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ABSTRACT

Estimating the Individual-level Treatment Effect (ITE) from observational data
is an important issue both theoretically and practically. Including all the pre-
treatment covariates for prediction is unnecessary and may aggravate the issue of
data unbalance. While the confounders (C) are necessary, there are some covariates
that only affect the treatment (instrumental variables, I), and some only affect
the outcome (adjustment variables, A). Theoretical analyses show that including
extra information in I may increase the variance lower bound, and hence should
be discarded. To facilitate the decomposed representation learning for the ITE
estimation, we provide a rigorous definition of I, C, A in terms of the causal graph
with an identifiability analyses. Under the guidance of a theoretical justification, we
propose an effective ADR algorithm to learn the decomposed representations and
simultaneously estimate the treatment effect by introducing adversarial modules
to constrain the probabilistic relations. Our proposed algorithm can be applied
to both categorical and numerical treatments and the disentanglement is assured
by both theoretical analyses and empirical results. Experimental results on both
synthetic and real data show that the ADR Algorithm is advantageous compared
to the state-of-the-art methods. Theoretical analyses also provide a path to further
explore the issue of decomposed representation learning for ITE estimation.

1 INTRODUCTION

The inference of individual treatment effect (ITE) is an important issue in causal inference and
has a wide application in many decision-making scenarios, e.g., precision medicine (Jaskowski &
Jaroszewicz, 2012; Alaa & Van Der Schaar, 2017; Alaa et al., 2017), individualized marketing (Sato
et al., 2019; Wan et al., 2022), and personalized insurance products (Guelman et al., 2015). The
treatment commonly refers to an intervention that can be actively determined (not passively observed)
and we are concerned about the effect caused by the treatment for each individual.

There are two influential frameworks in causal inference: the potential outcomes framework proposed
by Neyman and Rubin (Rubin, 1974; Splawa-Neyman et al., 1990), and the causal graph framework
proposed by Judea Pearl (Pearl, 2009a). While different notations/operators are defined in each
framework to formalize the “treatment effect" separately, they are equivalent by certain translations
(Pearl, 2009b). In this paper, we adopt the potential outcomes framework to define the ITE as it does
not require much additionally defined mathematical operators. Meanwhile, we adopt the causal graph
framework to analyze the variables decomposition as it provides a more flexible and meaningful way
to analyze different roles of the covariates.

In the potential outcomes framework, Yi(t) denotes the potential outcome that would be observed
if unit i received treatment t. The ITE refers to Yi(t)− Yi(0). In practice, we estimate the ITE by
the CATE(conditional average treatment effect), the best estimator of the ITE in terms of the mean
squared error (Künzel et al., 2019). Compared to the standard supervised learning, the ITE estimation
is more challenging since the counterfactual outcomes are unobserved and the treatment assignment
might be confounded (Imbens & Rubin, 2015; Zhong et al., 2022). In the existence of confounders, the
distribution of Y (t) is commonly not equal to Y |T = t. To deal with the issue, the common practice
is to introduce pre-treatment covariates such that {Y (t)|x} =d {Y |t,x} (ignorability assumption).

While Rubin (2008; 2009) suggest that including all the available pre-treatment covariates is a
safe choice, the inclusion of unnecessary covariates may harm the accuracy of the ITE estimation.
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Intuitively, introducing the covariates that only affect T and not Y will enlarge the discrepancy
between p(x|T =1) and p(x|T =0) and dropping such covariates will not shake the ignorability
assumption. Theoretically, Shalit et al. (2017) derives an upper bound of the mean squared error of
the estimated ITE and shows that decreasing such distribution discrepancy is beneficial to lower this
upper bound. In this paper, we also show that the variance lower bound of the conditional treatment
effect (CATE) could be very large when the propensity score p(T =1|x) is extreme.

Enlightened by the above idea, a set of representation learning-based deep learning methods have
been proposed for ITE estimation. This line of methods can be divided into two classes: one is
based on balanced representation learning (Shalit et al., 2017; Johansson et al., 2016; 2022), and the
other is driven by decomposed representation learning (Hassanpour & Greiner, 2020; Zhang et al.,
2021b; Wu et al., 2022). As for the first class, the model aims at learning a balanced representation
Φ(x) and then uses the Φ(x) to predict the potential outcomes. This class of methods runs at risk
of missing out on the information of necessary confounders and may undermine the ignorability
assumption (Hassanpour & Greiner, 2019). To deal with this issue, Hassanpour & Greiner (2020);
Zhang et al. (2021b) proposed to decompose the representations into three disentangled parts: the one
that only affects T (instrumental variables), the common cause of T and Y (confounders), and the
one that only affects Y (adjustment variables). As both Hassanpour & Greiner (2020) and Zhang et al.
(2021b) could not guarantee the separation between different components, Wu et al. (2022) made
further improvements regarding this point. However, the method in Wu et al. (2022) is designed for
binary treatment and outcomes as its loss functions require calculating the IPM (Integral Probability
Metric) of the learn representations between T =1 and 0, as well as Y =1 and 0. Besides, Wu et al.
(2022) introduces a set of individual-level sample weights as parameters to learn, which may bring
unbearable computational complexity for the large-scale data with a huge sample size.

To deal with the above issues, we propose the ADR (Adversarial learning of Decomposed Represen-
tations) algorithm, which is theoretically motivated by a preliminary analysis on the decomposition
and has no requirements on the data types of T and Y in its applicability. We design two adversarial
modules to constrain the probabilistic relations among the components, which is more flexible than
the way of calculating IPM as adopted in Hassanpour & Greiner (2020) and Wu et al. (2022). The
proposed ADR algorithm builds upon a rigorous and complete definition of the variables decomposi-
tion and is theoretically guaranteed by an identifiability analysis. Note that existing literature tends to
describe the decomposition in an intuitive way, e.g., “instrumental variables (I) are the ones that
only affect the treatment". However, as long as I→T and T →Y , the instrumental variables I also
affect Y (in an indirect way). To avoid such vague interpretations, we provide a rigorous definition
of the decomposition via the causal graph. On top of the graphical definition, we prove that such
decomposition is identifiable and can be equivalently confined by a series of probabilistic constraints,
then we show that such constraints can be learned by introducing adversarial modules.

To summarize, our main contributions are: (i) we propose the ADR algorithm for learning decomposed
representations for the ITE estimation that is theoretically guaranteed and is empirically validated by
experiments, and is directly applicable to both categorical and numerical treatment. (ii) we provide a
rigorous definition of the variables decomposition via the causal graph and prove its identifiability,
which has the potential of stimulating other practical algorithms; (iii) we show the benefit of variables
decomposition by analyzing the non-parametric variance lower bound of the CATE estimand.

2 NOTATIONS AND PROBLEM SETUP

Let T ∈ T denote the treatment, Y ∈ Y denote the outcome, and X ∈ X denote the pre-treatment
covariates. Suppose that the observational data D = {xi, yi, ti}ni=1, with {(Xi, Yi, Ti)} identically
distributed as PX,Y,T . We adopt the Neyman-Rubin potential outcome framework (Rubin, 1974;
Splawa-Neyman et al., 1990; Rubin, 2005) to define the treatment effect. For each treatment level
t ∈ T , let Yi(t) be the potential outcome that would have been observed when Ti= t. The individual
treatment effect (ITE) for unit i at treatment level t is defined as

τ ti = Yi(t)− Yi(0), (1)

which is the difference between the potential outcome under T = t and the control level T =0. In prac-
tice, we estimate the CATE (conditional average treatment effect) τ t(x) := E[Yi(t)− Yi(0)|X = x],
and use the estimation of τ t(xi) to predict τ ti . Künzel et al. (2019) shows that the CATE is the
best estimator of the ITE in terms of the mean squared error. To connect the conceptually defined
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potential outcomes with the observed variables, we make the following standard assumptions, which
are commonly assumed in the literature (Imbens & Rubin, 2015).
Assumption 1. (Consistency) The potential outcome Y (t) of treatment T = t equals to the observed
outcome if the actual treatment received is t.
Assumption 2. (Ignorability) The potential outcome Y (t) is independent with the assigned treatment
T conditional on the pre-treatment variables X , i.e. Y (t) ⊥ T |X .
Assumption 3. (Positivity) For any t ∈ T , p(t|x) > 0 for any x ∈ X with p(x) > 0.

Under Assumptions 1 and 2, τ t(x) can be expressed by observed outcomes as equation equation 2.
Assumption 3 is to ensure there are available data to fit E[Y |x, t] for all t ∈ T and x ∈ X .

E[Y (t)|x]=E[Y (t)|x, T = t]=E [Y |x, T = t] ⇒ τ t(x)=E[Y |x, T = t]− E[Y |x, T = 0]. (2)

Equation equation 2 suggests τ t(x) is identifiable from observational data, where the 1st equal sign
is due to the Assumption 2, and the 2nd one is from the Assumption 1.

As shown above, the potential outcomes framework provides a succinct way to formulate the causal
effect by the potential outcomes. By contrast, the causal graph framework (Pearl, 2009a) requires
more preliminary definitions before defining the causal effect (e.g., do-operator, d-separation, etc.),
while it provides a more flexible way to analyze and select the covariates for adjustment. Luckily, these
two powerful frameworks are equivalent by certain translations (Pearl, 2009b). The potential outcome
Y (t) may be equivalently defined by the do−operator in the causal graph and the “back-door"
criterion provides a conceptually meaningful description for the Ignorability assumption. Specifically,
when the covariates X block all the back-door paths from T to Y , we have Y (t) ⊥ T |X . The above
discussion of the two frameworks also explains why we use the potential outcomes framework to
define the ITE, and adopt the causal graph terms for the variables decomposition.

3 THEORETICAL ANALYSES

In this section, we firstly show the variance bound of the CATE to provide insights and motivations
for the following variables decomposition. Then we formally define the Instrumental variables,
Confounders, and Adjustment variables (abbreviated as I,C,A ) in the causal graph with an
identifiability analysis, which allows us to analyze the probabilistic properties of each component
and guides us to propose the decomposed representation learning Algorithm in section 4.

3.1 MOTIVATION: VARIANCE BOUND FOR THE CATE

Analyzing the variance lower bound for the targeted estimand can provide useful insights for proposing
specific estimation methods. Before introducing the variance bound for the CATE, let us recall the
classic Cramér-Rao inequality (Rao et al., 1992; Cramér, 1999), which provides a variance lower
bound for the parametric model and measures the difficulty of estimating a certain parameter. Towards
a similar purpose, Hahn (1998) derives the variance lower bound for the average treatment effect
(ATE) and average treatment effect on the treated (ATT), a semi-parametric analog of the Cramér-Rao
lower bound. Following the same method, we may derive the variance lower bound for the CATE.
Theorem 3.1 shows the result for binary T , which can be readily generalized to multi-class categorical
and numerical treatment by replacing the summation by integration (see Supplementary for details).
Theorem 3.1. Let σ2

0(x)=Var(Y (0)|x), σ2
1(x)=Var(Y (1)|x) be the conditional variance, and

e(x)=P(T =1|x) be the propensity score. Then for any
√
n−consistent estimation τ̂(x), the lower

bound for the asymptotic variance of τ̂(x) is V := E
[
σ2
1(X)
e(X) +

σ2
0(X)

1−e(X)

]
.

Theorem 3.1 suggests that the propensity score e(X) is an important determinant of the variance
bound as it enters in the denominator. When e(X) is close to zero or one, the variance lower bound
could be very large. Particularly, when σ1(X)=σ0(X)≡σ2, we have V=σ2/[e(X)(1− e(X))],
thus V is minimized when e(X) = 1/2. This result implies that, the more predictive information
for T the model includes, the more extreme the propensity score will become, and the larger V will
be, which means an increase in difficulty in obtaining a precise estimation of the ITE. The results
may also be appreciated from the perspective of data unbalance. When p(t|x) approaches 0 or 1,
the discrepancy between p(x|t = 0) and p(x|t = 1) will also be aggravated, which increases the
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difficulty to predictive counterfactual outcomes. Therefore, instead of including as many pre-treatment
covariates as we could (Rubin, 2008; 2009), it is more reasonable to decompose the covariates into
different parts according to their roles and select the appropriate parts to estimate the ITE.

3.2 DEFINITIONS AND THEORETICAL ANALYSES OF I, C, A

Suppose the causal structure over X ∪ {T} ∪ {Y } is a directed acyclic graph (DAG), denote by G.
Each node in G represents a variable and each directed edge denotes a direct causal relation. Here
we do not require the structure of G as known and only use the causal graph to define the variables
decomposition, and then derive the probabilistic relations from the graphical properties.
Definition 3.1. Define Instrumental variables (I), Confounders (C), Adjustment variables (A) as
I={Xi| there exists an unblocked path from Xi to T and Xi ̸∈ PA(Y ) and Xi is not a collider};
C={Xi| there exists an unblocked path from Xi to T and Xi ∈ PA(Y )} ;
A={Xi| there exists an unblocked path from Xi to Y , and no unblocked paths from Xi to T},
where PA(Y ) denotes the set of parent nodes of Y .

The definition is motivated by the intuitive idea that I,C,A are the variables set that cause only T ,
both T and Y, and only Y , respectively (Hassanpour & Greiner, 2020). To appreciate this, we take
the causal graph in 1a as an illustrating example. By Definition 3.1, I = {X1} is the direct cause
of T , C={X2} is the common cause of both T and Y , and A={X3}, which is in align with the
intuitive motivation.

(a) Illustrating Example 1: X=(X1, X2, X3) with
X1, X2, X3 being the instrumental variable, con-
founder, and adjustment variable, respectively.

(b) Illustrating Example 2: X=(X1, X2, X3) with
{X1} being the instrumental variable, and X3 being
the adjustment variable.

Figure 1: Illustrating Examples for Definition 3.1

In contrast to the intuitive description, Definition 3.1 provides a more specific and complete way
to decompose the variables. In the example Figure 1b, it is easy to justify that I = {X1}, C = ∅,
A = {X3}, and C=∅ with Definition 3.1. The result C=∅ is also consistent with the fact that there
are no unblocked backdoor paths from T and Y . Formally, we may have the following general result.
Proposition 3.1. Let I,C,A be the variables set defined in 3.1. Then (i) C blocks all the back-door
paths from T to Y ; (ii) P (Y |X, do(t)) = P (Y |C,A, do(t))

Proposition 3.1 states including the defined confounders C are sufficient such that E[Y (t)|C ∪A] =
E[Y |T = t,C ∪A] still holds by replacing X with C ∪A in equation 2. The item (ii) means that
P (Y (t)|X) = P (Y (t)|C,A). That is, using C ∪A to replace X would not lose the information
for the inference of the individual treatment effect.

Moreover, the {I,C,A} in Definition 3.1 are identifiable without requiring further assumptions,
which means the decomposition can be obtained from the joint distribution of {X, T, Y }. Identifia-
bility is crucial in statistics modeling because when the target is unidentifiable, it means we could not
recover the true information even with infinite observations. The results are shown in Theorem 3.2.
Theorem 3.2. The {I,C,A} are identifiable from the joint distribution P(X, T, Y ) as follows
• Xi ∈ A ⇔

{
Xi ⊥ T and Xi ̸⊥ Y

}
• Xi ∈ I ⇔

{
Xi ̸∈ A, Xi ̸⊥ T, and there exists a subset X ′ ⊂ X s.t. Xi ⊥ Y |X ′ ∪ {T}

}
• Xi ∈ C ⇔

{
Xi ̸∈ A and Xi ̸∈ I and Xi ̸⊥ T and Xi ̸⊥ Y

}
Further, the confounders C may serve as the variables set X ′, i.e., Xi ⊥ Y |C ∪ {T} for Xi ∈ I .

In brief, Proposition 3.2 states that
{A ⊥ T,A ̸⊥ Y }, {I ⊥ Y |C ∪ T, I ̸⊥ T}, {C ̸⊥ Y, I ̸⊥ T}, (3)

and the three components have no overlaps. Theorem 3.2 shows the identifiability of {I,C,A}
because the above equivalent conditions are in terms of the probabilistic relations instead of the
graphical properties of G (the structure of G is commonly unidentifiable without further assumptions).
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In practice, we learn the decomposed representations by the neural networks {I(X), C(X), A(X)}.
The non-independent constraints in (3) are natural to implement by enforcing the predictive power of
the learned representations. As for the (conditional) independent constraints A ⊥ T , I ⊥ Y |C ∪ T ,
Proposition 3.2 suggests that such properties can be constrained through an adversarial manner.
Proposition 3.2. Denote l(·, ·) as the cross-entropy loss (categorical case) or l2 loss (numerical case).
Let ĥA→T (·) := argminh l(h(A(X)), T ) for given A(·), ĥC∪T→Y (·) := argminh l(h(C(X)∪T ), Y ),
ĥI∪C∪T→Y (·) :=argminh l(h(C(X) ∪ I(X) ∪ T ), Y ) for given C(·) and I(·). Then

(i) let LA := l(ĥA→T (A(x)), T ), then LA is maximized when A(X) ⊥ T ;
(ii) let LI,C:=ld

(
ĥC∪T→Y (C(X)∪T ), ĥI∪C∪T→Y (I(X)∪C(X)∪ T )

)
, where ld() denote the KL diver-

gence (categorical Y ) or l2 loss (numerical Y ), then LI,C is minimized when I(X) ⊥ Y |{T,C(X)}.

Proposition 3.2 can be proved by firstly solving the ĥ(·)’s and then substituting the expressions into
LA and LI,C to prove the final result. Despite the heavy notations, the results of Proposition 3.2 can
be interpreted from the intuitive perspective. Note that A(X) ⊥ T ⇔ P (T |A(X)) = P (T ), it means
the optimal predictor of T from A(X) is uninformative, which implies LA should be maximized.
Besides, I(X) ⊥ Y |{T,C(X) ⇔ P (Y |C(X) ∪ I(X) ∪ T ) = P (Y |C(X) ∪ T ), which means I(X) ∪ T
and C(X) ∪ I(X) ∪ T have the same information for predicting Y . Thus the two optimal predictors
should be the same and the distance LI,C is minimized. Please refer to the Supplementary for the
detailed proof of Prop. 3.1, Prop. 3.2, and Prop. 3.2.

Building upon Proposition 3.2 and 3.2, we propose the following ADR algorithm to learn the
decomposed representations through an adversarial manner as was adopted in GAN (Goodfellow
et al., 2014), where {A(·), I(·), C(·)} and the predictors {hA→T (·), hC∪T→Y (·), hI∪C∪T→Y (·)} play
similar roles as the generator and discriminator in GAN, respectively.

4 ADR ALGORITHM

In this section, we introduce the ADR (Adversarial learning of Decomposed Representations) algo-
rithm, which learns the {I(X), C(X), A(X)} and simultaneously predict the potential outcomes for
the ITE estimation. The ADR algorithm is applicable for both categorical and numerical treatment.

4.1 OVERVIEW

Figure 2 demonstrates the modules required for the ADR algorithm. The module fC∪A∪T→Y (·) is
used to predict the potential outcome Ŷ (t), the modules {I(·), C(·), A(·)} are three parallel networks
to learn the decomposed representations, and other modules {h∗(·)} and f∗(·) are designed to constrain
the probabilistic relations stated in Theorem 3.2 (here ∗ denotes a placeholder, e.g., h∗ may denote
hA→T or hC∪T→Y ). The {LI ,LC ,LA} and {Lh

A,Lh
I } are components of the loss functions.

Overall speaking, the training process involves two iterative steps: (i) fix the representation networks
and update the ancillary predictors {h∗(·)} by minimizing Lh

A+Lh
I . (ii) fix {h∗(·)} and update

the representations {I(·), C(·), A(·)} and predictors {f∗(·)} by minimizing LI +LC+LA plus the
regularization loss terms, where each component corresponds to the constraints of each representation.

Figure 2: The model architecture and loss components of the ADR Algorithm (rectangles denote the neural
networks; gray and rounded rectangles denote the inputs/outputs; ellipses denote the loss components)
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4.2 LOSS FUNCTIONS FOR DECOMPOSED REPRESENTATIONS

In the following, we introduce the loss functions for each decomposed representation in details.

Adjustment Variable: (i) To realize A(X)⊥ T , we introduce an ancillary predictor hA→T (·) that
predicts T from A(X) as suggested by Prop.3.2. We firstly fix A(·) and update hA→T (·) by minimiz-
ing LA in (4), and then fix hA→T (·) to update A(·) by maximizing LA. (ii) As for A(X) ̸⊥ Y , we
introduce the predictor fA∪T→Y (·) and minimize its loss in updating A(·). In summary, define

Lh
A :=

∑
i
l (hA→T (A(xi)), ti) ,

LA :=
∑

i
l (fA∪T→Y (A(xi)), ti)− l (hA→T (A(xi)), ti) =

∑
i
l (fA∪T→Y (A(xi)), ti)− Lh

A.
(4)

Instrumental Variable: (i) To realize I(X) ⊥ Y |C(X) ∪ T , we introduce two ancillary predictors
hI∪C∪T→Y (·) and hC∪T→Y (·), which are firstly updated for given I(·) and C(·). Then we update
the representations to minimize the discrepancy ld(·, ·) between the two predictors, where the ld(·, ·)
refers to the KL-divergence for categorical Y and the l2 loss for numerical Y . (ii) For I(X) ̸⊥ T , we
include the predictor fI→T (·) and minimize its loss in updating I(·). In summary, define

Lh
I :=

∑
i
l
(
hI∪C∪T→Y (I(xi), C(xi), ti) , yi

)
+

∑
i
l
(
hC∪T→Y (C(xi), ti) , yi

)
LI :=

∑
i
l
(
fI→T (I(xi)), ti

)
+ ld

(
hI∪C∪T→Y (I(xi), C(xi), ti) , hC∪T→Y (C(xi), ti)

)
.

(5)

Confounders: (i) To realize C(X) ̸⊥Y and simultaneously predict the potential outcome Y (t), we
introduce the prediction module fC∪A∪T (·) to predict Y (t) from {C(X), A(X), T}. In implementa-
tion, we model fC∪A∪T (·) in a two-model manner for binary T . (ii) To constrain C(X) ̸⊥ T , we add
a module fC→T (·) and minimize its predictive loss in updating C(·). In summary, define LC as

LC :=
∑

i
l (fC∪A∪T→Y (C(xi), A(xi), ti), yi) +

∑
i
l (fC→T (C(xi)), ti) . (6)

In addition to the loss functions above, we also require the following regularization components LO

and LR to constrain the orthogonality of representations and to penalize the model complexity.

Regularization Part: (i) Following Wu et al. (2022); Kuang et al. (2017; 2020), we constrain
I(X), C(X), A(X) to be decomposed parts by imposing the following orthogonality constraint:

LO =
[
W̄T

I · W̄T
C + W̄T

C · W̄T
A + W̄T

A · W̄T
I

]
+

∑
W̄∈{W̄I ,W̄C,W̄A}

[(∑m

k=1
W̄ [k]− 1

)2] (7)

where W̄I is the vector obtained by averaging each row of WI , and WI := WI1×· · ·×WIj×· · ·×WIm

with WIj as the weight matrix in the j-th layer of the representation network of I(·), and W̄I [k]
denote the k-th element of W̄I . Also, W̄C , W̄C [k], W̄A, W̄A[k] are defined in the same way. (ii) To
prevent overfitting, we add l2 regularization on the weight parameters of prediction modules:

LR = l2(W(fC∪A∪T→Y , fA∪T→Y , fI→T , fC→T )). (8)

4.3 ADVERSARIAL LEARNING OF DECOMPOSED REPRESENTATIONS

In summary, let Lh := Lh
A+Lh

I and L := LC +α ·LA+β ·LI +µ ·LO+λ ·LR, where {α, β, µ, λ}
are hyper-parameters to scale different loss components. We learn the decomposed representations
via an adversarial process to update the parameters iteratively, which are summarized in Algorithm 1.
Please refer to the supplementary material for the source code and the selection of hyper-parameters.

Algorithm 1 Adversarial learning of Decomposed Representations

Input: observational data {xi, ti, yi}ni=1

Output: ŷi(t) and τ̂ t
i for t ∈ T .

1: for the number of training iteratios do
2: for k = 1, · · · ,K do
3: calculate loss Lh = Lh

A + Lh
I ;

4: update the parameters of {hA→T (·), hI∪C∪T→Y (·), hC∪T→Y (·)} by descending the gradient of Lh

5: end for
6: calculate the main loss L = LC + α · LA + β · LI + µ · LO + λ · LR.
7: update {I(·), C(·), A(·), fC∪A∪T→Y (·), fA∪T→Y (·), fI→T (·), fC→T (·)} by the gradient of L
8: end for
9: calculate ŷi(t)= fC∪A∪T→Y (C(xi), A(xi), ti).

10: calculate the ITE estimation τ̂ t
i = ŷi(t)− ŷi(0).
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5 EXPERIMENTS

In this section, we report the performance of the proposed ADR algorithm on both aspects of the
decomposed representation learning and the ITE estimation by synthetic and real datasets. The
results show that the ADR algorithm is able to learn the correct decomposition of variables on the
synthetic dataset under both binary and continuous data settings, with an ablation study to show the
contribution of the theory-based adversarial loss modules empirically. As for the performance of
ITE estimation, ADR also shows an advantageous performance with higher qini score (Zhang et al.,
2021a) for binary outcomes and lower ϵPEHE (expected Precision in Estimation of Heterogeneous
Effects (Shalit et al., 2017; Olaya et al., 2020)) for continuous outcomes. All experiments were
conducted with one NVIDIA Tesla P40 GPU.

5.1 COMPARED METHODS AND EVALUATION METRICS

We compare the proposed ADR algorithm with the following representation learning-based methods:

• CFR-MMD and CFR-WASS (Shalit et al., 2017; Johansson et al., 2016): Counterfactual Regres-
sion with MMD and Wassertein metrics to learn the balanced representation.

• CFR-ISW (Yao et al., 2018): Counterfactual Regression with Importance Sampling weights.
• DR-CFR (Hassanpour & Greiner, 2020): Disentangled Representations for CounterFactual Re-

gression, which includes the distribution metrics Disc
(
P(A|T = 1),P(A|T = 0)

)
and the predictive

loss of {I(x) ∪ C(x) → Y } in the loss function to drive the representations decomposition.
• TEDVAE (Zhang et al., 2021b):A VAE-based method that includes the ELBO and the predictive

loss of {I(x) ∪ C(x) ∪ T → Y } and {A(x) ∪ C(x) → T} to learn the representations.
• DER-CFR (Wu et al., 2022): Decomposed Representations for Counterfactual Regression, which

includes Disc(P
(
A|t=1),P(A|t=0)

)
,
∑

t Disc
(
P̃(C|Y =1, T = t), P̃(A|Y =0, T = t)

)
in the loss,

with P̃ as the data distribution re-weighted with sample weights {ω} as trainable parameters.

In summary, CFR-MMD, CFR-WASS, and CFR-ISW learn balanced representations to estimate the
potential outcomes, while DR-CFR, TEDVAE, DER-CFR, and our proposed ADR learn decomposed
representations and then use the confounders and adjustment variables to estimate the potential
outcomes. Note that both DR-CFR and DeR-CFR require binary T and even binary Y (DeR-CFR) in
calculating the distribution metrics, we transform T or Y into binary by setting the median as the
thresholds, which was also the way adopted in the source code of Wu et al. (2022). To facilitate a fair
comparison, all the representation-learning based methods share the same value of representation
dimension and the same prediction head in our experiments. For the detailed parameters setting,
please refer to the configs/params_all.json in Supplementary for details.
Evaluation Metrics: For the case with continuous Y and ground truth ITE, we use the expected
Precision in Estimation of Heterogeneous Effect ϵPEHE = { 1

n

∑n
i=1[τ̂(xi)− τi]

2}1/2 (Shalit et al.,
2017). For the case with binary Y and without ground truth ITE, we use Qini score (the normalized
area under the qini curve, Zhang et al. (2021a)) to evaluate the rank performance of the estimated
ITE on the randomized controlled trial (RCT) data.

5.2 EXPERIMENTS ON SYNTHETIC DATASETS

To investigate the performance of decomposed representation learning, we conducted experiments
on the synthetic data where the ground truth of {I,C,A} is known. To maintain consistent results
and ensure a fair comparison, we directly adopt the synthetic dataset provided by Wu et al. (2022).
Although Wu et al. (2022) only shows the results for binary setting in the paper, their data generation
source codes provide both settings for binary and continuous {T, Y }.

The data generating process is as follows. The instrument variable XI = (X1, · · · , X16), the con-
founders XC =(X17, · · · , X32), and the adjustment variables XA=(X33, · · · , X48). In addition to the
above components, the covariates X also include mD=2 extra dimensions of noise variables. The
covariates are independently generated from standard Normal distribution N(0, 1). The sample size
n=3000. Let XIC=(XI , XC) for generating T and XCA=(XC , XA) for generating Y .

Binary Setting: For the setting with binary treatment and binary outcomes,

• generate t: T ∼B(1, p(xIC)), where p(xIC)=[1 + exp(−(θTt xIC+ε))]−1 with ε∼N(0, 0.12).
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• generate y: Firstly, generate µ0 = θTy0xCA and µ1 = θTy1(xCA · xCA). Then, generate binary
outcomes y(1) = sign(max(0, µ0 − µ̃0)) and y(0) = sign(max(0, µ1 − µ̃1)), where µ̃0 and µ̃1

denote the median numbers. Then, generate y as y(1)t+ y(0)(1− t).

Continuous Setting: For the setting with continuous treatment and continuous outcomes,

• generate the treatment t = p(xIC), where p(xIC) is the same as the binary setting.
• generate y = y(t) = µ0 + µ1 × t+ ε with ε ∼ N(0, 0.12), where µ0 and µ1 are defined as above.

We compared ADR with DR-CFR and DeR-CFR on the performance of decomposed representation
learning by {W̄I , W̄C , W̄A} in equation (7), the average contribution of each element of X for I(·),
C(·), A(·), respectively. According to the data generating process, the non-zero elements of W̄I

should be mainly on the first 16 variables because the ground truth is XI =(X1, · · · , X16). Similarly,
W̄C and W̄A are expected to concentrate on the middle 16 and the last 16 variables. Figure 3 shows
the values of {W̄I , W̄C , W̄A} by histograms for each algorithm in the binary case. Both ADR and
DeR-CFR could approximately distinguish different partitions and DR-CFR fails to identify the
decomposed representations, which is in align with the results reported in Wu et al. (2022).

(a) ADR (b) DeR-CFR (c) DR-CFR

Figure 3: The {W̄I , W̄C , W̄A} for the representation networks {I(·), C(·), A(·)} for the binary case

(a) ADR (b) DeR-CFR (c) DR-CFR

Figure 4: The qini curve based on the ITE estimation on the RCT data (sample size 300).

Figure 4 shows the qini curve (by sklift package) for the three methods. ADR also attains a
higher qini score (0.35) than the DeR-CFR(0.30) and DR-CFR(0.23). Figure 5 shows the results for
the continuous case, where ADR is still able to distinguish different components of the covariates
approximately, but both DeR-CFR and DR-CFR fail to learn the correct decomposition.

(a) ADR (b) DeR-CFR (c) DR-CFR

Figure 5: {W̄I , W̄C , W̄A} of the representation networks {I(·), C(·), A(·)} for continuous case.
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Further, we implemented 50 replicated experiments to evaluate the qini score for the binary case and
the ϵPEHE for the continuous case. The results are summarized in Table 1.
Ablation Study To validate the contribution of the adversarial modules to constrain A(X) ⊥ T and
I(X) ⊥ Y |{C(X), T}, we implement extra experiments that removes the corresponding components.
(a) Figure 6a shows the resulted {W̄I , W̄C , W̄A}
after removing hA→T (·) and the related loss com-
ponents. Compared to 5a, the model could not
properly distinguish A from C, where both W̄C

and W̄A had nonzero weights on X17 ∼ X48.
(b) Figure 6b shows the results after removing
{hC∪T→Y (·), hC∪I∪T→Y (·)} and the related
loss components. Compared to 5a, the model per-
formed worse in distinguishing I from C, where
W̄I had more nonzero weights on X17 ∼ X32.

(a) remove Lh
A (b) remove Lh

I

Figure 6: {W̄I , W̄C , W̄A} for the ablation experiments.

5.3 EXPERIMENTS ON REAL DATASETS

IHDP (Infant Health and Development Program) is a widely adopted semi-synthetic benchmark
dataset in the causal inference literature. Hill (2011) removed a non-random subset of the treated
units in the original RCT data to generate an observational dataset with confounded treatment. IHDP
dataset contains 747 instances (608 control and 139 treated) with 25 covariates. Outcomes were
continuous and generated by the NPCI (Non-Parametric Causal Inference) package (Dorie, 2016). We
use the dataset provided and used by Johansson et al. (2016) that includes 100 realizations. Coupon
dataset is a large-scale production dataset from a coupon distribution scenario in JD, a leading
E-commerce platform in China. In this scenario, 7 different values of the coupon (ranging from 1
to 5.5) were assigned to customers at the cashier interface to attract the customers to use a certain
channel of payment. The treatment is continuous (coupon value) and the outcome is binary (whether
the customer chose the payment channel that the coupon works for). In this case, the training set is
from observational data and the evaluation dataset is from RCT. To evaluate the ranking performance
of the estimated ITE, we calculate the qini score for each different coupon values paired with the
control respectively and then take the average. All the numeric results are summarized in Table 1,
where the values in parentheses are the standard errors calculated from the replicated experiments.

Model Synthetic Dataset Real Dataset
Binary Case Continuous Case IHDP data Coupon data
qini score ϵPEHE ϵPEHE qini score

CFR-MMD 0.225 (0.018) 0.0373 (0.0026) 0.795 (0.078) 0.0379 (0.0027)
CFR-WASS 0.227 (0.015) 0.0371 (0.0023) 0.798 (0.058) 0.0335 (0.0029)
CFR-ISW 0.231 (0.019) 0.0356 (0.0035) 0.715 (0.102) 0.0356 (0.0035)
DR-CFR 0.268 (0.023) 0.0363 (0.0032) 0.789 (0.091) 0.0401 (0.0011)
TEDVAE 0.279 (0.020) 0.0339 (0.0036) 0.587 (0.089) 0.0403 (0.0021)
DeR-CFR 0.315 (0.018) 0.0354 (0.0030) 0.529 (0.068) 0.0412 (0.0016)
ADR 0.347 (0.020) 0.0329 (0.0024) 0.503 (0.072) 0.0465 (0.0013)

Table 1: Model performance evaluated by ϵPEHE on the synthetic dataset with continuous y and the
IHDP dataset, and evaluated by the qini score on the synthetic dataset with binary y and the Coupon
dataset. For ϵPEHE, smaller value is better. For qini score, larger value is better.

6 CONCLUSION AND DISCUSSION
In this paper, we propose the ADR algorithm to learn decomposed representations for the ITE
estimation, which has a wide application scenario including both categorical and numerical treatment.
The empirical results show that the ADR algorithm is able to learn the correct decomposition and
shows an advantageous performance in the ITE estimation compared to the state-of-the-art methods.
The proposed ADR algorithm is guided by a preliminary theoretical analysis, where we show that the
variables decomposition can be sufficiently confined by a series of probabilistic conditions and can
be learned by an adversarial manner. Meanwhile, we believe the theoretical analysis is helpful to
motivate other practical algorithms along this way (e.g. the algorithm that does not require such an
adversarial training process and hence it is easier to get parameters to converge).
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