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Abstract

Conformal Inference (CI) is a popular approach for generating finite sample prediction
intervals based on the output of any point prediction method when data are exchangeable.
Adaptive Conformal Inference (ACI) algorithms extend CI to the case of sequentially observed
data, such as time series, and exhibit strong theoretical guarantees without having to assume
exchangeability of the observed data. The common thread that unites algorithms in the ACI
family is that they adaptively adjust the width of the generated prediction intervals in response to
the observed data. We provide a detailed description of five ACI algorithms and their theoretical
guarantees, and test their performance in simulation studies. We then present a case study
of producing prediction intervals for influenza incidence in the United States based on black-
box point forecasts. Implementations of all the algorithms are released as an open-source
R package, AdaptiveConformal, which also includes tools for visualizing and summarizing
conformal prediction intervals.
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1 Introduction

Conformal Inference (CI) is a family of methods for generating finite sample prediction intervals
around point predictions when data are exchangeable (Vovk, Gammerman, and Shafer 2005; Shafer
and Vovk 2008; Angelopoulos and Bates 2023). The input point predictions can be derived from
any prediction method, making CI a powerful tool for augmenting black-box prediction algorithms
with prediction intervals. Classical CI methods are able to yield marginally valid intervals with
only the assumption that the joint distribution of the data does not change based on the order of
the observations (that is, they are exchangeable). However, in many real-world settings data are
not exchangeable: for example, time series data usually cannot be assumed to be exchangeable due
to temporal dependence. A recent line of research examines the problem of generating prediction
intervals for observations that are observed online (that is, one at a time) and forwhich exchangeability
is not assumed to hold (Gibbs and Candes 2021; Zaffran et al. 2022; Gibbs and Candès 2022; Bhatnagar
et al. 2023). The methods from this literature, which we refer to generally as Adaptive Conformal
Inference (ACI) algorithms, work by adaptively adjusting the width of the generated prediction
intervals in response to the observed data.

Informally, suppose a sequence of outcomes 𝑦𝑡 ∈ ℝ, 𝑡 = 1, … , 𝑇 are observed one at a time. Before
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seeing each observation, we have at our disposal a point prediction �̂�𝑡 ∈ ℝ that can be generated by
any method. Our goal is to find an algorithm for producing prediction intervals [ℓ𝑡, 𝑢𝑡], ℓ𝑡 ≤ 𝑢𝑡 such
that, in the long run, the observations 𝑦𝑡 fall within the corresponding prediction intervals roughly
𝛼 × 100% of the time: that is, lim𝑇→∞ 1/𝑇∑𝑇

𝑡=1 𝕀{𝑦𝑡 ∈ [ℓ𝑡, 𝑢𝑡]} = 𝛼. The original ACI algorithm (Gibbs
and Candes 2021) is based on a simple idea: if the previous prediction interval at time (𝑡 − 1) did
not cover the true observation, then the next prediction interval at time 𝑡 is made slightly wider.
Conversely, if the previous prediction interval did include the observation, then the next prediction
interval is made slightly narrower. It can be shown that this procedure yields prediction intervals
that in the long run cover the true observations the desired proportion of the time.

The main tuning parameter of the original ACI algorithm is a learning rate that controls how fast
prediction interval width changes. If the learning rate is too low, then the prediction intervals
will not be able to adapt fast enough to shifts in the data generating distribution; if it is too large,
then the intervals will oscillate widely. The critical dependence of the original ACI algorithm on
proper choice of its learning rate spurred subsequent research into meta-algorithms that learn the
correct learning rate (or an analogue thereof) in various ways, typically drawing on approaches
from the online learning literature. In this paper, we present four such algorithms: Aggregated ACI
(AgACI, Zaffran et al. 2022), Dynamically-tuned Adaptive ACI (DtACI, Gibbs and Candès 2022),
Scale-Free Online Gradient Descent (SF-OGD, Bhatnagar et al. 2023), and Strongly Adaptive Online
Conformal Prediction (SAOCP, Bhatnagar et al. 2023). We note that the adaption of conformal
inference techniques is an active area of research and the algorithms we focus on in this work are not
exhaustive; see among others Feldman et al. (2023), Bastani et al. (2022), Xu and Xie (2021), Xu and
Xie (2023), Angelopoulos, Barber, and Bates (2024), Zhang, Bombara, and Yang (2024), and Gasparin
and Ramdas (2024).

Our primary practical contribution is an implementation of each algorithm in an open source R
package, AdaptiveConformal, which is available at https://github.com/herbps10/AdaptiveConformal.
The package also includes routines for visualization and summary of the prediction intervals. We
note that Python versions of several algorithms were also made available by Zaffran et al. (2022)
and Bhatnagar et al. (2023), but to our knowledge this is the first package implementing them
in R. In addition, several R packages exist for conformal inference in other contexts, including
conformalInference focusing on regression (Tibshirani et al. 2019), conformalInference.fd, with
methods for functional responses (Diquigiovanni et al. 2022), and cfcausal for causal inference
related functionals (Lei and Candès 2021). Our second practical contribution is to compare the
performance of the algorithms in simulation studies and in a case study generating prediction
intervals for influenza incidence in the United States based on black-box point forecasts.

The rest of the paper unfolds as follows. In Section 2, we present a unified theoretical framework
for analyzing the ACI algorithms based on the online learning paradigm. In Section 3 we provide
descriptions of each algorithm along with their known theoretical properties. In Section 5 we compare
the performance of the algorithms in several simulation studies. Section 6 gives a case study based
on forecasting influenza in the United States. Finally, Section 7 provides a discussion and ideas for
future research in this rapidly expanding field.

2 Theoretical Framework

Notation: for any integer 𝑁 ≥ 1 let J𝑁K ∶= {1, … , 𝑁 }. Let 𝕀 be the indicator function. Let ∇𝑓 denote
the gradient (subgradient) of the differentiable (convex) function 𝑓.

We consider an online learning scenario in which we gain access to a sequence of observations (𝑦𝑡)𝑡≥1
one at a time (see Cesa-Bianchi and Lugosi (2006) for an comprehensive account of online learning
theory). Fix 𝛼 ∈ (0, 1) to be the target empirical coverage of the prediction intervals. The goal is
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to output at time 𝑡 a prediction interval for the unseen observation 𝑦𝑡, with the prediction interval
generated by an interval construction function �̂�𝑡. Formally, let �̂�𝑡 be a function that takes as input a
parameter 𝜃𝑡 ∈ ℝ and outputs a closed prediction interval [ℓ𝑡, 𝑢𝑡]. The interval construction function
must be nested: if 𝜃′ > 𝜃, then �̂�𝑡(𝜃) ⊆ �̂�𝑡(𝜃′). In words, larger values of 𝜃 imply wider prediction
intervals. The interval constructor is indexed by 𝑡 to emphasize that it may use other information at
each time point, such as a point prediction �̂�𝑡 ∈ ℝ. We make no restrictions on how this external
information is generated.

Define 𝑟𝑡 ∶= inf{𝜃 ∈ ℝ ∶ 𝑦𝑡 ∈ �̂�𝑡(𝜃)} to be the radius at time 𝑡. The radius is the smallest possible 𝜃
such that the prediction interval covers the observation 𝑦𝑡. A key assumption for the theoretical
analysis of several of the algorithms is that the radii are bounded:

Assumption: there exists a finite 𝐷 > 0 such that 𝑟𝑡 < 𝐷 for all 𝑡.

If the outcome space is bounded, then 𝐷 can be easily chosen to cover the entire space. Next, we
describe two existing definitions of interval construction functions.

2.1 Linear Intervals

A simple method for forming the prediction intervals is to use the parameter 𝜃𝑡 to directly define the
width of the interval. Suppose that at each time 𝑡 we have access to a point prediction �̂�𝑡 ∈ ℝ. Then
we can form a symmetric prediction interval around the point estimate using

𝜃 ↦ �̂�𝑡(𝜃) ∶= [�̂�𝑡 − 𝜃, �̂�𝑡 + 𝜃].

We refer to this as the linear interval constructor. Note that in this case, the radius is simply the
absolute residual 𝑟𝑡 = |�̂�𝑡 − 𝑦𝑡|.

2.2 Quantile Intervals

The original ACI paper proposed constructing intervals based on the previously observed residuals
(Gibbs and Candes 2021). Let 𝑆 ∶ ℝ2 → ℝ be a function called a nonconformity score. A popular
choice of nonconformity score is the absolute residual: (𝜇, 𝑦) ↦ 𝑆(𝜇, 𝑦) ∶= |𝜇 − 𝑦|. Let 𝑠𝑡 ∶= 𝑆(�̂�𝑡, 𝑦𝑡)
be the nonconformity score of the 𝑡th-observation. The quantile interval construction function is
then given by

�̂�𝑡(𝜃𝑡) ∶= [�̂�𝑡 − Quantile(𝜃, {𝑠1, … , 𝑠𝑡−1}), �̂�𝑡 + Quantile(𝜃, {𝑠1, … , 𝑠𝑡−1})]

where Quantile(𝜃, 𝐴) denotes the empirical 𝜃-quantile of the elements in the set 𝐴. Note that
�̂�𝑡 is indeed nested in 𝜃𝑡 because the Quantile function is non-decreasing in 𝜃. Note we define
�̂�𝑡(1) = max{𝑠1, … , 𝑠𝑡−1} rather than �̂�𝑡(1) = ∞ in order to avoid practical problems with trivial
prediction intervals (Zaffran et al. 2022). Note that we can always choose 𝐷 = 1 to satisfy the
outcome boundedness assumption given above.

We focus on the above definition for the quantile interval construction function which is designed to
be symmetric around the point prediction �̂�𝑡. However, we note it is possible to take a more general
definition, such as

�̂�𝑡(𝜃𝑡) ∶= {𝑦 ∶ 𝑆(�̂�𝑡, 𝑦) ≤ Quantile(, {s1, … , st−1})}

Such an approach allows for prediction intervals that may not be centered on �̂�𝑡.

Our proposed AdaptiveConformal package takes the absolute residual as the default nonconformity
score, although the user may also specify any custom nonconformity score by supplying it as an R
function.
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2.3 Online Learning Framework

We now introduce a loss function that defines the quality of a prediction interval with respect to a
realized observation. Define the pinball loss 𝐿𝛼 as

(𝜃, 𝑟) ↦ 𝐿𝛼(𝜃, 𝑟) ∶= {
(1 − 𝛼)(𝜃 − 𝑟), 𝜃 ≥ 𝑟
𝛼(𝑟 − 𝜃), 𝜃 < 𝑟 .

The way in which the algorithm gains access to the data and incurs losses is as follows:

• Sequentially, for 𝑡 = 1, … , 𝑇:
– Predict radius 𝜃𝑡 and form prediction interval �̂�𝑡(𝜃𝑡).
– Observe true outcome 𝑦𝑡 and calculate radius 𝑟𝑡.
– Record err𝑡 ∶= 𝕀[𝑦𝑡 ∉ �̂�𝑡(𝜃𝑡)].
– Incur loss 𝐿𝛼(𝜃𝑡, 𝑟𝑡).

This iterative procedure is at the core of the online learning theoretical framework inwhich theoretical
results have been derived.

2.4 Assessing ACI algorithms

There are two different perspectives we can take in measuring the quality of an ACI algorithm
that generates a sequence (𝜃𝑡)𝑡∈J𝑇K. First, we could look at how close the empirical coverage of the
generated prediction intervals is to the desired coverage level 𝛼. Formally, define the empirical
coverage as the proportion of observations that fell within the corresponding prediction interval:
EmpCov(𝑇 ) ∶= 1

𝑇 ∑
𝑇
𝑡=1(1 − err𝑡). The coverage error is then given by

CovErr(𝑇 ) ∶= EmpCov(𝑇 ) − 𝛼.

The second perspective is to look at how well the algorithm controls the incurred pinball losses.
Following the classical framework from the online learning literature, we define the regret as the
difference between the cumulative loss yielded by a sequence (𝜃𝑡)𝑡∈J𝑇K versus the cumulative loss of
the best possible fixed choice:

Reg(𝑇 ) ∶=
𝑇
∑
𝑡=1

𝐿𝛼(𝜃𝑡, 𝑟𝑡) − inf
𝜃∗∈ℝ

𝑇
∑
𝑡=1

𝐿𝛼(𝜃∗, 𝑟𝑡).

In settings of distribution shift, it may not be appropriate to compare the cumulative loss of an
algorithm to a fixed competitor. As such, stronger notions of regret have been defined. The strongly
adaptive regret is the largest regret over any subperiod of length 𝑚 ∈ J𝑇K:

SAReg(𝑇 , 𝑚) ∶= max
[𝜏 ,𝜏+𝑚−1]⊆J𝑇K

(
𝜏+𝑚−1
∑
𝑡=𝜏

𝐿𝛼(𝜃𝑡, 𝑟𝑡) − inf
𝜃∗∈ℝ

𝜏+𝑚−1
∑
𝑡=𝜏

𝐿𝛼(𝜃∗, 𝑟𝑡)) .

Both ways of evaluating ACI methods are important because targeting only one or the other can lead
to algorithms that yield prediction intervals that are not practically useful. As a simple pathological
example of only targeting the coverage error, suppose we wish to generate 𝛼 = 50% prediction
intervals. We could choose to alternate 𝜃 between 0 and ∞, such that err𝑡 alternates between 0 and 1.
The empirical coverage would then trivially converge to the desired level of 50%. However, the same
algorithm would yield infinite regret (see Bhatnagar et al. (2023) for a more in-depth example of an
scenario in which coverage is optimal but the regret grows linearly). On the other hand, an algorithm
that has arbitrarily small regret may not yield good empirical coverage. Suppose the observations and
point predictions are constant: 𝑦𝑡 = 1 and �̂�𝑡 = 0 for all 𝑡 ≥ 1. Consider a simple class of algorithms
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that outputs constantly 𝜃𝑡 = 𝜃′ for some 𝜃′ < 1. With the linear interval construction function, the
prediction intervals are then �̂�𝑡(𝜃𝑡) = [−𝜃′, 𝜃′]. The regret is given by Reg(𝑇 ) = 2𝑇𝛼(1 − 𝜃′), which
approaches zero as 𝜃′ approaches 1. The empirical coverage is, however, always zero. In other words,
the regret can be arbitrarily close to zero while at the same time the empirical coverage does not
approach the desired level.

These simple examples illustrate that, unfortunately, bounds on the coverage error and bounds on
the regret are not in general interchangeable. It is possible, however, to show equivalencies by either
(1) making distributional assumptions on the data or (2) using additional information about how the
algorithm produces the sequence (𝜃𝑡)𝑡∈J𝑇K (Bhatnagar et al. 2023).

It may also be informative to summarize a set of prediction intervals in ways beyond their coverage
error or their regret. A common metric for prediction intervals is the mean interval width:

MeanWidth(𝑇 ) ∶= 1
𝑇

𝑇
∑
𝑡=1

𝑤𝑡,

where 𝑤𝑡 ∶= 𝑢𝑡 − ℓ𝑡 is the interval width at time 𝑡.

Finally, we introduce a metric that is intended to capture pathological behavior that can arise with ACI
algorithms where the prediction intervals oscillate between being extremely narrow and extremely
wide. Define the path length of prediction intervals generated by an ACI algorithm as

PathLength(𝑇 ) ∶=
𝑇
∑
𝑡=2

|𝑤𝑡 − 𝑤𝑡−1|.

A high path length indicates that the prediction intervals were variable over time, and a low path
length indicates the prediction intervals were stable.

3 Algorithms

Table 1: Summary of ACI algorithms. Only the theoretical guarantees discussed in this paper are
shown for each algorithm.

Algorithm

Adaptive Conformal Inference (ACI)
- Tuning parameters: learning rate 𝛾
- Original interval constructor: quantile
- Theoretical guarantees: coverage error, regret
- Citation: Gibbs and Candes (2021)
Aggregated Adaptive Conformal Inference (AgACI)
- Tuning parameters: candidate learning rates (𝛾𝑘)1≤𝑘≤𝐾
- Original interval constructor: quantile
- Citation: Zaffran et al. (2022)
Dynamically-tuned Adaptive Conformal Inference (DtACI)
- Tuning parameters: candidate learning rates (𝛾𝑘)1≤𝑘≤𝐾
- Original interval constructor: quantile
- Theoretical guarantees: coverage error, strongly adaptive regret, dynamic regret
- Citation
Scale-Free Online Gradient Descent (SF-OGD)
- Tuning parameters: learning rate 𝛾 or maximum radius 𝐷
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Algorithm

- Original interval constructor: linear
- Theoretical guarantees: coverage error, anytime regret
- Citation: Bhatnagar et al. (2023)
Strongly Adaptive Online Conformal Prediction (SAOCP)
- Tuning parameters: learning rate 𝛾, lifetime multiplier 𝑔
- Original interval constructor: linear
- Theoretical guarantees: coverage error, strongly adaptive regret
- Citation: Bhatnagar et al. (2023)

As a simple running example to illustrate each algorithm, we simulate independently 𝑇 = 500 values
𝑦1, … , 𝑦𝑇 following

𝑦𝑡 ∼ 𝑁(0, 𝜎2𝑡 ), 𝑡 ∈ J𝑇K,

𝜎𝑡 = {
0.2, 𝑡 ≤ 250,
0.1, 𝑡 > 250.

For demonstration purposes we assume we have access to unbiased predictions �̂�𝑡 = 0 for all 𝑡 ∈ J𝑇K.
Throughout we set the target empirical coverage to 𝛼 = 0.8.

3.1 Adaptive Conformal Inference (ACI)

Algorithm 1 Adaptive Conformal Inference

1: Input: starting value 𝜃1, learning rate 𝛾 > 0.
2: for 𝑡 = 1, 2, … , 𝑇 do
3: Output: prediction interval �̂�𝑡(𝜃𝑡).
4: Observe 𝑦𝑡.
5: Evaluate err𝑡 = 𝕀[𝑦𝑡 ∉ �̂�𝑡(𝜃𝑡)].
6: Update 𝜃𝑡+1 = 𝜃𝑡 + 𝛾(err𝑡 − (1 − 𝛼)).
7: end for

The original ACI algorithm (Gibbs and Candes (2021); Algorithm 1 ) adaptively adjusts the width of
the prediction intervals in response to the observations. The updating rule for the estimated radius
can be derived as an online subgradient descent scheme. The subgradient of the pinball loss function
with respect to 𝜃 is given by

∇𝐿𝛼(𝜃, 𝑟) =
⎧

⎨
⎩

{−𝛼}, 𝜃 < 𝑟 ,
{1 − 𝛼}, 𝜃 > 𝑟 ,
[−𝛼, 1 − 𝛼], 𝜃 = 𝑟

It follows that, for all 𝜃𝑡 ∈ ℝ and 𝑟𝑡 ∈ ℝ,

1 − 𝛼 − err𝑡 ∈ ∇𝐿𝛼(𝜃𝑡, 𝑟𝑡).

This leads to the following update rule for 𝜃 based on subgradient descent:

𝜃𝑡+1 = 𝜃𝑡 + 𝛾(err𝑡 − (1 − 𝛼)),

where 𝛾 > 0 is a user-specified learning rate. For intuition, note that if 𝑦𝑡 fell outside of the prediction
interval at time 𝑡 (err𝑡 = 1) then the next interval is widened (𝜃𝑡+1 = 𝜃𝑡 + 𝛾𝛼). On the contrary, if 𝑦𝑡 fell
within the interval (err𝑡 = 0) then the next interval is shortened (𝜃𝑡+1 = 𝜃𝑡 − 𝛾(1 − 𝛼)). The learning
rate 𝛾 controls how fast the width of the prediction intervals changes in response to the data.
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3.1.1 Theoretical Guarantees

With the choice of the quantile interval structure, the ACI algorithm has the following finite sample
bound on the coverage error (Gibbs and Candes (2021); Proposition 4.1). For all 𝛾 > 0 (and so long as
𝛾 does not depend on 𝑇),

|CovErr(𝑇 )| ≤
max{𝜃1, 1 − 𝜃1} + 𝛾

𝛾𝑇
.

This result was originally shown for ACI with the choice of the quantile interval constructor, although
it can also be extended to other interval constructors Feldman et al. (2023). More generally, the
algorithm has the following coverage error bound in terms of the radius bound 𝐷 (Bhatnagar et al.
2023):

|CovErr(𝑇 )| ≤
𝐷 + 𝛾
𝛾𝑇

.

In addition, standard results for online subgradient descent yield the following regret bound with
the use of the linear interval constructor, assuming that the true radii are bounded by 𝐷:

Reg(𝑇 ) ≤ 𝒪(𝐷2/𝛾 + 𝛾𝑇 ) ≤ 𝒪(𝐷√𝑇),

where the second inequality follows if the optimal choice (with respect to long-term regret) of
𝛾 = 𝐷/√𝑇 is used (Bhatnagar et al. 2023). Taken together, these theoretical results imply that while
the coverage error is guaranteed to converge to zero for any choice of 𝛾, achieving sublinear regret
requires choosing 𝛾 more carefully. This highlights the importance of both ways of assessing ACI
algorithms: if we only focused on controlling the coverage error, we might not achieve optimal
control of regret, leading to intervals that are not practically useful.

3.1.2 Tuning Parameters

Therefore, the main tuning parameter is the learning rate 𝛾. The theoretical bounds on the coverage
error suggest setting a large 𝛾 such that the coverage error decays quickly in 𝑇; however, in practice
and setting 𝛾 too large will lead to intervals with large oscillations as seen in Figure 1. This is
quantified in the path length, which increases significantly as 𝛾 increases, even though the empirical
coverage remains near the desired value of 80%. On the other hand, setting 𝛾 too small will lead to
intervals that do not adapt fast enough to distribution shifts. Thus, choosing a good value for 𝛾 is
essential. However, the optimal choice 𝛾 = 𝐷/√𝑇 cannot be used directly in practice unless the time
series length 𝑇 is fixed in advance, or the so called “doubling trick” is used to relax the need to know
𝑇 in advance (Cesa-Bianchi and Lugosi (2006); Section 2.3).

The theoretical results guaranteeing the performance of the ACI algorithm do not depend on the
choice of starting value 𝜃1, and thus in practice any value can be chosen. Indeed, the effect of the
choice of 𝜃1 decays over time as a function of the chosen learning rate. In practice, substantive prior
information can be used to pick a reasonable starting value. By default, the AdaptiveConformal
package sets 𝜃1 = 𝛼 when the quantile interval predictor is used, and 𝜃1 = 0 otherwise, although
in both cases the user can supply their own starting value. The behavior of the early prediction
intervals in the examples (Figure 1) is driven by the small number of residuals available, which
makes the output of the quantile interval constructor sensitive to small changes in 𝜃. In practice, a
warm-up period can be used before starting to produce prediction intervals so that the quantiles of
the residuals are more stable.

3.2 Aggregated Adaptive Conformal Inference (AgACI)

The Aggregated ACI (AgACI; Algorithm 2 ) algorithm solves the problem of choosing a learning rate
for ACI by running multiple copies of the algorithm with different learning rates, and then separately
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Figure 1: Example 80% prediction intervals from the ACI algorithm for different choices of learning
rate 𝛾 and with 𝜃1 = 0.8. Blue and red points are observations that fell inside and outside the
prediction intervals, respectively.
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Algorithm 2 Aggregated Adaptive Conformal Inference

1: Input: candidate learning rates (𝛾𝑘)1≤𝑘≤𝐾, starting value 𝜃1.
2: Initialize lower and upper BOA algorithms ℬℓ ∶= BOA(𝛼 ← (1 − 𝛼)/2) and ℬ𝑢 ∶= BOA(𝛼 ←

(1 − (1 − 𝛼)/2)).
3: for 𝑘 = 1, … , 𝐾 do
4: Initialize ACI 𝒜𝑘 = ACI(𝛼 ← 𝛼, 𝛾 ← 𝛾𝑘, 𝜃1 ← 𝜃1).
5: end for
6: for 𝑡 = 1, 2, … , 𝑇 do
7: for 𝑘 = 1, … , 𝐾 do
8: Retrieve candidate prediction interval [ℓ𝑘𝑡 , 𝑢𝑘𝑡 ] from 𝒜𝑘.
9: end for

10: Compute aggregated lower bound ℓ̃𝑡 ∶= ℬℓ((ℓ𝑘𝑡 ∶ 𝑘 ∈ {1, … , 𝐾})).
11: Compute aggregated upper bound �̃�𝑡 ∶= ℬ𝑢((𝑢𝑘𝑡 ∶ 𝑘 ∈ {1, … , 𝐾})).
12: Output: prediction interval [ℓ̃𝑡, �̃�𝑡].
13: Observe 𝑦𝑡.
14: for 𝑘 = 1, … , 𝐾 do
15: Update 𝒜𝑘 with observation 𝑦𝑡.
16: end for
17: Update ℬℓ with observed outcome 𝑦𝑡.
18: Update ℬ𝑢 with observed outcome 𝑦𝑡.
19: end for

combining the lower and upper interval bounds using an online aggregation of experts algorithm
(Zaffran et al. 2022). That is, one aggregation algorithm seeks to estimate the lower (1−𝛼)/2 quantile,
and the other seeks to estimate the upper 1 − (1 − 𝛼)/2 quantile. Zaffran et al. (2022) experimented
with multiple online aggregation algorithms, and found that they yielded similar results. Thus, we
follow their lead in using the Bernstein Online Aggregation (BOA) algorithm as implemented in
the opera R package (Wintenberger 2017; Gaillard et al. 2023). BOA is an online algorithm that
forms predictions for the lower (or upper) prediction interval bound as a weighted mean of the
candidate ACI prediction interval lower (upper) bound, where the weights are determined by each
candidate’s past performance with respect to the quantile loss. As a consequence, the prediction
intervals generated by AgACI are not necessarily symmetric around the point prediction, as the
weights for the lower and upper bounds are separate.

3.2.1 Theoretical Gaurantees

AgACI departs from our main theoretical framework in that it does not yield a sequence (𝜃𝑡)𝑡∈J𝑇K
whose elements yield prediction intervals via a set construction function �̂�𝑡. Rather, the upper and
lower interval bounds from a set of candidate ACI algorithms are aggregated separately. Thus,
theoretical results such as regret bounds similar to those for the other algorithms are not available.
It would be possible, however, to establish regret bounds for the pinball loss applied separately to
the lower and upper bounds of the prediction intervals. It is unclear, however, how to convert such
regret bounds into a coverage bound.

3.2.2 Tuning Parameters

The main tuning parameter for AgACI is the set of candidate learning rates. Beyond necessi-
tating additional computational time, there is no drawback to having a large grid. As a default,
AdaptiveConformal uses learning rates 𝛾 ∈ {0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128}. As a
basic check, we can look at the weights assigned to each of the learning rates. If large weights are
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given to the smallest (largest) learning rates, it is a sign that smaller (or larger) learning rates may
perform well. In addition each of the candidate ACI algorithms requires a starting value, which
can be set to any value as discussed in the ACI section. Figure 2 illustrates AgACI applied to the
running example with two sets of learning grids. The first grid is 𝛾 = {0.032, 0.064, 0.128, 0.256}, and
the second grid includes the additional values {0.008, 0.016}. For the first grid, we can see that for
the lower bound AgACI assigns high weight to the lowest learning rate (𝛾 = 0.032). The second
grid yields weights that are less concentrated on a single learning rate, and the output prediction
intervals are smoother.
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Figure 2: Example 80% prediction intervals from the AgACI algorithm with starting values 𝜃1 = 0.8
and two different learning rate grids. In the left column, blue and red points are observations that
fell inside and outside the prediction intervals, respectively.

3.3 Dynamically-tuned Adaptive Conformal Inference (DtACI)

The Dynamically-tuned Adaptive Conformal Inference (DtACI; Algorithm 3 ) algorithm was devel-
oped by the authors of the original ACI algorithm in part to address the issue of how to choose the
learning rate parameter 𝛾. In this respect the goal of the algorithm is similar to that of AgACI, although
it is achieved slightly differently. DtACI also aggregates predictions from multiple copies of ACI run
with different learning rates, but differs in that it directly aggregates the estimated radii emitted from
each algorithm based on their pinball loss (Gibbs and Candès 2022) using an exponential reweighting
scheme (Gradu, Hazan, and Minasyan 2023). As opposed to AgACI, this construction allows for more
straightforward development of theoretical guarantees on the algorithm’s performance, because the
upper and lower bounds of the intervals are not aggregated separately.
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Algorithm 3 Dynamically-tuned Adaptive Conformal Inference

1: Input: starting value 𝜃1, candidate learning rates (𝛾𝑘)1≤𝑘≤𝐾, parameters 𝜎, 𝜂.
2: for 𝑘 = 1, … , 𝐾 do
3: Initialize expert 𝒜𝑘 = ACI(𝛼 ← 𝛼, 𝛾 ← 𝛾𝑘, 𝜃1 ← 𝜃1).
4: end for
5: for 𝑡 = 1, 2, … , 𝑇 do
6: Define 𝑝𝑘𝑡 ∶= 𝑝𝑘𝑡 /∑

𝐾
𝑖=1 𝑝

𝑖
𝑡 , for all 1 ≤ 𝑘 ≤ 𝐾.

7: Set 𝜃𝑡 = ∑𝐾
𝑘=1 𝜃

𝑘
𝑡 𝑝𝑘𝑡 .

8: Output: prediction interval �̂�𝑡(𝜃𝑡).
9: Observe 𝑦𝑡 and compute 𝑟𝑡.

10: ̄𝑤𝑘
𝑡 ← 𝑝𝑘𝑡 exp(−𝜂𝐿𝛼(𝜃𝑘𝑡 , 𝑟𝑡)), for all 1 ≤ 𝑘 ≤ 𝐾.

11: �̄�𝑡 ← ∑𝐾
𝑖=1 ̄𝑤 𝑖

𝑡 .
12: 𝑝𝑘𝑡+1 ← (1 − 𝜎) ̄𝑤𝑘

𝑡 + �̄�𝑡𝜎/𝐾.
13: Set err𝑡 ∶= 𝕀[𝑦𝑡 ∉ �̂�𝑡(𝜃𝑡)].
14: for 𝑘 = 1, … , 𝐾 do
15: Update ACI 𝒜𝑘 with 𝑦𝑡 and obtain 𝜃𝑘𝑡+1.
16: end for
17: end for

3.3.1 Theoretical Guarantees

DtACI was originally proposed with the choice of the quantile interval constructor. DtACI has the
following strongly-adaptive regret bound (Bhatnagar et al. 2023): for all 𝜂 > 0 and subperiod lengths
𝑚,

SAReg(𝑇 , 𝑚) ≤ 𝒪(𝐷2/𝜂 + 𝜂𝑚).

If 𝑚 is fixed a-priori, then choosing 𝜂 = 𝐷/√𝑚 yields a strongly adaptive regret bound of order
𝒪(𝐷√𝑚) (for a single choice of 𝑚). Practically, this result implies that, if we know in advance the
time length for which we would like to control the regret, it is possible to choose an optimal tuning
parameter value. However, we cannot control the regret simultaneously for all possible time lengths.

To establish a bound on the coverage error, the authors investigated a slightly modified version of
DtACI in which 𝜃𝑡 is chosen randomly from the candidate 𝜃𝑡𝑘 with weights given by 𝑝𝑡 ,𝑘, instead
of taking a weighted average. This is a common trick used in the literature as it facilitates theo-
retical analysis. In practice, the authors comment that this randomized version of DtACI and the
deterministic version lead to very similar results. The coverage error result also assumes that the
hyperparameters can change over time: that is, we have 𝑡-specific 𝜂𝑡 and 𝜎𝑡, rather than fixed 𝜂 and 𝜎.
The coverage error then has the following bound (Gibbs and Candès (2022); Theorem 3.2), where
𝛾min and 𝛾max are the smallest and largest learning rates in the grid, respectively:

|CovErr(𝑇 )| ≤
1 + 2𝛾max

𝑇 𝛾min
+
(1 + 2𝛾max)2

𝛾min

1
𝑇

𝑇
∑
𝑡=1

𝜂𝑡 exp(𝜂𝑡(1 + 2𝛾max)) + 2
1 + 𝛾max

𝛾min

1
𝑇

𝑇
∑
𝑡=1

𝜎𝑡.

Thus, if 𝜂𝑡 and 𝜎𝑡 both converge to zero as 𝑡 → ∞, then the coverage error will also converge to zero.
In addition, under mild distributional assumptions the authors provide a type of short-term coverage
error bound for arbitrary time spans, for which we refer to (Gibbs and Candès 2022).

We note one additional result established by Gibbs and Candès (2022) (their Theorem 3.1) on a
slightly different dynamic regret bound in terms of the pinball loss, as it informs the choice of
tuning parameters. Let 𝛾max = max1≤𝑘≤𝐾 𝛾𝑘 be the largest learning rate in the grid and assume that
𝛾1 < 𝛾2 < ⋯ < 𝛾𝐾 with 𝛾𝑘+1/𝛾 ≤ 2 for all 1 ≤ 𝑘 < 𝐾. Then, for any interval 𝐼 = [𝑟 , 𝑠] ⊆ J𝑇K and any
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sequence 𝜃∗𝑟 , … , 𝜃∗𝑠 , under the assumption that 𝛾𝑘 ≥ √1 + 1/|𝐼 |,

1
|𝐼 |

𝑠
∑
𝑡=𝑟

𝔼[𝐿𝛼(𝜃𝑡, 𝑟𝑡)] −
1
|𝐼 |

𝑠
∑
𝑡=𝑟

𝐿𝛼(𝜃𝑡, 𝜃∗𝑡 ) ≤
log(𝑘/𝜎) + 2𝜎|𝐼 |

𝜂|𝐼 |
+

𝜂
|𝐼 |

𝑠
∑
𝑡=𝑟

𝔼[𝐿𝛼(𝜃𝑡, 𝑟𝑡)2]

+ 2√3(1 + 𝛾max)2 max {
√

∑𝑠
𝑡=𝑟+1 |𝜃

∗
𝑡 − 𝜃∗𝑡−1| + 1
|𝐼 |

, 𝛾1} ,

where the expectation is over the randomness in the randomized version of the algorithm. Here the
time interval 𝐼 (with length |𝐼 |) is comparable to the time period length 𝑚 for the strongly adaptive
regret. The parameter |𝐼 |, the time interval of interest for which we would like to control, can be
chosen arbitrarily. This dynamic regret bound can be converted to a strongly adaptive regret bound
by choosing 𝜃∗𝑡 to be constant.

3.3.2 Tuning parameters

The recommended settings for the tuning parameters depend on choosing a time interval length |𝐼 |
for which we would like to control the pinball loss. The choice of |𝐼 | can be chosen arbitrarily. For
the tuning parameter 𝜎, the authors suggest the optimal choice (with respect to the dynamic regret)
𝜎 = 1/(2|𝐼 |). Choosing 𝜂 is more difficult. The authors suggest the following choice for 𝜂, which they
show is optimal if there is in fact no distribution shift:

𝜂 =
√

3
|𝐼 |√

log(𝐾 ⋅ |𝐼 |) + 2
(𝛼)2(1 − 𝛼)3 + (1 − 𝛼)2𝛼3

.

Note that this choice is optimal only for the quantile interval constructor, for which 𝜃𝑡 is a quantile
of previous nonconformity scores. As an alternative, the authors point out that 𝜂 can be learned in
an online fashion using the update rule

𝜂𝑡 ∶=
√

log(|𝐼 |𝐾) + 2

∑𝑡−1
𝑠=𝑡−|𝐼 | 𝐿𝛼(𝜃𝑠, 𝑟𝑠)

.

Both ways of choosing 𝜂 led to very similar results in the original author’s empirical studies. In
our proposed AdaptiveConformal package, the first approach is used when the quantile interval
construction function is chosen, and the latter approach for the linear interval construction function.

Figure 3 illustrates DtACI with the quantile interval construction function and with the learning
rate grid 𝛾 ∈ {0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128}. The tuning parameter 𝜂 was set to
0.001, 1, and 100 to show how the algorithm responds to extreme choices of the parameter, and to
𝜂 ≈ 3.19 according to the optimal choice recommendation with 𝐼 = 100 as described in the previous
section. The results show that, in this simple example, high values of 𝜂 may lead to intervals that
are too reactive to the data, as seen in the longer path length. The algorithm appears more robust,
however, to small choices of 𝜂.

3.4 Scale-Free Online Gradient Descent (SF-OGD)

Scale-Free Online Gradient Descent (SF-OGD; Algorithm 4 ) is a general algorithm for online learning
proposed by Orabona and Pál (2018). The algorithm updates 𝜃𝑡 with a gradient descent step where
the learning rate adapts to the scale of the previously observed gradients. SF-OGD was first used in
the context of ACI as a sub-algorithm for SAOCP (described in the next section). However, it was
found to have good performance by itself (Bhatnagar et al. 2023) in real-world tasks, so we have
made it available in the package as a stand-alone algorithm.
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Figure 3: Example 80% prediction intervals generated by the DtACI algorithm with starting values
𝜃1 = 0.8 and with several values of the tuning parameter 𝜂. Blue and red points are observations that
fell inside and outside the prediction intervals, respectively.
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Algorithm 4 Scale-Free Online Gradient Descent

1: Input: starting value 𝜃1, learning rate 𝛾 > 0.
2: for 𝑡 = 1, 2, … , 𝑇 do
3: Output: prediction interval �̂�𝑡(𝜃𝑡).
4: Observe 𝑦𝑡 and compute 𝑟𝑡.
5: Update 𝜃𝑡+1 = 𝜃𝑡 − 𝛾 ∇𝐿𝛼(𝜃𝑡,𝑟𝑡)

√∑
𝑡
𝑖=1‖∇𝐿𝛼(𝜃𝑖,𝑟𝑖)‖

2
2

.

6: end for

3.4.1 Theoretical Guarantees

The SF-OGD algorithm with linear interval constructor has the following regret bound, which is
called an anytime regret bound because it holds for all 𝑡 ∈ J𝑇K (Bhatnagar et al. 2023). For any 𝛾 > 0,

Reg(𝑡) ≤ 𝒪(𝐷√𝑡) for all 𝑡 ∈ J𝑇K.

A bound for the coverage error has also been established (Bhatnagar et al. (2023); Theorem 4.2). For
any learning rate 𝛾 = Θ(𝐷) (where 𝛾 = 𝐷/√3 is optimal) and any starting value 𝜃1 ∈ [0, 𝐷], then it
holds that for any 𝑇 > 1,

|CovErr(𝑇 )| ≤ 𝒪 ((1 − 𝛼)−2𝑇−1/4 log 𝑇) .

3.4.2 Tuning parameters

Figure 4 compares results for several choices of 𝛾 to illustrate its effect. The optimal choice of learning
rate is 𝛾 = 𝐷/√3, where 𝐷 is the maximum possible radius. When 𝐷 is not known, it can be estimated
by using an initial subset of the time series as a calibration set and estimating 𝐷 as the maximum
of the absolute residuals of the observations and the predictions (Bhatnagar et al. 2023). Figure 4
illustrates SF-OGD for several values of 𝛾. In the example, the prediction intervals are not reactive
enough and do not achieve optimal coverage when 𝛾 is small. As 𝛾 increases, the coverage error is
near optimal, although the path length becomes larger.

3.5 Strongly Adaptive Online Conformal Prediction (SAOCP)

The Strongly Adaptive Online Conformal Prediction (SAOCP; Algorithm 5 ) algorithm was proposed
as an improvement over the extant ACI algorithms in that it features stronger theoretical guarantees.
SAOCP works similarly to AgACI and DtACI in that it maintains a library of candidate online learning
algorithms that generate prediction intervals which are then aggregated using a meta-algorithm
(Bhatnagar et al. 2023). The candidate algorithm was chosen to be SF-OGD, although any algorithm
that features anytime regret guarantees can be chosen. As opposed to AgACI and DtACI, in which
each candidate has a different learning rate but is always able to contribute to the final prediction
intervals, here each candidate has the same learning rate but only has positive weight over a specific
interval of time. New candidate algorithms are continually being spawned in order that, if the
distribution shifts rapidly, the newer candidates will be able to react quickly and receive positive
weight. Specifically, at each time point, a new expert is instantiated which is active over a finite
“lifetime”. Define the lifetime of an expert instantiated at time 𝑡 as

𝐿(𝑡) ∶= 𝑔 ⋅max
𝑛∈ℤ

{2𝑛𝑡 ≡ 0 mod 2𝑛},

where 𝑔 ∈ ℤ∗ is a lifetime multiplier parameter. The active experts are weighted according to
their empirical performance with respect to the pinball loss function. The authors show that this
construction results in intervals that have strong regret guarantees. The form of the lifetime interval
function 𝐿(𝑡) is due to the use of geometric covering intervals to partition the input time series, and
other choices may be possible (Jun et al. 2017).
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Figure 4: Example 80% prediction intervals generated by the SF-OGD algorithm with different values
of the maximum radius tuning parameter 𝐷. Blue and red points are observations that fell inside and
outside the prediction intervals, respectively.
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Algorithm 5 Strongly Adaptive Online Conformal Prediction

1: Input: initial value 𝜃0, learning rate 𝛾 > 0.
2: for 𝑡 = 1, 2, … , 𝑇 do
3: Initialize expert 𝒜𝑡 = SF-OGD(𝛼 ← 𝛼, 𝛾 ← 𝛾 , 𝜃1 ← 𝜃𝑡−1), set weight 𝑝𝑡𝑡 = 0.
4: Compute active set Active(𝑡) = {𝑖 ∈ J𝑇K ∶ 𝑡 − 𝐿(𝑖) < 𝑖 ≤ 𝑡} (see below for definition of 𝐿(𝑡)).
5: Compute prior probability 𝜋𝑖 ∝ 𝑖−2(1 + ⌊log2 𝑖⌋)

−1𝕀[𝑖 ∈ Active(𝑡)].
6: Compute un-normalized probability ̂𝑝𝑖 = 𝜋𝑖[𝑝𝑡 ,𝑖]+ for all 𝑖 ∈ J𝑡K.
7: Normalize 𝑝 = ̂𝑝/‖ ̂𝑝‖1 ∈ Δ𝑡 if ‖ ̂𝑝‖1 > 0, else 𝑝 = 𝜋.
8: Set 𝜃𝑡 = ∑𝑖∈Active(𝑡) 𝑝𝑖𝜃

𝑖
𝑡 (for 𝑡 ≥ 2), and 𝜃𝑡 = 0 for 𝑡 = 1.

9: Output: prediction set �̂�𝑡(𝜃𝑡).
10: Observe 𝑦𝑡 and compute 𝑟𝑡.
11: for 𝑖 ∈ Active(𝑡) do
12: Update expert 𝒜𝑡 with 𝑦𝑡 and obtain 𝜃 𝑖𝑡+1.

13: Compute 𝑔 𝑖𝑡 = {
1
𝐷 (𝐿𝛼(𝜃𝑡, 𝑟𝑡) − 𝐿𝛼(𝜃 𝑖𝑡 , 𝑟𝑡)) 𝑝𝑖𝑡 > 0
1
𝐷 [𝐿𝛼(𝜃𝑡, 𝑟𝑡) − 𝐿𝛼(𝜃 𝑖𝑡 , 𝑟𝑡))]+ 𝑝𝑖𝑡 ≤ 0

.

14: Update expert weight 𝑝𝑖𝑡+1 =
1

𝑡−𝑖+1 (∑
𝑡
𝑗=𝑖 𝑔

𝑖
𝑗) (1 + ∑𝑡

𝑗=𝑖 𝑝
𝑖
𝑗𝑔

𝑖
𝑗).

15: end for
16: end for

3.5.1 Theoretical Guarantees

The theoretical results were established for SAOCP using the linear interval constructor. The
following bound for the strongly adaptive regret holds for all subperiod lengths 𝑚 ∈ J𝑇K (Bhatnagar
et al. (2023); Proposition 4.1):

SAReg(𝑇 , 𝑚) ≤ 15𝐷√𝑚(log 𝑇 + 1) ≤ ̃𝒪(𝐷√𝑚).

It should be emphasized that this regret bounds holds simultaneously across all 𝑚, as opposed to
DtACI, where a similar bound holds only for a single 𝑚. A bound on the coverage error of SAOCP
has also been established as:

|CovErr(𝑇 )| ≤ 𝒪 (inf
𝛽
(𝑇 1/2−𝛽 + 𝑇 𝛽−1𝑆𝛽(𝑇 ))) .

where 𝑆𝛽(𝑇 ) is a technical measure of the smoothness of the cumulative gradients and expert weights
for each of the candidate experts (Bhatnagar et al. (2023); Theorem 4.3). For some intuition, 𝑆𝛽 can
be expected to be small when the weights placed on each algorithm do change quickly, as would be
the case under abrupt distributional shifts.

3.5.2 Tuning Parameters

The primary tuning parameter for SAOCP is the learning rate 𝛾 of the SF-OGD sub-algorithms, which
we saw in the previous section has for optimal choice 𝛾 = 𝐷/√3. Values for 𝐷 that are too low
lead to intervals that adapt slowly, and values that are too large lead to jagged intervals. In their
experiments, the authors select a value for 𝐷 by picking the maximum residual from a calibration set.
The second tuning parameter is the lifetime multiplier 𝑔 which controls the lifetime of each of the
experts. We follow the original paper in setting 𝑔 = 8. Figure 5 illustrates the SAOCP algorithm for
choices of 𝐷 ∈ {0.01, 0.1, 0.25, 0.5}. Similarly to SF-OGD, the prediction intervals tend to undercover
for small 𝐷, and achieve near-optimal coverage for larger 𝐷 at the expense of larger path lengths.
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Figure 5: Example 80% prediction intervals generated by the SAOCP algorithm with different values
of the maximum radius parameter 𝐷. Blue and red points are observations that fell inside and outside
the prediction intervals, respectively.
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4 AdaptiveConformal R package

The ACI algorithms described in the previous section have been implemented in the open-source
and publically available R package AdaptiveConformal, available at https://github.com/herbps10/
AdaptiveConformal. CIn this section, we briefly introduce the main functionality of the package.
Comprehensive documentation is, including several example vignettes, is included with the package.

The AdaptiveConformal package can be installed using the remotes package:

remotes::install_github("herbps10/AdaptiveConformal")

The ACI algorithms are accessed through the aci function, which takes as input a vector of obser-
vations (𝑦𝑡) and a vector or matrix of predictions ( ̂𝑦𝑡). Using the data generating process from the
running example to illustrate, we can fit the original ACI algorithm with learning rate 𝛾 = 0.1:

set.seed(532)
data <- running_example_data(N = 5e2)
fit <- aci(data$y, data$yhat, alpha = 0.8, method = "ACI", parameters = list(gamma = 0.1))

The available parameters for each method can be found in the documentation for the aci method,
accessible with the command ?aci. The resulting conformal prediction intervals can then be plotted
using the plot function:

plot(fit)
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The properties of the prediction intervals can also be examined using the summary function:

summary(fit)

Method: ACI
Empirical coverage: 80.6% (403/500)
Below interval: 10.2%
Above interval: 9.2%
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Mean interval width: 0.354
Mean interval loss: 0.498

5 Simulation Studies

We present two empirical studies in order to compare the performance of the AgACI, DtACI, SF-
OGD, and SAOCP algorithms applied to simple simulated datasets. The original ACI algorithm was
not included as it is not clear how to set the tuning rate 𝛾, which can have a large effect on the
resulting intervals. For both simulations we set the targeted empirical coverage to 𝛼 = 0.8, 𝛼 = 0.9,
and 𝛼 = 0.95. For each algorithm, we chose the interval constructor that was used in its original
presentation (see Table 1).

5.1 Time series with ARMA errors

In this simulation we reproduce the setup described in Zaffran et al. (2022) (itself based on that of
Friedman, Grosse, and Stuetzle (1983)). The time series values 𝑦𝑡 for 𝑡 ∈ J𝑇K (𝑇 = 600) are simulated
according to

𝑦𝑡 = 10 sin(𝜋𝑋𝑡 ,1𝑋𝑡 ,2) + 20(𝑋𝑡 ,3 − 0.5)2 + 10𝑋𝑡 ,4 + 5𝑋𝑡 ,5 + 0𝑋𝑡 ,6 + 𝜖𝑡,

where 𝑋𝑡 ,𝑖, 𝑖 = 1, … , 6, 𝑡 ∈ J𝑇K are independently uniformly distributed on [0, 1] and the noise terms 𝜖𝑡
are generated according to an ARMA(1, 1) process:

𝜖𝑡 = 𝜓𝜖𝑡−1 + 𝜉𝑡 + 𝜃𝜉𝑡−1,
𝜉𝑡 ∼ 𝑁(0, 𝜎2).

We set 𝜓 and 𝜃 jointly to each value in {0.1, 0.8, 0.9, 0.95, 0.99} to simulate time series with increasing
temporal dependence. The innovation variance was set to 𝜎2 = (1 − 𝜓 2)/(1 + 2𝜓𝜉 + 𝜉 2) (to ensure
that the process has constant variance). For each setting, 25 simulated datasets were generated.

To provide point predictions for the ACI algorithms, at each time 𝑡 ≥ 200 a random forest model
was fitted to the previously observed data using the ranger R package (Wright and Ziegler 2017).
The estimated model was then used to predict the subsequent time point. The maximum radius 𝐷
was estimated as the maximum residual observed between time points 𝑡 = 200 and 𝑡 = 249. The
ACI models were then executed starting at time point 𝑡 = 250. All metrics are based on time points
𝑡 ≥ 300 to allow time for the ACI methods to initialize.

simulate <- function(seed, psi, xi, N = 1e3) {
set.seed(seed)

s <- 10
innov_scale <- sqrt(s * (1 - psi^2) / (1 + 2 * psi * xi + xi^2))

X <- matrix(runif(6 * N), ncol = 6, nrow = N)
colnames(X) <- paste0("X", 1:6)

epsilon <- arima.sim(n = N, model = list(ar = psi, ma = xi), sd = innov_scale)

mu <- 10 * sin(pi * X[,1] * X[,2]) + 20 * (X[,3] - 0.5)^2 + 10 * X[,4] + 5 * X[,5]
y <- mu + epsilon
as_tibble(X) %>% mutate(y = y)
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}

estimate_model <- function(data, p = NULL) {
if(!is.null(p)) p()
preds <- numeric(nrow(data))
for(t in 200:nrow(data)) {

model <- ranger::ranger(y ~ X1 + X2 + X3 + X4 + X5 + X6, data = data[1:(t - 1),])
preds[t] <- predict(model, data = data[t, ])$predictions

}
preds

}

metrics <- function(fit) {
indices <- 300:length(fit$Y)
aci_metrics(fit, indices)

}

fit <- function(data, preds, method, alpha, p = NULL) {
if(!is.null(p)) p()

D <- max(abs(data$y - preds)[200:249])
gamma <- D / sqrt(3)

interval_constructor = case_when(
method == "AgACI" ~ "conformal",
method == "DtACI" ~ "conformal",
method == "SF-OGD" ~ "linear",
method == "SAOCP" ~ "linear"

)

if(interval_constructor == "linear") {
gamma_grid = seq(0.1, 1, 0.1)

}
else {

gamma_grid <- c(0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128)
}

parameters <- list(
interval_constructor = interval_constructor,
D = D,
gamma = gamma,
gamma_grid = gamma_grid

)

aci(
data$y[250:nrow(data)],
preds[250:nrow(data)],
method = method,
alpha = alpha,
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parameters = parameters
)

}

N_sims <- 100
simulation_data <- expand_grid(

index = 1:N_sims,
param = c(0.1, 0.8, 0.9, 0.95, 0.99),
N = 600

) %>%
mutate(psi = param, xi = param)

# For each simulated dataset, fit multiple ACI methods
simulation_study_setup <- expand_grid(

alpha = c(0.8, 0.9, 0.95),
method = c("AgACI", "SF-OGD", "SAOCP", "DtACI")

)

# run_simulation_study1 function is defined in helpers.R
simulation_study1 <- run_simulation_study1(

simulation_data,
simulation_study_setup,
estimate_model,
fit,
workers = 8

)

The coverage errors, mean interval widths, path lengths, and strongly adaptive regret (for 𝑚 = 20)
of each of the algorithms for 𝛼 = 0.9 are shown in Figure 6 (results for 𝛼 ∈ {0.8, 0.95} were similar
and are available in the appendix). All methods achieved near optimal empirical coverage, although
SAOCP tended to slightly undercover. The mean interval widths re similar across methods, although
again SAOCP had slightly shorter intervals (as could be expected given its tendency to undercover).
The strongly adaptive regret was similar for all methods. The path length of SAOCP was larger than
any of the other methods. To investigate why, Figure 7 plots 𝑤𝑡 − 𝑤𝑡−1, the difference in interval
width between times 𝑡 − 1 and 𝑡, for each method in one of the simulations. The interval widths for
AgACI and DtACI change slowly relative to those for SF-OGD and SAOCP. For SAOCP, we can see
the interval widths have larger fluctuations than for the other methods, explaining its higher path
width. The prediction intervals themselves for the same simulation are shown in Figure 8, which
shows that although the path lengths are quite different, the output prediction intervals are quite
similar.

simulation_one_plot(simulation_study1$results %>% filter(alpha == 0.9))
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Figure 6: Coverage errors, mean interval widths, path lengths, and strongly adaptive regret (for
𝑚 = 20) for the first simulation study with target coverage 𝛼 = 0.9.
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fits <- simulation_study1$example_fits

par(mfrow = c(2, 2), mar = c(3, 4, 2, 1))
for(i in 1:4) {

plot(
diff(fits$fit[[i]]$intervals[,2] - fits$fit[[i]]$intervals[,1]),
main = fits$method[[i]],
xlab = "T",
ylab = expression(w[t] - w[t - 1]))

}
par(mfrow = c(1, 1), mar = c(5.1, 4.1, 4.1, 2.1))
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Figure 7: Difference in successive interval widths (𝑤𝑡 − 𝑤𝑡−1) from an illustrative simulation from the
first simulation study.

fits <- simulation_study1$example_fits

coverage <- format_coverage(map_dbl(map(fits$fit, metrics), `[[`, "coverage"))
path_length <- format_path_length(map_dbl(map(fits$fit, metrics), `[[`, "path_length"))

par(mfrow = c(2, 2), mar = c(3, 3, 2, 1))
for(i in 1:4) {
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plot(fits$fit[[i]], legend = FALSE, main = fits$method[[i]], predictions = FALSE, ylim = c(-20, 35), index = 50:100)
text(x = -0, y = -7.5, labels = bquote(EmpCov == .(coverage[[i]]) ), pos = 4)
text(x = -0, y = -17.5, labels = bquote(PathLength == .(path_length[[i]]) ), pos = 4)

}
par(mfrow = c(1, 1), mar = c(5.1, 4.1, 4.1, 2.1))
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Figure 8: Example prediction intervals (target coverage 𝛼 = 0.9) from the first simulation study
for time points 300 to 350; metrics shown are for all time points 𝑡 ≥ 300. Blue and red points are
observations that fell inside and outside the prediction intervals, respectively.

5.2 Distribution shift

This simulation study features time series with distribution shifts. The setup is quite simple in order
to probe the basic performance of the methods in response to distribution shift. As a baseline, we
simulate time series of independent data with

𝑦𝑡 ∼ 𝑁(0, 𝜎2𝑡 ),
𝜎𝑡 = 0.2,
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for all 𝑡 ∈ J𝑇K (𝑇 = 500). In the second type of time series, the observations are still independent but
their variance increases halfway through the time series:

𝑦𝑡 ∼ 𝑁(0, 𝜎2𝑡 ),
𝜎𝑡 = 0.2 + 0.5𝕀[𝑡 > 250].

In each case, the ACI algorithms are provided with the unbiased predictions �̂�𝑡 = 0, 𝑡 ∈ J𝑇K. Fifty
simulated datasets were generated for each type of time series.

simulate <- function(seed, distribution_shift = 0, N = 1e3, sigma = 0.2) {
set.seed(seed)
mu <- rep(0, N)
shift <- 1:N > (N / 2)
yhat <- mu
y <- rnorm(n = length(mu), mean = mu, sd = sigma + ifelse(shift, distribution_shift, 0))

tibble(y = y, yhat = yhat)
}

metrics <- function(fit) {
N <- length(fit$Y)
indices <- which(1:N > 50)
aci_metrics(fit, indices)

}

fit <- function(data, method, alpha, p = NULL) {
if(!is.null(p)) p()

interval_constructor = case_when(
method == "AgACI" ~ "conformal",
method == "DtACI" ~ "conformal",
method == "SF-OGD" ~ "linear",
method == "SAOCP" ~ "linear"

)

if(interval_constructor == "linear") {
D <- max(abs(data$y - data$yhat)[1:50])

}
else {

D <- 1
}

gamma <- D / sqrt(3)

if(interval_constructor == "linear") {
gamma_grid <- seq(0.1, 2, 0.1)

}
else {

gamma_grid <- c(0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128)
}
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parameters <- list(
interval_constructor = interval_constructor,
D = D,
gamma = gamma,
gamma_grid = gamma_grid

)

aci(data$y, data$yhat, method = method, alpha = alpha, parameters = parameters)
}

N_sims <- 100
simulation_study_setup2 <- expand_grid(

index = 1:N_sims,
distribution_shift = c(0, 0.5),
alpha = c(0.8, 0.9, 0.95),
N = 500,
method = c("AgACI", "SF-OGD", "SAOCP", "DtACI"),

) %>%
mutate(data = pmap(list(index, distribution_shift, N), simulate))

# run_simulation_study2 function is defined in helpers.R
simulation_study2 <- run_simulation_study2(simulation_study_setup2, fit, workers = 8)

The coverage error, mean path length, mean interval widths, and strongly adaptive regret (for𝑚 = 20)
of the algorithms are summarized in Figure 9 (an alternative plot is included in the appendix as
Figure 15). The coverage error of all the algorithms is near the desired value in the absence of
distribution shift. On the contrary, all of the algorithms except AgACI and DtACI undercover when
there is distributional shift. SAOCP tends to have higher average path lengths than the other methods.
In the distribution shift setting, SF-OGD and SAOCP tended to have smaller strongly adaptive regret
than the other methods. An illustrative example of prediction intervals generated by each method for
one of the simulated time series with distribution shift is shown in Figure 10. The SAOCP prediction
intervals in the example before the distribution shift are more jagged than those produced by the
other methods, which illustrates why SAOCP may have longer path lengths.

simulation_two_plot(simulation_study2$results)
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Figure 9: Coverage error, mean interval width, path length, and strongly adaptive regret (𝑚 = 20) for
𝛼 = 0.8, 0.9, 0.95 and simulations with and without distributional shift.

fits <- simulation_study2$example_fits

coverage <- format_coverage(extract_metric(fits$fit, "coverage"))
path_length <- format_path_length(extract_metric(fits$fit, "path_length"))

par(mfrow = c(2, 2), mar = c(3, 3, 2, 1))
for(i in 1:4) {

plot(fits$fit[[i]], legend = FALSE, main = fits$method[[i]], index = 51:500)
text(x = -10, y = -1.5, labels = bquote(EmpCov == .(coverage[[i]]) ), pos = 4)
text(x = -10, y = -2, labels = bquote(PathLength == .(path_length[[i]]) ), pos = 4)

}
par(mfrow = c(1, 1), mar = c(5.1, 4.1, 4.1, 2.1))
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Figure 10: Example prediction intervals (target coverage 𝛼 = 0.9) from the second simulation study
of time series with distributional shift, in which the shift occurs at time 250. Blue and red points are
observations that fell inside and outside the prediction intervals, respectively.

6 Case Study: Influenza Forecasting

Influenza is a highly infectious disease that is estimated to infect approximately one billion individuals
each year around the world (Krammer et al. 2018). Influenza incidence in temperate climates tends to
follow a seasonal pattern, with the highest number of infections during what is commonly referred to
as the flu season (Lofgren et al. 2007). Accurate forecasting of influenza is of significant interest to aid
in public health planning and resource allocation. To investigate the accuracy of influenza forecasts,
the US Centers for Disease Control (CDC) initiated a challenge, referred to as FluSight, in which
teams from multiple institutions submitted weekly forecasts of influenza incidence (Biggerstaff et al.
2016). Reich et al. (2019) evaluated the accuracy of the forecasts over seven flu seasons from 2010 to
2017. As a case study, we investigate the use of ACI algorithms to augment the FluSight forecasts
with prediction intervals.

The FluSight challenge collected forecasts for multiple prediction targets. For this case study, we
focus on national (US) one-week ahead forecasts of weighted influenza-like illness (wILI), which
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is a population-weighted percentage of doctors visits where patients presented with influenza-like
symptoms (Biggerstaff et al. 2016). The FluSight dataset, which is publicly available, include forecasts
derived from 21 different forecasting models, from both mechanistic and statistical viewpoints
(Flusight Network 2020; Tushar et al. 2018, 2019). For our purposes, we treat the way the forecasts
were produced as a black box.

Formally, let 𝑦𝑡, 𝑡 ∈ J𝑇K be the observed national wILI at time 𝑡, and let �̂�𝑗,𝑡, 𝑗 ∈ J𝐽K, be the one-
week ahead forecast of the wILI from model 𝑗 at time 𝑡. Two of the original 21 forecasting meth-
ods were excluded from this case study due to poor predictive performance (Delphi_Uniform and
CUBMA). In addition, six methods had identical forecasts (CU_EAKFC_SIRS, CU_EKF_SEIRS, CU_EKF_SIRS,
CU_RHF_SEIRS, CU_RHF_SIRS), and therefore we only included one (CU_EAKFC_SEIRS) in the analysis.
The ACI methods were then applied to the log-observations and log-predictions, where the log-
transformation was used to constrain the final prediction intervals to be positive. The first flu season
(2010-2011) was used as a warm-up for each ACI method, and we report the empirical performance
of the prediction intervals for the subsequent seasons (six seasons from 2012-2013 to 2016-2017). The
ACI algorithms target prediction intervals with coverage of 𝛼 = 0.8, 𝛼 = 0.9, and 𝛼 = 0.95. As in the
simulation study, we used the interval constructor corresponding to the original presentation of each
algorithm (see Table 1).

# Paste together URL so it is not cut off in PDF
url <- paste0("https://raw.githubusercontent.com/FluSightNetwork/",
"cdc-flusight-ensemble/master/scores/point_ests.csv")
raw_data <- read_csv(url, show_col_types = FALSE)

fit <- function(data, method, alpha) {
first_season <- data$Season == "2010/2011"
D <- max(abs(data$obs_value - data$Value)[first_season])

interval_constructor = case_when(
method == "AgACI" ~ "conformal",
method == "DtACI" ~ "conformal",
method == "SF-OGD" ~ "linear",
method == "SAOCP" ~ "linear"

)

gamma <- D / sqrt(3)

if(interval_constructor == "linear") {
gamma_grid = seq(0.1, 1, 0.1)

}
else {

gamma_grid <- c(0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128)
}

parameters <- list(
interval_constructor = interval_constructor,
D = D,
gamma = gamma,
gamma_grid = gamma_grid

)
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aci(
Y = log(data$obs_value),
predictions = log(data$Value),
method = method,
parameters = parameters,
alpha = alpha

)
}

metrics <- function(data, fit) {
aci_metrics(fit, indices = which(data$Season != "2010/2011"))

}

analysis_data <- raw_data %>%
filter(

Target == "1 wk ahead",
Location == "US National",
!(model_name %in% c("Delphi_Uniform", "CUBMA", "CU_EAKFC_SIRS", "CU_EKF_SEIRS",

"CU_EKF_SIRS", "CU_RHF_SEIRS", "CU_RHF_SIRS"))
) %>%
arrange(Year, Model.Week) %>%
group_by(model_name) %>%
nest()

fits <- expand_grid(
analysis_data,
tibble(method = c("AgACI", "DtACI", "SF-OGD", "SAOCP")),
tibble(alpha = c(0.8, 0.9, 0.95))

) %>%
mutate(fit = pmap(list(data, method, alpha), fit),

metrics = map2(data, fit, metrics))

case_study_results <- fits %>%
select(-data, -fit) %>%
mutate(metrics = map(metrics, as_tibble)) %>%
unnest(c(metrics))

The coverage errors, mean interval widths, path lengths, and strongly adaptive regret (for 𝑚 = 20) of
the prediction intervals for each of the underlying forecast models is shown in Figure 11. In all cases
the absolute coverage error was less than 0.1. SF-OGD performed particularly well, with coverage
errors close to zero for all forecasting models. Interval widths were similar across methods, with
SAOCP slightly shorter. Path Lengths were shorter for AgACI and DtACI and longer for SAOCP.

case_study_plot(case_study_results)

31



α = 0.8 α = 0.9 α = 0.95

AgA
CI

DtA
CI

SAOCP

SF−O
GD

AgA
CI

DtA
CI

SAOCP

SF−O
GD

AgA
CI

DtA
CI

SAOCP

SF−O
GD

−0.02
0.00
0.02
0.04
0.06

C
ov

E
rr

(T
)

Coverage Error

Case Study Results

0.4
0.6
0.8
1.0
1.2

0.4

0.6

0.8

1.0
α = 0.8 α = 0.9 α = 0.95

AgA
CI

DtA
CI

SAOCP

SF−O
GD

AgA
CI

DtA
CI

SAOCP

SF−O
GD

AgA
CI

DtA
CI

SAOCP

SF−O
GD

0.3
0.4
0.5
0.6
0.7

M
ea

nW
id

th
(T

)

Interval Width

α = 0.8 α = 0.9 α = 0.95

AgA
CI

DtA
CI

SAOCP

SF−O
GD

AgA
CI

DtA
CI

SAOCP

SF−O
GD

AgA
CI

DtA
CI

SAOCP

SF−O
GD

1
3

10
30

ACI Method

P
at

hL
en

gt
h(

T
)

Path Length

α = 0.8 α = 0.9 α = 0.95

AgA
CI

DtA
CI

SAOCP

SF−O
GD

AgA
CI

DtA
CI

SAOCP

SF−O
GD

AgA
CI

DtA
CI

SAOCP

SF−O
GD

0.3
0.5

1.0

ACI Method

S
A

R
eg

(T
, m

)

Strongly Adaptive Regret

Figure 11: Coverage errors, mean interval widths, path lengths, and strongly adaptive regret (for
𝑚 = 20) of prediction intervals generated with each ACI method based on forecasts from each of the
19 underlying influenza forecasting models.

As an illustrative example, in Figure 12 we plot the point forecasts from one of the forecasting models
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(based on SARIMA with no seasonal differencing) and the associated ACI-generated 90% prediction
intervals for each season from 2011-2017. In general, in this practical setting all of the ACI algorithms
yield quite similar prediction intervals. Interestingly, the forecasts in 2011-2012 underpredicted the
observations for much of the season. The algorithm responds by making the intervals wider to
cover the observations, and because the intervals are symmetric the lower bound then becomes
unrealistically low. A similar phenomenon can be seen in the growth phase of the 2012/2013 season
as well.

sarima_fits <- fits %>% filter(
model_name == "ReichLab_sarima_seasonal_difference_FALSE",
alpha == 0.9

) %>%
mutate(output = map(fit, extract_intervals)) %>%
select(method, alpha, data, output) %>%
unnest(c(data, output)) %>%
filter(Season != "2010/2011")

sarima_fits %>%
ggplot(aes(x = Model.Week, y = log(obs_value))) +
geom_point(aes(shape = "Observed")) +
geom_line(aes(y = pred, lty = "Forecast"), color = "black") +
geom_line(aes(y = lower, color = method)) +
geom_line(aes(y = upper, color = method)) +
facet_wrap(~Season) +
labs(

x = "Flu Season Week",
y = "log(wILI)",
title = "SARIMA forecasts with ACI 90% prediction intervals"

)
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Figure 12: Example conformal prediction intervals for six flu seasons based on forecasts from a
SARIMA type model.

7 Discussion

The results of our simulations and case study show that, when tuning parameters are chosen
well, Adaptive Conformal Inference algorithms yield well-performing prediction intervals. On the
contrary, poor choice of tuning parameters can lead to intervals of low utility: for one example,
Figure Figure 4 shows how choosing the tuning parameter for SF-OGD to be too small can lead
to intervals that update too slowly and significantly undercover. Furthermore, in some cases the
prediction intervals may appear to perform well with respect to metrics like the empirical coverage
error, while simultaneously being useless in practice. The original ACI algorithm illustrates this
phenomenon: too small a value of its learning rate 𝛾 yields prediction intervals that are not reactive
enough, while too large a value yields intervals that change too fast. In both cases, the empirical
coverage may appear well-calibrated, while the prediction intervals will not be useful. Thus, the core
challenge in designing an ACI algorithm is in finding an optimal level of reactivity for the prediction
intervals. As users of these algorithms, the challenge is in finding values for the tuning parameters
that avoid pathological behaviors.

Several of the algorithms investigated in this paper handle the problem of finding an optimal level of
reactivity by aggregating prediction intervals generated by a set of underlying ACI algorithms. Our
results show the algorithms can perform well in multiple difficult scenarios. However, the overall
effect of these approaches is to shift the problem to a higher level of abstraction: we still need to
set tuning parameters that control the amount of reactivity, but do so at a higher level than the
original ACI algorithm. It is desirable that these tuning parameters be easily interpretable, with
simple strategies available for setting them. An advantage of the SF-OGD and SAOCP algorithms in
this respect are that their main tuning parameter, the maximum radius 𝐷, is easily interpretable as the
maximum possible difference between the input predictions and the truth. It is also straightforward
to choose this parameter based on a calibration set, although this strategy does not necessarily work
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well in cases of distribution shift. We also found that an advantage of the AgACI method is its
robustness to the choice of its main tuning parameter, the set of candidate learning rates, in the sense
that the grid of candidate learning rates can always be expanded as illustrated in Section 3.2.2.

A key challenge in tuning the algorithms arises in settings of distribution shift, where methods for
choosing hyperparameters based on a calibration set from before the distribution shift will likely not
perform well. The second simulation study we conducted probed this setting in a simple scenario.
We found that several of the methods yielded prediction intervals that had non-optimal empirical
coverage. As we picked hyperparameters based on a calibration set formed before the distribution
shift, it is not surprising that the resulting tuning parameters are not optimal. This underscores the
difficulty in designing ACI algorithms that can adapt to distribution shifts, and in finding robust
methods for choosing hyperparameters. In practice, it is possible the second simulation study does
not accurately reflect real-world scenarios. Indeed, the benchmarks presented in Bhatnagar et al.
(2023) using the datasets from the M4 competition (Makridakis, Spiliotis, and Assimakopoulos 2020),
and using point predictions generated by diverse prediction algorithms, found that ACI algorithms
exhibited good performance in terms of empirical coverage. Nevertheless, our recommendation for
future papers in this line of research is to include simulation studies for simple distributional shift
scenarios as a benchmark.

Our case study results illustrate the dependence of the ACI algorithms on having access to high-
quality point predictions. If the predictions are biased, for example, then the prediction intervals
may be able to achieve optimal coverage at the expense of larger interval widths. This type of
underperformance due to biased input predictions can be seen in the 2011-2012 flu season in the case
study Figure 12. One way bias can arise in the underlying predictions is due to model misspecification:
for example, if a forecast method assumes a time series will evolve according to a particular parametric
model that does not accurately capture the true data generating process, then the forecasts may be
systematically biased. Using ensemble methods to combine forecasts from several flexible machine
learning algorithms is one strategy that can be used to hedge against such model misspecification
and improve the quality of forecasts (Makridakis, Spiliotis, and Assimakopoulos 2020).

Overall, our findings illustrate strengths and weaknesses of all the considered algorithms. The
original ACI algorithm is appealing in its simplicity, although its performance depends entirely on a
good choice of its tuning parameter. AgACI tended to perform well in the simulation studies in terms
of coverage error, although it had slightly higher strongly adaptive regret than other algorithms in
some settings. However, there are relatively fewer theoretical guarantees available for AgACI than
the other methods. DtACI, SF-OGD, and SAOCP all feature strong theoretical results, although they
exhibited some differences in the simulation studies, with SF-OGD and SAOCP slightly undercovering
in some scenarios. SAOCP also had longer path lengths than other methods in simulations, although
in practice in the influenza forecasting task longer path lengths does not seem to effect the plausibility
of the prediction intervals the algorithm produces.

There remain many possible extensions of ACI algorithms. The algorithms presented in this work
primarily consider symmetric intervals evaluated using the pinball loss function (AgACI can yield
asymmetric intervals because the aggregation rule is applied separately to the lower and upper
bounds from the underlying experts, but those underlying experts only produce symmetric intervals).
A simple extension would switch to using the interval loss function (Gneiting and Raftery 2007),
which would allow for asymmetric intervals where two parameters are learned for the upper and
lower bounds, respectively. It may also be of interest to generate prediction intervals that have
coverage guarantees for arbitrary subsets of observations (for example, we may seek prediction
intervals for daily observations that have near optimal coverage for every day of the week, or month
of the year), similar to guarantees provided by the MultiValid Prediction method described in (Bastani
et al. 2022). Another avenue for theoretical research is to relax the assumption of bounded radii
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necessary for the theoretical results of algorithms such as SAOCP.
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8 Appendix

8.1 Additional simulation study results

simulation_one_plot(simulation_study1$results)
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Figure 13: Coverage errors, mean interval widths, and path lengths for the first simulation study
with target coverage 𝛼 ∈ {0.8, 0.9, 0.95}.
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Figure 14: Mean Interval Width vs Coverage Error for the first simulation study. The error bars
represent the 10% to 90% quantiles of the metrics over the simulation datasets.
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Figure 15: Mean interval width vs coverage error (top) and Mean Path Length vs. coverage error
(bottom) for the second simulation study. The error bars represent the 10% to 90% quantiles of the
metrics over the simulation datasets.
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