-K sampling, we first collect 64 positive
trajectories (i.e., the answer is correct or the code program passes all test cases) and 96 negative
trajectories for each training question qi. Then for each state-action pair in a trajectory, we perform
L = 6 iterations of fitted-Q-iteration or K = 16 sampling to construct Q-value labels. Finally, for
MCTS planning, we perform 1024 iterations of selection-expand-simulation-backpropagation for
each training question qi, and extract Q-value labels from the search tree Γi. Table 2 displays the
performance of Q* with the QVMs trained with different methods on GSM8K and MBPP datasets.

By approximating with the best response among K sampling with current LLM policy πθ, best-of-
K sampling emerges as a simple yet effective method for estimating optimal Q-values, achieving
superior performance on both datasets. In fact, LLMs have the potential to generate correct answer
given a generous rollout budget (Li et al., 2024). Therefore, selecting the best response according to
the ground-truth can effectively approximate the behavior of optimal policy, as well as the optimal
Q-values. Offline RL, on the other hand, exhibits inferior performance because it indirectly learns
Q-values by querying intermediate QVMs, which is inefficient and may be biased by QVMs and
top-K alternatives (cf. Eq.(8)). Finally, MCTS planning receives feedback from the ground-truth,
directing the search to find promising trajectories. As a result, the Q-value labels in the generated
dataset is imbalanced, with the majority being close to 1, which can also bias the learning of QVMs.

5.3 QUANTITATIVE COMPARISON

GSM8K. For the comparison on GSM8K dataset, we select Llama-2-7b (Touvron et al., 2023) as
our base model, whose accuracy can achieve 65.2% after finetuning on MetaMath (Yu et al., 2023).
Then, we treat Llama-2-7b finetuned on MetaMath as the LLM policy πθ, and perform best-of-K
sampling to collect Q-value labels for training QVM. For utility aggregation, we train a process
reward model (PRM) on PRM800K (Lightman et al., 2023) to provide intermediate signal for each

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Comparison of Q* and other baselines on MATH dataset.

Base Model SFT Post-training Planning Accuracy

GPT-3.5 (0-shot) (Bubeck et al., 2023) Unknown PPO (RM) (Ouyang et al., 2022) - 23.5%
GPT-4 (0-shot) (Bubeck et al., 2023) Unknown PPO (RM) (Ouyang et al., 2022) - 42.5%

Gemini Ultra (4-shot) (Team et al., 2023) Unknown PPO (RM) (Ouyang et al., 2022) - 53.2%

Llama-2-7b (0-shot) - - - 2.5%
Llama-2-7b (0-shot) MetaMath(Yu et al., 2023) - - 20.0%
Llama-2-7b (0-shot) Skywork-Math(Zeng et al., 2024) - - 41.9%
Llama-2-7b (0-shot) Skywork-Math(Zeng et al., 2024) PPO (QVM) (Ouyang et al., 2022) - 42.5%
Llama-2-7b (0-shot) Skywork-Math(Zeng et al., 2024) - Best-of-N (QVM) 46.8%
Llama-2-7b (0-shot) Skywork-Math(Zeng et al., 2024) - MCTS (QVM) 48.6%
Llama-2-7b (0-shot) Skywork-Math(Zeng et al., 2024) - Q* (QVM) 49.1%

DeepSeek-Math-7b-RL (0-shot) Unknown GRPO (QVM) (Shao et al., 2024) - 52.1%
DeepSeek-Math-7b-RL (0-shot) Unknown GRPO (QVM) (Shao et al., 2024) Best-of-N (QVM) 54.3%
DeepSeek-Math-7b-RL (0-shot) Unknown GRPO (QVM) (Shao et al., 2024) MCTS (QVM) 54.8%
DeepSeek-Math-7b-RL (0-shot) Unknown GRPO (QVM) (Shao et al., 2024) Q* (QVM) 55.4%

Table 5: Comparison of Q* and other baselines on MBPP dataset.

Base Model SFT Post-training Planning Accuracy

GPT-3.5 Turbo (self-debug) (Chen et al., 2023) Unknown PPO (RM) (Ouyang et al., 2022) - 72.8%
GPT-4 (self-debug) (Chen et al., 2023) Unknown PPO (RM) (Ouyang et al., 2022) - 80.2%

CodeGemma-7b (CodeGemma Team et al., 2024) Unknown PPO (RM) (Ouyang et al., 2022) - 65.1%
CodeLlama-7b (Roziere et al., 2023) Unknown - - 59.5%

DeepSeek-Coder-7B-Instruct-v1.5 (Guo et al., 2024) Unknown - - 75.2%

CodeQwen1.5-7b-Chat (0-shot) Unknown PPO (QVM) (Ouyang et al., 2022) - 74.6%
CodeQwen1.5-7b-Chat (0-shot) Unknown PPO (QVM) (Ouyang et al., 2022) Best-of-N (QVM) 75.4%
CodeQwen1.5-7b-Chat (0-shot) Unknown PPO (QVM) (Ouyang et al., 2022) MCTS (QVM) 76.6%
CodeQwen1.5-7b-Chat (0-shot) Unknown PPO (QVM) (Ouyang et al., 2022) Q* (PRM+QVM) 77.0%

reasoning step. With PRM and QVM in hand, traditional methods tend to treat either of them as a
verifier to select the Best-of-N trajectory (Lightman et al., 2023) or utilize them to perform PPO
training of RLHF (Ouyang et al., 2022). As the results shown in Table 3, we can find that with the
same PRM/QVM, using it as a verifier can significantly outperform using it for PPO training in
alignment. Further, in the comparison of planning-based methods, we can find that with the same
QVM, Q* method with constant aggregated utility can still outperform Best-of-N method. With
the PRM trained on PRM800K determining whether the intermediate reasoning steps are correct,
Q* method that combines PRM and QVM achieves the best performance among all methods based
on the same LLM, helping Llama-2-7b surpass the performance of close-sourced ChatGPT-turbo
(Shridhar et al., 2023) and reaching an accuracy of 80.8% on GSM8K dataset.

MATH. As the results shown in Table 4, considering the weak performance of Llama-2-7b fine-
tuned with MetaMath on the MATH dataset, we seek for two other stronger LLMs to evaluate the
effectiveness of Q* method. One is Llama-2-7b fine-tuned on Skywork-Math dataset (Zeng et al.,
2024), which is constructed following the instruction of scaling up the SFT data, and achieves 41.9%
accuracy on MATH dataset, approaching the performance of GPT-4 (Bubeck et al., 2023). The
other base model is DeepSeek-Math-7b-RL (Shao et al., 2024), which could be one of the most
powerful open-source 7b model for math reasoning on MATH dataset, achieving 52.1% accuracy
in our reproduction. From the results shown in the second and third blocks of Table 4, we can find
that Q* can still lead to further performance improvement compared to the Best-of-N method on
either of base models. Additionally, it is noteworthy that the performance of DeepSeek-Math-7b-RL
enhanced with Q* has already surpassed a series of closed-source models on the leaderboard of
MATH dataset 1, such as Gemini Ultra (4-shot) (Team et al., 2023), reaching an accuracy of 55.4% .

MBPP. As for MBPP dataset, we also choose one of most powerful open-source LLMs in the
aspect of code generation, specifically CodeQwen1.5-7b-Chat, as our base model for evaluating
the effectiveness of Q*. Following a similar procedure of math reasoning, we train a QVM for
Q-value estimation and manually construct the utility function as described in the previous part of
implementation details. From the results shown in Table 5, we can find that Q* can still outperform
Best-of-N method in the aspect of code generation, and help CodeQwen1.5-7b-Chat to achieve 77.0%
accuracy on MBPP dataset, which is also a promising performance in the leaderboard of MPBB 2.

1https://paperswithcode.com/sota/math-word-problem-solving-on-math
2https://paperswithcode.com/sota/code-generation-on-mbpp

9

https://paperswithcode.com/sota/math-word-problem-solving-on-math
https://paperswithcode.com/sota/code-generation-on-mbpp

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.4 VERSATILITY OF Q*

Figure 3: Performance comparison of Llama-3.1,
Llama-3.1+Q*, and Llama-3.1+MetaMath.

In this subsection, we propose to demonstrate
Q*’s versatility on Llama-3.1-8b (Dubey et al.,
2024), showing that LLMs can leverage plug-
and-play QVMs to solve various tasks using
A* planning without compromising their perfor-
mance on other tasks, as shown in Fig. 3. With
greedy decoding, Llama-3.1-8b performs poorly,
solving only 36.2% and 46.2% of problems in
the GSM8K and MBPP datasets, respectively.
This underperformance is unsurprising, as the
one-off auto-regressive token generation pro-
cess offers no opportunity for response revision.
While fine-tuning on the MetaMath dataset can
greatly improve performance on math reasoning
problems, Llama-3.1+MetaMath performs ex-
tremely poorly on code generation tasks. In fact,
we observed that Llama-3.1+MetaMath often
directly introduces natural language explanations outside the comment region, resulting in faulty
Python code with numerous syntax errors. In contrast, Q* substantially improves the model’s perfor-
mance (i.e., by 17.8% on GSM8K and 5% on MBPP) by exploring the space of reasoning steps to
find the most proper reasoning trajectory under the guidance of the learned QVM, eliminating the
need of supervised fine-tuning and avoiding alignment tax (Askell et al., 2021; Ouyang et al., 2022).
Therefore, Q* can serve as an efficient testing-time alignment method which significantly improves
the performance on the targeted tasks while maintaining the model’s general capabilities.

5.5 TESTING-TIME SCALING LAW

Figure 4: Testing-time scaling laws of Best-of-N,
MCTS, and Q* on GSM8K dataset.

We examine the performance of Best-of-N ,
MCTS, and Q* on GSM8K dataset under vary-
ing decoding budgets, with results plotted in
Fig. 4. Q* demonstrates the ability to refine
its solution as the token budget increases, con-
sistently outperforming Best-of-N . The latter,
unable to provide guidance for intermediate
steps during inference, requires significantly
more trajectory rollouts to find the correct so-
lution, thus consuming a large number of to-
kens. In contrast, Q* plans for each intermedi-
ate step, achieving superior performance even
with a small token budget. MCTS, on the
other hand, needs to perform costly rollout to
produce complete trajectories in the simulation phase of each iteration, requiring a significant amount
of tokens. Moreover, the value of a state in MCTS is considered confident enough only when the
state has been visited a sufficient number of times, which further exacerbates the issue.

6 CONCLUSION

In this paper, we present Q*, a general, versatile and agile deliberation framework for LLMs. Unlike
existing deliberation methods which need extensive expertise to design a utility function for each
specific task, Q* relies on ground-truth solely to train value model and can be easily applied to various
reasoning tasks without modification. Moreover, by leveraging plug-and-play Q-value models as the
heuristic function, Q* can effectively guide LLMs to solve various tasks without fine-tuning LLMs
beforehand, which avoids potential performance degeneration on other tasks. Finally, Q* is agile
because we consider only a single step each time rather than complete rollouts. Extensive empirical
evaluations on math reasoning and code generation tasks confirm the superiority of our method.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
for mathematical reasoning: Progresses and challenges. arXiv preprint arXiv:2402.00157, 2024.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones,
Nicholas Joseph, Ben Mann, Nova DasSarma, et al. A general language assistant as a laboratory
for alignment. arXiv preprint arXiv:2112.00861, 2021.

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47(2-3):235–256, 2002.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Albert Q
Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model for
mathematics. arXiv preprint arXiv:2310.10631, 2023.

Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial Intelligence, 129(1-2):5–33,
2001.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey
of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in
Games, 4(1):1–43, 2012.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with GPT-4. arXiv preprint arXiv:2303.12712, 2023.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. arXiv preprint arXiv:2304.05128, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

CodeGemma Team, Ale Jakse Hartman, Andrea Hu, Christopher A. Choquette-Choo, Heri Zhao,
Jane Fine, Jeffrey Hui, Jingyue Shen, et al. Codegemma: Open code models based on gemma.
2024. URL https://goo.gle/codegemma.

Kahneman Daniel. Thinking, Fast and Slow. Macmillan, 2011.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Xidong Feng, Ziyu Wan, Muning Wen, Ying Wen, Weinan Zhang, and Jun Wang. AlphaZero-like tree-
search can guide large language model decoding and training. arXiv preprint arXiv:2309.17179,
2023.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning. In ICLR, 2022.

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pre-
trained large language models to construct and utilize world models for model-based task planning.
In NeurIPS, pp. 79081–79094, 2023.

11

https://goo.gle/codegemma

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Yu Wu, YK Li, et al. DeepSeek-Coder:When the large language model meets programming–the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–107, 1968.

Rishi Hazra, Pedro Zuidberg Dos Martires, and Luc De Raedt. SayCanPay: Heuristic planning with
large language models using learnable domain knowledge. In AAAI, pp. 20123–20133, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Dong Huang, Qingwen Bu, Jie M Zhang, Michael Luck, and Heming Cui. Agentcoder: Multi-agent-
based code generation with iterative testing and optimisation. arXiv preprint arXiv:2312.13010,
2023.

Jiaming Ji, Boyuan Chen, Hantao Lou, Donghai Hong, Borong Zhang, Xuehai Pan, Juntao Dai, and
Yaodong Yang. Aligner: Achieving efficient alignment through weak-to-strong correction. arXiv
preprint arXiv:2402.02416, 2024.

Muhammad Khalifa, Lajanugen Logeswaran, Moontae Lee, Honglak Lee, and Lu Wang.
Discriminator-guided multi-step reasoning with language models. arXiv preprint
arXiv:2305.14934, 2023.

Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nanning Zheng, Han Hu, Zheng Zhang, and
Houwen Peng. Common 7b language models already possess strong math capabilities. arXiv
preprint arXiv:2403.04706, 2024.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
LLM+P: Empowering large language models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical
reasoning for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583,
2023a.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023b.

OpenAI. Learning to Reason with LLMs. https://openai.com/index/
learning-to-reason-with-llms/, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. In NeurIPS, pp. 27730–27744, 2022.

Bobak Pezeshki, Radu Marinescu, Alexander Ihler, and Rina Dechter. AND/OR branch-and-bound
for computational protein design optimizing K. In UAI, pp. 1602–1612, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. arXiv
preprint arXiv:2305.18290, 2023.

12

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Martin Riedmiller. Neural fitted Q iteration–first experiences with a data efficient neural reinforcement
learning method. In ECML, pp. 317–328, 2005.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code Llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Stuart J Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson, 2016.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Y Wu,
and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. arXiv preprint
cs.AI/2303.11366, 2023.

Kumar Shridhar, Koustuv Sinha, Andrew Cohen, Tianlu Wang, Ping Yu, Ram Pasunuru, Mrinmaya
Sachan, Jason Weston, and Asli Celikyilmaz. The art of LLM refinement: Ask, refine, and trust.
arXiv preprint arXiv:2311.07961, 2023.

David Silver. Cooperative pathfinding. In AAAI-AIIDE, pp. 117–122, 2005.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. Chain of thoughtlessness: An
analysis of CoT in planning. arXiv preprint arXiv:2405.04776, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: A family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Qwen Team. Code with codeqwen1.5, April 2024. URL https://qwenlm.github.io/
blog/codeqwen1.5/.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the
planning abilities of large language models - A critical investigation. In NeurIPS, pp. 75993–76005,
2023.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang
Sui. Math-shepherd: A label-free step-by-step verifier for LLMs in mathematical reasoning. arXiv
preprint arXiv:2312.08935, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In NeurIPS,
pp. 24824–24837, 2022.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A Smith,
Mari Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feedback gives better rewards for
language model training. arXiv preprint arXiv:2306.01693, 2023.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. TravelPlanner: A benchmark for real-world planning with language agents. arXiv preprint
arXiv:2402.01622, 2024.

13

https://qwenlm.github.io/blog/codeqwen1.5/
https://qwenlm.github.io/blog/codeqwen1.5/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. In NeurIPS, 2023.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Liang Zeng, Liangjun Zhong, Liang Zhao, Tianwen Wei, Liu Yang, Jujie He, Cheng Cheng, Rui Hu,
Yang Liu, Shuicheng Yan, et al. Skywork-math: Data scaling laws for mathematical reasoning in
large language models–the story goes on. arXiv preprint arXiv:2407.08348, 2024.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex reasoning
in large language models. arXiv preprint arXiv:2205.10625, 2022.

Yuchen Zhuang, Xiang Chen, Tong Yu, Saayan Mitra, Victor Bursztyn, Ryan A Rossi, Somdeb
Sarkhel, and Chao Zhang. Toolchain*: Efficient action space navigation in large language models
with A* search. arXiv preprint arXiv:2310.13227, 2023.

14

	Introduction
	Related Works
	Preliminary
	Formulate the Multi-step Reasoning of LLMs as an MDP
	A* Search

	Q*: A General, Versatile and Agile Deliberation Framework for LLMs
	Estimation of Optimal Q-value
	Deliberative Planning with A*

	Experiments
	Experimental Settings
	Estimations of optimal Q-value
	Quantitative Comparison
	Versatility of Q*
	Testing-time scaling law

	Conclusion

