
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RACC: RETRIEVAL-AUGMENTED KV CACHE COM-
PRESSION IN LONG-CONTEXT GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have achieved remarkable progress in long-
context generation. As the context length increases, the Key–Value (KV) cache
requires the GPU memory with a linear growth rate. KV cache compression is
treated as a promising method to reduce the memory usage by permanently dis-
carding a large portion of unimportant KV pairs, but at the expense of inference
accuracy. On the other hand, retrieval-based methods employ the CPU memory
to store the full KV cache and compute the attention via expensive CPU-GPU
I/O, which keeps the accuracy but suffers from huge inference latency. To address
these issues, we propose a new inference framework called RACC, which com-
bines both compression based methods and retrieval based methods. To be spe-
cific, we employ the KV cache compression method to maintain a high-quality KV
cache in the GPU memory, while sotring all the KV pairs evicted by the compres-
sion method. In addition, efficient and accurate retrieval conducted on the CPU
side finds out important tokens for the one being generated, which is then concate-
nated with those KV cached in the GPU memory for accurate generation. Exten-
sive experiments demonstrate that RACC achieves near-lossless inference while
using only 15% of the original KV cache. Moreover, its combination with prefill-
only compression methods improves generation accuracy by 3–10%. Our code is
publicly available at https://anonymous.4open.science/r/CDKEY/.

1 INTRODUCTION

Large language models (LLMs) have exhibited powerful capabilities in long-context generation
(Zhao et al., 2023), and have achieved superior performance in scenarios such as multi-turn di-
alogue (Yi et al., 2024), code comprehension (Denny et al., 2024), and document summariza-
tion (Zhang et al., 2024). Models such as Gemini 2.5 Pro (Comanici et al., 2025) and Grok-3 (x.ai,
2025) support input context up to 1 million tokens. On the other hand, Claude 3.7 (Anthropic, 2025)
and GPT-5 (OpenAI, 2025) have been able to generate outputs up to 128K tokens. Such an increase
in the context of LLM inference leads to a significant burden on the GPU memory, because it has
to store the KV cache of size linear to the context length. Considering PaLM-540B with a batch
size of 512 and a context length of 2048, the KV cache occupies 3 TB of memory in total, which
is three times larger than the model parameters(Pope et al., 2023). Subsequently, the KV cache is
an unavoidable bottleneck in long-context generation. Hence, it is crucial to optimize the KV cache
without additional model training in memory-constrained inference scenarios.

To make full use of the limited GPU memory, a bulk of works have been proposed in the literature
to store only a small part of important KV pairs in GPU memory. Those methods were built on the
basis that only a small fraction of the KV cache is critical for generating new tokens (Zhang et al.,
2023; Liu et al., 2023). Those KV cache reduction methods could be divided into two categories,
i.e., (1) compression-based methods and (2) retrieval-based methods. The former methods (Li et al.,
2024; Cai et al., 2024) compress the large-size KV cache into a small subset by permanently discard-
ing the KV pairs of unimportant tokens, which are considered as less important for the subsequently
generated tokens. To be specific, they estimate the importance of tokens according to their attention
scores w.r.t. the tokens being generated and permanently discard the KV pairs of those tokens with
lower attention scores to reduce memory usage. However, the discarded KV pairs may be important
for the tokens in the subsequent generation, which presents a negative effect on the inference perfor-
mance. In contrast, the latter methods (Zhang et al., 2025; Liu et al., 2024) just evict those KV pairs

1

https://anonymous.4open.science/r/CDKEY/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Prompt

KV

Cache

KV

Cache

Compression

Decode

T

drop

Prompt

KV

Cache

DataBase in CPU

KV

Decode

T

unload recall

Q

query

KV

Cache

DataBase in CPU

KV

Cache

Compression
Decode

T

unload

Q

recall
query

T : New Token

Q : Query Vector

Compression-based mode Retrieval-based mode RACC mode

PromptInference in GPU Inference in GPU Inference in GPU

Figure 1: Illustration of the three modes.

to the CPU memory instead of discarding them directly and will fetch those KV pairs of important
tokens for the current token generation via vector retrieval methods. Without KV pairs discarded,
those methods retain high accuracy, but suffer from lower efficiency caused by the GPU–CPU I/O
bottleneck. As a result, existing methods present a poor balance between accuracy and efficiency.

To address these issues, we propose a new framework called RACC (Retrival-Augmented KV
Cache Compression), which combines both KV cache compression and KV cache retrieval. The
three modes are illustrated in Figure 1.

Like KV cache compression, RACC maintains a compressed KV cache in GPU memory, which
consists of a subset of important KV pairs from the full KV cache. Unlike KV cache compression
that overlooks the KV pairs evicted previously, RACC employs a vector retrieval module maintained
on the CPU side, which manages all evicted KV pairs and retrieves potentially important KV pairs
to the currently generated token. Still, our framework has to deal with two challenges, i.e., (1) the
selection of tokens as the query in vector retrieval and (2) the vector retrieval method on the CPU
side. Existing temporary eviction methods use the current token to be generated as the query, which
degrades the whole inference latency. This is because the inference has to wait for the results of the
vector retrieval, which has to communicate with the lowly efficient CPU via GPU-CPU I/O. In this
work, we propose to employ the recently generated tokens instead of the currently generated one as
the query for vector retrieval, on the basis of the observation that the adjacent tokens in the sequence
have similar attention tokens to the currently generated token. In this way, we asynchronously
conduct the vector retrieval with the previously generated tokens as the queries and then send the
retrieval results to the GPU as a part of KV cache for the current token. On the other hand, the vector
retrieval must be efficient and accurate so that the retrieval results will be used for the generation of
the tokens near the queries.

We conducted extensive experiments to evaluate the effectiveness of our approach. We selected two
benchmark tests, Longgenbench (Wu et al., 2025)and Longproc (Ye et al., 2025), to assess the per-
formance of our method, comparing it with the current state-of-the-art KV compression techniques.
The results show that RACC achieves the lowest inference latency while maintaining nearly lossless
performance with only 15% of the original KV cache. We also designed experiments to combine
RACC’s retrieval module with other KV compression methods, using Longbench(Bai et al., 2023)
as a benchmark to evaluate their generation accuracy. Compared to their original performance, we
achieved an improvement of 3%-10% in accuracy scores.

Our contributions are summarized as follows:

1. We propose a new framework of KV cache compression that combines both permanent
eviction and temporary eviction.

2. We carefully design the core modules of our framework, i.e., query selection and vector
retrieval.

3. We conduct experiments on widely-used benchmarks to demonstrate the effectiveness and
advantages of our method.

2 BACKGROUND AND RELATED WORKS

2.1 KV CACHE IN LLM INFERENCE

LLM inference can be divided into two phases: the prefilling phase and the decoding phase.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

In the Prefilling phase, the user’s input prompt is embedded into word vectors, followed by the
addition of positional encoding. These representations are then linearly projected into the query,
key, and value matrices, denoted as

Qprompt ∈ RB×S×H×D, Kprompt ∈ RB×S×H×D, V prompt ∈ RB×S×H×D,

where B is the batch size, S is the sequence length, H is the number of attention heads, and D is
the dimensionality of each head.

After the matrix operations in Eq. 1 (Vaswani et al., 2017), the output of a single-layer self-attention
module is produced and subsequently fed into the next transformer layer for forward propagation.
After all layers of propagation, all K and V matrices have been computed. These matrices are stored
as the KV cache, which is then utilized in the decoding phase to generate the first predicted token.

Attention(Q,K, V) = Softmax
(
QK⊤
√
D

)
V (1)

In the decoding phase, each forward propagation step generates one new token in an auto-regressive
manner until an end-of-sequence symbol is produced. The previously generated token is projected
into

Qnew ∈ RB×1×H×D, Knew ∈ RB×1×H×D, V new ∈ RB×1×H×D.

At this point, the newly generated K and V are concatenated with the cached KV matrices from the
prefilling phase, forming the updated KV cache as shown in Eq. 2:

K = Concat(Kprompt,Knew, dim = 1), V = Concat(V prompt, V new, dim = 1), (2)

which results in
K ∈ RB×(S+1)×H×D, V ∈ RB×(S+1)×H×D.

The updated K and V are then combined with the query Q to perform the attention computation as
in Eq. 1, followed by forward propagation to predict the next token.

During generation, the memory footprint of the KV cache grows linearly with the length of the
generated sequence. If there is either an excessively long input prompt or output, this results in
substantial memory consumption or even the OOM error. The issue becomes worse in batch infer-
ence scenarios, where the memory overhead is amplified across multiple sequences. Consequently,
effective compression strategies for the KV cache are urgently needed.

2.2 RELATED WORKS

To extend the ability of LLM in long-context generation with limited GPU memory, a bulk of meth-
ods have been proposed, which could be divided into two categories, i.e., (1) vector retrieval based
methods and (2) KV cache compression based methods. Both of them are based on the fact that only
a small subset of essential tokens exerts a predominant influence on the generation fidelity (Zhang
et al., 2023; Liu et al., 2023).

Vector retrieval methods (Liu et al., 2024; Zhang et al., 2025) usually employ the CPU memory to
help store the whole KV cache and identify the essential tokens via vector retrieval. RetrievalAt-
tention (Liu et al., 2024) initially offloads the entire KV cache to the CPU and performs online
retrieval of the essential tokens for the current one. It enables lossless inference, but suffers from
unacceptable generation latency due to the online retrieval via the brute-force method. To accelerate
the CPU-side retrieval, PQCache (Zhang et al., 2025) employs the SOTA vector retrieval method,
i.e., product quantization (PQ) (Jegou et al., 2010), which is efficient but only returns approximate
retrieval results. Hence, the approximate retrieval results affect the subsequent generation accu-
racy. Besides, PQCache still suffers from long generation latency due to the expensive data transfer
between CPU and GPU in an online manner.

KV cache compression methods do not store the full KV cache and thus do not need the cooperation
of the CPU. They only retain the identified essential tokens, which are then used for subsequent
generations, while permanently discarding others. As a representative, SnapKV (Li et al., 2024)
observes that attention allocation patterns remain stable in the generation phase, and thus identifies
the critical prompt tokens using a sliding window at the tail of the prompt. PyramidKV (Cai et al.,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0

10

20

30

40

50

60

70

80

90

100

Full attention SnapKV H2O PyramidKV SqueezeAttn

A
cc

u
ra

cy
（

%
）

Figure 2: Accuracy evaluation on LongGen-
Bench, comparing uncompressed inference with
various KV compression methods.

60

70

80

90

100

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

layer8 layer16 layer24 layer32

Total prompt：1000

Top k: 300

Generate tokens:

O
v

er
la

p
（

%
）

Window number

Total prompt：1000

Top k：300

Generate tokens：2560

Window size：128

Figure 3: The overlap rate between the top-k to-
kens selected from window 1 and those selected
from the subsequent 19 windows.

2024) argues that different model layers exhibit distinct attention-allocation patterns and thus assigns
layer-wise memory budgets to each KV cache to enhance the KV cache compression. Cake(Qin
et al., 2025) further analyzes the attention preferences across different layers to adaptively allocate
the memory budget of the KV cache. SqueezeAttention(Wang et al., 2024) employs a sliding-
window mechanism spanning both the Prefilling and Decoding phases, compressing the KV cache
by discarding entries outside the window. Similarly, ScopeWu et al. (2024) adopts a sliding-window
strategy but introduces a more flexible eviction policy for KV entries. Even though KV cache
compression methods achieve a good compression ratio and almost keep the inference speed, they
still suffer from significant accuracy loss due to their permanent discarding policy.

3 OBSERVATIONS

In this section, we present our observations on attention allocation in generation as listed in the
following. Our experiments are conducted on two long-generation benchmarks, i.e., LongProc(Ye
et al., 2025) and LongGenBench(Wu et al., 2025), with Meta-Llama-3.1-8B-Instruct as the LLM.

1. KV Cache compression methods suffer from significant accuracy loss in long-
generation scenarios. We evaluate several representative KV cache compression meth-
ods on the LongGenBench dataset, ensuring that they operate under the same compression
ratio, and examine their accuracy scores. As shown in Figure 2, where we use four repre-
sentative KV cache compression methods (SnapKV (Li et al., 2024), H2O (Zhang et al.,
2023) , PyramidKV (Cai et al., 2024) and SequeezeAttn (Wang et al., 2024)), we can see
that all compression methods obviously decrease their accuracy compared with the full
attention in the long-generation senarios. This observation indicates a part of important to-
kens were permanently discarded by the compression methods and has no chance to recall
them back.

2. Adjacent tokens generated in the decoding phase present highly similar attention allo-
cation patterns. Our experiments are based on the “Travel Planning” dataset from Long-
Proc in long-input (≥ 4K tokens) long-output (2K-8K tokens). We divide the generated
tokens at each layer into windows of 100 tokens and select the first 20 windows in the
decoding phase. For each selected window, we observe its attention allocation w.r.t. the
prompt tokens. We compute the overlap ratio between the tokens identified with the high-
est attention scores in the first window and those in subsequent windows. As in Figure 3,
we observe that adjacent windows share similar attention allocation patterns, whereas this
similarity decreases as the window distance increases.

4 METHODOLOGY

In this section, we present our method RACC that combines both KV cache compression and vector
retrieval on the basis of the two observations in the last section. The intuition of our method is to find
important KV pairs for the current token from the evicted KV pairs by the compression methods via

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Parallel Attention CorrectionPrefill Phase

useful now

but may be

useless

later

KV from All tokens

Q

“**Attention is all you need**

···

Please read the paper above

and write a summary.”

Prompt Input
useless now

but may be

useful

later

Submit

MIPS Request The paper introduces the

Transformer …

Task Proxy
Retrieval LLM Output

Offload

Update

VectorDB

in CPU

Vote

Vote

Decode Phase

Layer

Decode
KVCache

in GPU
K-V

projection

Add

Query

projection

T
output

Recall

Update

Figure 4: Illustrating the RACC framework.

the asynchronous CPU-side vector retrieval. In this way, we enhance the accuracy of compression
methods while not compromising both the efficiency and the compression ratio compared with the
compression-only methods.

4.1 OVERVIEW

Existing compression methods produce accurate generation for a short output after compression, but
degrade gradually for a long output due to the accumulated errors(Sun et al., 2025; Choi et al., 2025).
This is an inherent limitation of all KV compression methods, where the discarded KV may still con-
tain crucial information for subsequent generations. To address this issue, it is necessary to manage
evicted KV by those compression methods and inquire them again in subsequent generations.

As illustrated in Fig. 4, RACC consists of two key components, i.e., (1) a retrieval module that runs
on the CPU side in parallel with the GPU and (2) a KV cache compression module that maintains a
subset of essential KV pairs in the GPU memory. In the retrieval module, we manage the KV pairs
evicted by the compression module and build a vector index for efficient and accurate retrieval. This
module can identify important tokens beyond the compressed KV cache in the GPU memory and
then sends the KV pairs of those tokens found back to the GPU memory, which will be used in the
following token generations. In the compression module, we employ existing KV cache compres-
sion methods to obtain the compressed KV pairs online. Notably, our framework is compatible to all
KV cache compression methods and vector retrieval methods. Moreover, we design a fine-grained
scheduling strategy to tightly coordinate the two modules, ensuring that inference proceeds without
incurring additional latency.

4.2 THE RETRIEVAL MODULE

Our overall objective is to recycle a small query-dependent subset of evicted KV to correct the at-
tention computation, which better approximates the full-context attention. To ensure GPU inference
efficiency, this correction computation should not be performed on the GPU and also not block the
GPU generation.

CPU–Side KV Retrieval. In general, RACC decouples computation and retrieval by retaining
discarded KV pairs in CPU memory and performing retrieval asynchronously on the CPU side,
which does not interrupt the GPU inference.

• After each KV compression, evicted KV pairs are offloaded to CPU memory and then
managed by a vector index for efficient and accurate vector retrieval.

• For each query qt, the GPU sends a vector retrieval request to the CPU, which finds relevant
KV pairs from evicted ones asynchronously.

• Once the GPU receives the retrieval result from the CPU, it directly concatenates them with
the current KV cache, which will be used in the subsequent token generations.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

CPU-side retrieval is in fact maximum inner product search (MIPS). Let us consider the atten-
tion distribution at each decoding step t. Formally, let KVR (KR) denote the current KV (keys)
cache retained on the GPU and KVE (KE) the evicted KV (keys) by the compression methods. For
the current query qt, the ideal attention distribution over the complete context KR ∪KE is

p⋆i =
exp

(
⟨qt, ki⟩/

√
D
)

∑
j∈KR∪KE

exp
(
⟨qt, kj⟩/

√
D
) , i ∈ KR ∪KE (3)

Here, qt represents the query vector at decoding step t, and ki refers to the i-th key vector in the
context set, D denotes the dimensionality of the vectors. Since the attention weight in Eq. 3 grows
with the inner product ⟨qt, ki⟩, selecting the most relevant evicted pairs reduces to a Maximum
Inner Product Search (MIPS) problem with qt as query and returns a subset K ′

E ⊂ KE such that
∀k1 ∈ K ′

E , k2 ∈ KE \K ′
E , ⟨qt, k1⟩ ≥ ⟨qt, k2⟩ holds.

Efficient and accurate MIPS remains a long-standing challenge ((Indyk & Motwani, 1998; Chen,
2018)). Therefore, we resort to the approximate MIPS, which accelerates the retrieval at the expense
of accuracy. To be specific, approximate MIPS methods (Guo et al. (2016); Bruch et al. (2023); Chen
et al. (2025)) enhance the search efficiency at the expense of the search accuracy. Moreover, through
vector space transformations (Bachrach et al. (2014); Zhou et al. (2019)), the MIPS problem can
be reformulated as a standard nearest neighbor search (NNS) problem. We will provide the proof
of this process in the appendix D. Such a transformation enables RACC to leverage standard NNS
methods (Jegou et al. (2010); Malkov & Yashunin (2018)), which have already been adopted by
mature vector databases ((Wang et al., 2021; Douze et al., 2024)).

The query qt in MIPS is not the token being generated in the GPU. Since the CPU-side retrieval
cannot block the GPU inference, the MIPS query must not be the token being generated. Owing to
the second observation in Section 3, adjacent tokens have similar attention allocation. Hence, we
use the token generated before the one being generated as the query of MIPS retrieval. In this way,
our method RACC captures the attention allocation better than the compression-only method, and is
more efficient than the retrieval-only methods that issue a synchronous retrieval.

4.3 THE COMPRESSION MODULE

Different scenarios should take different compression strategies. We design an independent
compression module for RACC that can adapt to various compression scenarios. Specifically, we
categorize long-context tasks into three types: long-input short-output (LISO), short-input long-
output (SILO), and long-input long-output (LILO). Most existing compression methods are typically
tailored to only one of them. In contrast, our compression module applies distinct strategies to
each scenario and constructs different indexes accordingly. SnapKV (Li et al., 2024) was the first
to introduce the use of an observation window to perform voting, selecting important past KV
pairs for KV cache compression. We follow this idea in our framework, and adopt the following
observation window selection strategies.

1. LISO: In the decoding phase, the attention pattern remains stable. We select the last seg-
ment of the prompt as the observation window to perform voting over all past KV pairs,
while caching all the KV pairs generated in the decoding phase.

2. SILO: Since the prompt is short and the attention pattern changes frequently in decoding,
we select the most recent window of generated tokens as the observation window. Voting
is then applied to compress all previously generated tokens, while retaining all KV pairs
from the prefilling phase.

3. LILO: We apply the above strategies to compress KV pairs from both the prefilling and
decoding phases.

The illustrations of the three strategies is shown in Fig. 5. The mathematical formulations for the
compression window and voting mechanism are provided in the Appendix B.

After obtaining the voting scores, we selectively retain the most important past tokens. Existing
methods (Li et al., 2024; Cai et al., 2024; Wang et al., 2024) limit the KV cache budget according to
the compression ratio and select the KV entries with the highest scores. Once the cached KV pairs

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

P
re

fi
ll

D
ec

o
d

e

drop&

create index
retain T

Last

window

Prompt attention

Decode attention

Vote attention by

last window

Last

window

P
re

fi
ll

D
ec

o
d

e

retain T

Last

window

drop&

create index

LISO mode

P
re

fi
ll

D
ec

o
d

e

retain drop&

create index
retain T

Last

window

SILO mode LILO mode

Figure 5: Illustration of the vote distribution under three different compression modes.

exceed the KV cache budget, frequent voting computations are required to guarantee the constraint
of the KV cache budget.

To address this issue, we adopt a grouping compression strategy, which is conducted for every n
newly generated tokens instead of every one. Specifically, once n new tokens are generated, we
perform a compression operation over all KV entries. The compression is controlled by a tunable
hyperparameter α. Before compression, the length of the KV cache is denoted as Lhistory. After each
compression, the resulting KV length becomes Lcompression.

Lcompression = (Lhistory + n)× α.

This grouping strategy allows the KV budget to be dynamically adjusted and significantly reduces
the number of expensive compression operations. Hence, it enhances the overall efficiency of the
GPU inference. Even though fewer KV cache updates in the generation, our method does not com-
promise the quality of the KV cache, because close tokens in the generation sequence have similar
attention patterns as discussed in the second observation in Section 3. The effectiveness of such a
grouping compression strategy is verified in the experiments. For more details, the pseudocode of
the compression strategy is provided in the Appendix C.

Different index construction strategies are applied for different compression scenarios. In the
LISO scenario, the aforementioned compression strategy is used to offload unimportant KV entries
to the CPU and construct a static index. As to SILO and LILO scenarios, when evicted KV entries
are offloaded to the CPU for the first time, a dynamic index is constructed. Subsequently, as more
KV entries are offloaded, the index is incrementally updated, i.e., new KV entries are dynamically
inserted into the existing index.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets: We evaluate our method on two open-source datasets: LongGenBench(Wu et al., 2025)
and LongProc(Ye et al., 2025). Both datasets are designed to assess the model’s accuracy in long-
form generation tasks. For LongGenBench, we select a generation length of 8K tokens for the
short dataset and 16K tokens for the long dataset. For LongProc, the generation length is dynami-
cally determined based on the specific sub-dataset. Additionally, we employ retrieval techniques in
combination with SnapKV and PyramidKV in an orthogonal manner to further improve accuracy.
We utilize LongBench(Bai et al., 2023) to evaluate the effectiveness of this integration. Detailed
descriptions of dataset selection and configuration can be found in the Appendix A.

Baseline Methods: To evaluate the effectiveness of RACC, we compare it against full-cache gener-
ation and several other compression-based methods.

1. Scope(Wu et al., 2024) performs KV compression in the decoding stage in a sliding manner.

2. CakeKV(Qin et al., 2025) focuses on the allocation of KV cache size among layers.

3. SqueezeAttn(Wang et al., 2024) adjusts the sliding window budget across layers.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Latency comparison of RACC and baseline methods.

Method TTFT
(ms)

OGL with Different Generated Tokens

512 (s) 1024 (s) 2048 (s)

Full Cache 254 15.40 30.71 63.88
SqueezeAttn 275 20.84 40.98 81.75

Scope 413 19.27 38.24 83.88
Cakekv 268 16.23 33.85 70.72
RACC 259 15.96 32.40 65.66

Table 2: Comparison of Generation Accuracy in LongGenBench

Model Method Short Experiment (token=8k) Long Experiment (token=16k)

Completion
Rate

Single
Accuracy

Range
Accuracy

Completion
Rate

Single
Accuracy

Range
Accuracy

L
la

m
a

Full Cache 66.0 34.7 58.2 37.5 60.8 53.4
SqueezeAttn 61.8 29.7 52.3 34.3 56.0 48.4

Scope 62.0 27.3 52.1 34.8 57.1 43.7
CakeKV 59.5 25.8 39.8 32.5 54.6 39.8
RACC 65.8 31.6 54.5 36.0 58.3 50.5

M
is

tr
al

Full Cache 67.5 39.1 62.4 36.5 56.1 52.7
SqueezeAttn 64.3 36.0 48.4 34.3 46.2 44.7

Scope 64.8 36.5 55.7 32.8 46.5 45.7
CakeKV 62.5 24.6 32.8 32.5 44.6 42.8
RACC 66.0 38.0 58.5 35.0 48.4 48.5

Notably, our method RACC is able to seamlessly integrate with any KV cache compression methods
in addition to SnapKV and PyramidKV.

Implementation Details: We conduct our experiments on a NVIDIA A6000 GPU and an Intel(R)
Xeon(R) Gold 6240 CPU @ 2.60GHz. We use LLaMA-3.1-8B and Mistral-7B-v0.2 as the LLM
models, both of which demonstrate strong performance on the aforementioned datasets and support
long generation. Our method sets the compression ratio of KV cache compression as a hyperparam-
eter, dynamically compressing tokens in generation. In this work, we define the compression ratio
as the ratio between the number of tokens stored in GPU at the last generation step and the total
number of generated tokens. More details could be found in the Appendix.

5.2 GENERATION LATENCY AND FIRST-TOKEN LATENCY

Two metrics, i.e., overall generation latency (OGL) and time to first token (TTFT), are used to eval-
uate the generation latency. We show our experimental results in Table 1, where Full Cache refers to
inference without any KV compression. First, KV cache compression methods introduce additional
cost, and thus present significantly higher generation latency than full cache in SILO scenarios.
Among the methods with KV cache compression, our method RACC achieves the smallest genera-
tion latency, and is even comparable to full cache. This experiment demonstrates the advantages of
our method in generation latency.

5.3 GENERATION ACCURACY EVALUATION

We further compare our method with baselines in generation accuracy. To make a fair comparison,
we allocate the same memory budget of KV Cache for all compression methods by setting their
compression ratio to 15% during inference. The experimental results in LongGenBench and Long-
Proc are shown in Table 2 and Table 3, respectively. Here, “completion rate” denotes the proportion
of cases where the model produces outputs that follow the required prompt format, while “accuracy”
measures the proportion of correct responses among them. The results demonstrate that, with the
same KV cache budget, our method, RACC, presents significantly higher generation accuracy than

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Comparison between RACC and the baseline across different datasets in LongProc

Model Method Path traversal (8K)) Tom tracking (8K) Travel planning (8k)
Completion

Rate
Task

Accuracy
Completion

Rate
Task

Accuracy
Completion

Rate
Task

Accuracy
L

la
m

a

Full Cache 66.7 1.99 100.0 18.42 53.3 5.31
SqueezeAttn 63.3 1.70 100.0 17.40 43.3 5.21

Scope 60.0 1.84 100.0 16.34 46.7 5.15
CakeKV 63.3 1.65 80.0 15.17 39.6 3.48

RACC 66.3 1.73 100.0 17.40 52.7 5.25

M
is

tr
al

Full Cache 74.5 2.01 100.0 15.67 52.7 5.38
SqueezeAttn 67.4 1.78 80.0 13.27 43.5 4.73

Scope 65.8 1.83 100.0 14.20 47.7 4.67
CakeKV 58.5 1.71 80.0 13.67 42.6 3.98

RACC 68.0 1.89 100.0 14.60 47.5 5.13

Table 4: Performance (Score) of different methods across Longbench for Llama and Mistral.

Method Llama Mistral

gov report muti news qmsum gov report muti news qmsum

SnapKV 26.84 22.09 22.48 30.20 24.36 24.71
SnapKV + RACC 27.95 24.2 23.35 31.14 25.47 25.53

PyramidKV 27.84 21.75 23.63 27.59 22.31 23.96
PyramidKV + RACC 28.70 22.38 24.46 28.40 22.95 24.67

the baseline compression methods. Such an improvement in accuracy is achieved by the retrieval
of essential tokens from the evicted ones through the compression method. In particular, our CPU-
side vector retrieval is efficient and accurate, and executed in an asynchronous manner that does not
block the GPU inference.

5.4 TESTING THE GENERALITY OF RACC

As aforementioned, our method RACC could be seamlessly integrated with the KV cache compres-
sion method. In the previous experiments, we focus on the SILO benchmarks, where the decoding-
stage KV cache compression is crucial. In this experiment, we integrate our method with prefilling-
only compression methods, i.e., SnapKV and PyramidKV on LISO benchmark LongBench. The
experimental results are reported in Table 4. We can see that SnapKV + RACC obviously out-
performs SnapKV in various tasks, achieving 3%–9.6% improvement in accuracy. Besides, similar
phenomena could be found between PyramidKV and PyramidKV + RACC. This experiment demon-
strates the generality of our RACC framework that is able to seamlessly integrate with any KV cache
compression method.

6 CONCLUSION

In this work, we aim to enhance the performance of LLM inference with a limited GPU memory
budget. We propose a combined method that integrates KV cache compression methods and CPU-
side vector retrieval methods. Moreover, we employ the closes tokens of the one being generated in
the output sequence as the query in the vector retrieval and execute the retrieval in an asynchronous
manner, which maintains the GPU inference speed and also returns high-quality KV pairs for the
current token. Our experiments demonstrate the superiority of our method in both efficiency and
accuracy over existing KV cache compresison methods.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Claude 3.7 sonnet. https://www.anthropic.com/news/
claude-3-7-sonnet, 2025.

Yoram Bachrach, Yehuda Finkelstein, Ran Gilad-Bachrach, Liran Katzir, Noam Koenigstein, Nir
Nice, and Ulrich Paquet. Speeding up the xbox recommender system using a euclidean trans-
formation for inner-product spaces. In Proceedings of the 8th ACM Conference on Recom-
mender Systems, RecSys ’14, pp. 257–264, New York, NY, USA, 2014. Association for Com-
puting Machinery. ISBN 9781450326681. doi: 10.1145/2645710.2645741. URL https:
//doi.org/10.1145/2645710.2645741.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

Sebastian Bruch, Franco Maria Nardini, Amir Ingber, and Edo Liberty. An approximate algorithm
for maximum inner product search over streaming sparse vectors. ACM Transactions on Infor-
mation Systems, 42(2):1–43, 2023.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Yucheng Li, Tianyu Liu, Keming Lu, Wayne
Xiong, Yue Dong, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyra-
midal information funneling. arXiv preprint arXiv:2406.02069, 2024.

Riley Carlson, John Bauer, and Christopher D Manning. A new pair of gloves. arXiv preprint
arXiv:2507.18103, 2025.

Lijie Chen. On the hardness of approximate and exact (bichromatic) maximum inner product. arXiv
preprint arXiv:1802.02325, 2018.

Tingyang Chen, Cong Fu, Kun Wang, Xiangyu Ke, Yunjun Gao, Wenchao Zhou, Yabo Ni, and
Anxiang Zeng. Maximum inner product is query-scaled nearest neighbor. Proc. VLDB Endow., 18
(6):1770–1783, August 2025. ISSN 2150-8097. doi: 10.14778/3725688.3725705. URL https:
//doi.org/10.14778/3725688.3725705.

Seonghwan Choi, Beomseok Kang, Dongwon Jo, and Jae-Joon Kim. Retrospective sparse attention
for efficient long-context generation. arXiv preprint arXiv:2508.09001, 2025.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Paul Denny, David H Smith IV, Max Fowler, James Prather, Brett A Becker, and Juho Leinonen.
Explaining code with a purpose: An integrated approach for developing code comprehension and
prompting skills. In Proceedings of the 2024 on Innovation and Technology in Computer Science
Education V. 1, pp. 283–289. 2024.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. arXiv
preprint arXiv:2401.08281, 2024.

Ruiqi Guo, Sanjiv Kumar, Krzysztof Choromanski, and David Simcha. Quantization based fast
inner product search. In Artificial intelligence and statistics, pp. 482–490. PMLR, 2016.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pp. 604–613, 1998.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
search. IEEE transactions on pattern analysis and machine intelligence, 33(1):117–128, 2010.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. Advances in Neural Information Processing Systems, 37:22947–22970, 2024.

10

https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://doi.org/10.1145/2645710.2645741
https://doi.org/10.1145/2645710.2645741
https://doi.org/10.14778/3725688.3725705
https://doi.org/10.14778/3725688.3725705

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-
gruidong Zhang, Bailu Ding, Kai Zhang, et al. Retrievalattention: Accelerating long-context llm
inference via vector retrieval. arXiv preprint arXiv:2409.10516, 2024.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36:52342–52364, 2023.

Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. IEEE transactions on pattern analysis and
machine intelligence, 42(4):824–836, 2018.

OpenAI. Gpt-5 model documentation. https://platform.openai.com/docs/models/
gpt-5, 2025.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
Proceedings of machine learning and systems, 5:606–624, 2023.

Ziran Qin, Yuchen Cao, Mingbao Lin, Wen Hu, Shixuan Fan, Ke Cheng, Weiyao Lin, and Jianguo
Li. Cake: Cascading and adaptive kv cache eviction with layer preferences. arXiv preprint
arXiv:2503.12491, 2025.

Yutao Sun, Tianzhu Ye, Li Dong, Yuqing Xia, Jian Chen, Yizhao Gao, Shijie Cao, Jianyong Wang,
and Furu Wei. Rectified sparse attention. arXiv preprint arXiv:2506.04108, 2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xiangyu Wang, Xi-
angzhou Guo, Chengming Li, Xiaohai Xu, et al. Milvus: A purpose-built vector data manage-
ment system. In Proceedings of the 2021 international conference on management of data, pp.
2614–2627, 2021.

Zihao Wang, Bin Cui, and Shaoduo Gan. Squeezeattention: 2d management of kv-cache in llm
inference via layer-wise optimal budget. arXiv preprint arXiv:2404.04793, 2024.

Jialong Wu, Zhenglin Wang, Linhai Zhang, Yilong Lai, Yulan He, and Deyu Zhou. Scope: Optimiz-
ing key-value cache compression in long-context generation. arXiv preprint arXiv:2412.13649,
2024.

Yuhao Wu, Ming Shan Hee, Zhiqiang Hu, and Roy Ka-Wei Lee. Longgenbench: Benchmark-
ing long-form generation in long context LLMs. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
3A71qNKWAS.

x.ai. Introduction. https://docs.x.ai/docs/introduction, 2025.

Xi Ye, Fangcong Yin, Yinghui He, Joie Zhang, Howard Yen, Tianyu Gao, Greg Durrett, and Danqi
Chen. Longproc: Benchmarking long-context language models on long procedural generation.
arXiv preprint arXiv:2501.05414, 2025.

Zihao Yi, Jiarui Ouyang, Zhe Xu, Yuwen Liu, Tianhao Liao, Haohao Luo, and Ying Shen. A survey
on recent advances in llm-based multi-turn dialogue systems. arXiv preprint arXiv:2402.18013,
2024.

Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu, Xupeng Miao, Xiaonan Nie, Weipeng Chen,
and Bin Cui. Pqcache: Product quantization-based kvcache for long context llm inference. Pro-
ceedings of the ACM on Management of Data, 3(3):1–30, 2025.

11

https://platform.openai.com/docs/models/gpt-5
https://platform.openai.com/docs/models/gpt-5
https://openreview.net/forum?id=3A71qNKWAS
https://openreview.net/forum?id=3A71qNKWAS
https://docs.x.ai/docs/introduction

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yang Zhang, Hanlei Jin, Dan Meng, Jun Wang, and Jinghua Tan. A comprehensive survey on
process-oriented automatic text summarization with exploration of llm-based methods. arXiv
preprint arXiv:2403.02901, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36:34661–34710, 2023.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 1(2), 2023.

Zhixin Zhou, Shulong Tan, Zhaozhuo Xu, and Ping Li. Möbius transformation for fast inner product
search on graph. Advances in Neural Information Processing Systems, 32, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A EXPERIMENTAL DETAILS

A.1 METHOD FOR CALCULATING COMPRESSION RATIOS

Different KV compression works adopt varying strategies for KV compression. Some works do
not directly treat ”compression ratio” as a hyperparameter, but instead set a memory budget for KV
at each layer or dynamically adjust the compression ratio. Therefore, we propose the following
calculation rule: the compression ratio P is defined as the ratio of the number of KV pairs stored in
the GPU at the end of the model’s generation to the total number of KV pairs in the model’s context.
Since the number of KVs is equivalent to the number of tokens, we will use the token count to refer
to the tokens. For CakeKV(Qin et al., 2025), Scope(Wu et al., 2024), and SqueezeAttn(Wang et al.,
2024), KV cache compression is performed by fixing the number of tokens allocated (budgeted) in
each layer’s KV cache. Therefore, the compression ratio P is calculated as the ratio of the budgeted
tokens to the generated tokens.

P =
#Budgeted Tokens
#Generated Tokens

For RACC, compression is performed on the entire KV cache every time n new KV pairs are
generated. The compression rate for each compression operation is defined as the hyperparameter
α. Additionally, β is defined as the proportion of KV pairs retrieved from the CPU relative to the
total KV in the context.

The number of compression operations n is determined by dividing the total number of generated
tokens by L, and rounding down to the nearest integer:

n =

⌊
#Generated tokens

L

⌋
Therefore, the compression rate PR is given by the sum of a geometric series, plus the retrieval cost
β:

PR =
α(αn − 1)

n(α− 1)
+ β (4)

Here, α is the hyperparameter defining the compression rate for each operation, n is the number of
compression operations, and β represents the retrieval cost of KV pairs from the CPU.

A.2 DETAILS OF THE EXPERIMENTAL SETUP

For all the control groups in Experiments 5.2 and 5.3, the full prompt sequence KV is preserved with
a compression rate set to 15%. In the open-source implementations of CakeKV, SqueezeAttn, and
Scope, KV compression is applied by default to the prompt, which leads to some accuracy loss. To
ensure a fair comparison, we modified their code to retain the complete prompt KV sequence. For
the four experimental groups in Experiment 5.4, the token budget for retention is set to 1024.

A.3 DATASET SELECTION

For the accuracy evaluation of long-text generation, we select two benchmarks, LongGenbench and
Longproc, which are designed to assess the model’s performance in long-text generation. For the ex-
periments in Section 5.4, we choose three datasets from LongBench: gov report, multi news,
and qmsum. The prompts in LongBench are generally long, making them suitable for evaluating
the model’s ability to comprehend and utilize context. We did not choose all available datasets for
testing, because for other datasets, the output length of the generated text is within the range of
50–200 tokens, where the KV cache selection strategy incurs minimal errors. Therefore, no retrieval
techniques are required for error correction. In contrast, the datasets gov report, multi news,
and qmsum have output lengths of 512 tokens, which provide a sufficiently long context window for
retrieval techniques to correct errors. This was also verified in our experiments.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B DETAILED EXPLANATION OF THE VOTING MECHANISM

As shown in Figure 6, in order to describe the method, we introduce the following terminology:

• Prompt length (L1): the length of the prompt token sequence.
• Previously generated tokens (L2): all tokens generated prior to the most recent window,

which account for the majority of the sequence.
• Observation window tokens (L3): all tokens within the most recent window. The total

number of tokens before generating the new token is defined as

L = L1⊕ L2⊕ L3.

where ⊕ denotes the concatenation operation.
• New token (T): the token that the model is currently generating.
• Vote attention: attention scores are computed between the queries from L3 and the keys

from L2. Formally, given the query QL3 ∈ RB×L3×H×D and the cached keys KL2 ∈
RB×L2×H×D, the score matrix (S) is defined as

SL3→L2 =
QL3K

⊤
L2√

D
, (5)

where
SL3→L2 ∈ RB×H×L3×L2.

By summing over the L3 dimension, we obtain the final vote score for each token in L2:

SL2 =

L3∑
i=1

SL3→L2[:, :, i, :], (6)

with
SL2 ∈ RB×H×L2.

Here, B denotes the batch size and H denotes the number of attention heads.
• Top-k Compression: Based on the vote scores sL2, we select the top-k tokens in L2 to

compress. This is done by sorting the attention scores and choosing the top-k highest-
scoring tokens for each attention head:

Stop-k = TopK(SL2, k),

where Stop-k contains the indices of the top-k tokens.
The corresponding tokens in L2 are selected based on these indices and compressed.

• Reconstruction: After compression, the compressed L2 is concatenated back with the
original L1 and L3:

Lfinal = L1⊕ Compressed(L2)⊕ L3,

where ⊕ denotes the concatenation operation.

Prefill

Decode

L1 L2 L3 T

Last window

Prompt attention

Decode attention

Vote attention by last window

Figure 6: Description of the vote mechanism.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C DETAILED PSEUDOCODE FOR THE COMPRESSION STRATEGY

The algorithm 1 presents the pseudocode for our Compression Strategy. Lines 3 to 6 illustrate the
vote attention from L3 to L2, which selects the critical token sequences from L2. Lines 12 to 26
show the update of the KV cache in GPU memory. Lines 19 to 23 describe an optional retrieval
strategy that loads previously discarded tokens—whose keys and values are critical for the current
generation—back into the GPU and concatenates them with the existing KV cache.

Algorithm 1 KV Compression with Optional Offline KV Linking

1: Input: Key, Value, Query window, compress ratio, retrieval kv (optional), Index (optional)
2: Output: Updated Key and Value
3: attn weight ← vote attn(Query window ,Key)
4: vote ← attn weight .sum(column-wise)
5: K ← L2 size× compress ratio
6: topk index ← vote.topk(K)
7: full index ← {0, 1, . . . , L1 size+ L2 size+ L3 size− 1}
8: drop index ← full index \ (L1 ∪ L3 ∪ topk index)
9: // Compute indices of tokens to be dropped

10: compress key ← KeyL2.gather(index = topk index)
11: compress value ← V alueL2.gather(index = topk index)
12: Key ← concat(KeyL1, compress key ,KeyL3)
13: Value ← concat(V alueL1, compress value, V alueL3)
14: if retrieval kv is not None then
15: // Link offline retrieval KV
16: Key ← concat(Key , retrieval kv .key states)
17: Value ← concat(Value, retrieval kv .value states)
18: end if
19: if Index is not None then
20: // Offload dropped KV to CPU and update index
21: drop key ← KeyL2.gather(index = drop index).to(cpu)
22: drop value ← V alueL2.gather(index = drop index).to(cpu)
23: Index .add(drop key , drop value)
24: end if
25: // Update KV cache
26: Cache.update(Key ,Value, layer id)
27: return Key ,Value

D DETAILED EXPLANATION OF MIPS

D.1 PROOF OF THE EQUIVALENCE BETWEEN MIPS AND NNS

We now present a formal proof sketch showing that the Maximum Inner Product Search (MIPS)
problem can be reduced to a Nearest Neighbor Search (NNS) problem in Euclidean space.

Problem Setup. Given a query q ∈ RD and database X ⊂ RD, MIPS seeks

x∗ = argmax
x∈X
⟨q, x⟩,

while NNS under ℓ2 norm is
x′ = argmin

x∈X
∥q − x∥2.

Transformation. Define

ϕ(x) = Concat

(
x,

√
M − ∥x∥22

)
, υ(q) = Concat(q, 0),

with M ≥ maxx∈X ∥x∥22.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Equivalence. We have

∥υ(q)− ϕ(x)∥22 = ∥q∥22 +M − 2⟨q, x⟩.
Since ∥q∥22 and M are constants, minimizing the ℓ2 distance is equivalent to maximizing ⟨q, x⟩.

D.2 IMPLEMENTATION

The main advantage of transforming MIPS into NNS is that it enables the use of highly opti-
mized nearest neighbor indices, thereby providing a convenient and high-performance solution for
inner product search. We implement this nearest neighbor search on top of Faiss(Douze et al.,
2024), a widely-used open-source vector library, and adapt it for three types of indexes: Flat Index,
IVFPQ(Jegou et al., 2010), and HNSW(Malkov & Yashunin, 2018).

Flat Index: The Flat index stores all vectors in a simple list, where the vector search is performed
by computing the distance between the query vector and every stored vector to find the most similar
one. Unlike other more complex indexing methods, the Flat index does not involve any division or
optimization of the vector space. The retrieval process is a linear scan, where each stored vector is
compared one by one, returning the closest result.

IVFPQ (Inverted File with Product Quantization): IVFPQ divides the vector space into multiple
clusters and stores vectors in their corresponding clusters. During search, it first locates the top-n
closest clusters to the query vector, and then searches within these clusters. To further reduce mem-
ory usage and accelerate distance computation, the vectors in each cluster are compressed using
product quantization (PQ), where each vector is partitioned into sub-vectors and quantized sepa-
rately. This combination significantly reduces the number of vectors to compare while also lowering
storage cost, leading to efficient large-scale retrieval.

HNSW (Hierarchical Navigable Small World): HNSW constructs multi-level graphs to map the
vector space, with edges connecting vectors to represent their similarity. The search process in
HNSW traverses the graph, maintaining a candidate list to store the top-k nearest vectors. This
index is particularly effective for high-dimensional vector spaces, as it balances search accuracy
with efficiency through hierarchical graph traversal.

D.3 EVALUATION OF APPROACHES

We design experiments to evaluate the memory usage, latency, and query accuracy of the three
retrieval methods mentioned above.

EXPERIMENTAL SETUP

We conducted experiments on an Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz, using the GloVe
(Carlson et al., 2025) dataset. We randomly selected 100,000 vectors to construct the index, with
100 queries and the top-k set to 100 for each query. We evaluated the performance of IVFPQ and
HNSW by testing various parameter combinations. The specific parameters are as follows:

• IVFPQ-1: nlist=2048, nprobe=32, m=16
• IVFPQ-2: nlist=2048, nprobe=32, m=32
• IVFPQ-3: nlist=4096, nprobe=32, m=16
• IVFPQ-4: nlist=2048, nprobe=64, m=16
• HNSW-1: M=16, efConstruction=200, efSearch=2000
• HNSW-2: M=32, efConstruction=200, efSearch=1500
• HNSW-3: M=16, efConstruction=200, efSearch=1500

EXPERIMENTAL RESULTS

The experimental results are shown in Table 5. The Flat Index has a shorter construction time but
longer query time, though it supports lossless retrieval. IVFPQ, on the other hand, has a longer
construction time but extremely short query times. HNSW, both in terms of construction and query

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 5: Comparison of three Faiss indexes in terms of latency, memory, and accuracy.

Method Build
Latency (s)

Search
Latency (ms/query)

Memory
Usage (MB) Accuracy (%)

Flat 0.03 0.577 49.12 100.00
IVFPQ-1 7.27 0.018 57.12 81.93
IVFPQ-2 8.25 0.025 82.49 83.89
IVFPQ-3 14.19 0.016 67.75 81.92
IVFPQ-4 7.49 0.020 54.00 82.63
HNSW-1 0.39 0.068 49.05 81.65
HNSW-2 0.43 0.038 73.21 82.69
HNSW-3 0.81 0.038 48.53 81.57

times, exhibits relatively shorter durations. The memory cost of all three methods is comparable. In
our open-source code, the construction method is set as a hyperparameter, allowing for flexibility in
choosing the most suitable approach based on the specific use case.

E THE USE OF LARGE LANGUAGE MODELS(LLMS)

This work utilized the assistance of LLMs solely for translation and language polishing. The ideas
and the writing of the manuscript were developed independently, without the use of LLMs. We take
full responsibility for all content presented in this article.

17

	Introduction
	Background and Related Works
	KV Cache in LLM Inference
	Related Works

	Observations
	Methodology
	Overview
	The Retrieval Module
	The Compression Module

	Experiments
	Experimental Setup
	Generation Latency and First-Token Latency
	Generation Accuracy Evaluation
	Testing the Generality of RACC

	Conclusion
	Experimental Details
	Method for Calculating Compression Ratios
	Details of the Experimental Setup
	Dataset Selection

	Detailed Explanation of the Voting Mechanism
	Detailed Pseudocode for the Compression Strategy
	Detailed Explanation of MIPS
	Proof of the Equivalence between MIPS and NNS
	Implementation
	Evaluation of Approaches

	The Use of Large Language Models(LLMs)

