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ABSTRACT

Time series forecasting leverages historical patterns to predict future values, but
traditional methods face challenges when dealing with complex, non-stationary
patterns that are difficult to memorize during training. Retrieval-augmented ap-
proaches have emerged as promising solutions by retrieving similar historical pat-
terns to enhance predictions. However, existing retrieval methods suffer from two
fundamental limitations: spectral blindness, which overlooks critical frequency-
domain characteristics that capture underlying periodic structures, and temporal
recency, which treats all historical data equally without emphasizing recent, more
relevant patterns. In this paper, we propose SpecReTF, a novel retrieval method
that addresses these issues by converting time series into windowed frequency rep-
resentations, measuring similarity with a combined metric that captures both am-
plitude and phase information. To balance recency and historical context, we ap-
ply an exponential moving average weighting scheme that emphasizes recent win-
dows. Extensive experiments on benchmark datasets demonstrate that SpecReTF
outperforms time-domain retrieval methods, achieving superior forecasting accu-
racy across diverse, non-stationary time series.

1 INTRODUCTION

Time series forecasting is a fundamental task across numerous domains, from financial markets
(Sezer et al., 2019; Mondal et al., 2014) and energy consumption (Deb et al., 2017; Koprinska et al.,
2018) to economics (King, 1965; Franses, 1998) and healthcare monitoring (Zhang et al., 2024;
Kaushik et al., 2020). The core challenge lies in identifying and leveraging historical patterns to
predict future values, particularly when dealing with complex, non-stationary time series that ex-
hibit irregular patterns and varying statistical properties over time. Traditional forecasting methods,
including deep learning approaches, rely solely on learned representations encoded in model param-
eters, struggling to capture rare or complex patterns that appear infrequently in training data.

Retrieval-augmented approaches have gained prominence across machine learning, from large lan-
guage models using retrieval-augmented generation (Lewis et al., 2020) to enhance factual accuracy
and context understanding, to in-context reinforcement learning (Goyal et al., 2022) where retrieved
demonstrations guide policy optimization. Within time series analysis, retrieval of similar historical
patterns has long been a fundamental approach spanning decades of research in nearest neighbor
methods, pattern matching techniques, and template-based prediction systems. Modern retrieval-
augmented time series forecasting frameworks (Liu et al., 2024a; Han et al., 2025) build upon this
rich foundation, incorporating recent advances in representation learning and similarity measures
to enhance pattern retrieval and aggregation. These methods demonstrate significant improvements
by retrieving historically relevant patterns from training data and incorporating them directly into
the forecasting process. This approach reduces the learning burden on models by providing explicit
access to relevant historical patterns during inference, rather than requiring complete memorization
through model weights.

Existing retrieval methods, however, suffer from two key limitations—spectral blindness, where
time-domain similarity ignores how energy is distributed across frequency bands and thus misiden-
tifies periodic patterns, and temporal recency, where all past observations are weighted equally
despite recent data often carrying stronger predictive power under non-stationarity. First, spectral
blindness arises because retrieval using time-domain similarity metrics such as Euclidean distance,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Limitations of Pearson correlation in capturing spectral differences. (a) shows the two
time-series in the temporal domain. (b) presents their normalized frequency–amplitude distributions.
(c) compares time-domain (Pearson) similarity (orange) and our frequency-based similarity (blue)
as the target frequency varies: while Pearson correlation remains nearly constant, frequency-aware
similarity correctly distinguishes relevant segments by reflecting true spectral alignment; colored
regions indicate which frequencies exist in the retrieval database. (d) illustrates that for a query with
fquery = 10, time-based similarity fails to differentiate between segments at f1 = 6 and f2 = 12,
retrieving both with equal likelihood, whereas frequency-based retrieval accurately prioritizes and
selects f2 = 12.

Dynamic Time Warping, and Pearson correlation ignores the distribution of energy across frequency
bands that define periodic behaviors, making them sensitive to noise and temporal misalignments.
As shown in Figure 1a–b, although two series (A and B) seem to be correlated in the temporal do-
main, their normalized frequency–amplitude distributions diverge significantly. When the frequency
of series B is systematically varied, time-domain similarity between series A (fquery = 10) and series
B remains mostly constant, failing to distinguish between candidates with different spectral content
(Figure 1c: orange line). As a result, when series A searches a database without the exact matching
frequency (f = 10), time-based retrieval may treat the available series with f1 = 6 and f2 = 12 as
equally relevant. This illustrates its failure to capture the true underlying periodic behavior, leading
to undesired retrieval (Figure 1d). Second, existing methods apply temporal uniformity, weight-
ing all historical observations equally despite evidence that recent patterns carry greater predictive
power than distant history under non-stationarity. Ignoring temporal recency may cause the retrieval
model to rely excessively on outdated data, diluting the predictive signal from recent regime shifts,
trends, or anomalies that are more indicative of future behavior.

Building on these insights, we propose SpecReTF, a novel retrieval-augmented time series forecast-
ing method that performs similarity matching in the frequency domain. Our approach converts time
series segments to the frequency domain using Short-time Fourier Transform (STFT) (Sejdic et al.,
2009), normalizes the amplitude spectrum to create probability distributions, and computes a com-
posite similarity score for each frame by combining Jensen–Shannon divergence for amplitude dis-
tributions with cosine similarity for phase alignment. As demonstrated in Figure 1c, our frequency
amplitude-based similarity metric (blue line) accurately tracks spectral alignment, exhibiting higher
scores when query and candidate frequencies align. Therefore, it correctly prioritizes the spectrally
aligned candidate f2 = 12 (Figure 1d), solving the limitation of spectral blindness by distinguishing
true periodic matches that time-domain methods cannot. Moreover, to address temporal recency, we
weight frame-level similarity scores with an exponential moving average, which boosts the influ-
ence of recent windows while assigning gradually decaying weights to older windows. This design
maintains sensitivity to new patterns without forgetting persistent long-term phenomena, such as
seasonal cycles and structural trends, that are critical for accurate and stable forecasting.
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Our contributions can be summarized as follows:

• We propose SpecReTF, a novel retrieval-augmented forecasting architecture that com-
bines frequency-domain analysis with recency-weighted pattern retrieval to address non-
stationarity.

• We introduce a unified similarity measure that synergistically integrates Jensen–Shannon
divergence on normalized amplitude spectra with cosine similarity of phase differences, ef-
fectively overcoming spectral blindness and temporal recency limitations of existing time-
domain approaches.

• Through extensive evaluations on multiple benchmark datasets, we demonstrate that
SpecReTF consistently achieves superior forecasting accuracy, establishing new state-of-
the-art results compared to leading retrieval-based and purely model-based methods.

The remainder of this paper is organized as follows: Section 2 reviews related work in retrieval-
augmented forecasting and frequency domain analysis. Section 3 presents our SpecReTF methodol-
ogy in detail. Section 4 describes our experimental setup and results, and Section 5 concludes with
future directions.

2 RELATED WORKS

2.1 TIME-SERIES FORECASTING

Time series forecasting has progressed from classical statistical models to advanced deep learning ar-
chitectures. The Autoregressive Integrated Moving Average (ARIMA) (Nandutu et al., 2022; Mon-
dal et al., 2014) model captures linear dependencies and accommodates non-stationarity through dif-
ferencing, but is limited to modeling simple trends and seasonal patterns and cannot handle complex
nonlinear dynamics or abrupt regime shifts. Transformer-based models such as iTransformer (Liu
et al., 2024b) leverage self-attention to model long-range dependencies without recurrence, achiev-
ing strong performance on long-horizon forecasting tasks by dynamically focusing on relevant time
points. Multiscale mixing approaches, such as TimeMixer (Wang et al., 2024a), decompose the in-
put into hierarchical temporal representations, enabling the network to learn both local fluctuations
and global trends simultaneously, which improves accuracy on datasets with multi-frequency be-
haviors. Cross-series relational architectures, exemplified by TimeBridge (Liu et al., 2025), capture
dependencies across multiple correlated series through inter-series attention mechanisms, enhanc-
ing multivariate forecasts by leveraging shared patterns and cross-correlation structures. Frequency-
domain networks such as FreTS (Yi et al., 2023) incorporate spectral normalization layers and ex-
plicit frequency-based feature extraction modules, providing robustness to non-stationarity by nor-
malizing input features in the frequency domain and attenuating noise in unstable frequency bands.
Despite these advances, purely model-based methods must internalize all necessary patterns within
fixed parameter sets, limiting their adaptability. They cannot directly retrieve and leverage specific
historical segments during inference, making them vulnerable to concept drift, rare events, and sud-
den pattern shifts that were underrepresented during training, and preventing them from exploiting
localized historical contexts that could improve predictive accuracy.

2.2 RETRIEVAL-AUGMENTED TIME-SERIES FORECASTING

Retrieval-augmented forecasting enhances model-based approaches by equipping them with an ex-
ternal memory of historical series segments. RATD (Liu et al., 2024a) integrates patterns retrieved
by a trained retriever into a diffusion-based generative model, allowing stochastic sampling from the
retrieved contexts and improving uncertainty quantification in forecasts. RAFT (Han et al., 2025)
demonstrated that retrieving the top-k most similar segments using time-domain distance metrics
such as Euclidean distance, Dynamic Time Warping, or Pearson correlation and conditioning the
model on these retrieved contexts can significantly boost accuracy. However, the similarity met-
rics used by both RAFT and RATD suffer from spectral blindness, as time-domain distances fail
to capture periodic structures and spectral energy distributions that are often most informative for
forecasting. Additionally, they exhibit temporal uniformity by weighting all retrieved segments
equally, ignoring temporal recency, despite evidence that recent patterns in non-stationary series
carry disproportionately greater predictive power than distant history. SpecReTF overcomes these
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Figure 2: Overview of the SpecReTF framework. Frequency-based similarity (left): Retrieval
mechanism applies STFT to the query and all database segments, computes frequency-based sim-
ilarities using amplitude divergence and phase coherence, and selects the top-K matches via expo-
nential recency weighting. Forecasting pipeline (right): The retrieved neighbors’ future segments
are aggregated using similarity weights, passed through a linear projection, fused with the current
input history, and finally mapped to the prediction via a linear head.

limitations by employing a frequency-domain similarity measure that fuses Jensen–Shannon diver-
gence on normalized amplitude spectra with phase cosine similarity, and by applying an exponential
moving average weighting scheme to prioritize the most recent, highly relevant windows.

3 METHOD

3.1 OVERVIEW

Given a historical multivariate time series X =
(
xT−L+1, . . . , xT

)
∈ RL×C of length L with

C channels, the time series forecasting problem aims to predict future values based on historical
observations. Specifically, the task is to learn a function f(·) parameterized by θ that maps the most
recent L observations to the next H values: X̂T+1:T+H = f(XT−L:T ), where XT−L+1:T denotes
the input sequence and X̂T+1:T+H represents the predicted future values.

In SpecReTF, we begin by treating the input series X as a query window Q = (xT−L+1, . . . , xT ),
then compute a frequency-domain similarity score against every candidate input segment in
a database D constructed from training samples and retrieve the top K most similar pairs
{(Xk, Yk)}Kk=1, where Xk is a historical input window and Yk is its corresponding future sequence.
After that, we generate two forecasts: a direct prediction from the query alone and a retrieval-based
forecast computed as a weighted aggregation of the retrieved futures {Yk}, using their similarity
scores as weights.

Finally, these two outputs are merged through a fusion layer that balances the model’s intrinsic
forecast with evidence drawn from historical patterns, producing the final prediction X̂T+1:T+H . By
combining learned representations with explicit historical context, SpecReTF enhances robustness
to non-stationarity and improves the modeling of rare patterns through frequency-domain retrieval.

3.2 FREQUENCY-AWARE SIMILARITY

To overcome the limitations of spectral blindness and temporal recency in existing retrieval-
augmented forecasting methods, we design a frequency-aware similarity measure that (1) captures
both amplitude and phase characteristics in the frequency domain and (2) biases similarity toward
the most recent segments via exponential weighting (Figure 2).

Given a query window Q =
(
xt−L+1, . . . , xt

)
and a candidate window Xk =

(
xt′−L+1, . . . , xt′

)
from the database D, we compute their similarity score S(Q,Xk) through the following steps:

Short-Time Fourier Transform (STFT). We partition each length-L series into W overlapping
frames using a fixed frame size M and hop size B. For each frame w, we compute the complex
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STFT coefficients:

Fw
Q (f) = Aw

Q(f) e
j Φw

Q(f), Fw
Xk

(f) = Aw
Xk

(f) ej Φ
w
Xk

(f), (1)

where f indexes frequency bins (f = {1, ..,M}, A(·) denotes the amplitude spectrum, and Φ(·)
denotes the phase spectrum. The STFT transforms each time-domain frame into its spectral repre-
sentation, making periodic structures and oscillatory behavior explicit.

Amplitude Distribution Normalization. To compare frequency content independent of overall
signal power, we normalize each amplitude spectrum into a probability distribution:

pwQ(f) =
Aw

Q(f)∑
f A

w
Q(f)

, pwXk
(f) =

Aw
Xk

(f)∑
f A

w
Xk

(f)
. (2)

This normalization ensures that the similarity metric focuses on how energy is distributed across
frequencies, achieving robustness to scaling differences and amplitude variations between series.

Amplitude Similarity via Jensen–Shannon Divergence. We quantify the difference between the
two normalized amplitude distributions using the Jensen–Shannon divergence (JSD), a symmetric
and bounded measure of distributional dissimilarity:

dwJS = JSD
(
pwQ ∥ pwXk

)
. (3)

Since higher divergence indicates greater dissimilarity, we convert it into an amplitude similarity
score for each frame:

swamp = 1− dwJS, (4)

so that swamp ∈ [0, 1], with 1 indicating identical amplitude distributions.

Phase Similarity via Cosine of Mean Phase Difference. While amplitude spectra capture the
energy distribution, phase spectra encode the temporal alignment of oscillatory components. We
compute the mean phase difference across frequencies for frame w:

∆Φw =
1

M

M∑
f=1

[
Φw

Q(f)− Φw
Xk

(f)
]
, (5)

and derive a phase coherence score using the cosine function:

swphase = cos
(
∆Φw

)
, (6)

which lies in [−1, 1]. A value close to 1 indicates strong alignment of phase patterns, while values
near −1 indicate antiphase behavior.

Frame-Level Composite Score. For each frame w, we fuse amplitude and phase similarities into
a single composite score:

sw = swamp + swphase. (7)

This summation balances spectral energy overlap and phase coherence, ensuring that both amplitude
and temporal alignment contribute to the similarity assessment.
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Recency-Weighted Aggregation. Recent work (Johnsen et al., 2024) on non-stationary time se-
ries has shown that recent observations often carry stronger predictive signals than older ones. To
reflect this temporal recency bias, we aggregate the frame-level scores using an exponential moving
average:

S(Q,Xk) =

W∑
w=1

α (1− α)W−w sw, α ∈ (0, 1), (8)

where α is a decay factor controlling how quickly the influence of older frames diminishes. Larger α
assigns more weight to the latest frames, enabling SpecReTF to prioritize recent spectral alignments.
As demonstrated in Figure 3, tuning α impacts forecast accuracy across different sequence lengths.

The final similarity score S(Q,Xk) integrates normalized amplitude comparisons, phase coherence,
and temporal recency into a single scalar measure. This comprehensive metric allows SpecReTF to
retrieve historical segments that not only share underlying periodic structures and phase alignment
with the query but also emphasize the most recent, and thus most predictive, patterns.

3.3 SPECRETF FRAMEWORK

Building on our frequency-aware similarity measure, SpecReTF integrates retrieval and forecasting
into a unified end-to-end framework. Figure 2 illustrates the complete pipeline, which consists
of two main components: a retrieval mechanism that identifies historically similar patterns using
frequency-domain analysis, and a forecasting pipeline that aggregates retrieved patterns to produce
the final prediction.

Retrieval Mechanism. Given a query window Q = (xt−L+1, . . . , xt), the retrieval mechanism
first applies STFT to transform both the query and all candidate windows in the historical database
D into their frequency representations. For each candidate window Xk ∈ RL×C , we compute the
frequency-aware similarity score S(Q,Xk) using the method described in Section 3.2. The retrieval
system then ranks all candidate windows by their similarity scores and selects the top-K most similar
segments:

R(Q) = {(Xk, Yk, Sk)}Kk=1, (9)

where Yk ∈ RH×C represents the future continuation of historical window Xk, and Sk = S(Q,Xk)
denotes the corresponding similarity score. This retrieval process ensures that selected patterns share
both spectral characteristics and recent temporal dynamics with the query.

Forecasting Pipeline. The forecasting pipeline operates on both the original query and the re-
trieved historical patterns. The retrieved future segments {Yk}Kk=1 are first aggregated using their
similarity scores as weights:

Yretrieval =

∑K
k=1 exp(Sk)Yk∑K
i=1 exp(Si)

(10)

creating a similarity-weighted average of the retrieved future patterns. This aggregated retrieval fore-
cast Yretrieval is then passed through a linear projection to make a retrieval-based prediction Ŷretrieval.

Simultaneously, the original query Q is processed through a separate pathway to generate a direct
forecast Ŷdirect using a linear layer. This direct pathway ensures that the model retains its ability to
make predictions based on learned patterns even when retrieval provides limited guidance.

The retrieval-based and direct forecasts are concatenated and then mapped to the target horizon:

Ŷfinal = Linear(Concat(Ŷretrieval, Ŷdirect)), (11)

where Concat(·) denotes vector concatenation.
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Table 1: Comparison of SpecReTF and baseline methods across 8 datasets using MSE. For all
datasets, results are averaged over three different seeds and forecasting horizons of 96, 192, 336,
and 720. Best performances are bolded, and the second-best are underlined. Full results are listed
in Appendix C.

Methods SpecReTF RAFT TimeMixer PatchTST TimesNet MICN DLinear FEDformer Stationary Autoformer Informer

ETTh1 0.415 0.422 0.448 0.515 0.493 0.479 0.463 0.499 0.571 0.495 1.049

ETTh2 0.340 0.356 0.366 0.390 0.413 0.572 0.565 0.436 0.525 0.452 4.429

ETTm1 0.343 0.349 0.380 0.411 0.403 0.422 0.407 0.445 0.480 0.588 0.961

ETTm2 0.248 0.255 0.273 0.291 0.291 0.355 0.356 0.305 0.303 0.327 1.407

Electricity 0.157 0.162 0.180 0.217 0.193 0.195 0.228 0.212 0.192 0.227 0.314

Exchange 0.445 0.442 0.388 0.564 0.415 0.318 0.646 1.192 0.462 1.447 2.475

Traffic 0.431 0.436 0.485 0.525 0.622 0.594 0.627 0.615 0.620 0.628 0.763

Weather 0.238 0.242 0.241 0.264 0.255 0.268 0.262 0.306 0.289 0.338 0.631

Best 7 0 0 0 0 1 0 0 0 0 0

This architecture enables SpecReTF to leverage both explicit historical patterns through frequency-
aware retrieval and implicit learned representations through direct forecasting, providing robustness
across diverse forecasting scenarios and datasets.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Dataset. We use eight standard datasets spanning multiple domains and time scales: ETT (hourly
and 15-minute electricity transformer temperatures), Electricity (hourly household power consump-
tion), Exchange (daily currency rates), Traffic (hourly freeway occupancy), and Weather (10-minute
meteorological readings). For details of datasets, please refer to Appendix A.

Baselines. We compare against the retrieval-augmented method RAFT, and leading model-based
forecasters: Autoformer (Wu et al., 2021), Informer (Zhou et al., 2021), FEDformer (Zhou et al.,
2022), PatchTST (Nie et al., 2023), Stationary (Liu et al., 2022), DLinear (Zeng et al., 2023),
TimeMixer (Wang et al., 2024b), TimesNet (Wu et al., 2023), and MICN. This array spans statisti-
cal, transformer, and lightweight architectures, enabling direct evaluation of our frequency-domain
retrieval against existing retrieval strategies and contemporary forecasting models.

Implementation details. We conduct all experiments on a single NVIDIA Tesla V100. We take
MSE (Mean Squared Error) as the loss function and MAE (Mean Absolute Error) as the evaluation
metric, and the results are averaged across three different seeds and all prediction lengths. STFT
uses Hanning windows with 50% overlap. Models are trained with AdamW, a batch size of 32,
weight decay of 1e-4, and early stopping (with a 10-epoch patience). For additional implementation
details, please refer to Appendix B.

4.2 BENCHMARKING RESULTS

Table 1 presents the comprehensive comparison of SpecReTF against state-of-the-art baselines
across eight benchmark datasets, with results averaged over forecasting horizons. SpecReTF
achieves the best performance on seven out of eight datasets and ranks second on the remaining
(Exchange), demonstrating consistent superiority of spectral retrieval over traditional approaches.

Performance against Retrieval-Augmented Methods. SpecReTF consistently outperforms
RAFT across seven of eight datasets, achieving improvements of 4.5% on ETTh2, 3.1% on Electric-
ity, and 2.7% on ETTm2, with an average improvement of 2.0%. The only exception is Exchange,
where RAFT retains a marginal 0.7% lead. The consistent advantage across diverse domains vali-
dates the robustness of our frequency-based retrieval compared to time-based counterparts.
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Table 2: Ablation study of retrieval mechanism on ETTh1, ETTh2, ETTm1, ETTm2, and Weather
datasets. no retrieval removes the retrieval modules, leaving only the linear predictor. random
retrieval randomly retrieves relevant examples without using the similarity metric. For all datasets,
results are averaged across three different seeds and forecasting horizons of 96, 192, 336, and 720.
Best performances are bolded.

Methods ETTh1 ETTh2 ETTm1 ETTm2 Weather

SpecReTF 0.415 0.340 0.343 0.248 0.238

no retrieval 0.425 0.351 0.357 0.260 0.263

random retrieval 0.423 0.350 0.359 0.259 0.267

Table 3: Ablation study of the similarity metric on ETTh1, ETTh2, ETTm1, ETTm2, and Weather
datasets. average temporal aggregation replaces the recency-weighted aggregation with the aver-
age operation. only amplitude similarity removes the the phase similarity. only phase similarity
removes the frequency amplitude similarity. For all datasets, results are averaged across three dif-
ferent seeds and forecasting horizons of 96, 192, 336, and 720. Best performances are bolded.

Methods ETTh1 ETTh2 ETTm1 ETTm2 Weather

SpecReTF 0.415 0.340 0.343 0.248 0.238

average temporal aggregation 0.421 0.345 0.350 0.254 0.242

only amplitude similarity 0.419 0.342 0.346 0.250 0.239

only phase similarity 0.431 0.349 0.354 0.257 0.246

Comparison with Model-Based Methods. SpecReTF significantly outperforms purely model-
based approaches, achieving substantial improvements over transformer architectures such as
PatchTST, and TimesNet. On the challenging ETTm2 dataset, SpecReTF outperforms PatchTST
by 14.5% and TimesNet by 14.8%. On Exchange, however, its dependence on past analogues offers
limited benefit due to frequent pattern shifts, allowing parametric models like MICN and TimeMixer
to perform slightly better. These results highlight the value of explicit pattern retrieval over purely
parametric learning, especially when historical patterns are informative for future predictions.

4.3 ANALYSIS

Ablation study To quantify the benefit of our retrieval mechanism, we compare SpecReTF against
two simplified baselines: a linear predictor without any retrieval modules (no retrieval) and a vari-
ant that retrieves historical segments at random without using our frequency-based similarity metric
(random retrieval). Table 2 shows that across five benchmark datasets (ETTh1, ETTh2, ETTm1,
ETTm2, and Weather) SpecReTF achieves the lowest average MSE, with removal of retrieval in-
creasing error by up to 10.9% and random retrieval yielding only marginal improvements over the
no-retrieval model. These results demonstrate that our retrieval method is critical for identifying and
leveraging the most informative historical patterns beyond what direct prediction can achieve.

To assess the impact of each component in our similarity metric and aggregation strategy, we per-
form a component-wise ablation study (Table 3). Replacing recency-weighted aggregation with
uniform averaging increases MSE by up to 2.5%, confirming the importance of emphasizing newer
observations. Excluding phase similarity results in a 0.8%–2.2% degradation, while removing am-
plitude similarity causes the largest performance drop up to 3.4% on the Weather dataset, highlight-
ing the paramount role of spectral energy distribution comparison. Overall, these results confirm
that all components are essential to SpecReTF’s superior forecasting performance.

Impact of Rencency-weighted aggregation. Figure 3 shows the mean squared error (MSE) on
ETTh1 and Exchange as the decay factor α varies from 0 to 0.2. At α = 0 (uniform weighting), all
frames contribute equally, resulting in higher error due to dilution of recent, informative patterns by
distant history. At α = 0.2 (strong recency bias), the model overemphasizes recent frames, neglect-
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Figure 3: Impact of the decay factor α on forecasting performance. Solid lines show MSE for each
input length and the dashed line indicates the average MSE across all lengths on (a) ETTh1 and
(b) Exchange. Optimal performance occurs at intermediate α values, which yield the best trade-off
between recency and long-term context.

Table 4: Performance comparison of PatchTST with and without the proposed retrieval module,
showing average MSE across forecasting horizons. Best performances are bolded.

Methods ETTh1 ETTh2 ETTm1 ETTm2 Weather

PatchTST 0.515 0.390 0.411 0.291 0.264

PatchTST+Retrieval 0.502 0.387 0.381 0.289 0.231

ing long-term context and thereby increasing error. The optimal performance occurs at α = 0.05,
which effectively balances recent and historical information, downweighting outdated frames while
retaining essential stability, thereby enabling SpecReTF to adapt to evolving periodic behaviors and
non-stationarity without sacrificing long-term pattern continuity.

Generalizable Retrieval Enhancement for Forecasting Models. We integrate our frequency-
aware retrieval mechanism with PatchTST, a leading patching-based model, by directly adding the
retrieval result to the output of PatchTST. As shown in Table 4, the retrieval-augmented PatchTST
consistently outperforms the original architecture across all five datasets, with notable improvements
of 7.3% on ETTm1 and 12.5% on Weather. These results confirm that our spectral retrieval approach
is model-agnostic and can effectively boost the performance of established forecasting frameworks,
demonstrating its broad applicability beyond our specific SpecReTF architecture.

Hyperparameter Study. We conduct a comprehensive study of key hyperparameters to understand
their impact on forecasting performance. The results highlight two trade-offs. For K, too few
segments limit context diversity while too many add noise, with the best value usually falling in
the mid-range. For M , small windows miss spectral detail whereas large windows blur temporal
changes, and intermediate sizes consistently yield the best accuracy by balancing resolution and
localization. Complete results and detailed analysis are provided in Appendix D.

5 CONCLUSION

In this paper, we introduce a spectral retrieval-augmented time series forecasting method that ad-
dresses spectral blindness and temporal uniformity in existing approaches. By computing similar-
ity through Jensen–Shannon divergence for amplitude distributions and cosine similarity for phase
coherence, our method captures spectral characteristics overlooked by time-domain methods. To
mitigate temporal recency, we aggregate frame-level similarity scores via an exponential moving
average, emphasizing recent dynamics while still retaining the influence of longer-term patterns.
Comprehensive experiments on eight benchmark datasets demonstrate consistent superiority, with
ablation studies confirming that each component contributes meaningfully to forecasting accuracy.
Future work will focus on developing automated methods for tuning frequency windowing and de-
cay hyperparameters to improve adaptability across diverse non-stationary environments.
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REPRODUCIBILITY STATEMENT

Full implementation details and experimental settings are provided in the Appendix. Following
publication, we will release the source code along with comprehensive instructions to facilitate
reproducibility.

LLM USAGE

Large Language Models (LLMs) were not used in the development, implementation, or evaluation
of our approach. Their role was limited to improving the readability of the paper by correcting
grammar and enhancing clarity of expression.
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APPENDIX

A DATASET

This section provides comprehensive descriptions of the eight benchmark datasets used to evaluate
SpecReTF’s performance across diverse domains and temporal characteristics.

ETT (Electricity Transformer Temperature). The ETT dataset contains electricity transformer
monitoring data from two regions in China, spanning July 2016 to July 2018. We utilize four vari-
ants: ETTh1 and ETTh2 with hourly measurements (14,400 timesteps), and ETTm1 and ETTm2
with 15-minute intervals (57,600 timesteps). Each dataset includes seven features: oil tempera-
ture (OT) and six load measurements (HUFL, HULL, MUFL, MULL, LUFL, LULL) representing
high/medium/low useful and useless loads. The datasets are designed to evaluate long-sequence
forecasting capabilities, particularly for energy management and equipment monitoring applica-
tions.

Electricity. This dataset records hourly electricity consumption in kilowatt-hours (kWh) for 321
residential and commercial clients from 2012-2014. Originally collected at 15-minute intervals, the
data was aggregated to hourly resolution and filtered to remove periods with zero consumption. The
dataset spans 26,304 hours with 321 variables, representing diverse consumption patterns across
different customer types and usage behaviors.

Exchange Rate. The exchange rate dataset contains daily foreign exchange rates for eight major
currencies (Australian Dollar, British Pound, Canadian Dollar, Swiss Franc, Chinese Yuan, Japanese
Yen, New Zealand Dollar, Singapore Dollar) against the US Dollar from 1990-2016. With 6,071
daily observations across 8 currency pairs, this financial dataset exhibits high volatility and non-
stationary behavior characteristic of foreign exchange markets.

Traffic. This dataset describes hourly road occupancy rates (normalized between 0 and 1) from
862 sensors deployed across San Francisco Bay Area freeways, covering January 2015 to December
2016. The California Department of Transportation (Caltrans) Performance Measurement System
(PeMS) provides this high-dimensional traffic data with 17,544 hourly measurements, capturing
complex spatial-temporal traffic flow patterns and congestion dynamics.

Weather. The weather dataset contains 21 meteorological indicators recorded every 10 minutes
throughout 2020 in Germany. Variables include air temperature, humidity, wind speed, atmo-
spheric pressure, precipitation, and solar radiation measurements from the German Weather Ser-
vice (Deutscher Wetterdienst). With 52,696 10-minute observations across 21 features, this high-
frequency dataset presents challenges in modeling rapid weather fluctuations and multi-scale atmo-
spheric dynamics.

These datasets collectively span temporal resolutions from 10 minutes to daily intervals, feature di-
mensions from 7 to 862 variables, and application domains including energy, finance, transportation,
and meteorology. The diversity in data characteristics—from smooth transformer temperatures to
volatile exchange rates and complex traffic patterns—provides a comprehensive evaluation frame-
work for time series forecasting methods.

B IMPLEMENTATION DETAILS

All experiments were conducted on a single NVIDIA V100 GPU. The model hyperparameters, in-
cluding learning rates, batch sizes, STFT window lengths, hop sizes, number of retrieved segments
K, and recency decay factor α, are specified in Table 5. Our codebase is implemented in PyTorch
1.13 and relies on CUDA 11.7 for GPU acceleration. Complete installation instructions, environ-
ment setup guidelines (including required Python packages and version constraints), and scripts for
data preprocessing, training, and evaluation are provided in the supplementary materials to facilitate
full reproducibility.
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Table 5: Default parameters of SpecReTF.

Hyperparameter Description Choices
batch size The batch size for training 32
seq len Lookback window length 720
alpha recency decay factor {0.01 0.05 0.1 0.2}
train epochs Number of training epochs 10
patience Early stopping patience 5
window size window size of STFT {8, 16, 32}
learning rate learing rate {0.001, 0.0001}

C FULL RESULTS

We present comprehensive forecasting results for SpecReTF across 8 benchmark datasets, reporting
both Mean Squared Error (Table 6) and Mean Absolute Error (Table 7) for all prediction horizons.

Table 6: Full evaluation results with MSE.
Dataset Methods

SpecReTF RAFT TimeMixer PatchTST TimesNet MICN DLinear FEDformer Stationary Autoformer Informer

ETTh1 96 0.366 0.370 0.377 0.461 0.380 0.425 0.398 0.410 0.512 0.454 0.873
192 0.400 0.410 0.428 0.510 0.432 0.451 0.446 0.474 0.535 0.511 1.016
336 0.429 0.439 0.485 0.545 0.467 0.516 0.495 0.504 0.533 0.599 1.120
720 0.467 0.470 0.498 0.544 0.520 0.524 0.514 0.608 0.644 0.527 1.187

Avg 0.415 0.422 0.448 0.515 0.493 0.479 0.463 0.499 0.571 0.495 1.049

ETTh2 96 0.269 0.276 0.289 0.308 0.340 0.372 0.340 0.357 0.476 0.346 3.754
192 0.332 0.347 0.372 0.392 0.401 0.491 0.483 0.490 0.512 0.453 5.600
336 0.366 0.375 0.386 0.427 0.452 0.607 0.590 0.495 0.552 0.482 4.720
720 0.395 0.436 0.413 0.435 0.460 0.818 0.843 0.402 0.562 0.527 3.643

Avg 0.340 0.356 0.365 0.390 0.413 0.572 0.564 0.436 0.525 0.452 4.429

ETTm1 96 0.295 0.302 0.320 0.352 0.338 0.364 0.346 0.379 0.386 0.505 0.670
192 0.325 0.329 0.361 0.390 0.373 0.402 0.382 0.426 0.458 0.553 0.793
336 0.353 0.355 0.390 0.421 0.409 0.436 0.415 0.445 0.494 0.621 1.210
720 0.401 0.406 0.449 0.481 0.491 0.486 0.485 0.531 0.582 0.672 1.171

Avg 0.343 0.349 0.380 0.411 0.403 0.422 0.407 0.445 0.480 0.588 0.961

ETTm2 96 0.162 0.175 0.183 0.183 0.186 0.196 0.201 0.190 0.255 0.363 0.431
192 0.216 0.217 0.237 0.254 0.248 0.283 0.269 0.278 0.279 0.279 0.531
336 0.259 0.275 0.289 0.309 0.319 0.379 0.351 0.352 0.323 0.338 1.361
720 0.354 0.391 0.391 0.412 0.409 0.462 0.603 0.401 0.355 0.327 3.405

Avg 0.248 0.255 0.273 0.291 0.291 0.355 0.356 0.305 0.303 0.327 1.407

Electricity 96 0.131 0.133 0.153 0.190 0.167 0.179 0.209 0.192 0.168 0.200 0.192
192 0.145 0.149 0.166 0.199 0.183 0.188 0.209 0.201 0.181 0.222 0.295
336 0.160 0.168 0.185 0.217 0.197 0.197 0.222 0.214 0.199 0.230 0.298
720 0.192 0.197 0.216 0.262 0.224 0.216 0.272 0.240 0.220 0.256 0.371

Avg 0.157 0.162 0.180 0.217 0.193 0.195 0.228 0.212 0.192 0.227 0.314

Exchange 96 0.089 0.091 0.095 0.084 0.106 0.101 0.080 0.147 0.110 0.196 0.846
192 0.190 0.191 0.107 0.180 0.225 0.174 0.156 0.270 0.218 0.299 1.203
336 0.392 0.395 0.349 0.509 0.366 0.371 0.304 0.459 0.491 0.689 1.671
720 1.108 1.091 0.899 1.483 0.963 0.726 0.655 1.193 1.089 1.446 2.481

Avg 0.445 0.442 0.388 0.564 0.415 0.318 0.646 1.192 0.462 1.447 2.475

Traffic 96 0.410 0.413 0.462 0.526 0.592 0.576 0.649 0.586 0.611 0.609 0.717
192 0.427 0.435 0.473 0.522 0.616 0.588 0.597 0.603 0.612 0.611 0.694
336 0.438 0.442 0.497 0.516 0.628 0.593 0.604 0.620 0.617 0.662 0.691
720 0.449 0.454 0.508 0.537 0.653 0.619 0.658 0.651 0.640 0.631 0.651

Avg 0.431 0.436 0.485 0.525 0.622 0.594 0.627 0.615 0.620 0.628 0.763

Weather 96 0.160 0.165 0.163 0.186 0.172 0.198 0.194 0.216 0.172 0.265 0.298
192 0.213 0.216 0.220 0.234 0.233 0.223 0.231 0.216 0.199 0.261 0.368
336 0.257 0.267 0.250 0.283 0.245 0.284 0.281 0.338 0.230 0.358 0.576
720 0.322 0.320 0.282 0.326 0.271 0.366 0.342 0.454 0.356 0.366 0.683

Avg 0.238 0.242 0.241 0.264 0.255 0.268 0.262 0.306 0.289 0.338 0.631
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Table 7: Full evaluation results with MAE.
Dataset Methods

SpecReTF RAFT TimeMixer PatchTST TimesNet MICN DLinear FEDformer Stationary Autoformer Informer

ETTh1 96 0.394 0.395 0.398 0.445 0.399 0.444 0.410 0.421 0.488 0.393 0.709
192 0.417 0.425 0.419 0.474 0.427 0.459 0.439 0.467 0.502 0.479 0.788
336 0.440 0.456 0.456 0.494 0.466 0.485 0.465 0.496 0.532 0.493 0.806
720 0.481 0.476 0.481 0.515 0.501 0.527 0.513 0.544 0.621 0.517 0.868

Avg 0.433 0.438 0.439 0.482 0.448 0.479 0.457 0.482 0.536 0.496 0.793

ETTh2 96 0.337 0.343 0.340 0.349 0.374 0.372 0.341 0.395 0.456 0.386 1.523
192 0.379 0.392 0.391 0.404 0.413 0.490 0.477 0.437 0.491 0.451 1.929
336 0.414 0.431 0.413 0.435 0.451 0.553 0.539 0.485 0.549 0.484 1.833
720 0.444 0.472 0.434 0.449 0.467 0.653 0.659 0.472 0.558 0.509 1.623

Avg 0.394 0.410 0.395 0.409 0.426 0.517 0.504 0.447 0.514 0.458 1.727

ETTm1 96 0.347 0.348 0.356 0.373 0.374 0.386 0.373 0.417 0.397 0.474 0.569
192 0.363 0.366 0.380 0.392 0.386 0.407 0.390 0.440 0.443 0.495 0.667
336 0.381 0.382 0.403 0.413 0.410 0.430 0.414 0.458 0.463 0.536 0.869
720 0.408 0.412 0.413 0.448 0.448 0.461 0.450 0.489 0.515 0.560 0.821

Avg 0.374 0.377 0.393 0.406 0.404 0.421 0.407 0.451 0.454 0.516 0.732

ETTm2 96 0.223 0.191 0.200 0.182 0.205 0.296 0.286 0.226 0.273 0.338 0.451
192 0.294 0.295 0.298 0.316 0.345 0.359 0.327 0.327 0.338 0.339 0.561
336 0.329 0.328 0.320 0.339 0.350 0.428 0.364 0.362 0.361 0.371 0.885
720 0.354 0.391 0.395 0.403 0.402 0.521 0.524 0.414 0.412 0.431 1.336

Avg 0.300 0.301 0.319 0.335 0.326 0.401 0.375 0.332 0.346 0.370 0.808

Electricity 96 0.228 0.231 0.246 0.295 0.271 0.292 0.301 0.307 0.272 0.316 0.367
192 0.243 0.246 0.259 0.303 0.321 0.301 0.304 0.314 0.285 0.342 0.385
336 0.256 0.258 0.276 0.318 0.299 0.311 0.318 0.328 0.303 0.441 0.393
720 0.291 0.296 0.309 0.351 0.319 0.329 0.349 0.352 0.320 0.360 0.438

Avg 0.254 0.258 0.273 0.317 0.303 0.308 0.318 0.325 0.295 0.365 0.396

Exchange 96 0.202 0.208 0.213 0.202 0.233 0.234 0.202 0.277 0.236 0.322 0.750
192 0.307 0.323 0.319 0.301 0.343 0.315 0.292 0.379 0.334 0.368 0.893
336 0.451 0.430 0.426 0.530 0.447 0.406 0.413 0.499 0.473 0.605 1.033
720 0.785 0.800 0.701 0.958 0.745 0.657 0.600 0.840 0.768 0.940 1.314

Avg 0.436 0.440 0.415 0.498 0.442 0.403 0.377 0.499 0.453 0.539 0.997

Traffic 96 0.271 0.284 0.286 0.346 0.320 0.359 0.365 0.337 0.387 0.390 0.386
192 0.273 0.276 0.295 0.331 0.335 0.355 0.372 0.351 0.339 0.381 0.377
336 0.279 0.281 0.319 0.333 0.335 0.357 0.372 0.382 0.319 0.382 0.417
720 0.285 0.296 0.312 0.351 0.349 0.360 0.393 0.381 0.354 0.407 0.469

Avg 0.280 0.284 0.303 0.340 0.335 0.358 0.376 0.363 0.350 0.390 0.412

Weather 96 0.227 0.221 0.208 0.226 0.219 0.259 0.251 0.295 0.222 0.335 0.382
192 0.264 0.253 0.249 0.264 0.260 0.298 0.288 0.311 0.266 0.361 0.542
336 0.300 0.301 0.286 0.300 0.336 0.335 0.330 0.379 0.337 0.394 0.521
720 0.322 0.350 0.320 0.357 0.358 0.387 0.381 0.427 0.349 0.421 0.739

Avg 0.278 0.281 0.271 0.287 0.293 0.320 0.313 0.353 0.294 0.378 0.546

D HYPERPARAMETER STUDY

Figure 4 examines the impact of the number of retrieved segments K on forecasting performance.
We vary K from 1 to 20 and report MSE on ETTh1, ETTh2, ETTm1, and ETTm2. When K
increases from 1 to 10, ETTh1 and ETTm1 show a rapid MSE reduction as the model benefits from
aggregating more spectrally similar contexts, after which performance plateaus. In contrast, ETTh2
and ETTm2 exhibit a slight MSE increase at small K (noisy matches), peak around K = 10, then
modestly improve or stabilize at larger K. These results indicate that a moderate retrieval breadth
(K ≈ 10) optimally balances the diversity of historical patterns against the risk of diluting relevant
contexts. Thus, K is critical: too small K limits context diversity, while too large K incorporates
irrelevant segments, making K = 10 a robust default for our datasets.

Figure 5 evaluates the impact of STFT window size on forecasting accuracy by varying the win-
dow length from 16 to 128 samples. On ETTh1, MSE steadily decreases as the window grows,
achieving its lowest error at 128, since larger windows capture more complete spectral information.
ETTh2 exhibits a sharp drop in MSE between window sizes 16 and 32 and then plateaus, indicat-
ing that moderate window lengths suffice to capture its dominant periodicities. For ETTm1, the
best performance occurs at a window size of 32, with a slight degradation at 64 before stabilizing
at 128, suggesting a trade-off between spectral resolution and temporal localization. ETTm2 fol-
lows a U-shaped trend: error rises from 16 to 32, falls to a minimum at 64, and increases again at
128, reflecting the need for intermediate window lengths to balance noise smoothing with frequency
detail.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 4: Analysis of the impact of the number of retrieval results.

Figure 5: Analysis of the impact of the window size parameter.
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Figure 6: The example of our retrieval results on ETTh1, ETTh2, ETTm1, ETTm2, Exchange, and
Weather datasets.

E QUALITATIVE ANALYSIS ON RETRIEVAL

Figure 6 illustrates example retrievals across six benchmark datasets (ETTh1, ETTh2, ETTm1,
ETTm2, Exchange, Weather). The retrieved series closely matches the query’s spectral pat-
terns—even when temporal alignments differ—demonstrating that SpecReTF effectively identifies
historically relevant contexts beyond simple time-domain similarity.

F COMPUTATIONAL COMPLEXITY OF THE FREQUENCY-BASED SIMILARITY
METRIC

In this section, we derive the computational complexity of the proposed frequency similarity metric
under the assumption of channel independence (i.e., computations are performed per-channel with
trivial aggregation). We also assume a short-time Fourier transform (STFT) configuration where the
hop size is approximately half the window size, i.e., B ≈ M/2.

Consider a univariate time series of length L. Using an STFT with window size M and hop size
B ≈ M/2, the number of resulting frames is

W =

⌊
L−M

B

⌋
+ 1 ≈ L

B
≈ 2L

M
. (12)

Each frame yields an M -dimensional spectrum containing the amplitude and phase values used in
the similarity metric.

We now quantify the computational cost of each step.
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Figure 7: Comparison between retrieval results of Pearson correlation and our method on ETTh1,
ETTh2, Exchange and Weather datasets.

STFT. Each STFT frame requires an FFT of length M , with cost O(M logM). Over W frames,
the total cost is

TSTFT = O(WM logM) ≈ O
(
2L

M
·M logM

)
= O(L logM). (13)

Amplitude Normalization. Forming normalized amplitude distributions requires summation and
rescaling of M frequency bins, giving a total cost of

Tnorm = O(WM) ≈ O
(
2L

M
·M

)
= O(L). (14)

Jensen–Shannon Divergence. Computing the JSD involves forming the mixture distribution and
evaluating two KL divergences, each costing O(M):

TJSD = O(WM) ≈ O(L). (15)

Phase Similarity. The mean phase difference for each frame requires a sum across M bins:

Tphase = O(WM) ≈ O(L). (16)

Temporal Aggregation. The final recency-weighted aggregation requires only O(W ) operations:

Tagg = O(W ) ≈ O
(

L

M

)
, (17)
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which is negligible compared to the other components.

Summing all components, the total cost of computing the similarity between a single query–
candidate pair (Q,Xk) is dominated by the STFT term:

Ttotal(Q,Xk) = O(WM logM) ≈ O(L logM). (18)

Thus, under the practically relevant configuration B ≈ M/2, the proposed similarity metric exhibits
near-linear complexity in the time-series length L, with only a mild logarithmic dependence on the
STFT window size M .
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