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Abstract

High-resolution simulations, such as the ICOsahedral Non-hydrostatic Large-Eddy
Model (ICON-LEM), provide valuable insights into the complex interactions
among aerosols, clouds, and precipitation, which are the major contributors to
climate change uncertainty. However, due to their exorbitant computational costs,
they can only be employed for a limited period and geographical area. To address
this, we propose a more cost-effective method powered by an emerging machine
learning approach to better understand the intricate dynamics of the climate system.
Our approach involves active learning techniques by leveraging high-resolution
climate simulation as an oracle that is queried based on an abundant amount of
unlabeled data drawn from satellite observations. In particular, we aim to predict
autoconversion rates, a crucial step in precipitation formation, while significantly
reducing the need for a large number of labeled instances. In this study, we present
novel methods: custom query strategy fusion for labeling instances – weight fusion
(WiFi) and merge fusion (MeFi) – along with active feature selection based on
SHAP. These methods are designed to tackle real-world challenges – in this case,
climate change, with a specific focus on the prediction of autoconversion rates –
due to their simplicity and practicality in application.

1 Introduction

Precipitation is a crucial weather and climate phenomenon, with its formation rate being influenced
by various factors, including interactions among aerosols, clouds, and precipitation. Understanding
these interactions is vital for improving future climate projections, as they represent a major source
of uncertainty in estimating climate change’s radiative forcing [9].

High-resolution simulations, such as the ICON-LEM [19, 3, 7], offer valuable insights into these
interactions. However, it is computationally very expensive. For instance, running ICON-LEM to
simulate a single hour of climate data over Germany requires around 13 hours on 300 computer nodes
and incurs a cost of approximately EUR 100,000 per day [2]. Given these high costs, it is imperative
to seek alternative approaches for understanding complex climate system.

Thus, we propose developing a machine learning (ML) model with active learning (AL) techniques
to predict autoconversion rates, a key process in precipitation (rain) formation, which in turn is key to
better understanding cloud responses to anthropogenic aerosols [1]. In particular, we propose to use a
high-resolution ICON-LEM as an oracle that is queried based on an abundant amount of unlabeled
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Algorithm 1 Active Learning with SHAP-Based Feature Selection

1: Input:Dinit, D, Xus, P ,M, Bmax, z ∈ Rp, t Output:M̂, ẑ: Final model and features
2: D ← Dinit, ẑ← z,M̂ ← ∅
3: while |D|≤ Bmax do
4: if |D|= |Dinit| or |D|= Bmax

2 or |D|= Bmax then
5: M̂ ← train(M, Dz); ϕj = SHAP(M̂, zj),∀j; ẑ← z \ {j : |ϕj |< t}
6: end if
7: M̂ ← train(M, Dẑ)

8: P ← Active Learning Step(M̂, Xus)
9: Ask oracle to label points in P ; D ← D ∪ P ; Xus ← Xus \ xi : xi ∈ P

10: end while
11: return M̂, ẑ

data drawn from satellite data. Our aim with active learning is to minimize the number of labeled
instances required to train the machine learning model. We will demonstrate that active learning
allows us to achieve greater accuracy with fewer labeled data points by selecting the most valuable
instances from a pool of unlabeled data, thus reducing overall costs.

Several AL algorithms have attempted to combine both informativeness and representativeness
measures when selecting optimal query instances, primarily in the context of classification problems
[4, 8]. [18] introduced an approach that strives to maximize diversity. Our method draws inspiration
from the principles of combining informativeness, representativeness, and diversity, akin to the
approach undertaken by [6] and [12]. However, our method is specifically tailored for regression
problems, setting it apart from the aforementioned classification-focused.

Our research contributes to the field in several significant ways. First, to the best of our knowledge,
we are the first to apply AL in the field of high-resolution climate modeling, specifically within the
context of the very expensive ICON-LEM simulation, with a specific focus on the autoconversion
process – a process by which cloud droplets grow larger and transform into raindrops. Secondly
and thirdly, we introduce active feature selection using SHAP (SHapley Additive exPlanations),
and innovative query strategy fusion techniques: query strategy fusion by weight (WiFi) and query
strategy fusion by merging (MeFi) which are straightforward and convenient in practice.

2 Proposed Methods

We introduce active feature selection using SHAP and novel query strategies that consider three
crucial factors when choosing unlabeled instances in AL: informativeness, representativeness, and
diversity, explained in the following subsections. For our discussion, let the following notations be
defined: Dinit as the initial labeled data, D as the current labeled data, Xus as the small unlabeled
pool, P as the set of points to be labeled,M as the ML model, Bmax as the maximum budget (number
of labeled), z ∈ Rp as the full feature vector, and t as the SHAP threshold.

Active Feature Selection Our approach employs SHAP to assess feature contributions, eliminating
insignificant features throughout certain AL stages (see Alg. 1).

Informativeness Given a Gaussian process regression model f ∼ GP(m, k) where m is the prior
mean function and k is the prior covariance kernel, the predictive distribution at a new input x∗ is
Normal with mean µ(x∗) and variance σ2(x∗). In informativeness-based sampling with Gaussian
Process Regression (GPR) [17], we leverage the model’s predictive standard deviation, denoted as
linf, to quantify prediction uncertainty. Our goal is to choose P data points for labeling that have the
highest linf values, as these points correspond to regions where the model is least certain. The details
of our informativeness-based sampling algorithm are outlined in Appendix B1.

Representativeness In this section, we introduce a straightforward approach that involves select-
ing a number of |P | data points to label based on the most representative values they hold (i.e.,
those closest to their centroid cluster), denoted as lrep, as a query strategy in AL regression. The
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optimal number of clusters is determined using the Silhouette method on Xus. The details of our
representativeness-based sampling algorithm are outlined in Appendix B2.

Diversity In diversity-based sampling, we select P data points that maximize dissimilarity within
their clusters, denoted as ldiv. By calculating the average dissimilarity for each data point within its
cluster, we identify those that contribute the most to dataset diversification. The optimal number
of clusters is determined using the Silhouette method on Xus. The details of our diversity-based
sampling algorithm are outlined in Appendix B3.

Weight Fusion (WiFi) We propose the Weight Fusion (WiFi) query strategy, with α and β as weight
trade-offs. α governs informativeness vs. representativeness, while β manages the trade-off between
informativeness-representativeness and diversity. Higher α values emphasize representativeness, and
higher β values prioritize diversity. WiFi is defined as:

WiFi(x∗) = (1− β) ((1− α) · linf(x∗) + α · lrep(x∗)) + β · ldiv(x∗)

where x∗ ∈ Xus. Details of linf, lrep, ldiv are explained in the previous subsections, where they denote
informativeness, representativeness, and diversity scores. We select the top P points in Xus based on
their descending WiFi rank and optimize α and β using initial labeled data.

Merge Fusion (MeFi) MeFi is a novel query strategy that optimally balances informativeness, rep-
resentativeness, and diversity by merging the top |P |

3 data points from each category (Linf, Lrep, Ldiv),
defined as follows:

MeFi =
|P |
3

Linf ∪
|P |
3

Lrep ∪
|P |
3

Ldiv

3 Experimental Results

3.1 Datasets

We trained and validated our models using ICON-LEM output over Germany on May 2, 2013, from
09:55 am to 1 pm local time. The test dataset consists of two subsets: one covering the entire
Germany region on May 2, 2013, at 13:20 local time, and another encompassing the North Atlantic
region on September 1, 2014, at 13:00 local time. As for the satellite observation data, we use cloud
product level-2 of Terra and Aqua MODIS [14, 15]. Details of our datasets, including various testing
scenarios, are provided in Appendix A and C.2.1.

3.2 Active Learning (AL)

Initial Active Learning Settings We utilized a pool-based AL regression approach with a large
training pool of about 4 million unlabeled data points and a large validation pool of approximately
900,000 data points. We conducted 100 experiments – including active feature selection, cluster
number selection, AL, and α and β hyperparameter tuning – and averaged the results. In each
experiment, we sampled small training (Xus) and validation pools of 1,000 and 250 data points,
respectively, with |Dinit| = 10 and |P | = 3. We employed GPR to train our ML models. Our initial
model takes the cloud effective radius (CER) and pressure (P), parameters of the cloud microphysical
state typically obtained from satellite retrievals, as input. The model output is the autoconversion
rates derived from ICON-LEM.

Active Feature Selection In this step, we selected our features using the active feature selection
algorithm explained in Section 2. Our results highlight CER as the most influential feature in
predicting autoconversion rates, while the contribution of P is relatively small, as shown in Fig. 1. We
validated our results by performing Gaussian process regression across different sample sizes (10, 50,
and 100) and evaluating the outcomes. Consistently, the results show that using P alone outperforms
using both P and CER as input features (see details in Appendix C.1.1).

Selection of the Number of Clusters, Alpha, and Beta We determined the optimal number
of clusters using the Silhouette method on Xus. The best number of clusters was found to be
2. The results for α selection using initial data points are illustrated in Fig. 2. The optimal α
value is determined to be 0.5, signifying an equilibrium between 50% informativeness and 50%
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(a) |D|=10 (b) |D|=50 (c) |D|=100

Figure 1: The results of active feature selection with SHAP.

(a) R2 (b) SSIM (c) MAPE (d) RMSPE

Figure 2: Exploring the alpha trade-off: balancing informativeness and representativeness.

(a) R2 (b) Zoomed R2 (c) SSIM (d) Zoomed SSIM

Figure 3: Evaluation of different query strategies in active learning with R2 and SSIM.

representativeness. The optimal β value for diversity based on Euclidean distance is 0.4, resulting
in a balanced combination of 40% informativeness-representativeness and 60% diversity, while for
inverse cosine-based diversity, it is identified as 0.5 (see Appendix C.1.2 for details on the selection
of β).

Active Learning Results We assess the AL query strategy performance using R2 and SSIM metrics,
shown in Fig. 3. R2 indicates that linf, WiFi, and MeFi (Euclidean (euc); inverse cosine (cos)) achieve
faster convergence than random (baseline), lrep, and ldiv. However, linf eventually lags behind others.
WiFi and MeFi consistently outperform baseline and individual aspects (linf, lrep, ldiv) across all
query iterations. SSIM results closely align with the R2 findings, showing that linf, WiFi, and MeFi,
consistently outperform others, with WiFi and MeFi still maintaining their lead. WiFi, in particular,
excels when using the Euclidean metric for both R2 and SSIM.

3.3 Autoconversion Rates Prediction

We employ GPR with an RBF and white noise kernel to train our model. To determine the optimal
hyperparameters for the kernel, we employ random search cross-validation. Our training dataset
consists of only 100 labeled data points selected using the best AL query strategy explained in
the previous subsection (WiFi Euclidean), while we reserve 250 data points for validation. This
represents <0.01% of the total actual labeled data available and only 47% of the labeled data needed
by the baseline (Appendix C.1.3). We utilize a significantly smaller amount of data in comparison to
the work by [13], who utilized the entire cloud-top dataset. For the input, we use CER as determined
by our previous experiment using SHAP.

Simulation Model (ICON) We test our model on simulation data in 3 different scenarios: (1)
ICON-LEM Germany (different times), (2) Cloud-top ICON-LEM Germany (satellite-like data),
and (3) Cloud-top ICON-NWP Holuhraun (different data, time, location, and resolution), details in
Appendix C.2.1. The results in Table 1 demonstrate that SSIM values exceed 90% for all scenarios,
with scenarios 1 and 2 also achieving over 90% for R2. Scenario 3, despite using different data
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Table 1: Evaluation of autoconversion prediction results on three different testing scenarios.

Testing Set R2 MAPE RMSPE SSIM PSNR (dB)

1 90.18% 9.31% 12.19% 90.52% 26.14
2 90.32% 10.35% 13.20% 90.29% 26.09
3 85.09% 8.33% 22.47% 91.66% 26.01

(a) CER (b) Aut

Figure 4: Mean, standard deviation (Std), median, and percentiles (p25, p75) of cloud-top ICON-LEM
and MODIS variables over Germany: cloud effective radius (CER) and autoconversion rates (Aut).

in terms of time, location, and resolution, still achieves an R2 slightly above 85%. These findings
highlight the model’s capability to accurately estimate autoconversion rates when utilizing model-
simulated satellite data, without the need for further adjustments like fine-tuning. This minimizes
the need for additional data collection and time-consuming training processes. Visual representation
included in Appendix C.2.2.

Satellite Observation (MODIS) This experiment aims to assess our model’s ability to predict
autoconversion rates using real satellite data, specifically by testing the model on such data. We
focused on comparing the autoconversion rate predictions from the MODIS satellite with cloud-top
ICON simulation output over Germany (latitude: 47.50° to 54.50° N, longitude: 5.87° to 10.00° E).
While it is worth noting that direct comparisons between satellite predictions and simulation models
cannot be made directly due to differences in cloud placement, Fig. 4 demonstrates that the MODIS
autoconversion rate predictions statistically align with those from cloud-top ICON-LEM Germany.
The mean, standard deviation, median, and percentiles of autoconversion rates demonstrate a close
agreement. It shows that autoconversion rates can be well estimated from satellite-derived CER data
using our method.

4 Conclusions

In this study, we have provided a computationally efficient solution for understanding the key process
of precipitation formation, specifically the autoconversion process. This process plays a crucial role
in advancing our understanding of how clouds respond to anthropogenic aerosols [11], and ultimately,
climate change. Importantly, we have shown it is possible to predict autoconversion rates accurately
using less than 0.01% of the expensive labeled data from high-resolution ICON-LEM simulation.
Our machine learning model achieves good performance on both atmospheric simulation and satellite
data, while requiring only 47% of the data needed by the baseline strategy. This demonstrates a
cost-effective approach to train an accurate model with minimal labeled data. Additionally, we
introduced innovative techniques: custom query strategies for active learning, WiFi and MeFi, along
with active feature selection using SHAP. These methods were specifically designed to address
real-world problems due to their practical simplicity. Our custom query strategy fusion, WiFi and
MeFi, consistently outperformed the baseline query strategy, as well as the individual aspects of
informativeness, representativeness, and diversity. For simplicity, we used only the initially selected
data points for hyperparameter selection in this work, but exploring an adaptive method for selecting
hyperparameters in the WiFi query strategy could be a potential direction for future research.
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A Dataset

We use datasets from ICON-LEM output from a simulation of the conditions over Germany on 2 May 2013,
where distinct cloud regimes occurred, allowing for the investigation of quite different elements of cloud
formation and evolution [7]. We study a time period of 09:55 UTC to 13:20 UTC, corresponding to the polar-
orbiting satellite overpass times. Our focus is on ICON-LEM with a 156 m resolution on the native ICON grid,
then regridded to a regular 1 km resolution to match the resolution of MODIS.

The autoconversion rates in our training and testing data were derived using the two-moment microphysical
parameterization of Seifert and Beheng (2006). The autoconversion rates for cloud tops that simulate satellite
data were determined by selecting rates where the cloud optical thickness, calculated from top to bottom, exceeds
1. The optical thickness represents the extent to which optical satellite sensors can retrieve cloud microphysical
information.

We use dataset of ICON numerical weather prediction (ICON-NWP) Holuhraun which were performed over
Holuhraun volcano for a week from 1 September to 7 September 2014 to further test the performance of our
machine learning models [10, 5]. The dataset has a horizontal resolution of approximately 2.5 km. As for the
satellite observation data, we use cloud product level-2 of Terra and Aqua MODIS [14, 15].

B Proposed Methods

We introduce novel query strategies that take into consideration three crucial factors when selecting unlabeled
instances in active learning: informativeness (linf), representativeness (lrep), and diversity (ldiv). Due to page
limitations, we include the details of each category (linf, lrep, and ldiv) of the query strategy in this appendix
section.

B.1 Informativeness

Our informativeness-based (uncertainty) sampling active learning query strategy is shown in Algorithm B1.

Algorithm B1 Informativeness-based Sampling
1: Input: Small unlabeled pool Xus, GP model f ∼ GP(m, k) Output: P points to label
2: linf ← ∅
3: Use GP to compute µ(x∗), σ

2(x∗) for all x∗ ∈ Xus
4: for each x∗ ∈ Xus do
5: Compute predictive std σ(x∗).
6: Set Informativeness score linf(x∗) = σ(x∗)
7: end for
8: Normalize linf to [0, 1]

9: X̂ ← indices of top P points in Xus ranked in descending order by linf

10: return X̂ (Indices of P points to query)

B.2 Representativeness

The algorithm for our representativeness-based sampling is outlined in Algorithm B2.

B.3 Diversity

Our diversity-based sampling is shown in Algorithm B3.

C Experimental Results

C.1 Active Learning

C.1.1 Active Feature Selection

Initially, we started with two candidate features because not all variables in the ICON-LEM output align with
satellite data. Consequently, we narrowed our selection to inputs typically derived from satellite retrievals, which
limited us to two variables: cloud effective radius (CER) and pressure (P). While we acknowledge the existence
of other potential features, such as liquid water path (LWP) and cloud optical thickness (COT), these variables
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Algorithm B2 Representativeness-based Sampling
1: Input: Small unlabeled pool Xus Output: P points to label
2: lrep ← ∅
3: Perform k-means clustering on Xus, where k is determined using the Silhouette method.
4: for each x∗ ∈ Xus do
5: Compute d(x∗, ci) where ci is the centroid of the cluster containing x∗.
6: Set Representativeness score lrep(x∗) =

1
d(x∗,ci)

7: end for
8: Normalize lrep to [0, 1]

9: X̂ ← indices of top P points in Xus ranked in descending order by lrep

10: return X̂ (Indices of P points to query)

Algorithm B3 Diversity-based Sampling
1: Input: Small unlabeled pool Xus Output: P points to label
2: ldiv ← ∅
3: Perform k-means clustering on Xus, where k is determined using the Silhouette method.
4: for each x∗ ∈ Xus do
5: Let Ci be the cluster containing x∗
6: Compute d̄(x∗) =

1
|Ci|

∑
xj∈Ci

d(x∗, xj) where d(·, ·) is a dissimilarity measure (e.g., Eu-
clidean distance, reverse cosine similarity).

7: Set Diversity score ldiv(x∗) = d̄(x∗)
8: end for
9: Normalize ldiv to [0, 1]

10: X̂ ← indices of top P points in Xus ranked in descending order by ldiv

11: return X̂ (Indices of P points to query)

Figure C1: Active Feature Selection. Pressure (P), Cloud Effective Radius (CER).

are vertically integrated and do not provide information per layer. Therefore, we did not include them in our
current analysis. However, future research directions may involve, for example, predicting COT per layer as part
of our ongoing research.

We validated our results by performing Gaussian process regression across different sample sizes (10, 50, and
100) and evaluating the outcomes. Consistently, the results show that using P alone as input features is better
than using both P and CER, as illustrated in Figure C1.

C.1.2 Selection of Beta

Figure C2 illustrates the selection of β using Euclidean distance metrics, while Figure C3 showcases the results
of β selection with inverse cosine similarity applied to the initial data points Dinit.

C.1.3 Active Learning Results

Figure C4 illustrates the label efficiency of our approach compared to the baseline, quantifying how much less
labeled data is needed to achieve similar results based on the best achievable results using the random query
strategy. It demonstrates that, on average, our best query strategy (WiFi Euclidean) requires only 47% of the
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(a) R2 (b) SSIM

(c) MAPE (d) RMSPE

Figure C2: Exploring the beta trade-off: balancing informativeness-representativeness and diversity (Euclidean
distance).

labeled data to reach comparable results. Specifically, we need 64% (R2), 53% (SSIM), 40% (RMSE), and 32%
(RMSPE) of the labeled data, relative to the baseline (100%), to obtain similar outcomes for different metrics.

C.2 Autoconversion Rates Prediction

C.2.1 Testing Datasets/Scenarios on Simulation Model

We evaluate our final machine learning model using different testing datasets and scenarios associated with the
ICON-LEM simulations over Germany and the ICON-NWP simulations over Holuhraun, as follows:

1. ICON-LEM Germany: In this testing scenario, we evaluate the performance of our machine learning
models using the same data that was utilised during its training process. This data, which consists of a
set of cloud effective radius and autoconversion rates, was collected through the use of ICON-LEM
simulations specifically over Germany. The testing data, however, differs from the training data as
we focus on a different time period, specifically 2 May 2013 at 1:20 pm. This approach enables us
to assess the model’s generalisation capability to new data within the same region and day, while
considering significant weather variations that evolved considerably [7]. Number of data points:
approximately 950,000.

2. Cloud-top ICON-LEM Germany: In this testing scenario, we evaluate the performance of our machine
learning model by utilising the same data as in the previous scenario, with the exception that we are
only considering the cloud-top information of the data. We extract this cloud-top 2D data from the
3D atmospheric simulation model by selecting the variable value at any given latitude and longitude
where the cloud optical thickness exceeds 1, integrating vertically from cloud-top. Number of data
points: approximately 144,000.
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(a) R2 (b) SSIM

(c) MAPE (d) RMSPE

Figure C3: Exploring the beta trade-off: balancing informativeness-representativeness and diversity (inverse
cosine similarity).

3. Cloud-top ICON-NWP Holuhraun: This final testing scenario uses distinct data from that of previous
scenarios. In particular, we use cloud-top of ICON-NWP Holuhraun data that was acquired at a
different location, time, and resolution compared with the data used in the previous scenarios. The
ability of the model to perform well in the presence of new data is important in many practical
applications, allowing the model to make accurate predictions on unseen data, adapting to varying
geographical locations, and adapting to different metereological conditions. Number of data points:
approximately 1.7 million.

The performance of each model is evaluated by calculating a range of metrics, including R2, MAPE (Mean
Absolute Percentage Error), RMSPE (Root Mean Squared Percentage Error), Peak Signal-to-Noise Ratio
(PSNR), and Structural Similarity Index (SSIM), on the testing data. Prior to calculating each metric, the data is
normalised by transforming it using base 10 logarithms and then scaling it to a range between 0 and 1.

C.2.2 Simulation Model (ICON)

The visual representation of autoconversion rate predictions for ICON-LEM Germany and ICON-NWP
Holuhraun under various testing scenarios can be seen in Figure C5. These figures demonstrate our model’s
ability to accurately capture and reproduce key groundtruth features. This is evident in the strong resemblance
between the groundtruth and our model’s predictions, which show minimal deviations, generally below 20% and
predominantly around less than 10%. In summary, these results confirm our model’s effectiveness in diverse
scenarios, including atmospheric simulations and satellite-like data, with a high degree of accuracy.
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(a) R2 (b) SSIM

(c) MAPE (d) RMSPE

Figure C4: Label efficiency comparison: The figure demonstrates how many labeled data points are needed
to achieve comparable results across multiple metrics when using the best query strategy (WiFi Euclidean)
compared to the random (baseline) query strategy.
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(a) ICON-LEM Germany (1 km)

(b) Cloud-top ICON-LEM Germany (1 km)

(c) Cloud-top ICON-NWP Holuhraun (2.5 km)

Figure C5: Visualization of the autoconversion prediction results of ICON-LEM Germany and ICON-NWP
Holuhraun. The left side of the image depicts the groundtruth, while the middle side shows the prediction results
obtained from the GP model. The right side displays the difference between the groundtruth and the prediction
results. The top image (a) compares the groundtruth and predictions from ICON-LEM Germany at a resolution
of 1 km, while the second image (b) focuses on cloud-top information only at a resolution of 1 km. The third
figure (c) illustrates the comparison between groundtruth and predictions of the ICON-NWP Holuhraun data
with a horizontal resolution of 2.5 km, focusing on cloud-top information only.
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