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Abstract

Solving symbolic mathematics has always been of in the arena of human
ingenuity that needs compositional reasoning and recurrence. However, re-
cent studies have shown that large scale language models such as transform-
ers are universal and surprisingly can be trained as a sequence-to-sequence
task to solve complex mathematical equations. These large transformer
models need humongous amounts of training data to generalize to unseen
symbolic mathematics problems. In this paper, we present a sample effi-
cient way of solving the symbolic tasks by first pretraining the transformer
model with language translation and then fine-tuning the pretrained trans-
former model to solve the downstream task of symbolic mathematics. We
achieve comparable accuracy on the integration task with our pretrained
model while using around 1.5 orders of magnitude less number of train-
ing samples with respect to the state-of-the-art deep learning for symbolic
mathematics. The test accuracy on differential equation tasks is consider-
ably lower comparing with integration as they need higher order recursions
that are not present in language translations. We pretrain our model with
different pairs of language translations. Our results show language bias
in solving symbolic mathematics tasks. Finally, we study the robustness
of the fine-tuned model on symbolic math tasks against distribution shift,
and our approach generalizes better in distribution shift scenarios for the
function integration.

1 Introduction

Deep learning is a ubiquitous choice in solving statistical pattern recognition problems of
regression and classification. With a large training data set and compute power, they have
proven to be very effective and achieve state-of-the-art performance in a wide range of tasks
in natural language processing, computer vision, speech recognition, sentiment analysis,
etc (Lu et al., 2021). Though deep learning triumphs in the statistical domain (Bengio
et al., 2003), there is an active interest in extending deep networks in symbolic computation
(Lample & Charton, 2019; Davis, 2019; Allamanis et al., 2017; Zaremba et al., 2014; Loos
et al., 2017). There are mainly two motivations for this: (i) performing symbolic mathe-
matical tasks, such as symbolic integration and solving differential equations, in deep net
architectures, and (ii) applying neural networks in the domain automated theorem prov-
ing, computer algebra systems, and natural language understanding (NLU) that requires a
symbolic knowledge system. The key capability of symbolic computation is that symbols
maintain their identity as they do multiple roles while deep neural networks exploit shared
representation and composition.
This paper uses a pretrained language model to solve symbolic mathematics tasks, partic-
ularly symbolic integration and differential equations. We show our pretrained transformer
architecture on language translation is expressive enough to solve large class symbolic math-
ematics such as function integration and differential equations, which have traditionally been
approached using logic and exhaustive search. Moreover, our pretrained model is sample
efficient and compute efficient–i.e., it requires fewer epochs to converge to good accuracy.
The first major work of solving symbolic mathematics with transformer architecture is by
Lample & Charton (2019). They use the transformer model that is mainly used for NLP
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tasks to solve the symbolic computation. They first re-frame the mathematical equations
as text sequences and then solving those equations as a sequence-to-sequence translation.
Their transformer model catches pattern in the mathematical expressions, e.g., the expres-
sions of the form sin−1(x) will have its primitive as 1√

1−x2 . We extend the work of Lample &
Charton (2019) and train their symbolic math dataset by fine-tuning pretrained translation
models to solve the downstream task of symbolic mathematics. The pretrained language
model will transfer the syntactic and semantic structure of the present in the language,
mathematical expressions represented as trees. The inherent limitation between the many-
to-one map between mathematical expression and tree encoding is partially regularized by
the pre-training with the language translation. For example, the same mathematical ex-
pressions 7 + 3× (5 + 2) and 3× (5 + 2) + 7 are represented are encoded as different trees.
We regularize (penalize) this freedom of expression of encoding a mathematical expression
by multiple trees by pretraining our transformer model with language translation. The sen-
tence in a language has an order as specified by the famous quote by J. R. Firt “You shall
know a word by the company it keeps.”. Unlike language, where the meaning of a word is
given by its neighbors, the value of a mathematical sub-expression (mathematical word) is
not influenced by its neighboring expressions. In their training data set generation for func-
tion integration, mathematical expressions F and G are generated and the corresponding
derivatives f and g are computed. The training data set are the tuples (f, F ), (g, G) and a
new integration function data set Fg is generated (assuming (fG,

∫
fG) is in the training

set) through IBP (Integration By Parts) 1 method as:∫
Fg = FG−

∫
fG.

Their vanilla transformer model during training learns to build the correlation between
∫

Fg
and fG for solving symbolic mathematics. We differ from their model by (i) forcing our
transformer model to develop conditional probability between randomly generated functions
PΘ(f |G) and PΘ(g|F ) as follows:

P (fG) = P (f |G)P (G)
P (Fg) = P (g|F )P (F )

where PΘ is our pretrained transformer model and Θ is the learned parameter (weights
and biases). By re-framing the problem to a conditional probability model, we bypass the
distributions of randomly generated functions P (F ) and P (G). Our method also shows
marginal robustness to different types of data set generation method, as shown in table 4.
(ii) Our model’s predictions improve even when there is a difference of length between input
and output sequence. This is because of the phenomena of heavy-tailed distribution, where
the model can generate rare small or large output expressions (Sornette, 2006; Martin &
Mahoney, 2018). Our model is less sensitive with large difference of length between input
and output mathematical expressions (i.e., the problem and the solution sequence.) as
explained in Section 3.
The paper is organized as follows: In Section 2 we discuss the prediction of our pretrained
transformer model in the language conditional probability and optimization, Section 3 dis-
cusses our proposed of heavy-tailed self-regularization under the mild condition of our pre-
training, Section 4 discusses experimental setting and methodology, architecture, datasets,
and the evaluation metric, and Section 5 poses the following research questions and answers
them:

1. Does this pretrained model help us to use less data for fine-tuning?
2. Does the result of this fine-tuning depend on the languages used for pretraining?
3. How robust this fine-tuned model is with respect to distribution shift of test data

in comparison with fine-tuning data?

Section 6, discusses literature review, and finally, Section 7 concludes the paper.
1More details about the datasets are explained in section 4.2.
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2 Problem Formulation

Mathematical expressions can be depicted as binary-unary trees, with operators in the form
of internal nodes, operands in the form of children, and numbers, constants, and variables
in the form of leaves (Lample & Charton, 2019). These trees can be transformed into a
sequence of math letters by traversing them in some specific order. In this paper, a tree of
symbolic mathematical expressions is scanned by the prefix traversal to produce a sequence
corresponding to the mathematical expression. We formulate our symbolic mathematics
as a Seq2Seq translation problem with a large scale pretrained mBART (and Marian-MT)
transformer. The pretrained transformer is retrained with random expressions data set for
the case function integration and differential equation.
The training dataset for both tasks is a tuple of mathematical expressions in the format of
(fproblem, fsolution). Our pretrained transformer model PΘ solves the symbolic mathematics
task by minimizing the prediction loss e as follows:

minimize
Θ

1
n

n∑
i=1

e(PΘ(fproblem), fsolution) (1)

where Θ is the learned parameter and n is the number of samples.

3 Theory

Pretraining of the mBART transformer PΘ is done by Seq2Seq translation between the
source language English and target language of Romanian. The model parameters Θ as
expressed in Equation 1 are learned with gradient descent during the translation task.
Fine-tuning the model on symbolic data set allows the model to transfer the knowledge of
language translation. Our model inputs the mathematical expressions and predicts the out-
put mathematical expressions of the shortest length. The model searches its big hypothesis
space and finds the optimum hypothesis that outputs the shortest mathematical sequence.
Searching the big hypothesis space incurs huge optimization cost and also the optimization
surface is non-convex. Our model generalizes using the phenomena of self-regularization,
which is a complex interpolation process between two parameter spaces. The parameter
space Θ of our transformer model lie in a very high-dimensional space and is poorly under-
stood. We model our parameter space as a Normed space. The learned parameter space
Θtranslation = (Rd, ||.||Θtranslation

) is a d-dimensional normed space where d is very large.
The learned parameter space comes after the training from English to Romanian translation.
Fine-tuning the model with mathematical expressions is a perturbation of the parameter
space Θtranslation to a new parameter space Θfine−tuning. The fine-tuning normed space can
similarly be defined as Θfine−tuning = (Rd, ||.||Θfine−tuning

). Our transformer model during
the fine-tuning does a complex interpolation between normed spaces from Θtranslation to
Θfine−tuning with a bounded variance (Andoni et al., 2018a;b).
During the fine-tuning of our model with a new test sample Q ⊆ Θfine−tuning of symbolic
expression, our model does an approximate nearest neighbor approximation search and find
closet point in P ⊆ Θtranslation in the translation metric space. For given c ≥ 1 and r > 0
our transformer model finds point P such that distance dX(q, p) ≤ r with c−Approximate
Near Neighbor Search (c-ANN). The large size of the transformer parameter space, it is
randomly partitioned into translation space Θtranslation and fine-tuning space Θfine−tuning.
Each of the partition of translation space and fine-tuning space is prepossessed as a data
structure of Celltranslation and Cellfine−tuning. The Celltranslation’s are then represented as
a binary tree as shown in1. Given a query data structure Cellfine−tuning during the symbolic
mathematics tasks, our transformer model searches its Cellfine−tuning binary tree to find
the approximate match. The normed space restrictions of Θtranslation and Θfine−tuning

guarantees the c-Approximate Near Neighbor Search (c-ANN) in polynomial time. The
self-regularization process comes from the underlying high-dimensional geometric structure
of Θtranslation and Θfine−tuning.
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𝐶𝑒𝑙𝑙𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛∼ 𝐶𝑒𝑙𝑙𝑓𝑖𝑛𝑒-𝑡𝑢𝑛𝑖𝑛𝑔

Binary Encoding of Translation Space

Figure 1: Interpolation between translation space and fine-tuning space.

4 Experimental Setting

We evaluate a diverse set of symbolic mathematical data sets as introduced in Lample
& Charton (2019). The tasks studied in these datasets include symbolic integration and
solving differential equations of order one and two. Mainly, we are interested in whether
pretrained language models are genetically capable of solving these tasks with fewer data.
Moreover, whether the language that they have been pretrained on impacts their result after
transfer learning. In section 5, we will do this empirical study by asking structured research
questions.

4.1 Architecture

We use the Marian model (Junczys-Dowmunt et al., 2018) and the mBART model (Liu
et al., 2020), pre-trained on different translation tasks by the NLP group at the University
of Helsinki and Facebook, using the Marian model and the mBART model of the famous
NLP framework, Hugging-Face (Wolf et al., 2019).
Both models follow the famous transformer architecture introduced in Vaswani et al. (2017).
The Hugging-Face mBART model has an embedding size of 1024, with 16 attention heads
and 12 layers. The Marian-MT model we use (only) in section 5.2, has an embedding size of
512, with 8 attention heads and 6 layers. The Marian Model and the mBART model have
approximately 74 and 610 a million parameters. The Parameter counts may vary depending
on the vocab size of the language they have been pretrained on. We also train the model
used in Lample & Charton (2019) with the same parameters as the mBart model (i.e., with
an embedding size of 1024, 12 layers and 16 attention heads.).

4.2 Datasets

Thanks to Lample & Charton (2019), there is a good dataset resource for Symbolic Mathe-
matics available publicly. In all the experiments in this paper, we use the same datasets as
Lample & Charton (2019), or generate new datasets using the same generation methods.
For the mathematical integration task, there are three generation methods. Forward (FWD),
Backward (BWD), and Integration by Parts (IBP). The forward approach, generates random
functions and calculates their integrals with an external symbolic mathematical framework.
The backward approach, on the other hand, generates a random function and then computes
its derivative and add the pair to the dataset with a backward manner. Both backward and
forward approaches have some issues. The forward approach is only capable of creating
samples that can only be integrated by a mathematical framework and also the samples
generated by this approach have short problems with long solutions. The backward approach
normally generates samples that the integral is shorter than the equation itself. In contrast to
the other two methods, the IBP approach uses the integration by parts formula to generate
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Figure 2: The accuracy of our mBART language model and the LC model when trained on
different training sample sizes. Panels (a), (b), and (c) are for the integration task.

Table 1: Accuracy of our models (in percentage (%)) and the Lample & Charton (2019)’s model
on integration and differential equation solving. The number of training samples used to train the
models in all tasks is 1 million. Results are tested on test data sets of size 5000 samples.

Integration (FWD) Integration (BWD) Integration (IBP) ODE 1 ODE 2

Our Model 87.4 92.2 86.2 62.2 17.9
LC’s Model 79.4 83.4 87.4 71.8 39.9

samples that do not need an external computer algebra framework, but in terms of the
equation lengths, it is similar to the FWD approach (generates short problems and long
solutions.) (Lample & Charton, 2019). The datasets for the first order differential equations
are referred as ODE1 and the second order differential equations are referred as ODE2.
Detailed information about datasets can be found at Lample & Charton (2019).

4.3 Metric

In all of our experiments, we report the Accuracy, which is defined as follows:
Accuracy: As discussed in the section 4.3 of Lample & Charton (2019), we can easily
calculate the accuracy of our predictions by comparing the generated equation and the
reference equation. The generated equation by the models might not be in the same format
as the reference equation; therefore, we simplify the difference between the predicted and
the reference equation to check whether it is 0 or not. It is also necessary to mention that
all of the results in section 5 are reported with the evaluations of beam size 1.

5 Experimental Evaluation

In this section, we examine the results showing transfer from language translation to solving
symbolic math equations and attempt to understand better why this happens and which
factors enable this transfer. The following subsections include our research questions, how
we design experiments to answer them, the discussions of the results, and their implications.
Note that we refer to Lample & Charton (2019)’s model results with the keyword LC in
our tables and visualizations.
We train our models with the Adam optimizer (Kingma & Ba, 2015), with a learning rate
of 10−4. We run all of our experiments with the mBART and the Marian-MT model only
for 15 epochs, while we train the LC model as long as the model converges (which usually
takes around 100 epochs.). 2

5.1 Does this pretrained model help us to use less data for training?

As studied in Lample & Charton (2019), to train transformer architecture on the symbolic
math data, we need a vast amount of training data for each task to achieve the highest

2The experiments with the mBART model were performed on a machine equipped with one
RTX A6000 NVIDIA GPU and 48GB memory. The experiments with the Marian-MT model were
performed on a machine equipped with one NVIDIA Tesla V100 GPU and 512GB memory.
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accuracies (in the order of 40 million to 80 million training samples for each task.). We
investigate if fine-tuning the pretrained models on language translation tasks on the symbolic
math data can help us use considerably fewer data in the fine-tuning stage.
In this section, we will use the pretrained mBART (Liu et al., 2020) model for the English to
Romanian translation task 3, and fine-tune it on our math data (see section 4.2). We report
the accuracy of our models on the integration and differential equation solving in table 1. In
this table, we use the same training dataset for both our mBART model and the LC model.
We train our mBART model only for 15 epochs for all 5 tasks (FWD, BWD, IBP, ODE1,
and ODE2), but we continue the training of the LC model until convergence (which takes
around 100 epochs for each task.). We can see in the table 1 that our model outperformed
in the integration task, with a considerable gap from the LC model. But it cannot properly
perform on the differential equation task, especially the second-order differential equations.
We extend this exploration by running the same experiment for different orders of magnitude
of training data (i.e., 10K, 100K, and 1M). We report the test accuracy (see section 4.3)
of each experiment for both models (mBART and LC) in figure 2. Our model has higher
accuracy in comparison to LC in all tasks and with different training sample sizes, except
that in the differential equations the accuracy growth of our model suddenly gets lower than
the LC model when using the 1 million samples for training.
We achieve comparable accuracy on the integration task with our pretrained model while
using around 1.5 orders of magnitude less number of training samples than the state-of-the-
art model in Lample & Charton (2019) (i.e, we use 1 million training samples against the
40-80 million samples that Lample & Charton (2019) used for training their model.). As we
have discussed previously in the section 3, the mBART language model has already been
pretrained by the language translation. During this pretraining, our mBART model searches
for that hypothesis that outputs the shortest translated sequence (the shortest Romanian
sequence for a given input of English sequence). During the fine-tuning, it uses the same
hypothesis learned previously to search for mathematical expressions that has minimum
length. Also, because our mBART language model is very large, it is doing an internal
look-up and search for the solutions depth-wise in the mathematical expression tree. The
model is thus effectively searching greedily than the LC model.
Note that the accuracies reported for the LC model in table 1, as well as in tables 3 and 4
are by training this model also with 1 million training samples (the high accuracies (over
95%) reported in Lample & Charton (2019) are achieved by sample sizes of range 20 − 40
million training samples).

5.2 Are the results of such fine-tuning, language dependent?

We investigate whether different languages used to train our pretrained models impact the
results of this transfer learning. We wish to see whether the quality of the results in section
5.1 might have been dependent on the specific source-target language in our language model,
i.e., the learned representations. In other words, the specific language could have been a
confounder. Therefore, to remove this confound, we fine-tune our symbolic math data on 9
different pretrained language translation tasks containing various source-target languages.
To be able to perform more experiments on multiple languages (due to the computational
costs), we fix our training sample size to 100K samples per task, and we use the pretrained
Marian-MT model of Hugging-Face (Wolf et al., 2019) which has already been pretrained on
many language translation tasks, and is available online 4. Since the accuracy of the models
based on what we saw in section 5.1 are consistent, we only report the accuracies for the
100K sample dataset. Accuracies will not be optimal, but they are sufficient to answer our
question. We test all the experiments on test datasets of size 1000. The results are shown
in table 2. As we can see in this table, for each task, a different pretrained language has
the highest accuracy (indicated in bold case.). For example, in the FWD task the French to

3The pretrained mBART model is available at https://huggingface.co/facebook/mBART-large-
en-ro.

4The pretrained Marian-MT models are available at https://huggingface.co/Helsinki-NLP.
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Table 2: Evaluation of accuracy of our Marian-MT model (in percentage (%)) on the in-
tegration and differential equation solving for different pretrained languages. The highest
accuracy is indicated by bold case in each column (task). We see that the language has no
specific impact on the results of this fine-tuning.

Language Integration (FWD) Integration (BWD) Integration (IBP) ODE 1 ODE 2
English - Romanian 38.8 67.8 51.5 23.4 1.8

English - Greek 39.3 69.5 48.6 17.3 2.5
English - Arabic 43.9 71.3 53.5 16.4 2.7
English - French 47.7 71.4 52.5 18.9 2.9
English - Spanish 143.5 70.4 51.8 18.7 3.3

Greek - English 39.1 69.1 47.9 16.2 2.2
Arabic - English 43.3 69.3 50.7 22.5 2.3
French - English 50.5 71.2 52.7 19.7 2.3
Spanish - English 40.4 69.9 51.7 20.2 2.0

English model had the highest accuracy and so on. Therefore, table 2 shows that the results
of this fine-tuning approach are not language dependent and our hypothesis that language
is a confounder for our results is not true.
It is also important to note that this Marian-MT model has an embedding size of 512, which
is twice less than the mBART model (and the LC model) we use in section 5.1. But because
our goal in this section is to study the impact of languages and there are many pretrained
models available of Marian-MT, we choose to use this model in our language study.5

5.3 How robust this fine-tuned model is with the distribution shift?

As also studied in Lample & Charton (2019), it is important to see whether these transformer
models are biased towards the distribution of their training data or not. In order to evaluate
this concept, we define two different kinds of distribution shift as follows:

• The first one is only for the integration task and is similar to section 4.7 described
in Lample & Charton (2019). Meaning that we will investigate how robust our
models trained in 5.1 are when we change their testing distribution. We report the
evaluation metrics trained and tested on a different combination of training datasets
in table 3.

• The second kind of distribution shift that we are interested in is due to the modality
of the test dataset. This type of distribution shift was not studied by Lample &
Charton (2019) and is a new type of distribution shifts we introduce in this paper.
Each training sample we use on all tasks (in sections 5.1, and 5.2) has a combi-
nation of all different types of equations such as polynomial, trigonometric, and
logarithmic expressions. We want to see whether a model trained on this type of
dataset can generalize to solve type-dominant functions (i.e, functions containing
only polynomial equations or containing only trigonometric equations and so on.).
Therefore, we generate different types of test data, varying in the kind of equation
they represent, such as trigonometric equations, polynomial equations, and loga-
rithmic equations. We test the ability of our models trained in 5.1 to see which
kinds of equations they can solve better, helping us to understand the impact of
linguistic data better. The results are reported in table 4.

Table 3 indicates that our mBART model is more robust with respect to the generation
distribution shift (i.e., FWD, BWD and IBP method for integration task.) and can achieve
comparable performance in comparison to the pure transformer model (LC) model.

5Investigating the effect of embedding size more systematically to the results is considered as
future work.
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To evaluate the robustness of our approach in terms of different equation types, we created
three different test datasets for each task. The first dataset is polynomial dominant, meaning
that the samples of dataset were created mostly by polynomials without using trigonometric
and logarithmic functions. The second and third datasets are trigonometric dominant and
logarithmic dominant, respectively. This means that the trigonometric dominant dataset
was created using mostly trigonometric functions, and the logarithmic dataset was generated
using mostly logarithm and exponential functions. Table 4 indicates that our mBART model
is not able to generalize to type dominant equations as well as the LC model can (except
in the FWD and BWD approaches of the integration task.). The highest accuracies of
both models are in their generalization to solve trigonometric expressions, and the lowest
results are in pure polynomial ones. This agrees with our theory (see section 3), because the
mBART model tries to find the shortest sequence and the higher order polynomial equations
are less compressible. Also, higher order polynomials need accurate precision (F64) for
their representation. On the other hand, trigonometric and the logarithmic equations can
be compressed into shorter expressions (for example, sin2(x) + cos2(x) is 1. or eix =
cos x + i sin x), and ;therefore, the performance on these two sets of type-dominant test
samples are better.

Table 3: Accuracy of the models (in percentage (%)) on function integration. Results are tested
on test data sets of size 5000 samples. The models are trained on the 1 million sample size training
data, as dicussed in section 5.1.

Forward Backward Integration by parts
Training data Ours(mBART) LC Ours(mBART) LC Ours(mBART) LC
FWD 87.38 79.42 7.30 6.90 74.20 74.10
BWD 12.82 9.28 92.24 83.40 24.02 17.60
IBP 30.46 28.70 35.00 20.50 86.26 87.44

Table 4: Accuracy of our models (in percentage (%)) on the integration and differential equation
solving for different pretrained languages. Results are reported on test datasets of different types
(polynomial, trigonometric and logarithmic.), and of size 5000.

Testset Type Metrics Integration (FWD) Integration (BWD) Integration (IBP) ODE (order 1) ODE (order 2)
Ours 60.6 67.8 70.7 39.1 8.9

Polynomials LC 54.7 60.0 80.1 60.6 57.9
Ours 91.9 87.0 78.9 48.3 10.6

Trigonometric LC 92.4 85.8 91.8 74.4 60.6
Ours 90.9 75.1 72.4 35.9 6.8

Logarithmic LC 87.9 73.3 87.96 75.6 72.0

6 Related work and Discussion

6.1 Transformers in different modalities

Attention (Bahdanau et al., 2014) is a powerful mechanism led to recent achievements in
developing strong DNN models in NLP like the transformer architecture (Vaswani et al.,
2017). Attention mechanism has also been used in other tasks such as visual explanation
(Fukui et al., 2019), video captioning (Yan et al., 2019), healthcare (Choi et al., 2016), object
detection (Chorowski et al., 2015), and speech recognition (Li et al., 2020). The transformer
architecture introduced in (Vaswani et al., 2017) is an autoencoder that encodes the input
data and then decodes them to the target domain. It does not use recurrent modulus
and just uses self-attention mechanism. It is a breakthrough in NLP and is the base for
many language models including bidirectional encoder representations from transformers,
BERT, (Devlin et al., 2019), generative pretrained transformer, GPT-3, (Brown et al.,
2020), Text-to-Text Transfer Transformer, T5, (Raffel et al., 2020) and Google’s Meena
(Adiwardana et al., 2020). It has also been successfully used as a baseline in other tasks
such as object detection (Carion et al., 2020), image generation (Chen et al., 2021), image
colorization (Kumar et al., 2021), video understanding (Sun et al., 2019), and visual question
answering (Tan & Bansal, 2019). Furthermore, Yun et al. (2019) showed that transformers
can universally approximate sequence to sequence functions. Therefore, the transformer is a
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good choice for transfer learning not only because of their prosperity across different tasks,
but also because of its architecture which makes it possible to use the hardware parallelism
to train much more big models with much more training data.

6.2 Symbolic computation related works

The research on algebraic manipulation systems through computer is quite mature. The
early work of solving symbolic integration were the heuristics programs written in LISP.
They were named SIN (Symbolic INtegrator), SAINT, and SOlDIER (SOLUtion of Ordi-
nary Differential Equations ROUTINE) (Moses, 1967). The obvious motivation during those
programs, is the use of symbolic systems as an adjunct to numerical integration programs
which involves parameters. SAINT program of symbolic integration shows the capability
of a freshman calculus student. Thus, an unmodified SAINT pe.g.,am was of limited use
in a practical algebraic system. More powerful programs follow, e.g., MATLAB project by
MITRE Corporation, which solves integration of rational functions as good as sophomore
college students. Though the capabilities of these programs are quite impressive, they mainly
use tree search and matching algebraic expressions (pattern matching) as their workhorse.
The program started showing its inherent limitation for those expressions which are not in-
tegrable in closed form, e.g.,

∫
ex2

dx or
∫

ex

x dx. Though there were some attempts of using
Edge heuristics to solve those wild integrals, they were mainly unsuccessful. The era of deep
neural networks ushers a new hope of solving the symbolic tasks by representing (encoding)
the algebraic expressions in a feature space (Lample & Charton, 2019; Arabshahi et al., 2018;
Allamanis et al., 2017; Zaremba et al., 2014; Loos et al., 2017; Trask et al., 2018;  Lukasz
Kaiser & Sutskever, 2016; Zaremba & Sutskever, 2015; Valipour et al., 2021; Ling et al.,
2017; Polu & Sutskever, 2020). So instead of pattern matching on the raw mathematical ex-
pressions done in the pre-deep learning era programs, these deep models solve the algebraic
systems in the feature space. These works on representing the symbolic expressions in a
continuous and differential space using deep net architectures show the fundamental differ-
ence in the philosophy from the early SIN, SAINT, and SOlDIER pograms. The advantages
of using deep net architectures are remarkable in terms of solving the algebraic systems
approximately e.g., for those integrals which have no closed form solutions, and the aver-
age time complexity to solve. The deep models even started to show creativity on solving
complex mathematical expressions, e.g., representing a mathematical expression in multiple
ways. Very recently the research community started using language base transformer neural
networks to solve symbolic computations (Lample & Charton, 2019; Hendrycks et al., 2021).
The mathematical expressions are encoded as a sequence and a transformer is trained for
a sequence-to-sequence translation task. The dot product attention module in the trans-
former architecture solves symbolic tasks efficiently. Saxton et al. (2019) takes a different
route and created a large symbolic mathematics data set. All these research directions point
towards the direction of solving mathematics is no more in the genre of human creativity,
but a data problem. The unreasonable effectiveness of symbolic mathematics data and large
neural architectures show the inevitable future of machine generated mathematical prover
and symbolic mathematics.

7 Conclusion

Considering success of the transformer architecture in many tasks (Lu et al., 2021), including
both language and symbolic mathematics, we proposed transfer learning from a pretrained
language model with the transformer architecture for the downstream task of solving sym-
bolic mathematical problems such as integration and differential equations. Using multiple
experimental evaluation, we showed that these models could achieve competitive perfor-
mance (specially in the integration tasks) with transformers fully trained on the symbolic
math task without being pretrained on linguistic data. We showed that the language that
the transformer model has been pretrained on does not have a significant impact in this
transfer learning. We also evaluated that a model fine-tuned using our approach generalizes
better in distribution shift scenarios for integration tasks.

9
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Reproducibility

We have provided all the code and data needed to re-produce our results as the supple-
mentary materials. The Zip file contains a README.pdf file explaining how to run the
experiments. The code for the LC model is run by the configurable scripts available on the
Lample & Charton (2019)’s GitHub repository 6.
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Bogoychev, André F. T. Martins, and Alexandra Birch. Marian: Fast neural machine
translation in C++. In Proceedings of ACL 2018, System Demonstrations, pp. 116–
121, Melbourne, Australia, July 2018. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/P18-4020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015. URL http://arxiv.org/abs/1412.6980.

Manoj Kumar, Dirk Weissenborn, and Nal Kalchbrenner. Colorization transformer. arXiv
preprint arXiv:2102.04432, 2021.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. CoRR,
abs/1912.01412, 2019. URL http://arxiv.org/abs/1912.01412.

Wei Li, Kai Liu, Lizhe Zhang, and Fei Cheng. Object detection based on an adaptive
attention mechanism. Scientific Reports, 10(1):1–13, 2020.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale
generation : Learning to solve and explain algebraic word problems, 2017.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad,
Mike Lewis, and Luke Zettlemoyer. Multilingual denoising pre-training for neural machine
translation. CoRR, abs/2001.08210, 2020. URL https://arxiv.org/abs/2001.08210.

Sarah Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. Deep network guided
proof search, 2017.

Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mordatch. Pretrained transformers as
universal computation engines. arXiv preprint arXiv:2103.05247, 2021.

Charles H. Martin and Michael W. Mahoney. Implicit self-regularization in deep neural
networks: Evidence from random matrix theory and implications for learning, 2018.

Joel Moses. Symbolic integration. 1967.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem
proving, 2020.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. Journal of Machine Learning Research, 21(140):
1–67, 2020. URL http://jmlr.org/papers/v21/20-074.html.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathemat-
ical reasoning abilities of neural models, 2019.

Didier Sornette. Critical phenomena in natural sciences: chaos, fractals, selforganization
and disorder: concepts and tools. Springer Science & Business Media, 2006.

Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and Cordelia Schmid. Videobert:
A joint model for video and language representation learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 7464–7473, 2019.

11

http://www.aclweb.org/anthology/P18-4020
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1912.01412
https://arxiv.org/abs/2001.08210
http://jmlr.org/papers/v21/20-074.html


Under review as a conference paper at ICLR 2022

Hao Tan and Mohit Bansal. Lxmert: Learning cross-modality encoder representations from
transformers. arXiv preprint arXiv:1908.07490, 2019.

Andrew Trask, Felix Hill, Scott Reed, Jack Rae, Chris Dyer, and Phil Blunsom. Neural
arithmetic logic units, 2018.

Mojtaba Valipour, Bowen You, Maysum Panju, and Ali Ghodsi. Symbolicgpt: A generative
transformer model for symbolic regression, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pp. 5998–6008, 2017.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
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