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ABSTRACT
The ground-state conformation of a molecule is often decisive for its properties.
However, experimental or computational methods, such as density functional the-
ory (DFT), are time-consuming and labor-intensive for obtaining this conforma-
tion. Deep learning (DL) based molecular representation learning (MRL) has
made significant advancements in molecular modeling and has achieved remark-
able results in various tasks. Consequently, it has emerged as a promising ap-
proach for directly predicting the ground-state conformation of molecules. In this
regard, we introduce GTMGC, a novel network based on Graph-Transformer (GT)
that seamlessly predicts the spatial configuration of molecules in a 3D space from
their 2D topological architecture in an end-to-end manner. Moreover, we pro-
pose a novel self-attention mechanism called Molecule Structural Residual Self-
Attention (MSRSA) for molecular structure modeling. This mechanism not only
guarantees high model performance and easy implementation but also lends it-
self well to other molecular modeling tasks. Our method has been evaluated on
the Molecule3D benchmark dataset and the QM9 dataset. Experimental results
demonstrate that our approach achieves remarkable performance and outperforms
current state-of-the-art methods as well as the widely used open-source software
RDkit.

1 INTRODUCTION

The molecular ground-state conformation refers to the lowest energy state of a molecule on its
potential energy surface. It represents the most stable configuration, requiring the least amount of
energy to maintain. Additionally, it plays a crucial role in determining the physical, chemical, and
biological properties of the molecule in most cases.

Recently, MRL methods based on DL have made significant strides in the field of molecular
modeling (Wigh et al., 2022). This approach represents molecules as graphs, where atoms and
bonds are respectively depicted as nodes and edges with features. By utilizing graph neural net-
works (GNNs) (Kipf & Welling, 2016; Veličković et al., 2017; Li et al., 2020; Ying et al., 2021; Kim
et al., 2022) to learn the representation of molecules, a variety of tasks such as molecular property
prediction, molecular generation, and molecular optimization can be accomplished (Gilmer et al.,
2017; Shi et al., 2020; Luo et al., 2022; Zhang et al., 2023b). Of particular note, some studies (Wu
et al., 2018; Townshend et al., 2020; Liu et al., 2021b; Luo et al., 2022; Liao & Smidt, 2022) have
attempted to incorporate the ground-state 3D geometric information of molecules, such as atomic
coordinates and interatomic distance matrix, as additional inputs to the neural networks. Such rich
and advantageous inductive bias has significantly enhanced the model’s performance across a wide
range of tasks.

It is clear that studying molecular ground-state conformation is of great significance. However,
obtaining the conformations of molecules is a challenging task. At present, the primary meth-
ods include molecular dynamics simulations (De Vivo et al., 2016), rough approximations through
manually hand-designed force fields (Rappé et al., 1992; Halgren, 1996), or computationally in-
tensive (DFT) calculations (Parr et al., 1979) and so on. These methods either demand substantial
experimental and computational resources or are too imprecise. Therefore, finding an efficient way
to obtain molecular ground-state conformation is an important research topic. Due to the success
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of DL methods in the field of molecular modeling and the success of AlphaFold2 (Jumper et al.,
2021) in protein structure prediction, using deep neural networks (DNNs) to directly predict them is
a highly promising approach.

Related Work. In previous studies (Mansimov et al., 2019; Simm & Hernández-Lobato, 2019;
Xu et al., 2021b;c; Wu et al., 2022; Morehead & Cheng, 2023), deep generative models have been
employed to generate low-energy stable conformations of molecules. However, these generative
methods mainly focused on producing a multitude of potential stable conformations, rather than
specifically targeting the ground-state conformation. As a result, additional screening steps were
required in real-world applications to identify the best conformation among the generated ensem-
ble. Recently, a novel benchmark called Molecule3D (Xu et al., 2021d) has emerged as a valuable
resource for predicting the ground-state geometry of molecules. This benchmark comprises an ex-
tensive dataset consisting of nearly 4 million molecules along with their corresponding ground-state
conformations. In Sec. A, more detailed related work has been organized.

Building upon the Molecule3D benchmark, we propose a GT-based (Dwivedi & Bresson, 2020;
Ying et al., 2021; Kim et al., 2022; Min et al., 2022) model for predicting molecule’s ground-state
conformation. Our model is capable of seamlessly transforming molecular 2D graph into its stable
3D ground-state conformation through end-to-end prediction, eliminating the need for additional
intermediate variables such as predicting the interatomic distance matrix first and then recovering
the 3D coordinates from it (Simm & Hernández-Lobato, 2019; Shi et al., 2021).

Implementation. In detail, The hole overview of our model’s architecture is shown in Fig. 2.
Firstly, the newly introduced context-aware Mole-BERT Tokenizer (Xia et al., 2023) is creatively
employed to categorize identical atoms into distinct subclasses, mitigating the quantitative diver-
gence between prevalent and scarce atoms. Each atom of molecules is tokenized into discrete values
with chemical significance (e.g., carbon to carbon in benzene ring or aldehyde.), serving as Input
IDs. Then, the widely used Laplacian Positional Encoding (Dwivedi & Bresson, 2020) in the graph
domain which can be solely computed from graph’s adjacency matrix without any complex or exces-
sive prior knowledge is applied to encode the positional information of each node within the entire
graph. Furthermore, A novel self-attention mechanism, termed Molecule Structural Residual Self-
Attention (MSRSA), has been proposed. This mechanism utilizes commonly available and computa-
tionally inexpensive molecular structural information, adjacency matrix and creative row-subtracted
interatomic distance matrix to compute residual bias terms upon self-attention scores (QKT ), to
enhance the self-attention mechanism’s ability to model molecular structures. It largely retains the
structure and elegance of the original Transformer (Vaswani et al., 2017) network, unlike other
works (Ying et al., 2021; Li et al., 2022) that necessitate complex design and computation. Finally,
we use a feed-forward network (FFN) head on atoms’ representations to predict the molecular 3D
ground-state conformation, achieving end-to-end prediction from the molecule’s 2D graph.

Results and Contribution. (i). Our approach, GTMGC, that predicts molecular 3D ground-state
conformation from its 2D graph topological representation in an end-to-end manner, has been val-
idated on the recently proposed benchmark dataset Molecule3D (Xu et al., 2021d) and the widely
used QM9 (Ramakrishnan et al., 2014) dataset. Experimental results demonstrate that our approach
outperforms the current best method (Xu et al., 2021d) and surpasses the DG (Havel, 1998) and
ETKDG (Riniker & Landrum, 2015) algorithms implemented in the most commonly used open-
source software RDkit (Landrum et al., 2013). (ii). GTMGC employs a distinctive input form. We
innovatively leverage the MoleBERT Tokenizer (Xia et al., 2023) to discretize each atom of the
molecule into chemically significant tokens, serving as the model’s input, rather than conventional
atom type IDs or Ogb-style embeddings (Hu et al., 2021). This effectively helps the model predict
molecule’s ground-state conformation. (iii). Furthermore, ablation studies strongly demonstrate the
effectiveness of our method. (iv). More experiments in Sec. B show that the proposed MSRSA mod-
ule can be effectively applied to many other molecular property prediction tasks. (v). The source
code of our method is available at https://github.com/Rich-XGK/GTMGC.

2 PRELIMINARY

2.1 NOTATION AND PROBLEM DEFINITION

Notation. For a molecule with n atoms and m bonds, its 2D structure representation is denoted as
G = {V, E}, where V = {v1, v2, . . . , vn} represents the set of n atoms and E = {e1, e2, . . . , em}
represents the set of m bonds. Each atom vi and bond ej may possess its own features, such as
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Figure 1: (a): The overview of the ground-state conformation prediction task; (b): Computation
process of the attention map in MSRSA module, viewed through the lens of attention mask.

atom type, bond type, etc. In the context of a graph structure G, its adjacency matrix is denoted
by A ∈ Rn×n, where Aij = 1 signifies the presence of an edge connecting node vj to vi, while
Aij = 0 indicates the absence of such an edge. The ground-state conformation of a molecule is
denoted as G ∈ Rn×3, which represents a set of 3D Cartesian coordinates. Expanding on this,
the interatomic distance matrix of a molecule is defined as D ∈ Rn×n, where Dij represents the
Euclidean distance between atom vj and vi.

Problem Definition. As depicted in Fig. 1 (a), the ground-state conformation prediction task aims
to predict the conformation of a molecule in its ground state, G ∈ Rn×3, solely based on its 2D
molecular structure, G = {V, E}.

2.2 TRANSFORMER

In vanilla Transformer (Vaswani et al., 2017), the multi-head scaled dot-product self-attention
(MHSA) module is solely responsible for modeling relationships between different elements. By
calculating the similarity between queries and keys, it determines the importance of different ele-
ments to a single element. The weights are then normalized and used to compute a weighted sum
of the values, resulting in a new representation for the corresponding element. The use of multiple
heads allows different attention heads to learn distinct information within separate subspaces.

Self-Attention. Suppose the input fed into the MHSA module is X ∈ Rn×dmodel , where n rep-
resents the number of tokens and dmodel represents the hidden dimension of the model. WQ ∈
Rdmodel×dk , WK ∈ Rdmodel×dk , and WV ∈ Rdmodel×dv are three learnable linear mappings that
map X to Q ∈ Rn×dk , K ∈ Rn×dk and V ∈ Rn×dv , respectively. The scaled dot-product attention
is then computed as:

Q = XWQ,K = XWK ,V = XWV (1)

Attention(Q,K,V) = softmax(
QKT

√
dk

)V, (2)

Multi-Head. After introducing h heads, total of h WQ
l ∈ Rdmodel×

dk
n , WK

l ∈ Rdmodel×
dk
h

and WV
l ∈ Rdmodel× dv

h , map X to Ql ∈ Rn× dk
h , Kl ∈ Rn× dk

h and Vl ∈ Rn× dv
h , where l ∈

[1, h]. Then one head of scaled dot-product attention can be computed as equation 3. Let WO ∈
Rdv×dmodel be another learnable linear mapping to map the concatenated output of all heads to the
output of the MHSA module:

Ol = Attention(Ql,Kl,Vl) = softmax(
QlK

T
l√

dk
)Vl (3)

MHSA(X) = Concat(O1,O2, . . . ,Oh)W
O (4)

Transformer Layer. After MHSA, a feed-forward network (FFN) consisting of two linear trans-
formations with a non-linear activation is applied to each element respectively and identically. Both
the output of MHSA and FFN are first passed through a residual connection (He et al., 2016) and
then normalized by a LayerNorm (Ba et al., 2016). The output of a Transformer layer can be com-
puted as:

X′ = LayerNorm(X+ MHSA(X)) (5)

Layer(X) = LayerNorm(X′ + FFN(X′)) (6)
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Figure 2: Overview of GTMGC. (a): Atoms in the molecule are tokenized by MoleBERT Tok-
enizer (Xia et al., 2023) into chemically meaningful discrete codes as model’s Input IDs. (b): The
encoder of GTMGC consisting of N MSRSA blocks with only adjacency matrix residual bias term
BA. (c): The Decoder of GTMGC consisting of MSRSA blocks with both adjacency matrix resid-
ual bias term BA and interatomic distance matrix residual bias term BD. (d): The main Molecule
Structural Residual Self-Attention (MSRSA) module, using residual bias terms BA and BD to help
pure dot-product self-attention mechanism model molecule’s structure information.

3 METHOD

3.1 MODEL INPUT

Input IDs. Thanks to the convenience of (Xia et al., 2023), we can now use the chemically mean-
ingful IDs tokenized by the MoleBERT Tokenizer as input IDs for our model, as shown in Fig. 2(a).
Since these tokens are assumed to already contain ample chemical information about atoms, we have
ceased utilizing edge features to enhance the representation of molecular input features, thereby
making the model more concise.

Positional Encoding. For graph structures, incorporating positional encoding becomes even more
vital and challenging since elements in graph structures lack fixed positions. It is necessary to differ-
entiate the positions of various nodes within the graph structure, allowing the model to capture the
relationships between nodes. To adhere to the principle of introducing minimal prior knowledge to
the model and enhancing its generality, we opted for the Laplacian Positional Encoding as (Dwivedi
& Bresson, 2020) does, among using various graph structure positional encoding techniques (Zhang
et al., 2020; Ying et al., 2021; Hussain et al., 2021; Park et al., 2022). This approach encodes posi-
tional relationships between nodes using the eigenvectors of the graph Laplacian matrix. It can be
solely computed from every molecular graph’s adjacency matrix without any complex or excessive
prior knowledge.

Thus, our final input, H ∈ Rn×dmodel , is solely obtained by adding the Laplacian Positional Encod-
ing vectors, L ∈ Rn×n, to the feature vectors, E ∈ Rn×dmodel , embedded from the MoleBERT-
tokenized input IDs.

3.2 GRAPH STRUCTURAL RESIDUAL SELF-ATTENTION (MSRSA)
In Section 2.2, we review in detail how a vanilla Transformer layer performs forward calculations.
Its original dot-product self-attention mechanism models the relationships between all nodes in an
undirected fully connected graph, similar to a GNN model (Kipf & Welling, 2016; Veličković et al.,
2017; Gilmer et al., 2017) that performs message passing on an undirected fully connected graph.

For molecules, the local structure of atoms (such as functional groups) and the connectivity of edges
(whether they have chemical bonds or not) have a huge impact on their chemical and structural prop-
erties. Since the original self-attention mechanism is unable to effectively capture these information,
we propose an extended self-attention mechanism based on molecular structure, named Molecule
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Structural Residual Self-Attention (MSRSA), as can be observed in Fig. 2(d), which incorporates
the adjacency matrix, A ∈ Rn×n, and interatomic distance matrix, D ∈ Rn×n, of the molecule as
residual bias terms for self-attention scores, Sl = QlK

T
l ∈ Rn×n.

Global. Unlike the approach used by (Dwivedi & Bresson, 2020) that employs the adjacency ma-
trix as a full attention mask to restrict the current node’s focus to neighboring nodes, our method
is based on retaining complete global attention. This brings our model closer to the original Trans-
former, as we assume that the original self-attention mechanism captures global information by
focusing on all atoms in the molecule. Therefore, the basic self-attention scores calculated by full
self-attention in each head l ∈ [1, h] are:

Sl = XWQ
l (XWK

l )
T
= QlK

T
l

(7)

Nearby. To capture something useful about the molecule’s local structure, the adjacency matrix
A has been introduced as a residual bias term BA

l ∈ Rn×n to Sl, as shown in Fig. 2(d). BA
l models

atom’s 1-hop local structure information by attending to neighboring atoms connected to the current
atom. For each head, we first multiply the adjacency matrix A by a learnable parameter γA

l to
automatically learn the requirement for local information. The result is then used in a hadamard
product with Sl to obtain BA

l :

BA
l = Sl ⊙ (γA

l ×A) (8)

Spatial. To enable the model to represent the spatial structure of molecules, introducing the in-
teratomic distance matrix of molecules is a direct and simple approach. Similarly, we use the in-
teratomic distance matrix of molecules as another residual bias term BD

l ∈ Rn×n, as shown in
Fig. 2(d). BD

l models molecule’s spatial structure by assigning more weight to atoms closer to the
current atom, which introduces the simple distance relevance assumption: the greater the distance
between atomic elements, the lower the interaction (Choukroun & Wolf, 2021). For each head,
we first subtract the row-max value, βmax

i , i ∈ [1, n] which represents the furthest distance from
other nodes to the current node vi, from each row of D to obtain row-subtracted distance ma-
trix Drow-sub, representing the distance relevance assumption. It is worth noting that, as far as we
know, this represents our biggest difference from others who use the interatomic distance matrix to
introduce molecule’s spatial structure information and its effectiveness is supported by experimental
evidence (Table 3; Table 4). Then another learnable parameter γD

l is multiplied to Drow-sub to au-
tomatically ascertain the necessity for spatial information. The result is finally used in a hadamard
product with S′

l to obtain BD
l :
Drow-sub = β⃗max −D, β⃗max = max

i∈[1,n]
D (9)

BD
l = Sl ⊙ (γD

l ×Drow-sub) (10)

Thereafter, we sum up Sl, BA
l and BD

l together, where BA
l and BD

l are residual bias terms of Sl,
and then scale the results by

√
dk, and finally normalize it using a softmax function to obtain the

final output Ol of each head:

S′
l =(Sl +BA

l +BD
l )

=Sl + Sl ⊙ (γA
l ×A) + Sl ⊙ [γD

l × (β⃗max −D)]

=QlK
T
l ⊙ [En + γA

l ×A+ γD
l × (β⃗max −D)]

(11)

Ol = softmax(
S′
l√
dk

)Vl (12)

Analytically, as unveiled in Fig. 1 (b), we can dissect equation 11 through the lens of implementing
multiple attention masks on the self-attention scores Sl. Specifically, En ∈ Rn×n initially executes
an unobscured mask grounded on the original attention. Concurrently, A could be interpreted as an
additional mask that confines the current node to solely focus on its neighboring nodes. D could
be perceived as a spatial awareness mask that adjusts the level of attention based on the distance
between nodes. The significance of various masks is learned through parameters γA

l and γD
l , which

are subsequently fused to influence Sl. By adopting this approach, we only need to introduce a
minimal amount of parameters based on pure self-attention, compared to which, to achieve sub-
stantial performance enhancement. Otherwise, MSRSA shares certain similarities and associations
with (Maziarka et al., 2020; Choukroun & Wolf, 2021), as they also utilize A and D to enhance the
self-attention mechanism. More details on the differences and connections between them have been
provided in Sec. A.3.
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Figure 3: Examples inferred by RDkit, GPS and GTMGC (ours); (a): The ground truth, molecules’
ground-state 3D conformations; (b): The predictions of RDkit; (c): The predictions of GPS; (c):
The predictions of GTMGC. More examples are shown in Sec. C.1.

3.3 ARCHITECTURE OF GTMGC
Encoder. As shown in Fig. 2 (b), in the encoder with N blocks and H heads, only the adjacency
matrix residual bias term BA

l has been used to enhance the original self-attention mechanism. Ini-
tially, the input of the encoder only contains the node embeddings H ∈ Rn×dmodel and 2D structural
information, adjacency matrix, A ∈ Rn×n of the molecule. After forward calculation in the encoder,
we pass the output of the Encoder H′ ∈ Rn×dmodel through a learnable weight-sharing two-layer
FFN head fw(·) to obtain a relatively rough conformation prediction result Gcache ∈ Rn×3, and
then calculate the interatomic distance matrix of Gcache, namely Dcache ∈ Rn×n.

Decoder. Instantly, we feed H′ ∈ Rn×dmodel , A ∈ Rn×n and Dcache ∈ Rn×n as inputs to the
decoder with N blocks and H heads, as depicted in Fig. 2 (c). In the decoder, full MSRSA module
with BA

l and BD
l bias terms has been utilized to model the molecule’s spatial structure. Finally,

we pass the decoder’s output H′′ through the same FFN head fw(·) used before to return the final
conformation G∗ ∈ Rn×3 predicted as result.

3.4 LOSS

In order to keep the prediction results rotationally and translationally invariant, we use the Mean
Absolute Error (MAE) between the interatomic distance matrix of the prediction, D∗, and that of
the ground truth, D, as the loss. In an innovative approach, we trained the model by combining the
loss between its final output G∗ and G with the loss between the Encoder’s output Gcache and G.
This enables the Encoder to learn a more effective representation and provide the Decoder with more
precise initialization space information Dcache, ultimately enhancing the model’s performance. The
final loss function is as follows:

MAE(D,D∗) =
1

n2

n∑
i=1

n∑
j=1

|Dij −D∗
ij | (13)

L = MAE(D,D∗) + MAE(D,Dcache) (14)

4 EXPERIMENTS

4.1 DATASETS

Molecule3D. The first benchmark introduced by (Xu et al., 2021d) that aims to use DNNs to
predict the ground-state 3D geometries of molecules based solely on their 2D graph structure. The
proposed large-scale dataset comprises approximately 4 million molecules, each with its own 2D
molecular graph, ground-state 3D geometric structure, and four additional quantum properties. It
employs two splitting methods: random splitting according to the same probability distribution and
scaffold splitting based on the molecule’s core component. Both partitions use a 6:2:2 ratio for
training, validation, and testing.

QM9. A small-scale quantum chemistry dataset (Ramakrishnan et al., 2014; Wu et al., 2018) that
provides geometry, energy, electronic, and thermodynamic properties for nearly 130,000 organic
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molecules with 9 heavy atoms, containing molecular most stable conformation calculated by DFT.
We adopt the identical data split as described in (Liao & Smidt, 2022), where 110k, 10k, and 11k
molecules are allocated for training, validation, and testing, respectively.

4.2 METRICS

Followed (Xu et al., 2021d), given a dataset with totally N interatomic distances, the Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE) between the prediction, {d∗i }

N
i=1, and the ground

truth, {di}Ni=1, are used to evaluate the performance at node-pair level:

D-MAE({di}Ni=1, {d
∗
i }

N
i=1) =

1

N

N∑
i=1

|di − d∗i | (15)

D-RMSE({di}Ni=1, {d
∗
i }

N
i=1) =

√√√√ 1

N

N∑
i=1

(di − d∗i )
2 (16)

Additionally, We followed previous generative works (Mansimov et al., 2019; Wu et al., 2022) to
calculate the Root Mean Square Deviation (RMSD) of n heavy atoms between the ground truth, G,
and the prediction rigidly aligned to the ground truth by the Kabsch algorithm (Kabsch, 1978), Ĝ∗.
This metric can effectively measure the spatial difference between two conformations.

C-RMSD(G, Ĝ∗) =

√√√√1

n

n∑
i=1

∥gi − ĝ∗
i ∥22 (17)

4.3 CONFORMATION PREDICTION

Setup. To validate the effectiveness and advancement of our algorithm in predicting molecular
ground-state conformation, we initially selected widely used DG and ETKDG algorithms imple-
mented by RDkit as baselines. Additionally, the benchmark study (Xu et al., 2021d) employed
DeeperGCN-DAGNN (Liu et al., 2021a) to directly predict atom coordinates, achieving previously
state-of-the-art performance. Given the limited research in this specific area, we included GINE (Hu
et al., 2019), GATv2 (Brody et al., 2021) and GPS (Rampášek et al., 2022) as comparative bench-
marks. GINE and GATv2, known for their impressive capabilities, are robust 2D GNNs, and GPS

Table 1: The performance on the Molecule3D and QM9 datasets (Å).

Validation Test

D-MAE↓ D-RMSE↓ C-RMSD↓ D-MAE↓ D-RMSE↓ C-RMSD↓
(a) Molcule3D Random Split

RDKit DG 0.581 0.930 1.054 0.582 0.932 1.055
RDKit ETKDG 0.575 0.941 0.998 0.576 0.942 0.999
DeeperGCN-DAGNN (Xu et al., 2021d) 0.509 0.849 * 0.571 0.961 *
GINE (Hu et al., 2019) 0.590 1.014 1.116 0.592 1.018 1.116
GATv2 (Brody et al., 2021) 0.563 0.983 1.082 0.564 0.986 1.083
GPS (Rampášek et al., 2022) 0.528 0.909 1.036 0.529 0.911 1.038
GTMGC (Ours) 0.432 0.719 0.712 0.433 0.721 0.713

(b) Molcule3D Scaffold Split

RDKit DG 0.542 0.872 1.001 0.524 0.857 0.973
RDKit ETKDG 0.531 0.874 0.928 0.511 0.859 0.898
DeeperGCN-DAGNN (Xu et al., 2021d) 0.617 0.930 * 0.763 1.176 *
GINE (Hu et al., 2019) 0.883 1.517 1.407 1.400 2.224 1.960
GATv2 (Brody et al., 2021) 0.778 1.385 1.254 1.238 2.069 1.752
GPS (Rampášek et al., 2022) 0.538 0.885 1.031 0.657 1.091 1.136
GTMGC (Ours) 0.406 0.675 0.678 0.400 0.679 0.693

(c) QM9

RDKit DG 0.358 0.616 0.722 0.358 0.615 0.722
RDKit ETKDG 0.355 0.621 0.691 0.355 0.621 0.689
GINE (Hu et al., 2019) 0.357 0.673 0.685 0.357 0.669 0.693
GATv2 (Brody et al., 2021) 0.339 0.663 0.661 0.339 0.659 0.666
GPS (Rampášek et al., 2022) 0.326 0.644 0.662 0.326 0.640 0.666
GTMGC (Ours) 0.262 0.468 0.362 0.264 0.470 0.367
∗The asterisk (*) indicates that the result for this metric was not reported in (Xu et al., 2021d).
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Table 2: Ablation study on input format (Å).

D-MAE↓ D-RMSE↓ ⋆ C-RMSD↓
Ogb-style embeddings (Hu et al., 2021) .4299±.0014 .7162±.0003 .7431±.0198

Atom Type IDs .4338±.0002 .7195±.0001 .7217±.0002

MoleBERT Tokenized IDs (Ours) .4330±.0004 .7213±.0004 .7139±.0010

⋆ means the indicator we mainly focus on.

Table 3: Ablation study of MSRSA module for ground-state conformation prediction on
Molecule3D random split (Å).

Index (∆Param)
Methods

D-MAE↓ D-RMSE↓ ⋆ C-RMSD↓
LPE MHSA BA

encoder BA
decoder B

D(original)
decoder B

D(row-sub)
decoder

1 (+0) ✓ .5464±.0026 .9049±.0091 .9724±.0121

2 (+0) ✓ ✓ .4395±.0004 .7237±.0003 .7388±.0069

3 (+48) ✓ ✓ ✓ .4353±.0002 .7217±.0004 .7213±.0043

4 (+96) ✓ ✓ ✓ ✓ .4330±.0004 .7216±.0006 .7299±.0111

5 (+144) ✓ ✓ ✓ ✓ ✓ .4325±.0002 .7214±.0006 .7202±.0057

6 (+144) ✓ ✓ ✓ ✓ ✓ .4330±.0004 .7213±.0004 .7139±.0010

⋆ means the indicator we mainly focus on.

is a powerful GT-style network that was recently proposed. Our model, GTMGC, was compared
against these baselines, and the results on the Molecule3D and Qm9 datasets are presented in Ta-
ble 1 (a), (b) and (c). Except for the results obtained from the original benchmark paper (Xu et al.,
2021d) for DeeperGCN-DAGNN, all other findings presented in this study are derived from our ex-
periments. It is important to note that the results of GTMGC on QM9 were fine-tuned based on its
performance on Molecule3D. Finally, Fig. 3 illustrates a comparison between the predicted results
of our model and the references on samples from the random split test set of Molecule3D.

Results and Analysis. (i). As shown in Table 1 (a) and (b), in the Molecule3D random and
scaffold split, GTMGC improved 18.34%, 20.86%, and 28.63% and 21.71%, 20.79%, and 22.83%
respectively on the D-MAE, D-RMSE, and C-RMSD metrics in the test set compared to the previous
top results. (ii). Additionally, in both splits, GTMGC’s results on the validation set and test set are
very close, indicating that our method has good generalization performance. (iii). Unlike (Xu et al.,
2021d), it has already overfitted on random split and performs worse on scaffold split. GTMGC
performs well on Scaffold split, indicating that it can predict molecules with different scaffolds
from those unseen during training. (iv). As demonstrated in Table 1 (c), GTMGC also achieved
superior results on the Qm9 test set, indicating its exceptional generalization performance across
various datasets and its applicability to both large and small scale molecules. (v). Furthermore, as
illustrated by the examples in Fig. 3, the conformations predicted by GTMGC more closely aligns
with the references.

4.4 EFFECTIVENESS STUDY

Setup. To evaluate the effectiveness of GTMGC, we conducted ablation experiments on the Ran-
dom Split of Molecule3D. Each result represents the mean (standard deviation, std) value, calculated
after conducting the experiment 3 times. First, we modified the input format of the model while
keeping the network architecture constant to evaluate the impact of our proposed input format on
molecular ground-state conformation prediction. The results are presented in Table 2. Moreover, we
conducted experiments to evaluate the influence of individual components within the core MSRSA
module. We initially implemented a pure self-attention form and progressively incorporated various
components. The outcomes of these experiments are presented in Table 3. Finally, visualization
of attention weights has been employed in Fig. 4 as a means to showcase the proficiency and ap-
proach of our MSRSA module in the modeling of molecular structures. Specifically, the appendix
(Sec. B Table 4) includes an extra ablation study designed to validate the contribution of each com-
ponent when the MSRSA module is employed for molecular property prediction.

Results and Analysis. As shown in Table 2, our proposed input format, MoleBERT Tokenized
IDs, outperforms the other two input formats, Ogb-style (Hu et al., 2021) embeddings and Atom
Type IDs, on the C-RMSD metric which best reflects the difference between conformations and
we mainly focus on. Although it falls slightly short in the D-MAE and D-RMSE indicators, the
difference is not significant. However, its improvement in C-RMSD is substantial. (i). This sug-
gests that our proposed input format is more effective for ground-state conformation prediction. We
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(a) (b)

Figure 4: attention weights visualization. The triangular node (△) represents the current node ((a):
No.7, Br; (b): No.14, S.), while the other nodes are shaded from dark to light based on the magnitude
of their attention weights relative to the current node. More examples are shown in Sec. C.2.

hypothesize that the MoleBERT Tokenizer assigns distinct IDs to atoms of the same type, result-
ing in embeddings with unique chemical meanings. This addresses the issue of similar type nodes
having close representations after being processed by the model, leading to proximate outcomes
(coordinates). Additionally, as shown in Table. 3, starting from pure self-attention, we first add
BA

encoder to the Encoder, followed by BA
decoder to the Decoder. Finally, we incorporate B

D(original)
decoder

and B
D(row-sub)
decoder into the Decoder respectively. (ii). As each component is integrated, the perfor-

mance of the model almost gradually improves, particularly in the C-RMSD metric, which best re-
flects differences between conformations and has seen improvements of 2.37%, 1.21%, and 3.37%
respectively compared to pure self-attention. (iii). Notably, as each component is incorporated, the
standard deviation of performance (C-RMSD) gradually decreases, indicating increased stability
in our model. (iv). Moreover, by employing our proposed Drow-sub in place of the original inter-
atomic distance matrix D, we have achieved a performance enhancement of 0.87% along with a
reduction in standard deviation. Regrettably, the Drow-sub we utilized is not sufficiently precise as
it is derived from preliminary rough estimates Gcache. By introducing the actual Drow-sub during
molecular property prediction, superior outcomes are presented in Sec. B Table 4. (v). The attention
weights learned are depicted in Fig. 4, illustrating the degree of focus a specific atom has towards
other atoms during its modeling. The figure reveals that the model discerns diverse attention patterns
across different attention heads. For instance, in Fig. 4 (a), the atom Br, represented by a triangle,
primarily captures the molecule’s global information in head 0, paying substantial attention to the
heavy atoms within the two rings. In heads 3 and 4, it distinctly showcases the acquisition of the
molecule’s spatial structural information. As observed in the figure, moving from left to right (or
vice versa), and from near to far, the attention of the Br atom towards other atoms progressively
diminishes. This characteristic endows our model with enhanced intuitive interpretability.

5 CONCLUSION

We propose a novel Transformer-based method, GTMGC, for end-to-end prediction of 3D ground-
state conformations of molecules from their 2D topological structures. Our method achieves signif-
icant performance improvement over the previous best methods, reaching the state-of-the-art level,
and also surpasses the widely used open-source toolkit RDkit on various metrics. Moreover, we
introduce a novel and simple self-attention mechanism for molecular structure modeling, namely
Molecule Structural Residual Self-Attention (MSRSA). It preserves the original self-attention struc-
ture in Transformer to a large extent, while also being able to effectively model the molecular struc-
ture. Experiments show that MSRSA module not only provides great help for predicting the ground-
state conformations of molecules, but also is easy to implement and generalize to other molecular
modeling tasks, such as molecular property prediction.
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A RELATED WORK

A.1 MOLECULE TOKENIZATION

In natural language processing (NLP) pipelines (Vaswani et al., 2017; Devlin et al., 2018), tok-
enization is the first step. This involves splitting text into individual tokens. These tokens are then
converted into numerical values, known as input IDs, that can be embedded by the model. With this
in mind, we wondered if we could extract meaningful tokens from molecules and convert them into
input IDs for our model. The most straightforward approach is to use atomic types as token IDs,
but this results in a small and unbalanced dictionary size (only 118 classes of different atoms). This
approach may not distinguish dominant and rare atoms in molecules, potentially causing the model
to focus too much on primary atoms while ignoring rare atoms, leading to bias (Xia et al., 2023).

To our knowledge, Mole-BERT (Xia et al., 2023) is the first work to address this issue, which
leverages a context-aware tokenizer based on group VQ-VAE (Van Den Oord et al., 2017) that
encodes atoms into discrete values with chemical significance. This distinguishes major elements
such as carbon into carbon in different chemical environments (e.g., benzene ring and aldehyde
carbons.). It greatly addresses the imbalance between major and rare elements while simultaneously
expanding the vocabulary size (from 118 to 512).

A.2 MOLECULE GEOMETRY PREDICTION (GENERATION)
In recent years, there has been a surge in the application of generative models to the task of gen-
erating multiple conformations of molecules. This work primarily utilizes the GEOM-QM9 and
GEOM-Drugs datasets (Axelrod & Gomez-Bombarelli, 2020). Each molecule in these datasets can
exist in numerous potential stable low-energy conformations. For instance, CGCF (Xu et al., 2021a)
employs a Flow model to learn the distribution p(D|G) of the interatomic distances given a molecu-
lar graph G, and then generates potential conformations from p(G|D,G) and optimizes them using
Langevin Dynamics. ConvVAE (Xu et al., 2021b) adopts a bilevel programming approach to split
the task into a distance prediction problem and a distance geometry problem. The entire framework
encodes the molecular graph into latent space using a conditional variational autoencoder (VAE).
During inference, it first samples from the latent space, then obtains sampled samples of interatomic
distances through the decoder, and finally obtains the generated conformation by optimizing the
distance geometry problem. ConfGF (Shi et al., 2021) suggests estimating the gradient field of the
log density of interatomic distances initially, then calculating the gradient fields of the log density
of atomic coordinates via the chain rule. The well-trained score network can estimate the gradi-
ent field of atomic coordinates corresponding to different levels of noise. Utilizing this capability,
the annealed Langevin dynamics (Song & Ermon, 2019) algorithm can be employed to generate
new conformations. However, all these methods require modeling the intermediate variable, inter-
atomic distances, to obtain the coordinates of the generated conformation. This requirement has
been identified as a contributing factor to their suboptimal performance. In an effort to circumvent
the constraints posed by intermediate variables, GeoMol (Ganea et al., 2021) models essential ge-
ometric elements of molecules, such as torsion angles, bond distances, and bond angles. During
inference, it outputs a set of these geometric elements, enabling the comprehensive reconstruction
of 3D conformations. Moreover, numerous studies have begun to leverage the increasingly popular
diffusion models (Ho et al., 2020). These models aim to learn the desired geometric distribution
from a noise distribution via a reverse diffusion process. GeoDiff (Xu et al., 2022) implements this
diffusion and reverse diffusion process directly on atomic coordinates. It then recovers the desired
real conformation from positions sampled from the noise distribution through the reverse diffusion
process. TorDiff (Jing et al., 2022), on the other hand, confines the diffusion process to the tor-
sion angles of molecular conformations. This approach effectively reduces the dimensionality of
the sampling space. A growing body of research has been advancing in accelerating the sampling
speed of diffusion models, resulting in significant enhancements in both the precision and speed of
molecular conformation generation (Zhang et al., 2023a; Fan et al., 2023).

Prediction Methods. While generative models have demonstrated encouraging outcomes in the
generation of molecular conformations, they are designed for a one-to-many task, aiming to gen-
erate multiple potential stable low-energy conformations rather than necessarily the lowest-energy
ground-state conformation. In practical applications, it becomes essential to further sift through
the generated results to identify conformations of superior quality and lower energy. Moreover,
the inherent sampling uncertainty during the inference phase of generative models could poten-
tially lead to the generation of conformations that are not practically feasible. Each molecule in
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the GEOM (Axelrod & Gomez-Bombarelli, 2020) dataset possesses multiple low-energy stable
conformations, rather than the most stable ground-state conformation. Given these challenges, a
benchmark task (Xu et al., 2021d) has been proposed which seeks to predict a molecule’s ground-
state geometries directly from its 2D topological structure using a predictive paradigm network.
A benchmark dataset called Molecule3D has been introduced which comprises nearly 4 million
molecules, each with its ground-state geometric information and four quantum properties calculated
at the B3LYP/6-31G* level using Density Functional Theory (DFT). Building upon this dataset,
the DeeperGCN-DAGNN model is employed as a baseline by (Xu et al., 2021d) for predicting the
ground-state geometry of molecules. This involves predicting the interatomic distance matrix cor-
responding to the molecule’s ground-state conformation and directly predicting the 3D Cartesian
coordinates of the molecule’s ground-state conformation. Our work follows this latter approach,
achieving an end-to-end prediction from a molecule’s 2D graph to its 3D ground-state conforma-
tion.

A.3 (MOLECULE) GRAPH TRANSFORMER

Transformer (Vaswani et al., 2017) networks have made remarkable strides in diverse domains (De-
vlin et al., 2018; Dosovitskiy et al., 2020; Liu et al., 2021d). In recent years, numerous investiga-
tions (Dwivedi & Bresson, 2020; Ying et al., 2021; Luo et al., 2022; Kim et al., 2022; Min et al.,
2022) have endeavored to employ transformer networks into graphs. Studies have demonstrated that
transformer networks can effectively address prevalent challenges such as over-smoothing (Chen
et al., 2020) and over-squashing (Alon & Yahav, 2020) encountered in GNNs. In molecular model-
ing, MAT (to be discussed later) was proposed by (Maziarka et al., 2020) and R-MAT was proposed
by (Maziarka et al., 2021) based on MAT. R-MAT calculates attention scores by employing distance
embeddings and bond embeddings rather than using the original QKT . (Choukroun & Wolf, 2021)
directly regulates the attention scores by incorporating a learnable gate function that considers the
interatomic distances. (Wu et al., 2021a) employs two-dimensional convolution on interatomic dis-
tances for position encoding to ensure roto-translational invariance, and makes the first attempt to
incorporate motifs and knowledge of functional groups into a Transformer network for 3D molecular
representation learning. For a more comprehensive understanding of GTs, we recommend referring
to (Min et al., 2022; Müller et al., 2023). These sources provide detailed overviews on the topic.

Discussion. Because A and D are the most prevalent prior knowledge for 3D molecules, nu-
merous previous works have attempted to enhance the attention mechanism in Graph Trans-
former networks by leveraging these inductive biases. The works most closely related to ours
are (Maziarka et al., 2020; Choukroun & Wolf, 2021). (Maziarka et al., 2020) directly incorporates
softmax(

QlK
T
l√

dk
), A and g(D) throughout the model by means of three hyperparameters, where g

is a kernel function that can either be softmax or e−d. (Choukroun & Wolf, 2021) utilizes f(D−1)
2

as a gate function acting on softmax(
QlK

T
l√

dk
), where f is a learnable fully-connected network. The

crucial distinction between our work and theirs lies in the fact that we do not directly incorporate
softmax(

QlK
T
l√

dk
), A and D or impose distance-based gating constraints on softmax(

QlK
T
l√

dk
). In-

stead, we regard S = QlK
T
l as a global attention and dynamically acquire the weights of the three

masks En, A, and β⃗max − D (corresponding to global, nearby and spatial information) for each
self-attention head through learnable parameters (1, γA

l and γD
l ). We then adjust S by merging the

three masks to obtain the overall mask M = En + γA
l ×A+ γD

l × (β⃗max −D), and subsequently
apply softmax to the adjusted S to obtain the final attention weights for updating node features as
Ol = softmax(S⊙M√

dk
)Vl. Unlike (Maziarka et al., 2020), we are able to automatically learn dif-

ferent mask weights at every location in the model, thereby capturing distinct attention patterns.
Unlike (Choukroun & Wolf, 2021), we do not directly manipulate S based on distance information,
rather we adjust S using the learned mask M. Furthermore, we introduce fewer learnable parame-
ters. Our approach allows the model to learn different attention patterns in different self-attention
heads, with some parts focusing more on global information and others on local or spatial informa-
tion, thereby enhancing the expressive power of the model. A control experiment has been added to
Table 4 to differentiate the variations between MAT (Maziarka et al., 2020) and our approach.

B MSRSA FOR MOLECULAR PROPERTY PREDICTION
Setup. To assess the effectiveness and transferability of the MSRSA module (Sec. 3.2), We have
implemented three Bert-like (encoder only) models (Devlin et al., 2018) of different sizes (small,
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base and large) with complete MSRSA modules, including both BA and BD. Detailed model hy-
perparameters are provided in Table 7 in Sec. D. Initially, an ablation study is conducted on our
small-level model, utilizing the random split of the Molecule3D dataset. This is done to validate the
effectiveness of each individual component within the MSRSA when predicting molecular proper-
ties. The results of these experiments are detailed in Table 4. Subsequently, a performance compar-
ison was carried out with several baselines on the Molecule3D Random split for the prediction of
the Homo-Lumo Gap. All baseline results are derived from (Wang et al., 2022). The results are pre-
sented in Table 5. Finally, we conduct experiments on the molecular property prediction tasks using
the QM9 dataset. The results of previous methods are all borrowed from (Liao & Smidt, 2022). We
use the same data split as in (Liao & Smidt, 2022), with 110k, 10k, and 11k molecules for train-
ing, validation, and testing, respectively. Our results are based on the network that was trained in

Table 4: Ablation study of MSRSA module for molecular property prediction on Molecule3D ran-
dom split (eV).

Index (∆Param)
Methods

εHOMO↓ εLUMO↓ ∆ε↓
LPE MHSA BA BD(original) BD(row-sub)

1 (+0) ✓ .209 .239 .281
2 (+0) ✓ ✓ .111 .108 .131
3 (+48) ✓ ✓ ✓ .092 .089 .104
4 (+96) ✓ ✓ ✓ ✓ .034 .034 .053
5 (+96) ✓ ✓ ✓ ✓ .031 .034 .045

MAT (Maziarka et al., 2020) .067 .070 .083

Table 5: MAE results of MSRSA module for molecular HOMO-LUMO gap prediction on
Molecule3D random split (eV).

Method
Time

∆ε↓Train Inference

GIN-Virtual (Hu et al., 2021) 15min 2min .1036
SchNet (Schütt et al., 2017) 15min 3min .0428
DimeNet++ (Gasteiger et al., 2020) 133min 16min .0306
SphereNet (Liu et al., 2021c) 182min 28min .0301
ComENet (Wang et al., 2022) 22min 3min .0326

GTMGCsmall (Ours) 20min 3min .0446
GTMGCbase (Ours) 21min 3min .0371
GTMGClarge (Ours) 25min 4min .0316

Table 6: MAE results of MSRSA module for molecular property prediction on QM9 test set.

Method α ∆ε εHOMO εLUMO µ Cν

(a30) (meV) (meV) (meV) (D) (cal/mol K)

NMP (Gilmer et al., 2017)† .092 69 43 38 .030 .040
SchNet (Schütt et al., 2017) .235 63 41 34 .033 .033
Cormorant (Anderson et al., 2019)† .085 61 34 38 .038 .026
LieConv (Finzi et al., 2020)† .084 49 30 25 .032 .038
DimeNet++ (Gasteiger et al., 2020) .044 33 25 20 .030 .023
TFN (Thomas et al., 2018)† .223 58 40 38 .064 .101
SE(3)-Transformer (Fuchs et al., 2020)† .142 53 35 33 .051 .054
EGNN (Satorras et al., 2021)† .071 48 29 25 .029 .031
PaiNN (Schütt et al., 2021) .045 46 28 20 .012 .024
TorchMD-NET (Thölke & De Fabritiis, 2021) .059 36 20 18 .011 .026
SphereNet (Liu et al., 2021c) .046 32 23 18 .026 .021
SEGNN (Brandstetter et al., 2021)† .060 42 24 21 .023 .031
EQGAT (Le et al., 2022) .053 32 20 16 .011 .024
Equiformer (Liao & Smidt, 2022) .046 30 15 14 .011 .023

GTMGCsmall (Ours) .131 47 37 32 .055 .050
GTMGCbase (Ours) .128 43 33 29 .052 .047
GTMGClarge (Ours) .117 39 29 26 .043 .043
† denotes using different training, validation, testing data partitions.

17



Published as a conference paper at ICLR 2024

the previous experiment, with further simple fine-tuning performed on the Qm9 dataset. The Mean
Absolute Error (MAE) between the prediction and ground truth are shown in Table 6.

Results and Analysis. (i). Table 4 robustly showcases the efficacy of each constituent within
MSRSA. Notably, the gradual incorporation of components BA (Index 3) and BD(original) (Index 4),
built on the foundation of pure self-attention (Index 2), has led to a stepwise enhancement in per-
formance by 20.61% and 59.54% respectively, yet the amount of additional parameters introduced
is nearly 0%. (ii). In a specific advancement, the substitution of the original interatomic distance
matrix D with our innovative proposal Drow-sub (Index 4), has further boosted the effectiveness by
an additional 15.09%. This underlines that Drow-sub offers superior assistance over D in modeling
the spatial configuration of molecules. (iii). As illustrated in Table 5, our methodology delivers
remarkable performance on large-scale molecules. Even though the large-level model encompasses
a significant number of parameters, the speed of inference is still notably satisfactory. This under-
lines the considerable scalability of our approach when dealing with large molecules. (iv). The
results presented in Table 6 indicate that our method attains an above-average performance in pre-
dicting three properties: ∆ε, εHOMO and εLUMO. Despite the relatively lower prediction results for
the other three properties, they remain competitive when compared to numerous baseline methods.
(v). All these results suggest that our proposed MSRSA module can be seamlessly applied to diverse
molecular representation learning tasks and is characterized by its simplicity of implementation.

C MORE EXAMPLES OF VISUALIZATIONS

C.1 INFERENCE EXAMPLES VISUALIZATION

 (a). Reference

(b). Rdkit ETKDG

(d). GTMGC (Ours)

(C-RMSD)

(C-RMSD)

(0.361)

(0.072)

(c). GPS

(C-RMSD)

(0.050)

(0.556)

(1.332)

(0.539)

(0.583)

(0.993)

(0.529)

(0.830)

(0.115)

(1.238)

(0.586)

(0.155)

(0.026)

(0.936)

(1.356)

(0.666)

(1.324)

(1.641)

(0.246)

(0.698)

(0.858)

(0.392)

C.2 ATTENTION WEIGHTS VISUALIZATION
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C.3 THE LEARNED γA
l AND γD

l

The values of γA
l and γD

l which we learned and exported from GTMGCsmall, are illustrated in the
figure below. In the experiment, only γA

l and γD
l are parameterized for learning, while the weight

of global information is kept constant at 1. The final weights γG
l , γA

l , and γD
l are determined by

normalizing the values of 1, γA
l , and γD

l .

D TRAINING DETAILS

MoleBERT Tokenizer Training. Since the MoleBERT tokenizer (Xia et al., 2023) is the first
to tokenize atoms into a set of chemically meaningful discrete tokens, it should be re-trained on
different datasets. However, once the tokenizer is trained, the tokenized results on the same dataset
can be used for different tasks without changing. It is important to note that the MoleBERT tokenizer
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Table 7: Model hyperparameters for GTMGC on Molecule3D

Ground-state Conformation Prediction Properties Prediction

Encoder Decoder Small Base Large

Epoch 20 60
Batchsize 100 100
Optimizer Adamw Adamw

Learning Rate 5e-5 5e-5
Warm Up 0.1 0.3

Lr Scheduler linear cosine
Num Transformer Blocks 6 6 6 8

Num Attention Heads 8 8 16 32
d_model 256 256 512 512
d_ffn 1024 1024 768 2048

Dims in Prediction Head [256, 768, 3] [256, 768, 1] [512, 1536, 1] [512, 1536, 1]
Use BA − ✓ ✓
Use BD ✓ ✓ ✓

Trainable Parameters 9,808,275 (whole model) 4,983,393 11,925,185 26,101,889

is based on a small GNN model and VQ-VAE framework. We only use the tokenized tokens to train
our tasks without updating the tokenizer’s parameters. This is different from some GA-style (GNN
layer before, Transformer layer after) approaches (Rong et al., 2020; Wu et al., 2021b; Mialon et al.,
2021) that update both the GNN and Transformer layers’ parameters simultaneously.

GTMGC Training. Table 7 presents the crucial model and training hyperparameters for GT-
MGC. For our primary task of predicting the molecular ground-state conformation, both the encoder
and decoder of GTMGC are configured with 6 transformer blocks and 8 attention heads. Notably,
we set our dmodel to 256, dffn to 1024, and dhidden in the prediction head to 768, resulting in a lean
model with only 9M parameters. During the training phase, we employ the AdamW optimizer with
a learning rate of 5e-5 and a batch size of 100. We initially warm up the learning rate from 0 to 5e-5,
followed by a linear decay to 0, over a total of 20 epochs. For our auxiliary task of molecular proper-
ties prediction, we have constructed three versions of GTMGC: small, base, and large. The specific
hyperparameters for these three versions are detailed in Table 7. For this task, we apply the same
training strategy across all three versions of the model, but increase the number of training epochs
to 60, with a larger learning rate warm up of 0.3 and a cosine decay strategy. Our open-sourced code
provides further details about the training process.
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