
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

DISK: DIFFERENTIALLY PRIVATE OPTIMIZER WITH
SIMPLIFIED KALMAN FILTER FOR NOISE REDUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Differential privacy (DP) offers a robust framework for safeguarding individual
data privacy. To utilize DP in training modern machine learning models, dif-
ferentially private optimizers have been widely used in recent years. A popular
approach to privatize an optimizer is to clip the individual gradients and add suf-
ficiently large noise to the clipped gradient. This approach led to the development
of DP optimizers that have comparable performance with their non-private coun-
terparts in fine-tuning tasks or in tasks with a small number of training parame-
ters. However, a significant performance drop is observed when these optimizers
are applied to large-scale training. This degradation stems from the substantial
noise injection required to maintain DP, which disrupts the optimizer’s dynam-
ics. This paper introduces DiSK, a novel framework designed to significantly
enhance the performance of DP optimizers. DiSK employs Kalman filtering, a
technique drawn from control and signal processing, to effectively denoise priva-
tized gradients and generate progressively refined gradient estimations. To ensure
practicality for large-scale training, we simplify the Kalman filtering process, min-
imizing its memory and computational demands. We establish theoretical privacy-
utility trade-off guarantees for DiSK, and demonstrating provable improvements
over standard DP optimizers like DPSGD in terms of iteration complexity upper-
bound. Extensive experiments across diverse tasks, including vision tasks such as
CIFAR-100 and ImageNet-1k and language fine-tuning tasks such as GLUE, E2E,
and DART, validate the effectiveness of DiSK. The results showcase its ability to
significantly improve the performance of DP optimizers, surpassing state-of-the-
art results under the same privacy constraints on several benchmarks.

1 INTRODUCTION

Data privacy has become one of the major concerns in modern machine learning systems. Differen-
tial Privacy (DP), with its rigorous mathematical foundation, offers a powerful solution. DP provides
a framework for developing training algorithms that safeguard the privacy of individuals’ data used
to train machine learning models. Among various algorithms, Differentially Private Stochastic Gra-
dient Descent (DPSGD) (Abadi et al., 2016) and its variants (Li et al., 2021; Yu et al., 2021; Tang
et al., 2024) have emerged as popular choices for training various models, including computer vi-
sion (De et al., 2022) and language models (Bu et al., 2023; 2024). These algorithms inject noise
into the training process to guarantee privacy. However, this noise injection often comes at a signif-
icant cost to model performance, limiting the widespread adoption of DP optimizers (Jayaraman &
Evans, 2019). For example, (McMahan et al., 2018; De et al., 2022) observed that DP training led
to a 15% drop in model accuracy on the Reddit dataset and a 30% drop on CIFAR-10 compared to
non-private training. This challenge has limited the application of DP optimizers primarily to small
models or parameter-efficient fine-tuning, as highlighted by (Li et al., 2021).

Many recent works aim to improve differentially private (DP) training performance. These include
applying low-pass filters to separate gradients from noise (Zhang et al., 2024a), injecting correlated
noise with algorithms like DP-FTLR (Koloskova et al., 2023; Choquette-Choo et al., 2024), using
sharpness-aware minimization for flatter loss landscapes that are less sensitive to DP noise (Park
et al., 2023), adaptive clipping (Andrew et al., 2021; Lin et al., 2022; Hu et al., 2021), and model
structure optimization (Bu et al., 2024; Papernot et al., 2021; De et al., 2022). However, these meth-
ods often require extra memory, lack theoretical guarantees, or have limited applicability. Therefore,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

there is a strong demand to design a new approach that 1) is memory and computation efficient for
implementation, 2) has a theoretical guarantee, and 3) is compatible with a wide range of existing
DP optimization algorithms and models. To meet this demand, we leverage the Kalman filter, a
tool from control theory, to improve gradient estimates in DP optimization. We further simplify our
algorithm for memory and computational efficiency, while maintaining theoretical grounding and
broad compatibility with existing DP algorithms and models.

The tools in signal processing and control theory have been leveraged to design novel optimization
algorithms. In the context of DP optimization, the error-feedback approach has been adopted to
reduce the bias caused by the clipping operation (Zhang et al., 2024b); the low-pass and high-pass
filters have been used to separate the gradient from the DP noise (Zhang et al., 2024a; Koloskova
et al., 2023; Choquette-Choo et al., 2024); the low-pass spatial filter, including Gaussian and Laplace
filters have been used to smooth the privatized model or gradient across dimensions (Wang et al.,
2020a; 2021; Liu et al., 2022). These methods effectively improve DP optimizers’ performance.

1.1 CONTRIBUTIONS

Our approach centers on constructing a dynamic system where the gradient serves as its state. We
treat the privatized gradient as a noisy observation of the true gradient within this system. By
applying a Kalman filter, we obtain a more accurate estimate of the true gradient by leveraging the
gradient dynamics and past estimates, thereby enhancing the performance of DP optimizers. To
address the inherent inefficiency of the Kalman filter, we introduce a series of simplifications that
reduce memory and computational overhead. Our main contributions can be summarized as follows:

• Algorithm Design: We introduce a novel Kalman filter-based approach designed to mitigate DP
noise and enhance the performance of various DP optimizers.

• Algorithm Simplification: We simplify the Kalman filtering process to significantly reduce mem-
ory and computational overhead. This simplified approach, DiSK, requires only one additional
forward step and two extra optimizer states.

• Theoretical Analysis: We provide theoretical analyses of DiSK, demonstrating that the algorithm
is convergent. Moreover, we showed that, compared to DPSGD, DiSK improves the iteration
complexity upper-bound by a problem-dependent constant factor.

• Numerical Results: Extensive experiments across various models, datasets, and optimizers
demonstrate that DiSK significantly boosts DP training performance. Specifically, under the same
(or tighter) privacy budgets ϵ = 8, δ = 1/N1.1, DiSK exhibits substantial improvements in test
accuracy for training-from-scratch scenarios: a notable increase from 33.56% to 36.89% on the
ImageNet-1k dataset, a considerable rise from 63% to 75% on CIFAR-10, and a remarkable im-
provement from 21% to 42% on CIFAR-100. Furthermore, in fine-tuning tasks, DiSK demon-
strates remarkable improvements: an increase from 85% to 89% on CIFAR-100 and an improve-
ment from 81% to 86% on the GLUE dataset. These results surpass state-of-the-art DP training
performance under the same privacy guarantees.

2 PRELIMINARIES

2.1 PROBLEM DEFINITION & NOTATIONS

Typical training procedures require solving the empirical risk minimization (ERM) problem

min
x∈Rd

F (x) =
1

N

∑
ξ∈D

f(x; ξ)

 , (1)

where x ∈ Rd is the optimization variable, D = {ξ1, . . . , ξN} is the training dataset with |D| = N
samples, and f(·) denotes the (possibly non-convex) loss function parameterized by x and evaluated
on sample ξ. For solving the above optimization problem, we rely on iterative procedures, such as
SGD, where the parameters are updated over the iterations t = 1, 2, Throughout the paper, we
use (·)t to denote the variables at iteration t, and use Id to denote the identity matrix of dimension d.

2.2 DIFFERENTIALLY PRIVATE OPTIMIZATION

Let us start by recalling the definition of (ϵ, δ)-Differential Privacy:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Definition 1 ((ϵ, δ)-DP (Dwork & Roth, 2014)) A randomized mechanism M is said to be (ϵ, δ)-
differentially private if for any two neighboring datasets D,D′ (D,D′ differ only by one sample)
and for any measurable output set S , it holds that Pr[M(D) ∈ S] ≤ eϵPr[M(D′) ∈ S] + δ.

A widely used approach to achieving differential privacy (DP) when solving ERM problem (1) is
to employ differentially private stochastic gradient descent (Abadi et al., 2016) and its variants,
such as DP-Adam and DP-Lora (Yu et al., 2021). To ensure DP, DPSGD leverages the Gaussian
mechanism (Dwork & Roth, 2014; Abadi et al., 2016), injecting carefully calibrated Gaussian noise
into the gradients at each iteration of the optimization process. This noise injection effectively masks
the contribution of individual data points, thereby providing the desired privacy guarantee.

Definition 2 (Gaussian Mechanism (Dwork & Roth, 2014; Balle & Wang, 2018)) Suppose
an algorithm A : D → Rd has ℓ2 sensitivity ∆A, i.e., maxD,D′ ∥A(D)−A(D′)∥ ≤ ∆A.
Then, for any ϵ > 0 and δ ∈ [0, 1], by adding a carefully chosen random Gaussian
noise to the output of the algorithm, we can make the algorithm (ϵ, δ)-DP. More specif-
ically, the mechanism M(x) = A(x) + w,with w ∼ N (0, σ2

DPId) and σDP satisfies

Φ
(

∆A
2σDP

− ϵσDP
∆A

)
− eϵΦ

(
− ∆A

2σDP
− ϵσDP

∆A

)
≤ δ is (ϵ, δ)-DP, where Φ(t) = P[N (0, 1) ≤ t] is

the cumulative density function of normal distribution.

Algorithm 1 DPSGD algorithm

Input: x0,D, C, η, σDP
for t = 0, . . . , T − 1 do

Uniformly draw minibatch Bt from D
gt =

1
B

∑
ξ∈Bt clip (∇f(xt; ξ), C) +wt

where wt ∼ N (0, σ2
DP · Id)

xt+1 = xt − ηtgt,
end for

The DPSGD algorithm, outlined in Algo-
rithm 1, operates by first sampling a mini-batch
Bt of size B and computing the per-sample gra-
dients at each iteration t. To guarantee differen-
tial privacy, it then applies the Gaussian mecha-
nism, which involves clipping each per-sample
gradient to bound its sensitivity to a maximum
value C and subsequently injecting Gaussian
noise. The clipping operation clip (∇f, C) =

min
{
1, C

∥∇f∥

}
· ∇f, often implemented by scaling the gradient when its norm exceeds C, limits

the influence of any single data point, while the added noise further masks individual contributions,
ensuring the desired privacy level (Abadi et al., 2016).

Theorem 1 (Privacy Guarantee (Abadi et al., 2016)) Given the number of samples N , the batch-
size B, total number of iterations T and clipping threshold C, there exist positive constants u, v,
such that for any ϵ < uB2T

N2 and 0 < δ, by choosing σ2
DP ≥ v

C2T ln(1
δ)

N2ϵ2 , Algorithm 1 is (ϵ, δ)-DP.

Theorem 1 implies that the variance of the DP noise injected into the gradients, E[∥wt∥2] = dσ2
DP,

scales linearly with both the number of iterations T and the number of parameters d. This presents
a significant challenge in modern deep learning, where models size d is large (e.g., 22M -632M for
ViT (Dosovitskiy et al., 2020), 137M -1.6B for GPT-2 (Radford et al., 2019)) and require extensive
training (e.g., 300K for ViT (Dosovitskiy et al., 2020) and 250K for training Llama (Touvron et al.,
2023)). Consequently, the magnitude of the injected DP noise can become substantial, leading to a
considerable degradation in model performance.

2.3 KALMAN FILTER

The Kalman filter is a powerful algorithm that provides estimates of unknown variables by iteratively
incorporating a series of measurements over time (Kalman, 1960; Welch et al., 1995). To illustrate
its application, let us consider a linear dynamic system characterized by the System update and
Observation equations:

θt = Aθt−1 + ut + vt, (System update)
ψt = Cθt +wt, (Observation)

(2)

where A ∈ Rdθ×dθ , C ∈ Rdψ×dθ are the transition and observation matrices; θt ∈ Rdθ is the
unknown variable to be tracked/estimated; ψt ∈ Rdψ denotes the observation of the system; ut ∈
Rdθ denotes the known input; and vt ∈ Rdθ ,wt ∈ Rdψ are the process and observation noises that
follow Gaussian distribution N (0,Σv),N (0,Σw), respectively. Then, the Kalman filter uses the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

following updates to track {θt} (Kalman, 1960; Welch et al., 1995):
θ̃t|t−1 = Aθ̃t−1 + ut (Prediction)

Pt|t−1 = APt−1A
⊤ +Σv

Kt = Pt|t−1C
⊤(CPt|t−1C

⊤ +Σw)−1

θ̃t = (Idθ −KtC)θ̃t|t−1 +Ktψt (Correction)

Pt = (Idθ −KtC)Pt|t−1.

(3)

The filter first predicts the state θ̃t|t−1 by system dynamics, and compute the filter gain Kt ∈
Rdθ×dψ based on the covariance matrix Pt ∈ Rdθ×dθ , and corrects the prediction with system
observation ψt to obtain the estimate θ̃t at time t . The Kalman filter makes use of both the noisy
observation and the prior knowledge of the system dynamics to obtain an accurate estimation of the
state θt.

A key innovation of this work is to treat the privatized gradients in the DP optimization as noisy
observations of the true underlying gradients. By constructing gradient dynamics using Taylor ex-
pansion, we establish a framework for applying the Kalman filter to refine these noisy observations
and obtain more accurate gradient estimates. To ensure practical applicability for large-scale mod-
els, we simplify the Kalman filter, significantly reducing its memory and computational footprint.
These improved gradient estimates ultimately lead to enhanced performance in differentially private
optimizers.

2.4 RELATED WORKS

Optimization with filters and controllers: The use of filters and controllers in designing and
analyzing optimization algorithms has a rich history. Researchers have leveraged high-pass and
low-pass filters to enhance gradient estimation in zeroth-order optimization (Chen et al., 2022),
employed PID controllers for both centralized and distributed optimization (Wang et al., 2020b), and
analyzed optimizers through the lens of control theory, treating them as dynamic systems (Lessard
et al., 2016; Hu & Lessard, 2017; Muehlebach & Jordan, 2019; Mohammadi et al., 2024; Badithela
& Seiler, 2019; Cyrus et al., 2018; Scherer et al., 2023; Zhang et al., 2023).

Kalman filter for optimization: The Kalman filter has been utilized in convex optimization for re-
ducing stochastic gradient noise (Bittner & Pronzato, 2004; Vuckovic, 2018). Vuckovic (2018) uses
the dynamics of the optimization variable and the gradient to construct the Kalman filter to analyze
and improve the performance of momentum methods. Bittner & Pronzato (2004) uses gradient and
Hessian as its states to construct the dynamic system for SGD to construct a stopping rule. However,
these approaches, with their direct application of the Kalman filter, incur prohibitively high compu-
tational and memory costs, ranging from O(d3) to O(d6), rendering them impractical for training
large-scale machine learning models.

Improving DP optimization: Numerous techniques have been proposed to enhance DP optimiza-
tion by mitigating the impact of DP noise. These include adaptive gradient clipping methods that
dynamically adjust clipping thresholds (Andrew et al., 2021; Bu et al., 2024), parameter-efficient
training strategies employing adapters, low-rank weights, or quantization (Yu et al., 2021; Luo et al.,
2021; Yu et al., 2021), and the design of specialized model architectures less susceptible to noise
perturbations (De et al., 2022; Papernot et al., 2021; Wang et al., 2020a). Furthermore, drawing
inspiration from signal processing, researchers have explored the use of colored high-frequency DP
noise to separate it from the gradient (Koloskova et al., 2023) and the application of low-pass filters
to extract the gradient signal from noisy observations (Zhang et al., 2024a).

3 ALGORITHM DESIGN

This section introduces the general Noise Reduction for Differentially Private Optimizers with
Simplified Kalman Filter (DiSK) framework. This approach leverages the inherent dynamics of
the gradient and employs Kalman filtering to obtain denoised estimates of the true gradients from
their noisy, privatized counterparts. To enhance its practicality for modern deep learning, Section 3.2
details a simplified version of the Kalman filter updates, designed for memory and computational
efficiency.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

3.1 GRADIENT DYNAMIC AND KALMAN FILTER

To explain our idea of using the Kalman filter for denoising the gradient, let us start by first establish-
ing a dynamic system for the gradients, comprising a “system update” equation and an “observation”
equation: The system update of the gradient dynamics can be derived by the Taylor expansion and
quantifying the change of the gradient at iteration t:

∇F (xt) = ∇F (xt−1) +Ht · (xt − xt−1) + vt, (4)
where Ht := ∇2F (xt−1) ∈ Rd×d and vt = 1

2

∫ 1

0
∇3F (xt−1)(zxt + (1 − z)xt−1)

⊗2dz is the
remainder and (·)⊗ denotes the tensor vector product. The observation of the system is defined as
the privatized gradient gt, which is a stochastic mapping of the true gradient:

gt =
1

B

∑
ξ∈Bt

clip (∇f(xt, ξ), C) +wt = Ct∇F (xt) +w′
t, (5)

where w′
t is the observation noise containing the DP noise and sub-sampling noise; Ct is the obser-

vation matrix. If the clipping operation is inactive and B = D, i.e., the full batch gradient is used,
then Ct = Id. Otherwise, Ct depends on the clipping factor and the mini-batch B. Combining the
system update (4) and the observation (5), we can model the system dynamic of the gradient as:

∇F (xt) = ∇F (xt−1) +Ht(xt − xt−1) + vt, (System update)

gt = Ct∇F (xt) +w′
t. (Observation)

(6)

Let us compare our dynamic system with the general one in (2): In our dynamic system, the gradient
∇F (xt) plays the role of the state θt. Other parameters in (2) have the following correspondence
to gradient dynamics: A = Id,C = Ct, the input ut = Ht(xt − xt−1), and the observation
ψt = gt. With the above mapping, we can apply the Kalman filter that combines the system update
and the observation of the gradient to improve the overall estimation quality of the actual gradient
beyond only using the observation gt. However, there are two key challenges when applying Kalman
filter to (6): 1) the input Ht(xt − xt−1) is hard to obtain as computing the Hessian matrix Ht is
challenging for large models, and we can only approximate Ht(xt−xt−1), resulting in a noisy input;
2) the observation matrix Ct is an unknown time-varying random matrix, resulting a multiplicative
observation noise. Due to these differences, the traditional Kalman filter (Kalman, 1960) cannot be
directly applied. Instead, we apply the Kalman filter with noisy input and multiplicative observation
noise proposed in Wu et al. (2016) to our system (6), leading to the update rules:

g̃t|t−1 = g̃t−1 + H̃t(xt − xt−1) (Prediction)

Pt|t−1 = Pt−1 +ΣH +Σv

Kt = Pt|t−1E[Ct]
⊤ (Σw + E[Ct]

(
ΣCSt +Pt|t−1

)
E[Ct]

⊤ − ΣH

)−1

g̃t = (I−KtE[Ct])g̃t|t−1 +Ktgt (Correction)

Pt = (I−KtE[Ct])Pt|t−1

St= E[g̃tg̃
⊤
t],

where Pt denotes the covariance matrix of g̃t, ΣH,Σw,ΣC,Σv denote the covariance matrices
of the random variables Ht,wt,Ct,vt, respectively, and H̃t is an instantiation/observation of the
unknown Hessian matrix Ht. The difference between the above Kalman filter and the original
Kalman filter (3) is highlighted in magenta color. The variance of the Hessian H̃t plays a role in
updating Pt|t−1,Kt, and the expectation E[Ct] of the random observation matrix Ct is used for the
updates and its variance ΣC also appears in the update of Kt. Compared to the noisy gradient gt,
the output of the Kalman filter g̃t has a smaller variance, resulting in improved performance when
used in DP optimizers.

The resulting optimizer with the Kalman filter is given in Algorithm 2. The hyper-parameters of the
Kalman filter are the expected observation matrix E[C] and the variances of the noises in the system,
i.e., σ2

w,ΣC,ΣH. Here, we dropped subscript t for Ct for simplicity in our modeling.

3.2 ALGORITHM SIMPLIFICATION

While Algorithm 2 provides a general framework for applying Kalman filtering to various opti-
mizers, it faces significant challenges in terms of computational and memory demands. Specifically,
accurately computing the Hessian matrix (H) for large models under DP constraints is infeasible, the
matrix inversion step introduces a cubic computational complexity (O(d3)), and storing the covari-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Algorithm 2 Optimizer with Kalman Filter
1: Input: x0,D, η,E[C], σ2

w,ΣC,ΣH

2: Initialize: g̃−1 = 0,d−1 = 0,P−1 = σ2
wId

3: for t = 0, . . . , T − 1 do
4: Randomly draw minibatch Bt from D
5: Compute privatized gradient gt =

1
B

∑
ξ∈Bt clip (∇f(xt; ξ), C) +wt # Gradient

observation
6: g̃t|t−1 = g̃t−1 +Htdt−1 # Prediction
7: Pt|t−1 = Pt−1 +ΣH

8: Kt = Pt|t−1 E[C]⊤
(
E[C](Pt|t−1 +ΣCg̃tg̃

⊤
t)E[C]⊤ + σ2

wId − ΣH

)−1
Compute gain

9: g̃t = g̃t|t−1 +Kt(gt − E[C]g̃t|t−1) # Compute denoised private gradient
10: xt+1 = OptimizerUpdate(xt, η, g̃t) # Parameter update
11: dt = xt+1 − xt # Record update direction
12: Pt = (I−Kt E[C])Pt|t−1 # Update covariance matrix
13: end for

ance matrix (Pt) at each iteration requires quadratic memory (O(d2)). To address these limitations
and arrive at a practical and memory-efficient algorithm, we propose the following simplifications:

Constant Ct: We simplify the random matrix Ct to an identity matrix Id, and simply model the
randomness in the observation as additive noise only. This simplification is achieved in two steps
corresponding to the two sources of randomness in Ct. First, we remove the impact of clipping in
Ct. This is justified when 1) the clipping threshold C is large enough so that clipping is inactive; or
when 2) the clipped gradient ∇FC(x) has zero curl, so that our method optimizes FC(x), where

FC(x) =

∫ 1

0

∇FC(zx)
⊤xdz, ∇FC(x) =

1

N

∑
ξ∈D

clip (∇f(x; ξ), C) . (7)

Under this assumption, the minibatch clipped gradient 1
B

∑
ξ∈B clip (∇f(x, ξ), C) is an unbiased

estimation of ∇FC(x). Thus, E[Ct] = Id. Second, the randomness of sub-sampling in Ct is
removed by assuming that the sub-sampled mini-batch gradient only causes additive noise, i.e.,
1
B

∑
ξ∈B clip (∇f(x, ξ), C) = ∇FC(x) +wSGD, so that C = Id and ΣC = 0.

Hessian estimation: We apply the following “trick” to bypass the explicit computation of the Hes-
sian matrix, Ht: we approximate the Hessian-vector product, Ht(dt−1), using a finite difference
method (Pearlmutter, 1994):

Htdt−1 =
∇F (xt + γdt−1)−∇F (xt)

γ
+O(γ) ≈ 1

B

∑
ξ∈B

∇f(xt + γdt−1; ξ)−∇f(xt; ξ)

γ
.

This estimation eliminates the need for expensive Hessian computations and significantly reduces
both memory and computational complexity.

Simplification of ΣH : A few matrix computation steps in Algorithm 2 are extremely time-
consuming and memory inefficient. Specifically, the matrix inversion in Line 8 of Algorithm 2
incurs a cubic computational cost (O(d3)), which becomes prohibitive for large models with bil-
lions of parameters. Therefore, we simplify the algorithm by assuming that the covariance matrix in
the Kalman filter is a time-invariant identity matrix scaled with a constant, i.e., ΣH = σ2

HId. Under
this assumption, the matrices Pt and Kt become ptId, ktId, for some scalars pt, kt. Thus, we re-
duce all matrix computations to efficient scalar-vector multiplications and the memory complexity
storing these matrices to O(1), making our algorithm a viable option for DP training of large-scale
models.

Filter gain simplification: With the above simplification, the updates of pt, kt simplify to pt =
(σ2

w−σ2
H)(pt−1+σ2

v+σ2
H)

pt−1+σ2
v+σ2

w
, kt =

pt−1+σ2
v+σ2

H

pt−1+σ2
v+σ2

w
. Therefore, kt converges to its stable value with a linear

rate, i.e., ∥kt − k∞∥ = O(ctk), where ck =
2σ2

w+3σ2
H+σ2

v−
√

(σ2
v+σ2

H)(4σ2
w+σ2

v−3σ2
H)

2σ2
w+3σ2

H+σ2
v+

√
(σ2

v+σ2
H)(4σ2

w+σ2
v−3σ2

H)
∈ (0, 1) (see

derivations in Appendix A.3). So we can use constant kt = κ,∀ t to further simplify the algorithm
and avoid iteratively updating pt and recomputing kt for each step.

With the above simplifications, the complex Algorithm 2 simplifies to DiSK in Algorithm 3. For a
detailed walkthrough of this simplification process, please refer to Appendix A.3. This simplified
algorithm computes and privatizes the linear combination of the gradient evaluated at two points,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Algorithm 3 DiSK: Differentially private optimizer with Simplified Kalman filter
1: Input: x0,D, η, γ, κ, C, σDP

2: Initialize: g̃−1 = g0,d−1 = 0
3: for t = 0, . . . , T − 1 do
4: Randomly draw minibatch Bt from D
5: gt =

1
B

∑
ξ∈Bt clip

(
1−κ
κγ ∇f(xt + γdt−1; ξ) + (1− 1−κ

κγ)∇f(xt; ξ), C
)
+wt

where wt ∼ N (0, σ2
DP · Id)

6: g̃t = (1− κ)g̃t−1 + κgt # Apply Kalman filter
7: xt+1 = OptimizerUpdate(xt, η, g̃t) # Update model
8: dt = xt+1 − xt # Record update direction
9: end for

xt,xt+γdt. Then, this privatized combination undergoes exponential weighted averaging to obtain
g̃t, which serves as the input to the base optimizer (Line 7 of Algorithm 3).

3.3 ADDITIONAL DISCUSSION

Memory and computation cost: Compared with the base DP optimizer, Algorithm 3 requires
one additional forward step to compute f(xt + γdt−1; ξ). This means that the algorithm has at
most twice the computational cost of the baseline DP-SGD algorithm. Moreover, Algorithm 3 only
requires two additional states to store: g̃t and dt. Compared to DPSGD, which requires storing the
model and the gradient, DiSK has at most twice the memory cost; and compared to DPAdam, which
requires storing the first- and second-order moments, the algorithm has at most 1.5× the memory
cost.

Connection to NAG and STORM: Remarkably, Algorithm 3 has an implicit connection to the (uni-
fied) Nesterov accelerated gradient (NAG) method (Shen et al., 2023; Sutskever et al., 2013) and the
Stochastic Recursive Momentum (STORM) algorithm (Cutkosky & Orabona, 2019). Specifically,
by letting the OptimizerUpdate be SGD, assuming clipping is inactive, and setting wt = 0 (i.e.,
without privatizing the gradient) in Algorithm 3, we can make a clear connection: On one hand,
DiSK reduces to NAG by choosing γ = 1−κ

κ , η = κ, 1 − κ = µ, and B = N . On the other hand,
the update of DiSK matches STORM by choosing γ = −1, κ = α, and B = 1. A detailed deriva-
tion and discussion is provided in Appendix A.4. This observation reveals an intriguing connection
between NAG (designed for acceleration) and STORM (focused on variance reduction), unifying
them within the framework of DiSK, a Kalman filtering-based algorithm.

Connection to DOPPLER: DOPPLER (Zhang et al., 2024a) and DiSK both use a filter to separate
the gradient signal from the DP noise. If gt only evaluates the gradient at xt instead of using the
linear combination of gradients at two points, xt,xt+γdt−1 in Algorithm 3, Line 5, DiSK becomes
DOPPLER with a first-order filter. The key difference is that DOPPLER assumes an underlying
low-frequency dynamic of the gradient and applies a time-invariant low-pass filter. Designing the
optimal low-pass filter relies on the prior knowledge of the gradient frequency spectrum, which
is hard to obtain in practice, and implementing such a high-order low-pass filter results in a large
memory overhead. While in DiSK, we do not assume the frequency property of the gradient signal.
Instead, we incorporate the gradient dynamics into the filtering procedure and use the Kalman filter,
a predictive filtering approach, to reduce the impact of DP noise.

4 THEORETICAL ANALYSIS

This section includes theoretical analyses of Algorithm 3. Our study establishes the convergence,
provable noise reduction, and the privacy-utility trade-off of the algorithm. To facilitate our analysis,
we make the following assumptions:

A 1 (Smoothness) f(·, ξ) is L-smooth for any ξ, i.e., ∥∇f(x; ξ)−∇f(y; ξ)∥ ≤ L ∥x− y∥ , ∀ξ ∈
D, ∀x,y ∈ Rd.

A 2 (Bounded Variance) The per-sample gradient has bounded variance with
Eξ∈D ∥∇f(x; ξ)−∇F (x)∥2 ≤ σ2

SGD, ∀x ∈ Rd, where Eξ∈D[·] denotes the expectation
taken on the randomness over ξ that is uniformly sampled from dataset D.

A 3 (Bounded Gradient) Each per-sample gradient has a bounded norm, i.e., ∥∇f(x; ξ)∥ ≤
G, ∀x ∈ Rd,∀ξ ∈ D.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Let us briefly comment on these assumptions: A1 and A2 are standard in non-convex optimiza-
tion (Allen-Zhu & Hazan, 2016; Zaheer et al., 2018; Abadi et al., 2016); and A3 is commonly used
in analyzing the convergence of DP algorithms (Abadi et al., 2016; Wang et al., 2020a; Andrew
et al., 2021) to avoid introducing the clipping bias. Since the impact of clipping is not the major
focus of this paper, we follow this tradition and use A3 to simplify our theoretical analysis.

4.1 CONVERGENCE ANALYSIS

We provide the following convergence results for Algorithm 3, assuming σDP being a constant.

Theorem 2 Assume A1-A3 hold. Fix σ2
DP and choose C ≥ (1 + 2(1−κ)

κ)G, κ, η satisfy

η <
1 + κ

2L(1 + 2(1− κ)2βL(2 + |1 + γ|Cγ))
, κ > 1− 1√

1 + 4η2L2 + |1 + γ| (κ+ 2η2L2Cγ)
,

and run Algorithm 3 for T iterations. Then,
1

T

T∑
t=0

E ∥∇F (xt)∥2 ≤ 2(F (x0) + β ∥∇F (x0)∥2 − F ⋆)

C1ηT

+
2(β + η2L)κ2

C1η

(
(2 + |1 + γ|)σ2

SGD

B
+ dσ2

DP

)
, (8)

where Cγ = 1+ 4(2+1/κ+|1+γ|)
γ2 , C1 = (1+κ−2ηL)−4(β+η2L)(1−κ)2L2η (2 + |1 + γ|Cγ) > 0,

and β ≥ η(1−κ)/2+η2L(1−κ)2(1+4η2L2+|1+γ|(κ+2η2L2Cγ))
1−(1−κ)2(1+4η2L2+|1+γ|(κ+2η2L2Cγ))

≥ 0 are some non-negative constants.

The proof of Theorem 2 is relegated to Appendix B. Notice that when κ = 1, we have β = 0, C1 =
2(1− ηL) and the convergence result recovers that of DPSGD (Ghadimi & Lan, 2013; Zhang et al.,
2017). With this theorem, we can choose specific parameters and obtain the following corollary:

Corollary 1 Under the conditions of Theorem 2, choose γ = −1,

η = min

 1

L(2 + 4/Cκ − Cκ)
,

1

CκL

√
2CκL(F (x0)− F ⋆) + ∥∇F (x0)∥2

T (2σ2
SGD/B + dσ2

DP)

 ,

β =
η(1− κ)/2 + η2L(1− κ)2(1 + 4η2L2)

1− (1− κ)2(1 + 4η2L2)
≤ 1

2CκL
,

κ = CκLη ≤ 1, and Cκ = min

{
∥∇F (x0)∥2

2L(F (x0)− F ⋆)
, 1

}
,

then Algorithm 3 satisfies:
1

T

T∑
t=0

E[∥∇F (xt)∥2] ≤ 4

√
CκL(F (x0)− F ⋆))(2σ2

SGD/B + dσ2
DP)

T
= O

(√
d

T

)
. (9)

Convergence improvement: The above result implies that the order of the number of iterations T
needed for convergence of Algorithm 3 is the same as of DPSGD (Ghadimi & Lan, 2013; Zhang
et al., 2017). However, Algorithm 3 has a constant factor improvement in the upper bound of its
iteration complexity over DPSGD. This improvement results from the presence of Cκ ≤ 1 in the
numerator in the RHS of (9). More specifically, if Cκ < 1, i.e., ∥∇F (x0)∥2 < 2L(F (x0) − F ⋆),

then the convergence bound reduces by a factor of
√

1/Cκ, and DiSK has clear theoretical im-
provement over vanilla DPSGD. Case I: For (µ-strongly) convex problems, it is guaranteed that
2µ(F (x0)−F ⋆) ≤ ∥∇F (x0)∥2 ≤ 2L(F (x0)−F ⋆). Therefore, the factor Cκ ∈ [µ/L, 1]. Case II:
When training highly non-convex deep learning models, the Lipschitz constant L can be large (Her-
rera et al., 2020), and 2L(F (x0) − F ⋆) can be much larger than ∥∇F (x0)∥2, which results in a
considerable algorithm performance improvement compared to vanilla DPSGD.

While the above corollary is for the case of γ = −1, we can obtain performance improvement
for γ ̸= −1 as well. The choice γ = −1 is optimized for the worst case (function satisfying our
assumptions) based on our upper-bound in (8). However, it is possible that for functions satisfying
additional assumptions, other choices of γ lead to better convergence results. This fact is further
explained after presenting the proof of the theorem in Appendix B.2.

As the last remark in this subsection, notice that our iteration complexity improvement does not
require any additional assumption on the problem. In contrast, existing works with convergence

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

improvement require additional assumptions, e.g., on the correlation between the gradients (Zhang
et al., 2024a), or on the trace of Hessian (Choquette-Choo et al., 2024; Li et al., 2022).

4.2 PRIVACY-UTILITY TRADE-OFF

To provide DP, the Subsampled Gaussian mechanism is used in Lines 4 and 5 of Algorithm 3.
Instead of ∇f(xt; ξ), we treat 1−κ

κγ ∇f(xt − γdt−1; ξ) + (1 − 1−κ
κγ)∇f(xt; ξ) as the per-sample

gradient and apply the Subsampled Gaussian mechanism to privatize it. Therefore, Algorithm 3
and DPSGD share a similar privacy guarantee, as the privacy proof directly follows the Subsampled
Gaussian mechanism and the composition of T iterations in Theorem 1. Specifically, by combining
Theorem 1 and Theorem 2, we obtain the following privacy-utility trade-off:

Theorem 3 Assume A1-A3 holds. Run Algorithm 3 for T =
√
2NϵσSGD

C
√

Bd ln(1/δ)
iterations, and choose

κ, β according to the choices in Corollary 1, then
1

T

T∑
t=0

E ∥∇F (xt)∥2 ≤
8CσSGD

√
CκL(F (x0)− F ⋆)d ln(1/δ)√

BNϵ
= O

(√
d ln(1/δ)

Nϵ

)
(10)

Similar to our convergence result, compared to vanilla DPSGD, the privacy-utility trade-off of Al-
gorithm 3 reduces by a constant factor of

√
1/Cκ. To the best of our knowledge, this is the first

theoretical result on the utility improvement of a DPSGD-type algorithm without any additional
assumptions on the problem.

5 NUMERICAL EXPERIMENTS

We perform extensive pre-training and fine-tuning experiments on various image classification (CV)
and natural language processing (NLP) tasks using different base algorithms, privacy budgets, and
models. The implementation details of the experiments are given in Appendix C.1. The link to the
code is https://anonymous.4open.science/r/KalmanDP-BEDB.

5.1 EXPERIMENT SETTINGS

Dataset: We train the models on one synthetic dataset, four CV datasets, including MNIST (Deng,
2012), CIFAR-10/CIFAR-100 (Krizhevsky et al., 2009), and ImageNet-1k (Deng et al., 2009),
and three NLP dataset, including GLUE (Wang et al., 2018), E2E (Novikova et al., 2017), and
DART (Nan et al., 2021).

Model: For the CV tasks, we use three different models, including a 5-layer CNN, WideResNet
(WRN) (De et al., 2022), and ViT (Dosovitskiy et al., 2020), representing three typical CV model
structures. For the NLP task, we use the RoBERTa (Liu et al., 2019) and the GPT-2 (Radford et al.,
2019) models. For pre-training, the models are initialized with random weights. In fine-tuning ViT,
RoBERTa, and GPT-2, we directly use the checkpoints on HuggingFace (Wolf et al., 2020).

Algorithm: We use the DP version of SGD and Adam for CV tasks, and AdamW for NLP tasks
as baselines. Then, we apply DiSK to compare their performance. Additional results on LoRA (Li
et al., 2021) are given in Appendix C.4. In the results, we use KF- to denote the privatized version
of the algorithms with DiSK. We use sample without replacement with fixed batch size.

Hyper-parameter choices: We tune the hyper-parameters using a grid search. Specifically, we
conduct a grid search on the batch size B, total epochs E = NT/B, and step size η for each
given privacy budget ϵ. For all experiments, we fix the privacy parameter δ = 1/N1.1 to obtain a
reasonable privacy notion. Detailed hyper-parameter choices are discussed in Appendix C.2.

5.2 NUMERICAL RESULTS

CV tasks: We first train the CV models with randomly initialized weights on different image
datasets. The results for 5-layer CNN on the MNIST dataset, 5-layer CNN on the CIFAR-10 dataset,
and WRN-16-4 on the CIFAR-100 datasets with different privacy budgets are given in Figure 1.
DiSK significantly outperforms the base algorithm across all used privacy budgets.

9

https://anonymous.4open.science/r/KalmanDP-BEDB

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

(a) MNIST (b) CIFAR-10 (c) CIFAR-100

Figure 1: Test accuracy of training from scratch on MNIST, CIFAR-10, and CIFAR-100 datasets
with and without DiSK for different privacy ϵ. The green lines show the improvement of DiSK.

(a) MNIST, ϵ = 0.5 (b) CIFAR-100, ϵ = 8 (c) ImageNet-1k, ϵ = 8

Figure 2: Test accuracy on MNIST, CIFAR-100, and validation accuracy on ImageNet-1k datasets
training from scratch with and without DiSK for fixed privacy budgets.

Table 1: Test accuracy of fine-tuning result on the GLUE dataset.

Task (ϵ = ∞) ϵ = 6.7 ϵ = 1
Non-DP DP KF-DP KF-DPLora DP KF-DP KF-DPLora

MNLI 87.6 83.2 84.8 85.9 80.7 82.0 84.7
QNLI 92.8 87.5 88.9 90.5 86.0 88.7 90.3
SST-2 94.8 91.5 92.8 93.1 91.4 91.5 92.9
QQP 91.9 85.8 88.5 89.0 84.2 86.9 87.8

The test accuracy curves during the training for 5-layer CNN on the MNIST dataset, WRN-16-4
on the CIFAR-100 dataset, and ViT-small on the ImageNet-1k dataset are given in Figure 2. The
optimizer with DiSK converges faster than the base algorithm on all tasks and reaches a higher final
accuracy at a given privacy budget. The test accuracy of CIFAR-100 achieves 41.8%, and ImageNet-
1k achieves 36.89%, which outperforms the SOTA results that apply data augmentation under the
same privacy budget (40.6% for CIFAR-100 (Bao et al., 2024) and 33.56% for ImageNet-1k (De
et al., 2022)). Additional comparisons on different models, algorithms, and fine-tuning CIFAR-100
are given in Appendix C.3.

NLP tasks: We fine-tune a pre-trained RoBERTa-base model1 on the GLUE datasets. The final
test accuracy for is given in Table 1. We follow the same training script and hyper-parameter
choices in the experiments as Bu et al. (2024). Compared with the base algorithm (DPAdamW),
DiSK improves the final accuracy on all tasks by at least 3.8% when ϵ = 1 and 1.3% when ϵ = 6.7.
Additional results for text generation tasks on the E2E ad DART datasets are given in Appendix C.4.

Ablation study: We conduct ablation studies on the choice of the hyper-parameters of DiSK, specif-
ically, how κ, γ impact the algorithm performance. The results are presented in Appendix C.3.

Improvements over the SOTA: Table 6 in Appendix C.5 summarizes the improvements of DiSK
over the SOTA on different tasks.

1https://huggingface.co/FacebookAI/roberta-base

10

https://huggingface.co/FacebookAI/roberta-base

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REPRODUCIBILITY STATEMENT

For the algorithm implementation, we provide a link to an anonymous downloadable source code in
Section 5. We also discussed the data, model, and algorithms used in the experiment in Section 5 and
in Appendix C. For our theoretical results provided in Section 4, we also include clear explanations
of the assumptions in the section. The complete proof of the theorems can be found in Appendix B.

BROADER IMPACT

This paper presents work that aims to advance the field of Machine Learning, combining optimiza-
tion with signal processing and control societies. There are many potential societal consequences of
our work, none of which we feel must be specifically highlighted here.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Zeyuan Allen-Zhu and Elad Hazan. Variance reduction for faster non-convex optimization. In
International conference on machine learning, pp. 699–707. PMLR, 2016.

Galen Andrew, Om Thakkar, Brendan McMahan, and Swaroop Ramaswamy. Differentially private
learning with adaptive clipping. Advances in Neural Information Processing Systems, 34:17455–
17466, 2021.

Apurva Badithela and Peter Seiler. Analysis of the heavy-ball algorithm using integral quadratic
constraints. In 2019 American control conference (ACC), pp. 4081–4085. IEEE, 2019.

Borja Balle and Yu-Xiang Wang. Improving the gaussian mechanism for differential privacy: Ana-
lytical calibration and optimal denoising. In International Conference on Machine Learning, pp.
394–403. PMLR, 2018.

Wenxuan Bao, Francesco Pittaluga, Vijay Kumar BG, and Vincent Bindschaedler. Dp-mix: mixup-
based data augmentation for differentially private learning. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Barbara Bittner and Luc Pronzato. Kalman filtering in stochastic gradient algorithms: construction
of a stopping rule. In 2004 IEEE International Conference on Acoustics, Speech, and Signal
Processing, volume 2, pp. ii–709. IEEE, 2004.

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Differentially private optimization on
large model at small cost. In International Conference on Machine Learning, pp. 3192–3218.
PMLR, 2023.

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Automatic clipping: Differentially pri-
vate deep learning made easier and stronger. Advances in Neural Information Processing Systems,
36, 2024.

Xin Chen, Yujie Tang, and Na Li. Improve single-point zeroth-order optimization using high-pass
and low-pass filters. In International Conference on Machine Learning, pp. 3603–3620. PMLR,
2022.

Christopher A Choquette-Choo, Krishnamurthy Dj Dvijotham, Krishna Pillutla, Arun Ganesh,
Thomas Steinke, and Abhradeep Guha Thakurta. Correlated noise provably beats independent
noise for differentially private learning. In The Twelfth International Conference on Learning
Representations, 2024.

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex sgd.
Advances in neural information processing systems, 32, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Saman Cyrus, Bin Hu, Bryan Van Scoy, and Laurent Lessard. A robust accelerated optimization
algorithm for strongly convex functions. In 2018 Annual American Control Conference (ACC),
pp. 1376–1381. IEEE, 2018.

Soham De, Leonard Berrada, Jamie Hayes, Samuel L Smith, and Borja Balle. Unlock-
ing high-accuracy differentially private image classification through scale. arXiv preprint
arXiv:2204.13650, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
web]. IEEE signal processing magazine, 29(6):141–142, 2012.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition at scale. In International Confer-
ence on Learning Representations, 2020.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Theoretical
Computer Science, 9(3-4):211–407, 2014.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochas-
tic programming. SIAM journal on optimization, 23(4):2341–2368, 2013.

Calypso Herrera, Florian Krach, and Josef Teichmann. Estimating full lipschitz constants of deep
neural networks. arXiv preprint arXiv:2004.13135, 2020.

Bin Hu and Laurent Lessard. Dissipativity theory for nesterov’s accelerated method. In International
Conference on Machine Learning, pp. 1549–1557. PMLR, 2017.

Yuhang Hu, Zhou Tan, Xianxian Li, Jinyan Wang, et al. Adaptive clipping bound of deep learning
with differential privacy. In 2021 IEEE 20th International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom), pp. 428–435. IEEE, 2021.

Bargav Jayaraman and David Evans. Evaluating differentially private machine learning in practice.
In 28th USENIX Security Symposium (USENIX Security 19), pp. 1895–1912, 2019.

Peter Kairouz, Brendan McMahan, Shuang Song, Om Thakkar, Abhradeep Thakurta, and Zheng Xu.
Practical and private (deep) learning without sampling or shuffling. In International Conference
on Machine Learning, pp. 5213–5225. PMLR, 2021.

R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems. Journal of Basic
Engineering, 82(1):35–45, 03 1960. ISSN 0021-9223. doi: 10.1115/1.3662552. URL https:
//doi.org/10.1115/1.3662552.

Anastasiia Koloskova, Ryan McKenna, Zachary Charles, John Rush, and H Brendan McMahan.
Gradient descent with linearly correlated noise: Theory and applications to differential privacy.
Advances in Neural Information Processing Systems, 36, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Laurent Lessard, Benjamin Recht, and Andrew Packard. Analysis and design of optimization algo-
rithms via integral quadratic constraints. SIAM Journal on Optimization, 26(1):57–95, 2016.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can be
strong differentially private learners. In International Conference on Learning Representations,
2021.

Xuechen Li, Daogao Liu, Tatsunori B Hashimoto, Huseyin A Inan, Janardhan Kulkarni, Yin-Tat
Lee, and Abhradeep Guha Thakurta. When does differentially private learning not suffer in high
dimensions? Advances in Neural Information Processing Systems, 35:28616–28630, 2022.

12

https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Guanbiao Lin, Hongyang Yan, Guang Kou, Teng Huang, Shiyu Peng, Yingying Zhang, and Changyu
Dong. Understanding adaptive gradient clipping in dp-sgd, empirically. International Journal of
Intelligent Systems, 37(11):9674–9700, 2022.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Yuanyuan Liu, Jiacheng Geng, Fanhua Shang, Weixin An, Hongying Liu, Qi Zhu, and Wei Feng.
Laplacian smoothing stochastic admms with differential privacy guarantees. IEEE Transactions
on Information Forensics and Security, 17:1814–1826, 2022.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In Interna-
tional Conference on Learning Representations, 2022.

Zelun Luo, Daniel J Wu, Ehsan Adeli, and Li Fei-Fei. Scalable differential privacy with sparse
network finetuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 5059–5068, 2021.

H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private
recurrent language models. In International Conference on Learning Representations, 2018.

Harsh Mehta, Abhradeep Guha Thakurta, Alexey Kurakin, and Ashok Cutkosky. Towards large
scale transfer learning for differentially private image classification. Transactions on Machine
Learning Research, 2023.

Hesameddin Mohammadi, Meisam Razaviyayn, and Mihailo R Jovanović. Tradeoffs between con-
vergence rate and noise amplification for momentum-based accelerated optimization algorithms.
IEEE Transactions on Automatic Control, 2024.

Michael Muehlebach and Michael Jordan. A dynamical systems perspective on nesterov accelera-
tion. In International Conference on Machine Learning, pp. 4656–4662. PMLR, 2019.

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit Rau, Abhinand Sivaprasad, Chiachun Hsieh,
Xiangru Tang, Aadit Vyas, Neha Verma, Pranav Krishna, Yangxiaokang Liu, Nadia Irwanto,
Jessica Pan, Faiaz Rahman, Ahmad Zaidi, Mutethia Mutuma, Yasin Tarabar, Ankit Gupta, Tao
Yu, Yi Chern Tan, Xi Victoria Lin, Caiming Xiong, Richard Socher, and Nazneen Fatema Ra-
jani. DART: Open-domain structured data record to text generation. In Proceedings of the 2021
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 432–447, Online, June 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.naacl-main.37. URL https://aclanthology.org/
2021.naacl-main.37.

Jekaterina Novikova, Ondrej Dušek, and Verena Rieser. The E2E dataset: New challenges for end-
to-end generation. In Proceedings of the 18th Annual Meeting of the Special Interest Group on
Discourse and Dialogue, Saarbrücken, Germany, 2017. URL https://arxiv.org/abs/
1706.09254. arXiv:1706.09254.

Nicolas Papernot, Abhradeep Thakurta, Shuang Song, Steve Chien, and Úlfar Erlingsson. Tem-
pered sigmoid activations for deep learning with differential privacy. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pp. 9312–9321, 2021.

Jinseong Park, Hoki Kim, Yujin Choi, and Jaewook Lee. Differentially private sharpness-aware
training. In International Conference on Machine Learning, pp. 27204–27224. PMLR, 2023.

Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):147–160,
1994.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Maria Isabel Ribeiro. Kalman and extended kalman filters: Concept, derivation and properties.
Institute for Systems and Robotics, 43(46):3736–3741, 2004.

13

https://aclanthology.org/2021.naacl-main.37
https://aclanthology.org/2021.naacl-main.37
https://arxiv.org/abs/1706.09254
https://arxiv.org/abs/1706.09254

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Carsten W Scherer, Christian Ebenbauer, and Tobias Holicki. Optimization algorithm synthesis
based on integral quadratic constraints: A tutorial. In 2023 62nd IEEE Conference on Decision
and Control (CDC), pp. 2995–3002. IEEE, 2023.

Li Shen, Congliang Chen, Fangyu Zou, Zequn Jie, Ju Sun, and Wei Liu. A unified analysis of
adagrad with weighted aggregation and momentum acceleration. IEEE Transactions on Neural
Networks and Learning Systems, 2023.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In International conference on machine learning, pp.
1139–1147. PMLR, 2013.

Qiaoyue Tang, Frederick Shpilevskiy, and Mathias Lécuyer. Dp-adambc: Your dp-adam is actually
dp-sgd (unless you apply bias correction). In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 15276–15283, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Florian Tramer and Dan Boneh. Differentially private learning needs better features (or much more
data). arXiv preprint arXiv:2011.11660, 2020.

James Vuckovic. Kalman gradient descent: Adaptive variance reduction in stochastic optimization.
arXiv preprint arXiv:1810.12273, 2018.

Eric A Wan and Rudolph Van Der Merwe. The unscented kalman filter. Kalman filtering and neural
networks, pp. 221–280, 2001.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, pp. 353–355, 2018.

Bao Wang, Quanquan Gu, March Boedihardjo, Lingxiao Wang, Farzin Barekat, and Stanley J Os-
her. Dp-lssgd: A stochastic optimization method to lift the utility in privacy-preserving erm. In
Mathematical and Scientific Machine Learning, pp. 328–351. PMLR, 2020a.

Haoqian Wang, Yi Luo, Wangpeng An, Qingyun Sun, Jun Xu, and Lei Zhang. Pid controller-
based stochastic optimization acceleration for deep neural networks. IEEE transactions on neural
networks and learning systems, 31(12):5079–5091, 2020b.

Wenxiao Wang, Tianhao Wang, Lun Wang, Nanqing Luo, Pan Zhou, Dawn Song, and Ruoxi Jia.
Dplis: Boosting utility of differentially private deep learning via randomized smoothing. Pro-
ceedings on Privacy Enhancing Technologies, 4:163–183, 2021.

Yu-Xiang Wang, Borja Balle, and Shiva Prasad Kasiviswanathan. Subsampled rényi differential
privacy and analytical moments accountant. In The 22nd international conference on artificial
intelligence and statistics, pp. 1226–1235. PMLR, 2019.

Greg Welch, Gary Bishop, et al. An introduction to the Kalman filter. Chapel Hill, NC, USA, 1995.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.emnlp-demos.6.

Yilin Wu, Qian Zhang, and Zhiping Shen. Kalman filtering with multiplicative and additive noises.
In 2016 12th World Congress on Intelligent Control and Automation (WCICA), pp. 483–487.
IEEE, 2016.

14

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan
Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Differentially private fine-tuning
of language models. In International Conference on Learning Representations, 2021.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive meth-
ods for nonconvex optimization. Advances in neural information processing systems, 31, 2018.

Jiaqi Zhang, Kai Zheng, Wenlong Mou, and Liwei Wang. Efficient private erm for smooth objec-
tives. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp.
3922–3928, 2017.

Xinwei Zhang, Mingyi Hong, and Nicola Elia. Understanding a class of decentralized and federated
optimization algorithms: A multirate feedback control perspective. SIAM Journal on Optimiza-
tion, 33(2):652–683, 2023.

Xinwei Zhang, Zhiqi Bu, Mingyi Hong, and Meisam Razaviyayn. Doppler: Differentially private
optimizers with low-pass filter for privacy noise reduction. arXiv preprint arXiv:2408.13460,
2024a.

Xinwei Zhang, Zhiqi Bu, Steven Wu, and Mingyi Hong. Differentially private sgd without clip-
ping bias: An error-feedback approach. In The Twelfth International Conference on Learning
Representations, 2024b.

A ADDITIONAL DISCUSSION

A.1 BACKGROUND ON KALMAN FILTER

In this section, we provide an introduction and derivation of the Kalman filter. Kalman filter is
introduced in (Kalman, 1960) and widely used for control systems in accurately estimating system
states with noisy observation and known system dynamics. Kalman filter assumes the system is a
linear (time-invariant) system:

θt = Aθt−1 + ut + vt, (System update)
ψt = Cθt +wt, (Observation)

where A,C are known matrix, and vt ∼ N (0,Σv),wt ∼ N (,Σw) are independent white noise
following Gaussian distributions with known covariance matrices Σv,Σw, and ut is known input
signal. The goal of the Kalman filter is to estimate θt with the observation of ψt with the least
mean-square error and serves as the Best Linear Unbiased Estimator (BLUE) (Welch et al., 1995).

Derivation: First, we denote the estimation of θt as θ̃t, and the covariance of θt − θ̃t as
Pt = E[(θt − θ̃t)(θt − θ̃t)⊤].

Then, based on the knowledge at time t− 1, the system dynamics give an unbiased prediction:
θ̃t|t−1 = Aθ̃t−1 + ut, (11)

and its covariance is
Pt|t−1 = E[(θt − θ̃t|t−1)(θt − θ̃t|t−1)

⊤] = APt−1A
⊤ +Σv. (12)

With θ̃t|t−1, we have an (unbiased) prediction of the observation ψ̃t|t−1 = Cθ̃t|t−1 at time t − 1.
At time t, by observing ψt, we have the prediction error ∆ψt = ψt − ψ̃t|t−1 = ψt − Cθ̃t|t−1.
Since the system is linear, we would like to use the prediction error to correct the prediction:

θ̃t = θ̃t|t−1 +Kt∆ψt = Ktψt + (I−KtC)θ̃t|t−1. (13)

The goal of the Kalman filter is to minimize the mean-square error: minK E[
∥∥∥θt − θ̃t∥∥∥2], which is

equivalent to minimizing tr(Pt). From the definition of θ̃t, we have:
Pt = E[(θt − θ̃t)(θt − θ̃t)⊤]

= E[(θt −Ktψt + (I−KtC)θ̃t|t−1)(θt −Ktψt + (I−KtC)θ̃t|t−1)
⊤]

= E[(θt − θ̃t|t−1 −KtC(θt − θ̃t|t−1)−Ktwt)(θt − θ̃t|t−1 −KtC(θt − θ̃t|t−1)−Ktwt)
⊤]

= Pt|t−1 −KtCPt|t−1 − (KtCPt|t−1)
⊤ +Kt(CPt|t−1C

⊤ +Σw)K⊤
t .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Taking partial derivative to the trace of Pt with respect to Kt, and set it to zero, we have:
∂tr(Pt)

∂Kt
= −2(CPt|t−1)

⊤ + 2(CPt|t−1C
⊤ +Σw)K⊤

t = 0,

which gives
Kt = Pt|t−1C

⊤(CPt|t−1C
⊤ +Σw)−1. (14)

Substitute Kt back to Pt, we can simplify
Pt = Pt|t−1 −KtCPt|t−1 − (KtCPt|t−1)

⊤ +Kt(CPt|t−1C
⊤ +Σw)K⊤

t

= Pt|t−1 −KtCPt|t−1 = (I−KtC)Pt|t−1.
(15)

Combining (11)-(15) together, we have the update of the Kalman filter:
θ̃t|t−1 = Aθ̃t−1 + ut

Pt|t−1 = APt−1A
⊤ +Σv

Kt = Pt|t−1C
⊤(CPt|t−1C

⊤ +Σw)−1

θ̃t = (I−KtC)θ̃t|t−1 +Ktψt

Pt = (I−KtC)Pt|t−1.

Variants of Kalman filter: Kalman filter is designed for estimating the states following linear
dynamics and achieves optimal performance, i.e., gives the smallest mean square error of the esti-
mation when the system is linear (Welch et al., 1995). Extended Kalman filter (EKF) and unscented
Kalman filter (UKF) are developed to deal with non-linear systems. EKF linearizes the non-linear
system at each step and performs the Kalman filter on the linearized system (Ribeiro, 2004), while
UKF takes the effect of the system non-linearity to the noise distribution into consideration and ap-
plies the unscented transform on the noise distribution and applies the Kalman filter on the system
and the noise distribution (Wan & Van Der Merwe, 2001). Other extensions of the Kalman filter
have been developed for special cases, including multiplicative noise and noisy input ut (Wu et al.,
2016).

A.2 OTHER SYSTEM DYNAMICS FOR DPSGD

In this section, we would like to discuss other possible formulations of the system dynamics for
DPSGD to apply the Kalman filter.

Optimization variable and gradient version 1: Other than only using the gradients’ dynamics in
the main paper, we can construct the dynamic system with both the optimization variable x and the
gradient ∇F (x) as its states (Vuckovic, 2018):[

xt+1

∇F (xt+1)

]
=

[
I −ηI
0 I

] [
xt

∇F (xt)

]
+

[
ηwt

0

]
,

yt = xt.
However, this dynamic is inaccurate as the dynamics of the gradient are simplified to ∇F (xt+1) =
∇F (xt). Although the update can further incorporate with the momentum methods, i.e., by adding
a momentum mt into the system, it fails to reveal the actual dynamic of the system.

Optimization variable and gradient version 2: Instead of treating the gradient as a constant, we
can assume the Hessian H is a constant and utilize the Hessian to reveal the gradient dynamics:[

xt+1

xt

∇F (xt)

]
=

[
I− ηH ηH −ηI

I 0 0
H −H I

][
xt

xt−1

∇F (xt−1)

]
+

[
ηwt

0
0

]
,

yt = xt.
This system is more accurate in evaluating the gradient at the cost of using an extra xt−1 state and a
larger transition matrix. For non-linear problems F (x), where H is not a constant, we can apply the
extended Kalman filter and replace H with Ht that linearizes the problem at each step t.

Gradient and Hessian: In work (Bittner & Pronzato, 2004), the dynamics of the gradient and
Hessian have been used to construct the system:[

∇F (xt+1)
ht+1

]
=

[
I ∆Xt

0 I

] [
∇F (xt)

ht

]
,

gt = ∇F (xt) +wt,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

where ht = [H1,1, . . . ,Hi,i+j , . . . ,Hd,d]
⊤, with j ∈ [0, . . . , d − i] represents the entries in the

upper triangular part of the Hessian matrix. ∆Xt is constructed such that ∆Xtht = Ht(xt+1−xt).
The system treats the Hessian matrix as a constant matrix (i.e., ht+1 = ht), and the transition matrix
is of size (d+ d(d− 1)/2)× d+ d(d− 1)/2.

Although there are different ways to construct the Kamlan filter for gradient noise reduction, the
above systems are not implementable in practical deep-learning applications. Because the transition
matrices of these systems are non-diagonal, the Kalman filters have non-diagonal gain Kt and Pt.
Therefore, the matrix inversion operation is unavoidable when Kalman filters are implemented based
on these systems. The computation complexity for the matrix inversion can be O(d3) to O(d6), and
the memory consumption is O(d2) to O(d4) for storing the matrices of the Kalman filter.

A.3 ALGORITHM SIMPLIFICATION

In this section, we explain how the simplification proceeds from Algorithm 2 to Algorithm 3. Recall
that updates of Algorithm 2 is

g̃t|t−1 = g̃t−1 + H̃t(xt − xt−1) (Prediction)

Pt|t−1 = Pt−1 +ΣH +Σv

Kt = Pt|t−1 E[Ct]
⊤ (Σw + E[Ct]

(
ΣCSt +Pt|t−1

)
E[Ct]

⊤ − ΣH

)−1

g̃t = g̃t|t−1 +Kt(gt − E[Ct]g̃t|t−1) (Correction)

Pt = (I−Kt E[Ct])Pt|t−1

St = E[g̃tg̃
⊤
t],

where gt =
1
B

∑
ξ∈Bt clip (∇f(xt; ξ), C) +wt. We apply four steps of simplification, including

1. Replacing random Ct with constant Id.

2. Use finite difference to estimate Htdt−1.

3. Replace ΣH with diagonal matrix σ2
HId, Σv with σ2

vId, and Σw with σ2
wId.

4. Use fixed filter gain κI.

Step 1. By replacing Ct with Id, and ΣC = 0, the update becomes
g̃t|t−1 = g̃t−1 + H̃t · (xt − xt−1) (Prediction)

Pt|t−1 = Pt−1 +ΣH +Σv

Kt = Pt|t−1

(
Σw +Pt|t−1 − ΣH

)−1

g̃t = g̃t|t−1 +Kt(gt − g̃t|t−1) (Correction)

Pt = (I−Kt)Pt|t−1.

Step 2. By using the finite difference to estimate Htdt−1, the prediction step becomes:

g̃t|t−1 = g̃t−1 +
1

B

∑
ξ∈Bt

∇f(xt + γdt−1; ξ)−∇f(xt; ξ)

γ
(Prediction).

Step 3. By replacing Σ’s with diagonal matrix σ2Id’s, the update becomes:

g̃t|t−1 = g̃t−1 +
1

B

∑
ξ∈Bt

∇f(xt + γdt−1; ξ)−∇f(xt; ξ)

γ
(Prediction)

pt|t−1 = pt−1 + σ2
H + σ2

v,Pt|t−1 = pt|t−1Id

kt =
pt|t−1

pt|t−1 + σ2
w − σ2

H

=
pt−1 + σ2

H + σ2
v

pt−1 + σ2
w + σ2

v

,Kt = ktId

g̃t = g̃t|t−1 + kt(gt − g̃t|t−1) (Correction)

pt = (1− kt)pt|t−1 =
(σ2

w − σ2
H)(pt−1 + σ2

H + σ2
v)

pt−1 + σ2
w + σ2

v

.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Step 4. As discussed in the main paper, the update of kt, pt becomes:

kt =
pt−1 + σ2

H + σ2
v

pt−1 + σ2
w + σ2

v

,

pt =
(σ2

w − σ2
H)(pt−1 + σ2

H + σ2
v)

pt−1 + σ2
w + σ2

v

.

Therefore, solving the recurrence relation of the sequence {pt}, we have pt converges to

p∞ =

√
σ2
H+σ2

v

√
4σ2

w−3σ2
H+σ2

v−(σ2
H+σ2

v)

2 , kt converges to k∞ =
p∞+σ2

H+σ2
v

p∞+σ2
w+σ2

v
, with rate ck =

2σ2
w+3σ2

H+σ2
v−

√
(σ2

v+σ2
H)(4σ2

w+σ2
v−3σ2

H)

2σ2
w+3σ2

H+σ2
v+

√
(σ2

v+σ2
H)(4σ2

w+σ2
v−3σ2

H)
.

Figure 3: Convergence of kt, pt.

Therefore, we define κ = k∞ and replace kt with κ, and the update becomes:

g̃t|t−1 = g̃t−1 +
1

B

∑
ξ∈Bt

∇f(xt + γdt−1; ξ)−∇f(xt; ξ)

γ
(Prediction)

g̃t = g̃t|t−1 + κ(gt − g̃t|t−1) (Correction)
Rearrange the terms, we have:

g̃t = (1− κ)g̃t + κgt + (1− κ)
1

B

∑
ξ∈Bt

∇f(xt + γdt−1; ξ)−∇f(xt; ξ)

γ

= (1− κ)g̃t + κĝt, with

ĝt = gt +
1− κ

κ

1

B

∑
ξ∈Bt

∇f(xt + γdt−1; ξ)−∇f(xt; ξ)

γ

=
1

B

∑
ξ∈Bt

(
1− κ

κγ
∇f(xt + γdt−1; ξ) +

(
1− 1− κ

κγ

)
∇f(xt; ξ)

)
+wt,

where we substitute gt =
1
B

∑
ξ∈Bt clip (∇f(xt; ξ), C) +wt. Then, by privatizing ĝt and rename

it as gt, we have:

gt =
1

B

∑
ξ∈Bt

clip

(
1− κ

κγ
∇f(xt + γdt−1; ξ) +

(
1− 1− κ

κγ

)
∇f(xt; ξ), C

)
+wt

g̃t = (1− κ)g̃t + κgt,
which is the update of Algorithm 3 (Lines 5 and 6).

A.4 CONNECTION BETWEEN DISK AND NAG AND STORM

Algorithm 3 has an implicit connection to the (unified) Nesterov Accelerated Gradient (NAG)
method (Shen et al., 2023; Sutskever et al., 2013) and the Stochastic Recursive Momentum
(STORM) algorithm (Cutkosky & Orabona, 2019). The update of (half-shifted) NAG can be written
as (Sutskever et al., 2013):

mt = µmt−1 + η∇F (xt − µmt−1)

xt+1 = xt −mt,
(16)

and the update of STORM writes (Cutkosky & Orabona, 2019):
mt = (1− α)mt−1 + α∇f(xt, ξt) + (1− α)(∇f(xt, ξt)−∇f(xt−1, ξt))

xt+1 = xt − ηmt,
(17)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

In comparison, in Algorithm 3, by letting the update of OptimizerUpdate be SGD, and assuming
clipping is inactive, wt = 0, i.e., without DP, ϵ → ∞, the DiSK becomes:

g̃t = (1− κ)g̃t−1 +
κ

B

∑
ξ∈Bt

(
1− κ

κγ
∇f(xt + γdt−1; ξ) +

(
1− 1− κ

κγ

)
∇f(xt; ξ)

)
= (1− κ)g̃t−1 +

κ

B

∑
ξ∈Bt

∇f(xt; ξ) +
1− κ

Bγ

∑
ξ∈Bt

(∇f(xt + γdt−1; ξ)−∇f(xt; ξ))

xt+1 = xt − ηg̃t.

(18)

Comparing the above updates, we observe that (16) and (17) are two special cases of (18) with
specific choices of the parameters. Specifically, by letting γ = 1−κ

κ > 0, η = κ, 1−κ = µ, B = N ,
we have 1− 1−κ

κγ = 0, and the update of g̃t becomes g̃t = µg̃t−1 + η∇F (xt − µ
η g̃t−1), and DiSK

becomes NAG; on the other hand, by letting γ = −1, κ = α, B = 1, we have xt + γdt−1 =
xt − (xt − xt−1) = xt−1, and the update of g̃t becomes g̃t = (1− α)g̃t−1 + α∇f(xt; ξt) + (1−
α) (∇f(xt; ξ)−∇f(xt−1; ξ)), which matches the update of STORM. From this discussion, we see
that NAG and STORM, two algorithms for accelerated gradient and variance reduction, respectively,
can be unified by DiSK, an algorithm based on Kalman filtering.

With this discussion, we observe that the key difference between NAG and STORM is the choice of
γ. When γ > 0, the algorithm is close to NAG, which focuses on “exploring” and “accelerating”.
When γ < 0, the algorithm is close to STORM, which focuses on “exploiting” and “reducing
noise”.

B PROOF FOR SECTION 4

In this section, we provide detailed proof for the results in Section 4.

We will use the following inequalities in our proofs:

⟨a,b⟩ ≤ 1

2α
∥a∥2 + α

2
∥b∥2 , (19)

∥a+ b∥2 ≤ (1 + α) ∥a∥2 + (1 + 1/α) ∥b∥2 . (20)
In the following sections, we use Et to denote the expectation conditioned on all the information
before iteration t. To prove Theorem 2, we first provide the following lemma to bound the difference
between g̃t defined in Line 6 of Algorithm 3, and ∇F (xt). Let us define ∆t = ∇F (xt) − g̃t. We
have:

Lemma 1 Assume A1, A2, and A3 holds and choose C ≥
(
1 + 2(1−κ)

κ

)
G, we have:

Et ∥∆t∥2 ≤ (1− κ)2
(
1 + 4η2L2 + |1 + γ|

(
κ+ 2η2L2Cγ

))
∥∆t−1∥2

+ 2η2L2(1− κ)2 (2 + |1 + γ|Cγ) ∥∇F (xt−1)∥2

+ κ2

(
(2 + |1 + γ|)σ

2
SGD

B
+ dσ2

DP

)
, (21)

where we define Cγ =
(
1 + 4(2+1/κ+|1+γ|)

γ2

)
.

B.1 PROOF OF LEMMA 1

First notice that when choosing C ≥
(
1 + 2(1−κ)

κ

)
G, the clipping operation is inactive. By the

update of g̃t in Line 6 of Algorithm 3, we have:
Et ∥∆t∥2

= Et

∥∥∥∥∥∥∇F (xt)− (1− κ)g̃t−1 −
κ

B

∑
ξ∈Bt

∇f(xt, ξ)− κwt

−1− κ

γB

∑
ξ∈Bt

(∇f(xt + γdt−1; ξ)−∇f(xt; ξ))

∥∥∥∥∥∥
2

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

(a)
= Et ∥(1− κ)(∇F (xt)−∇F (xt−1)) + (1− κ)(∇F (xt−1)− g̃t−1)

+ κ

∇F (xt)−
1

B

∑
ξ∈Bt

∇f(xt, ξ)−wt


− 1− κ

γB

∑
ξ∈Bt

(∇f(xt + γdt−1; ξ)−∇f(xt; ξ))
∥∥2

(b)
= Et

∥∥∥∥∥(1− κ)

∇F (xt)−∇F (xt−1)−
1

B

∑
ξ∈Bt

(∇f(xt; ξ)−∇f(xt−1; ξ))


︸ ︷︷ ︸

:=D1

+ (1− κ)∆t−1 + κ

∇F (xt)−
1

B

∑
ξ∈Bt

∇f(xt, ξ)


︸ ︷︷ ︸

:=D2

−κwt

− (1− κ)
1

B

∑
ξ∈Bt

(
1

γ
∇f(xt + γdt−1; ξ) +∇f(xt−1; ξ)−

1 + γ

γ
∇f(xt; ξ)

)
︸ ︷︷ ︸

:=D3

∥∥∥∥∥
2

(c)
= (1− κ)2 Et ∥D1∥2 + (1− κ)2 ∥∆t−1∥2 + κ2 Et[∥D2∥2] + (1− κ)2 Et ∥D3∥2 + κ2 E[∥wt∥2]
+ 2(1− κ)2 ⟨Et[D1],∆t−1⟩+ 2(1− κ)κ ⟨Et[D2],∆t−1⟩ − 2(1− κ)2 ⟨Et[D3],∆t−1⟩
+ 2Et[⟨(1− κ)D1, κD2⟩]− 2(1− κ)2 Et[⟨D1, D3⟩]− 2Et[⟨κD2, (1− κ)D3⟩],

(d)

≤ (1− κ)2(2 + |1 + γ|)Et ∥D1∥2 + (1− κ)2(1 + κ |1 + γ|) ∥∆t−1∥2 + κ2(2 + |1 + γ|)Et[∥D2∥2]

+ (1− κ)2
(
1 +

2

|1 + γ|
+

1

κ |1 + γ|

)
Et ∥D3∥2 + κ2dσ2

DP, (22)

where (a) we add and subtract (1 − κ)∇F (xt−1) and rearrange the terms; (b) adds and sub-
tracts 1−κ

B

∑
ξ∈Bt (∇f(xt; ξ)−∇f(xt−1; ξ)); (c) directly expands the square and use the fact that

Et[wt] = 0 and wt is independent of other terms; and in (d), we notice that Et[D1] = 0,Et[D2] =
0, so the first two inner products are zero, and we apply (19) to the other four inner products, with
α = κ |1 + γ| , 1, |1 + γ|, respectively. Next, we bound each term separately. For Et[∥D1∥2], we
have:

Et[∥D1∥2] = Et

∥∥∥∥∥∥∇F (xt)−∇F (xt−1)−
1

B

∑
ξ∈Bt

(∇f(xt; ξ)−∇f(xt−1; ξ))

∥∥∥∥∥∥
2

(a)

≤ Et

∥∥∥∥∥∥ 1

B

∑
ξ∈Bt

(∇f(xt; ξ)−∇f(xt−1; ξ))

∥∥∥∥∥∥
2

(b)

≤ L2η2 ∥g̃t−1∥2

(c)

≤ 2L2η2(∥∆t−1∥2 + ∥∇F (xt−1)∥2),

(23)

where (a) uses the fact that E ∥X − E[X]∥2 ≤ E ∥X∥2, with ∇F (xt) − ∇F (xt−1) =
Et[

1
B

∑
ξ∈Bt (∇f(xt; ξ)−∇f(xt−1; ξ))]; (b) applies A1 and (c) adds and subtracts ∇F (xt−1),

and applies (20). For Et[∥D2∥2], we have:

Et[∥D2∥2] = Et

∥∥∥∥∥∥∇F (xt)−
1

B

∑
ξ∈Bt

∇f(xt, ξ)

∥∥∥∥∥∥
2

A2
≤ σ2

SGD

B
. (24)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

For Et[∥D3∥2], we have:

Et[∥D3∥2] = Et

∥∥∥∥∥∥ 1

B

∑
ξ∈Bt

(
1

γ
∇f(xt + γdt−1; ξ) +∇f(xt−1; ξ)−

1 + γ

γ
∇f(xt; ξ)

)∥∥∥∥∥∥
2

(a)

≤ 1

B

∑
ξ∈Bt

∥∥∥∥∥ 1γ∇f(xt + γdt−1; ξ)−
1

γ
∇f(xt−1; ξ)

+
1 + γ

γ
∇f(xt−1; ξ)−

1 + γ

γ
∇f(xt; ξ)

∥∥∥∥∥
2

(20)
≤ 2

B

∑
ξ∈Bt

∥∥∥∥ 1γ∇f(xt + γdt−1; ξ)−
1

γ
∇f(xt−1; ξ)

∥∥∥∥2

+
2

B

∑
ξ∈Bt

∥∥∥∥1 + γ

γ
∇f(xt−1; ξ)−

1 + γ

γ
∇f(xt; ξ)

∥∥∥∥2
A1
≤ 2L2

γ2
∥xt + γdt−1 − xt−1∥2 +

2L2(1 + γ)2

γ2
∥xt−1 − xt∥2

(b)
=

4L2(1 + γ)2η2

γ2
∥g̃t−1∥2

(c)

≤ 8L2(1 + γ)2η2

γ2
(∥∆t−1∥2 + ∥∇F (xt−1)∥2), (25)

where (a) applies Jensens’ inequality to ∥·∥2, and we add and subtract 1
γ∇f(xt−1; ξ); (b) apples

(20); (b) uses the fact that dt−1 = xt − xt−1 = −ηg̃t−1; and (c) adds and subtracts ∇F (xt−1),
and applies (20). Plug in (23) – (25) to (22), we have:

Et ∥∆t∥2 ≤ (1− κ)2(2 + |1 + γ|)Et ∥D1∥2 + (1− κ)2(1 + κ |1 + γ|) ∥∆t−1∥2 + κ2dσ2
DP

+ κ2(2 + |1 + γ|)Et[∥D2∥2] + (1− κ)2
(
1 +

2

|1 + γ|
+

1

κ |1 + γ|

)
Et ∥D3∥2

≤ (1− κ)2
(
1 + 4η2L2 + |1 + γ|

(
κ+ 2η2L2Cγ

))
∥∆t−1∥2

+ 2η2L2(1− κ)2 (2 + |1 + γ|Cγ) ∥∇F (xt−1)∥2

+ κ2

(
(2 + |1 + γ|)σ

2
SGD

B
+ dσ2

DP

)
, (26)

where we define Cγ :=
(
1 + 4(2+1/κ+|1+γ|)

γ2

)
. This completes the proof of Lemma 1.

B.2 PROOF OF THEOREM 2

Now, we are ready to prove Theorem 2. By choosing C ≥ G(1 + 2(1−κ)
κγ), the clipping is inactive.

Recall that from the update rule, we have
Et[g̃t] = (1− κ)g̃t−1 + κ∇F (xt) + (1− κ)(∇F (xt)−∇F (xt−1))

= ∇F (xt)− (1− κ)∆t−1.
(27)

Then, by A1 we have F (·) is also L-smooth, so it satisfies

F (y) ≤ F (x) + ⟨∇F (x),y − x⟩ , L
2
∥y − x∥2 .

Substitute y = xt+1,x = xt to the above relation and take expectation over the randomness in
iteration t, we have:

Et[F (xt+1)]−F (xt) ≤ −η ⟨∇F (xt),Et[g̃t]⟩+
η2L

2
Et ∥g̃t∥2

(a)
= −η ∥∇F (xt)∥2 + η(1− κ) ⟨∇F (xt),∆t−1⟩+

η2L

2
Et ∥g̃t∥2

(19)
≤ −η ∥∇F (xt)∥2 +

η(1− κ)

2
∥∇F (xt)∥2 +

η(1− κ)

2
∥∆t−1∥2 +

η2L

2
Et ∥g̃t∥2

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

(b)
= −η ∥∇F (xt)∥2 +

η(1− κ)

2
∥∇F (xt)∥2 +

η(1− κ)

2
∥∆t−1∥2

+
η2L

2
Et ∥g̃t −∇F (xt) +∇F (xt)∥2

(c)

≤ −η(1 + κ− 2ηL)

2
∥∇F (xt)∥2 +

η(1− κ)

2
∥∆t−1∥2 + η2LEt ∥∆t∥2 , (28)

where (a) substitute (27); (b) we add and subtract ∇F (xt) to the last term and (c) applies (20) to
the last term.

Define Lt := F (xt) + β ∥∆t−1∥2, we have:
Et[Lt+1]− Lt

≤ −η(1 + κ− 2ηL)

2
∥∇F (xt)∥2 − (β − η(1− κ)

2
) ∥∆t−1∥2 + (β + η2L)Et ∥∆t∥2

(a)

≤ −η(1 + κ− 2ηL)

2
∥∇F (xt)∥2 − (β − η(1− κ)

2
) ∥∆t−1∥2

+ (β + η2L)(1− κ)2(1 + 4L2η2 + |1 + γ|
(
κ+ 2η2L2Cγ

)
) ∥∆t−1∥2

+ (β + η2L)κ2

(
(2 + |1 + γ|)σ2

SGD

B
+ dσ2

DP

)
+ 2(β + η2L)(1− κ)2L2η2 (2 + |1 + γ|Cγ) ∥∇F (xt−1)∥2

= −η(1 + κ− 2ηL)

2
∥∇F (xt)∥2 + 2(β + η2L)(1− κ)2L2η2 (2 + |1 + γ|Cγ) ∥∇F (xt−1)∥2

−
(
β − η(1− κ)

2
− (β + η2L)(1− κ)2(1 + 4L2η2 + |1 + γ|

(
κ+ 2η2L2Cγ

)
)

)
∥∆t−1∥2

+ (β + η2L)κ2

(
(2 + |1 + γ|)σ2

SGD

B
+ dσ2

DP

)
, (29)

where (a) applies Lemma 1 and (b) rearrange the terms. By choosing

η <
1

2L(1 + 2(1− κ)2βL(2 + |1 + γ|Cγ))
, κ > 1− 1√

1 + 4η2L2 + |1 + γ| (κ+ 2η2L2Cγ)
,

β ≥
η(1− κ)/2 + η2L(1− κ)2(1 + 4η2L2 + |1 + γ|

(
κ+ 2η2L2Cγ

)
)

1− (1− κ)2(1 + 4η2L2 + |1 + γ| (κ+ 2η2L2Cγ))
,

we have:
η(1 + κ− 2ηL)

2
− 2(β + η2L)(1− κ)2L2η2 (2 + |1 + γ|Cγ) > 0,

1− (1− κ)2(1 + 4η2L2 + |1 + γ|
(
κ+ 2η2L2Cγ

)
) > 0,

β − η(1− κ)

2
− (β + η2L)(1− κ)2(1 + 4L2η2 + |1 + γ|

(
κ+ 2η2L2Cγ

)
) ≥ 0.

(30)

Average from t = 0 to T − 1 and rearrange the terms, we have:
1

T

T∑
t=0

E ∥∇F (xt)∥2 ≤ 2(L0 − E[LT+1])

C1ηT
+

2(β + η2L)κ2

C1η

(
(2 + |1 + γ|)σ2

SGD

B
+ dσ2

DP

)

≤ 2(F (x0) + β ∥∇F (x0)∥2 − F ⋆)

C1ηT
+

2(β + η2L)κ2

C1η

(
(2 + |1 + γ|)σ2

SGD

B
+ dσ2

DP

)
, (31)

where we define C1 := (1 + κ− 2ηL)− 4(β + η2L)(1− κ)2L2η (2 + |1 + γ|Cγ) , and in the last
inequality we notice that LT+1 = F (xT+1) + β ∥∆T ∥2 ≥ F ⋆, and L0 = F (x0) + β ∥∇F (x0)∥2 ,
as we initialize g̃0 = 0. This completes the proof of Theorem 2.

On the choice of γ = −1. From the above proof, we see that in Appendix B.1, (22) (c), we directly
apply (19) to upper bound the cross-product terms by positive terms for the worst case, which results
in the optimal choice of γ = −1. However, the inner products may be smaller than zero in some
cases, making γ = −1 sub-optimal in practice.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

C ADDITIONAL NUMERICAL RESULTS

C.1 EXPERIMENT DETAILS

Coding: The code for the experiments will be provided online. We use PyTorch as the code base
and the FastDP package (Bu et al., 2023) to privatize the optimizers. We use the Renyi differential
privacy (RDP) accountant in the Opacus and FastDP packages to numerically calculate the required
injected DP noise to the gradient for fixed (ϵ, δ)-DP budget. A detailed derivation of the RDP
accountant can be found in Wang et al. (2019). The Algorithm 3 is implemented as a PyTorch opti-
mizer, which can be easily combined with any training scripts based on PyTorch. The modification
is minimum:

1 from KFOptimizer import KFOptimizer
2 # define base optimizer
3 optimizer = KFOptimizer(model.parameters(), base_optimizer, kappa, gamma)
4 # ...
5 # in training loop:
6 def closure(): # warp up the loss and backward computation
7 loss = model(input)
8 loss.backward()
9 return loss

10 loss = optimizer.prestep(closure)
11 # ...

The link to the full code of the experiments can be found at https://anonymous.4open.
science/r/KalmanDP-BEDB.

Hardware: All the experiments except the ImageNet-1k dataset are running with one Nvidia A40
(48GB memory) or one Nvidia V100 (32GB memory). The experiment on the ImageNet-1k dataset
is running on one Nvidia H100 (80GB memory) GPU. The training time varies for different tasks
depending on the data size and model size.

Training method: We use gradient accumulation to deal with the large batch size and use learning
rate warm-up for 1/20 of the training steps when training from randomly initialized weights. We
also use the Cosine Annealing learning rate scheduler (Loshchilov & Hutter, 2022), which gradually
decreases the learning rate.

C.2 CHOICE OF HYPER-PARAMETERS

The main hyper-parameters in the algorithms are: epoch E, batch size B, step size η, clipping
threshold C, Kalman filter parameters κ, and γ. In all experiments, we fix the clipping method as
automatic clipping used in Bu et al. (2024), i.e., clip (∇f(x; ξ), C) = ∇f(x; ξ) · C

∥∇f(x;ξ)∥ , and set
C = 1 for all experiments. We fix δ = 1/N1.1 for reasonable privacy notions. This choice matches
or is tighter than the SOTA results using δ = 1/2N or 1/N1.1 (Li et al., 2021; Bu et al., 2024; Yu
et al., 2021). We list the δ’s used in the experiments in Tab. 7.

For each set of experiments, we conduct a grid search on the hyper-parameters E,B, η and choose
the optimal ones for the DP optimizer without DiSK based on the test set. The search grids of each
hyper-parameter are listed in Table 2;

Table 2: Search grid of the CV pre-training experiments, the optimal hyper-parameters are in bold.

Search gird
MNIST CIFAR ImageNet

E {1,2, 3} × 20 {1,2, 3, 4} × 40 {3,4} × 40
B {2,5} × 103 {0.5, 1, 2,5} × 103 {5, 10} × 103

η {3,2.5, 1, 0.3, 0.1} × 10−1 {1, 3,5, 7, 10} × 10−3 {10, 3, 1,0.3, 0.1} × 10−3

κ {0.7} {9.9, 9, 8,7, 6, 5} × 10−1 {0.7}
γ {0.5} {0.2, 0.3,0.5, 1, 2, 3, 1−κ

κ } {0.5}

Then, we fix E,B.η and conduct the ablation study on κ, γ as shown in Figure 8.

23

https://anonymous.4open.science/r/KalmanDP-BEDB
https://anonymous.4open.science/r/KalmanDP-BEDB

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

C.3 ADDITIONAL EXPERIMENTS ON CV TASKS

Training different models from scratch: We additionally train the WRN-16-4 and the ViT-small
models on the CIFAR-10 with randomly initialized weights, and the test accuracies during the train-
ing are shown in Figure 4 for ϵ = 4. From Figure 4, we can see that DiSK consistantly outperforms
the base optimizer.

(a) 5-layer CNN (b) WRN-16 (c) ViT-small

Figure 4: Test accuracy of pre-training 5-layer CNN, WRN-16, and ViT-small on CIFAR-10 dataset
with and without DiSK for fixed privacy budget ϵ = 4.

Fine-tuning on CIFAR-100: Besides training from scratch, we also compare the performance of
fine-tuning a pre-trained ViT-small model on the CIFAR-100 dataset. The results for different ϵ are
shown in Figure 5. For fine-tuning on the complex CIFAR-100 dataset, DiSK still improves the
performance compared with DPAdam, and has less performance drop under large DP noise.

Comparison with existing methods and SOTA: We conduct comparisons with existing approaches
for improving DP training performance. In Figure 6a, we train a linear regression model with syn-
thetic data and compared the performance of Noisy GD, Noisy GD with DOPPLER (NoisyLP),
and with DiSK (NoisyKF). We inject Gaussian noise with different variances into the gradient and
compare the final performance. We observe that DiSK has the lowest regression loss under all noise
levels, indicating that the Kalman filter performs better in noise reduction than the Low-pass filter.
In Figure 6b, we compare the test accuracy of different methods, including DOPPLER (Zhang et al.,
2024a) and DP-FTRL (Kairouz et al., 2021; Choquette-Choo et al., 2024) on the CIFAR-10 dataset
training the WRN from scratch. We observe that DiSK significantly outperforms the SOTA algo-
rithms on all privacy budgets. As discussed Section 3, DOPPLER refers to the case that DiSK only
estimates gradient at one point xt instead of performing a weighted average of gradient estimated at
two points xt,xt + γdt−1 before clipping. The results in Figure 6a and Figure 6b indicate that the
weighted average before clipping may be more important (i.e., γ ̸= 0 is more important).

Comparison with SOTA on ImageNet: Additionally, we conduct experiments to compare the per-
formance of DiSK with SOTA result training from scratch on the ImageNet-1k dataset in De et al.
(2022). The result is shown in Figure 7. We note that the reported test accuracy in the De et al. (2022)
is 32.4% for privacy level ϵ = 8. However, we noticed that their accounting procedure has been im-
proved in their GitHub repository and hence we re-ran their experiment using the new accountant
to obtain our baseline. We kept all their options on, including group normalization, larger batch
size, weight standardization, augmentation multiplicity, and model exponential moving average. In

Figure 5: Fine-tuning ViT-small on CIFAR-100 with different ϵ. The green line indicates the im-
provement of DiSK.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

0

0.03

0.06

0.09

0.12

0 0.01 0.02 0.03

L
o
ss

NoisyGD

NoisyLP

NoisyKF

(a) Synthetic data (b) CIFAR-10

Figure 6: Comparison with existing approaches. a) Kalman filter and low-pass filter; b) Kalman
filter, DP-FTRL, and low-pass filter.

KF‒(De et al. 2022)

(De et al. 2022)

Figure 7: Comparison with the SOTA approach in De et al. (2022) on the ImageNet-1k dataset.

0.2 0.3 0.5 1 2 3 *

0.5

0.6

0.7

0.8

0.9

0.99

1

38.6

42.9

50.6

40.5

51

51.3

69.2

69.4

65.2

63

65.1

74

68.1

65.6

63

67.1

74.9

69.5

67

65.5

63

65.5

71

68.9

67.7

66.5

65.5

63

67.5

67

66.8

66.6

66.6

64.8

63

66.3

65.5

65.5

66.2

66.1

63.9

63

65.5

65.9

65.7

65.7

66

65.8

63 40

45

50

55

60

65

70

(a) (κ, γ), ϵ = 8

0.5 1 2 4 8

0.6

0.7

0.8

0.9

1

53.9

50.8

48.3

46.6

42.8

59.5

56.2

54.1

52.7

48.8

60.2

59.6

57.7

53.8 59.6

64.2 67.9

65.2

63.7

62.5

71

68.9

67.7

66.5

63 45

50

55

60

65

70

(b) (κ, ϵ), γ = 1

Figure 8: Test accuracy for different combinations of the hyper-parameters when training CNN on
the CIFAR-10 dataset.

addition, we also follow their normalized clipping strategy, i.e.,

clip (∇f, C) =
∇f

C
min

{
C

∥∇f∥
, 1

}
.

Their updated code results in 36.35% validation accuracy and the test accuracy of 33.56% (as the
SOTA result). In comparison, adding DiSK on top of their method results in a validation accuracy
of 40% (3.7% improvement) and a test accuracy of 36.89% (3.3% improvement). This sets a new
SOTA result for differentially private training on the ImageNet-1k dataset.

Ablation study: We conduct ablation studies on the choice of the hyper-parameters of DiSK, specif-
ically, how κ, γ impact the algorithm performance. In Figure 8, we plot the accuracy on different
combinations of (κ, γ), and (κ, ϵ). We observe a clear trend of performance change for different
combinations of the parameters, and there is an optimal choice of κ, γ for different ϵ’s.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

C.4 ADDITIONAL EXPERIMENTS ON NLP TASKS

In this section, we provide additional results for NLP tasks.

Parameter-efficient fine-tuning on GLUE. We fine-tune a RoBERTa-base and a RoBERTa-large
model from the Huggingface checkpoints2 on the GLUE dataset. We follow the same training scripts
in Bu et al. (2024) on the hyper-parameter choices of η,B,E on the tasks and use rank r = 16 for
LoRA. We choose κ = 0.7, γ = 0.5 for DiSK. The results are listed in Table 3. With privacy budget
ϵ = 1, 6.7, DPLoRA with DiSK significantly outperforms SOTA results with vanilla DPLoRA on
all tasks.

Table 3: Test accuracy of fine-tuning result on the GLUE dataset.

ϵ = 1 ϵ = 6.7
Algorithm MNLI QNLI SST2 QQP MNLI QNLI SST2 QQP

RoBERTa-base

AdamW (ϵ = ∞) 87.6 92.8 94.8 91.9 87.6 92.8 94.8 91.9
Lora (ϵ = ∞) 87.5 93.3 95.1 90.8 87.5 93.3 95.1 90.8

DPLora 81.1 85.5 90.9 83.9 83.5 87.4 91.5 85.7
KF-DPLora 84.7 90.3 92.9 87.8 85.9 90.5 93.1 89.0

RoBERTa-large

AdamW (ϵ = ∞) 90.3 94.7 96.4 92.2 90.3 94.7 96.4 92.2
Lora (ϵ = ∞) 90.6 94.9 96.2 91.6 90.6 94.9 96.2 91.6

DPLora 85.6 89.5 90.9 85.1 87.8 90.8 94.3 87.4
KF-DPLora 87.9 92.5 95.2 88.2 89.4 92.6 95.4 89.6

Fine-tuning GPT-2 on text generation tasks. We fine-tune a GPT-2-small model with 137M
parameters from the Huggingface checkpoints3 on two text generation datasets, E2E and DART.
We follow the same training scripts in Li et al. (2021) on the hyper-parameter choices of η,B,E
on the tasks and choose κ = 0.7, γ = 0.5 for DiSK. The results on different metrics for the E2E
dataset are given in Table 4, and the results for the DART dataset are in Table 5. With privacy budget
ϵ = 3, 8, DPAdamW with DiSK significantly outperforms SOTA results with vanilla DPAdamW on
all metrics.

Table 4: Performance of fine-tuning gpt-2 on the E2E dataset. (All metrics are higher the better)

Algorithm BLEU (%) ROUGE-L (%) METEOR NIST CIDEr

AdamW (ϵ = ∞) 69.46 71.36 0.461 8.780 2.422
DPAdamW (ϵ = 3) 61.52 65.87 0.417 7.071 2.167

KF-DPAdamW (ϵ = 3) 68.35 70.23 0.456 8.636 2.399
DPAdamW (ϵ = 8) 64.99 67.34 0.425 8.387 2.192

KF-DPAdamW (ϵ = 8) 68.73 70.58 0.460 8.697 2.463

Table 5: Performance of fine-tuning gpt-2 on the DART dataset. Val. Perp. stands for validation
perplexity. (All metrics except Val. Perp. are higher the better)

Algorithm Val. Perp. ↓ BLEU (%) ROUGE-L (%) METEOR NIST CIDEr

AdamW (ϵ = ∞) 0.921 44.56 58.66 0.379 8.733 2.773
DPAdamW (ϵ = 3) 1.427 33.96 52.38 0.310 6.090 1.864

KF-DPAdamW (ϵ = 3) 1.149 41.01 57.53 0.359 7.949 2.553
DPAdamW (ϵ = 8) 1.362 35.30 54.58 0.320 6.365 1.995

KF-DPAdamW (ϵ = 8) 1.102 42.12 58.11 0.364 8.111 2.628

2https://huggingface.co/FacebookAI/roberta-base,https://huggingface.co/
FacebookAI/roberta-large

3https://huggingface.co/openai-community/gpt2

26

https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/FacebookAI/roberta-large
https://huggingface.co/FacebookAI/roberta-large
https://huggingface.co/openai-community/gpt2

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

C.5 IMPROVEMENT OVER SOTA

In the following Table 6, we provide a list of the experiment settings where our algorithm outper-
forms SOTA results. The paper that provides the SOTA results is cited for each setting, or the same
as the line above. We observe that DiSK provides new SOTA for CV datasets, including CIFAR-10,
CIFAR-100, and ImageNet-1k, and NLP datasets, including GLUE (MNLI, QNLI, QQP, SST-2),
DART, and E2E.

Table 6: Tasks DiSK improves SOTA, PT=pre-training, FT=fine-tuning.

Dataset TASK Model ϵ Ours (%) SOTA (%)

CIFAR-10 PT CNN 0.5 59.7 N/A
CIFAR-10 PT CNN 2 68.8 67.2 (Tramer & Boneh, 2020)
CIFAR-100 PT WRN 0.5 14.7 N/A
CIFAR-100 PT WRN 1 22.7 14.1 (Bao et al., 2024)
CIFAR-100 PT WRN 2 30.0 21.5
CIFAR-100 PT WRN 4 37.1 33.3
CIFAR-100 PT WRN 8 42.0 40.6
CIFAR-100 FT ViT 0.5 83.49 78.3 (Mehta et al., 2023)
CIFAR-100 FT ViT 1 85.36 81.8 (Bao et al., 2024)
CIFAR-100 FT ViT 2 86.77 83.5
CIFAR-100 FT ViT 4 87.56 84.5
CIFAR-100 FT ViT 8 88.49 84.6
ImageNet-1k PT ResNet-50 8 36.89 33.56 (De et al., 2022)
MNLI FT RoBERTa-base 1 84.7 83.2 (ϵ = 3) (Bu et al., 2023)
QNLI FT RoBERTa-base 1 90.3 87.4 (ϵ = 3)
QQP FT RoBERTa-base 1 87.8 85.8 (ϵ = 3)
SST-2 FT RoBERTa-base 1 92.9 92.3 (ϵ = 3)
MNLI FT RoBERTa-base 6.7 85.9 83.8 (ϵ = 8) (Bu et al., 2023)
QNLI FT RoBERTa-base 6.7 90.5 87.9 (ϵ = 8)
QQP FT RoBERTa-base 6.7 89.0 86.6 (ϵ = 8)
SST-2 FT RoBERTa-base 6.7 93.1 93.0 (ϵ = 8) (Li et al., 2021)
MNLI FT RoBERTa-large 1 87.9 86.8 (Yu et al., 2021)
QNLI FT RoBERTa-large 1 92.5 88.0
QQP FT RoBERTa-large 1 88.2 85.2
SST-2 FT RoBERTa-large 1 95.2 93.1
MNLI FT RoBERTa-large 6.7 89.4 89.0 (Yu et al., 2021)
QNLI FT RoBERTa-large 6.7 92.6 92.5
QQP FT RoBERTa-large 6.7 89.6 88.4
SST-2 FT RoBERTa-large 6.7 95.4 95.3
E2E (BLEU) FT GPT-2 3 68.35 61.52 (Li et al., 2021)
E2E (ROUGE-L) FT GPT-2 3 70.23 65.87 (Bu et al., 2024)
E2E (BLEU) FT GPT-2 8 68.73 63.60 (Bu et al., 2024)
E2E (ROUGE-L) FT GPT-2 8 70.58 67.53 (Li et al., 2021)
DART (BLEU) FT GPT-2 3 41.01 32.33 (Li et al., 2021)
DART (ROUGE-L) FT GPT-2 3 57.53 52.06
DART (BLEU) FT GPT-2 8 42.12 35.06
DART (ROUGE-L) FT GPT-2 8 58.11 54.57

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Table 7: The privacy parameter δ’s used in our experiments and in SOTA results.

Dataset Our δ SOTA δ

MNIST 5.5× 10−6 10−5

CIFAR-10/100 6.8× 10−6 10−5

Imagenet-1k 1.9× 10−7 8× 10−7

MNLI 6.3× 10−7 1.1× 10−6

QNLI 4.8× 10−7 9× 10−7

SST-2 4.9× 10−6 7.4× 10−6

QQP 7.6× 10−7 1.4× 10−6

E2E 1.2× 10−5 1.2× 10−5

DART 6.1× 10−6 6.1× 10−6

28

	Introduction
	Contributions

	Preliminaries
	Problem Definition & Notations
	Differentially private optimization
	Kalman filter
	Related Works

	Algorithm design
	Gradient dynamic and Kalman filter
	Algorithm simplification
	Additional discussion

	Theoretical analysis
	Convergence analysis
	Privacy-utility trade-off

	Numerical experiments
	Experiment settings
	Numerical results

	Additional discussion
	Background on Kalman Filter
	Other system dynamics for DPSGD
	Algorithm Simplification
	Connection between DiSK and NAG and STORM

	Proof for Section 4
	Proof of Lemma 1
	Proof of Theorem 2

	Additional numerical results
	Experiment details
	Choice of hyper-parameters
	Additional experiments on CV tasks
	Additional experiments on NLP tasks
	Improvement over SOTA

