

000 RACC: RETRIEVAL-AUGMENTED KV CACHE COM- 001 PRESSION IN LONG-CONTEXT GENERATION 002 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Large Language Models (LLMs) have achieved remarkable progress in long-
011 context generation. As the context length increases, the Key–Value (KV) cache
012 requires the GPU memory with a linear growth rate. KV cache compression is
013 treated as a promising method to reduce the memory usage by permanently dis-
014 carding a large portion of unimportant KV pairs, but at the expense of inference
015 accuracy. On the other hand, retrieval-based methods employ the CPU memory
016 to store the full KV cache and compute the attention via expensive CPU-GPU
017 I/O, which keeps the accuracy but suffers from huge inference latency. To address
018 these issues, we propose a new inference framework called RACC, which com-
019 bines both compression based methods and retrieval based methods. To be spe-
020 cific, we employ the KV cache compression method to maintain a high-quality KV
021 cache in the GPU memory, while sotring all the KV pairs evicted by the compres-
022 sion method. In addition, efficient and accurate retrieval conducted on the CPU
023 side finds out important tokens for the one being generated, which is then concate-
024 nated with those KV cached in the GPU memory for accurate generation. Exten-
025 sive experiments demonstrate that RACC achieves near-lossless inference while
026 using only 15% of the original KV cache. Moreover, its combination with prefill-
027 only compression methods improves generation accuracy by 3–10%. Our code is
028 publicly available at <https://anonymous.4open.science/r/CDKEY/>.

029 030 1 INTRODUCTION 031

032 Large language models (LLMs) have exhibited powerful capabilities in long-context generation
033 (Zhao et al., 2023), and have achieved superior performance in scenarios such as multi-turn di-
034 alogue (Yi et al., 2024), code comprehension (Denny et al., 2024), and document summariza-
035 tion (Zhang et al., 2024). Models such as Gemini 2.5 Pro (Comanici et al., 2025) and Grok-3 (x.ai,
036 2025) support input context up to 1 million tokens. On the other hand, Claude 3.7 (Anthropic, 2025)
037 and GPT-5 (OpenAI, 2025) have been able to generate outputs up to 128K tokens. Such an increase
038 in the context of LLM inference leads to a significant burden on the GPU memory, because it has
039 to store the KV cache of size linear to the context length. Considering PaLM-540B with a batch
040 size of 512 and a context length of 2048, the KV cache occupies 3 TB of memory in total, which
041 is three times larger than the model parameters(Pope et al., 2023). Subsequently, the KV cache is
042 an unavoidable bottleneck in long-context generation. Hence, it is crucial to optimize the KV cache
043 without additional model training in memory-constrained inference scenarios.

044 To make full use of the limited GPU memory, a bulk of works have been proposed in the literature
045 to store only a small part of important KV pairs in GPU memory. Those methods were built on the
046 basis that only a small fraction of the KV cache is critical for generating new tokens (Zhang et al.,
047 2023; Liu et al., 2023). Those KV cache reduction methods could be divided into two categories,
048 i.e., (1) compression-based methods and (2) retrieval-based methods. The former methods (Li et al.,
049 2024; Cai et al., 2024) compress the large-size KV cache into a small subset by permanently discard-
050 ing the KV pairs of unimportant tokens, which are considered as less important for the subsequently
051 generated tokens. To be specific, they estimate the importance of tokens according to their attention
052 scores w.r.t. the tokens being generated and permanently discard the KV pairs of those tokens with
053 lower attention scores to reduce memory usage. However, the discarded KV pairs may be important
for the tokens in the subsequent generation, which presents a negative effect on the inference perfor-
mance. In contrast, the latter methods (Zhang et al., 2025; Liu et al., 2024) just evict those KV pairs

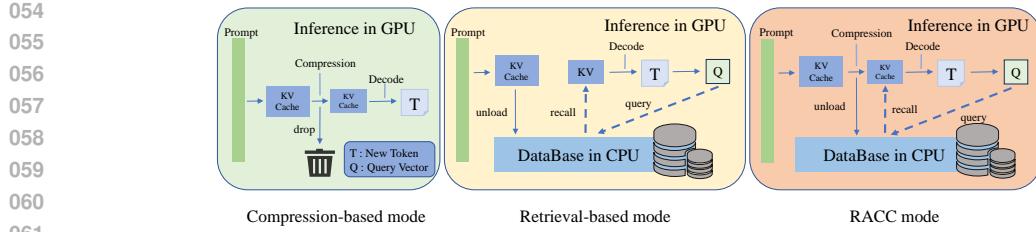


Figure 1: Illustration of the three modes.

to the CPU memory instead of discarding them directly and will fetch those KV pairs of important tokens for the current token generation via vector retrieval methods. Without KV pairs discarded, those methods retain high accuracy, but suffer from lower efficiency caused by the GPU–CPU I/O bottleneck. As a result, existing methods present a poor balance between accuracy and efficiency.

To address these issues, we propose a new framework called **RACC (Retrieval-Augmented KV Cache Compression)**, which combines both KV cache compression and KV cache retrieval. The three modes are illustrated in Figure 1.

Like KV cache compression, RACC maintains a compressed KV cache in GPU memory, which consists of a subset of important KV pairs from the full KV cache. Unlike KV cache compression that overlooks the KV pairs evicted previously, RACC employs a vector retrieval module maintained on the CPU side, which manages all evicted KV pairs and retrieves potentially important KV pairs to the currently generated token. Still, our framework has to deal with two challenges, i.e., (1) the selection of tokens as the query in vector retrieval and (2) the vector retrieval method on the CPU side. Existing temporary eviction methods use the current token to be generated as the query, which degrades the whole inference latency. This is because the inference has to wait for the results of the vector retrieval, which has to communicate with the lowly efficient CPU via GPU-CPU I/O. In this work, we propose to employ the recently generated tokens instead of the currently generated one as the query for vector retrieval, on the basis of the observation that the adjacent tokens in the sequence have similar attention tokens to the currently generated token. In this way, we asynchronously conduct the vector retrieval with the previously generated tokens as the queries and then send the retrieval results to the GPU as a part of KV cache for the current token. On the other hand, the vector retrieval must be efficient and accurate so that the retrieval results will be used for the generation of the tokens near the queries.

We conducted extensive experiments to evaluate the effectiveness of our approach. We selected two benchmark tests, Longgenbench (Wu et al., 2025) and Longproc (Ye et al., 2025), to assess the performance of our method, comparing it with the current state-of-the-art KV compression techniques. The results show that RACC achieves the lowest inference latency while maintaining nearly lossless performance with only 15% of the original KV cache. We also designed experiments to combine RACC’s retrieval module with other KV compression methods, using Longbench(Bai et al., 2023) as a benchmark to evaluate their generation accuracy. Compared to their original performance, we achieved an improvement of 3%-10% in accuracy scores.

Our contributions are summarized as follows:

1. We propose a new framework of KV cache compression that combines both permanent eviction and temporary eviction.
2. We carefully design the core modules of our framework, i.e., query selection and vector retrieval.
3. We conduct experiments on widely-used benchmarks to demonstrate the effectiveness and advantages of our method.

2 BACKGROUND AND RELATED WORKS

2.1 KV CACHE IN LLM INFERENCE

LLM inference can be divided into two phases: the *prefilling* phase and the *decoding* phase.

108 In the Prefilling phase, the user’s input prompt is embedded into word vectors, followed by the
 109 addition of positional encoding. These representations are then linearly projected into the query,
 110 key, and value matrices, denoted as

$$111 \quad Q^{\text{prompt}} \in \mathbb{R}^{B \times S \times H \times D}, \quad K^{\text{prompt}} \in \mathbb{R}^{B \times S \times H \times D}, \quad V^{\text{prompt}} \in \mathbb{R}^{B \times S \times H \times D},$$

113 where B is the batch size, S is the sequence length, H is the number of attention heads, and D is
 114 the dimensionality of each head.

115 After the matrix operations in Eq. 1 (Vaswani et al., 2017), the output of a single-layer self-attention
 116 module is produced and subsequently fed into the next transformer layer for forward propagation.
 117 After all layers of propagation, all K and V matrices have been computed. These matrices are stored
 118 as the *KV cache*, which is then utilized in the decoding phase to generate the first predicted token.
 119

$$120 \quad \text{Attention}(Q, K, V) = \text{Softmax}\left(\frac{QK^\top}{\sqrt{D}}\right)V \quad (1)$$

123 In the decoding phase, each forward propagation step generates one new token in an auto-regressive
 124 manner until an end-of-sequence symbol is produced. The previously generated token is projected
 125 into

$$126 \quad Q^{\text{new}} \in \mathbb{R}^{B \times 1 \times H \times D}, \quad K^{\text{new}} \in \mathbb{R}^{B \times 1 \times H \times D}, \quad V^{\text{new}} \in \mathbb{R}^{B \times 1 \times H \times D}.$$

127 At this point, the newly generated K and V are concatenated with the cached KV matrices from the
 128 prefilling phase, forming the updated KV cache as shown in Eq. 2:
 129

$$130 \quad K = \text{Concat}(K^{\text{prompt}}, K^{\text{new}}, \text{dim} = 1), \quad V = \text{Concat}(V^{\text{prompt}}, V^{\text{new}}, \text{dim} = 1), \quad (2)$$

131 which results in

$$132 \quad K \in \mathbb{R}^{B \times (S+1) \times H \times D}, \quad V \in \mathbb{R}^{B \times (S+1) \times H \times D}.$$

133 The updated K and V are then combined with the query Q to perform the attention computation as
 134 in Eq. 1, followed by forward propagation to predict the next token.
 135

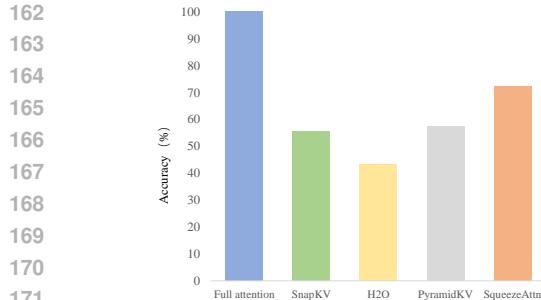
136 During generation, the memory footprint of the KV cache grows linearly with the length of the
 137 generated sequence. If there is either an excessively long input prompt or output, this results in
 138 substantial memory consumption or even the OOM error. The issue becomes worse in batch infer-
 139 ence scenarios, where the memory overhead is amplified across multiple sequences. Consequently,
 140 effective compression strategies for the KV cache are urgently needed.

141 2.2 RELATED WORKS

143 To extend the ability of LLM in long-context generation with limited GPU memory, a bulk of meth-
 144 ods have been proposed, which could be divided into two categories, i.e., (1) vector retrieval based
 145 methods and (2) KV cache compression based methods. Both of them are based on the fact that only
 146 a small subset of essential tokens exerts a predominant influence on the generation fidelity (Zhang
 147 et al., 2023; Liu et al., 2023).

148 Vector retrieval methods (Liu et al., 2024; Zhang et al., 2025) usually employ the CPU memory to
 149 help store the whole KV cache and identify the essential tokens via vector retrieval. RetrievalAt-
 150 tention (Liu et al., 2024) initially offloads the entire KV cache to the CPU and performs online
 151 retrieval of the essential tokens for the current one. It enables lossless inference, but suffers from
 152 unacceptable generation latency due to the online retrieval via the brute-force method. To accelerate
 153 the CPU-side retrieval, PQCache (Zhang et al., 2025) employs the SOTA vector retrieval method,
 154 i.e., product quantization (PQ) (Jegou et al., 2010), which is efficient but only returns approximate
 155 retrieval results. Hence, the approximate retrieval results affect the subsequent generation accu-
 156 racy. Besides, PQCache still suffers from long generation latency due to the expensive data transfer
 157 between CPU and GPU in an online manner.

158 KV cache compression methods do not store the full KV cache and thus do not need the cooperation
 159 of the CPU. They only retain the identified essential tokens, which are then used for subsequent
 160 generations, while permanently discarding others. As a representative, SnapKV (Li et al., 2024)
 161 observes that attention allocation patterns remain stable in the generation phase, and thus identifies
 the critical prompt tokens using a sliding window at the tail of the prompt. PyramidKV (Cai et al.,



172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Figure 2: Accuracy evaluation on LongGenBench, comparing uncompressed inference with various KV compression methods.

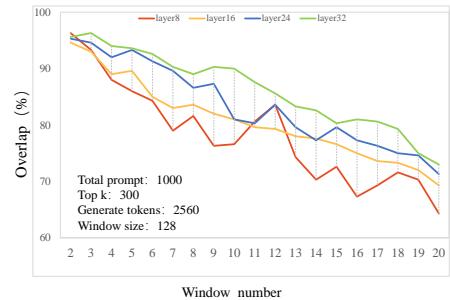


Figure 3: The overlap rate between the top- k tokens selected from window 1 and those selected from the subsequent 19 windows.

2024) argues that different model layers exhibit distinct attention-allocation patterns and thus assigns layer-wise memory budgets to each KV cache to enhance the KV cache compression. Cake(Qin et al., 2025) further analyzes the attention preferences across different layers to adaptively allocate the memory budget of the KV cache. SqueezeAttention(Wang et al., 2024) employs a sliding-window mechanism spanning both the Prefilling and Decoding phases, compressing the KV cache by discarding entries outside the window. Similarly, ScopeWu et al. (2024) adopts a sliding-window strategy but introduces a more flexible eviction policy for KV entries. Even though KV cache compression methods achieve a good compression ratio and almost keep the inference speed, they still suffer from significant accuracy loss due to their permanent discarding policy.

3 OBSERVATIONS

In this section, we present our observations on attention allocation in generation as listed in the following. Our experiments are conducted on two long-generation benchmarks, i.e., LongProc(Ye et al., 2025) and LongGenBench(Wu et al., 2025), with Meta-Llama-3.1-8B-Instruct as the LLM.

1. **KV Cache compression methods suffer from significant accuracy loss in long-generation scenarios.** We evaluate several representative KV cache compression methods on the LongGenBench dataset, ensuring that they operate under the same compression ratio, and examine their accuracy scores. As shown in Figure 2, where we use four representative KV cache compression methods (SnapKV (Li et al., 2024), H2O (Zhang et al., 2023), PyramidKV (Cai et al., 2024) and SqueezeAttn (Wang et al., 2024)), we can see that all compression methods obviously decrease their accuracy compared with the full attention in the long-generation scenarios. This observation indicates a part of important tokens were permanently discarded by the compression methods and has no chance to recall them back.
2. **Adjacent tokens generated in the decoding phase present highly similar attention allocation patterns.** Our experiments are based on the “Travel Planning” dataset from LongProc in long-input ($\geq 4K$ tokens) long-output (2K-8K tokens). We divide the generated tokens at each layer into windows of 100 tokens and select the first 20 windows in the decoding phase. For each selected window, we observe its attention allocation w.r.t. the prompt tokens. We compute the overlap ratio between the tokens identified with the highest attention scores in the first window and those in subsequent windows. As in Figure 3, we observe that adjacent windows share similar attention allocation patterns, whereas this similarity decreases as the window distance increases.

4 METHODOLOGY

In this section, we present our method RACC that combines both KV cache compression and vector retrieval on the basis of the two observations in the last section. The intuition of our method is to find important KV pairs for the current token from the evicted KV pairs by the compression methods via

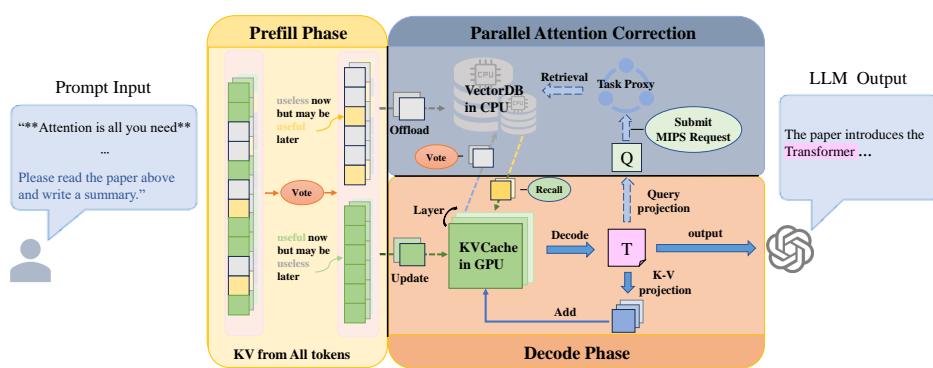


Figure 4: Illustrating the RACC framework.

the asynchronous CPU-side vector retrieval. In this way, we enhance the accuracy of compression methods while not compromising both the efficiency and the compression ratio compared with the compression-only methods.

4.1 OVERVIEW

Existing compression methods produce accurate generation for a short output after compression, but degrade gradually for a long output due to the accumulated errors(Sun et al., 2025; Choi et al., 2025). This is an inherent limitation of all KV compression methods, where the discarded KV may still contain crucial information for subsequent generations. To address this issue, it is necessary to manage evicted KV by those compression methods and inquire them again in subsequent generations.

As illustrated in Fig. 4, RACC consists of two key components, i.e., (1) a retrieval module that runs on the CPU side in parallel with the GPU and (2) a KV cache compression module that maintains a subset of essential KV pairs in the GPU memory. In the retrieval module, we manage the KV pairs evicted by the compression module and build a vector index for efficient and accurate retrieval. This module can identify important tokens beyond the compressed KV cache in the GPU memory and then sends the KV pairs of those tokens found back to the GPU memory, which will be used in the following token generations. In the compression module, we employ existing KV cache compression methods to obtain the compressed KV pairs online. Notably, our framework is compatible to all KV cache compression methods and vector retrieval methods. Moreover, we design a fine-grained scheduling strategy to tightly coordinate the two modules, ensuring that inference proceeds without incurring additional latency.

4.2 THE RETRIEVAL MODULE

Our overall objective is to *recycle* a small query-dependent subset of evicted KV to correct the attention computation, which better approximates the full-context attention. To ensure GPU inference efficiency, this correction computation should not be performed on the GPU and also not block the GPU generation.

CPU-Side KV Retrieval. In general, RACC decouples *computation* and *retrieval* by retaining discarded KV pairs in CPU memory and performing retrieval asynchronously on the CPU side, which does not interrupt the GPU inference.

- After each KV compression, evicted KV pairs are offloaded to CPU memory and then managed by a vector index for efficient and accurate vector retrieval.
- For each query q_t , the GPU sends a vector retrieval request to the CPU, which finds relevant KV pairs from evicted ones asynchronously.
- Once the GPU receives the retrieval result from the CPU, it directly concatenates them with the current KV cache, which will be used in the subsequent token generations.

270 **CPU-side retrieval is in fact maximum inner product search (MIPS).** Let us consider the attention
 271 distribution at each decoding step t . Formally, let KV_R (K_R) denote the current KV (keys)
 272 cache retained on the GPU and KV_E (K_E) the evicted KV (keys) by the compression methods. For
 273 the current query q_t , the ideal attention distribution over the complete context $K_R \cup K_E$ is
 274

$$275 \quad p_i^* = \frac{\exp\left(\langle q_t, k_i \rangle / \sqrt{D}\right)}{\sum_{j \in K_R \cup K_E} \exp\left(\langle q_t, k_j \rangle / \sqrt{D}\right)}, \quad i \in K_R \cup K_E \quad (3)$$

$$276$$

$$277$$

278 Here, q_t represents the query vector at decoding step t , and k_i refers to the i -th key vector in the
 279 context set, D denotes the dimensionality of the vectors. Since the attention weight in Eq. 3 grows
 280 with the inner product $\langle q_t, k_i \rangle$, selecting the most relevant evicted pairs reduces to a Maximum
 281 Inner Product Search (MIPS) problem with q_t as query and returns a subset $K'_E \subset K_E$ such that
 282 $\forall k_1 \in K'_E, k_2 \in K_E \setminus K'_E, \langle q_t, k_1 \rangle \geq \langle q_t, k_2 \rangle$ holds.

283 Efficient and accurate MIPS remains a long-standing challenge ((Indyk & Motwani, 1998; Chen,
 284 2018)). Therefore, we resort to the approximate MIPS, which accelerates the retrieval at the expense
 285 of accuracy. To be specific, approximate MIPS methods (Guo et al. (2016); Bruch et al. (2023); Chen
 286 et al. (2025)) enhance the search efficiency at the expense of the search accuracy. Moreover, through
 287 vector space transformations (Bachrach et al. (2014); Zhou et al. (2019)), the MIPS problem can
 288 be reformulated as a standard nearest neighbor search (NNS) problem. We will provide the proof
 289 of this process in the appendix D. Such a transformation enables RACC to leverage standard NNS
 290 methods (Jegou et al. (2010); Malkov & Yashunin (2018)), which have already been adopted by
 291 mature vector databases ((Wang et al., 2021; Douze et al., 2024)).

292 **The query q_t in MIPS is not the token being generated in the GPU.** Since the CPU-side retrieval
 293 cannot block the GPU inference, the MIPS query must not be the token being generated. Owing to
 294 the second observation in Section 3, adjacent tokens have similar attention allocation. Hence, we
 295 use the token generated before the one being generated as the query of MIPS retrieval. In this way,
 296 our method RACC captures the attention allocation better than the compression-only method, and is
 297 more efficient than the retrieval-only methods that issue a synchronous retrieval.

298 4.3 THE COMPRESSION MODULE

300 **Different scenarios should take different compression strategies.** We design an independent
 301 compression module for RACC that can adapt to various compression scenarios. Specifically, we
 302 categorize long-context tasks into three types: *long-input short-output (LISO)*, *short-input long-
 303 output (SILO)*, and *long-input long-output (LILO)*. Most existing compression methods are typically
 304 tailored to only one of them. In contrast, our compression module applies distinct strategies to
 305 each scenario and constructs different indexes accordingly. SnapKV (Li et al., 2024) was the first
 306 to introduce the use of an **observation window** to perform **voting**, selecting important past KV
 307 pairs for KV cache compression. We follow this idea in our framework, and adopt the following
 308 observation window selection strategies.

- 310 **1. LISO:** In the decoding phase, the attention pattern remains stable. We select the last seg-
 311 ment of the prompt as the observation window to perform voting over all past KV pairs,
 312 while caching all the KV pairs generated in the decoding phase.
- 313 **2. SILO:** Since the prompt is short and the attention pattern changes frequently in decoding,
 314 we select the most recent window of generated tokens as the observation window. Voting
 315 is then applied to compress all previously generated tokens, while retaining all KV pairs
 316 from the prefilling phase.
- 317 **3. LILO:** We apply the above strategies to compress KV pairs from both the prefilling and
 318 decoding phases.

319 The illustrations of the three strategies is shown in Fig. 5. The mathematical formulations for the
 320 compression window and voting mechanism are provided in the Appendix B.

322 After obtaining the voting scores, we selectively retain the most important past tokens. Existing
 323 methods (Li et al., 2024; Cai et al., 2024; Wang et al., 2024) limit the KV cache budget according to
 the compression ratio and select the KV entries with the highest scores. Once the cached KV pairs

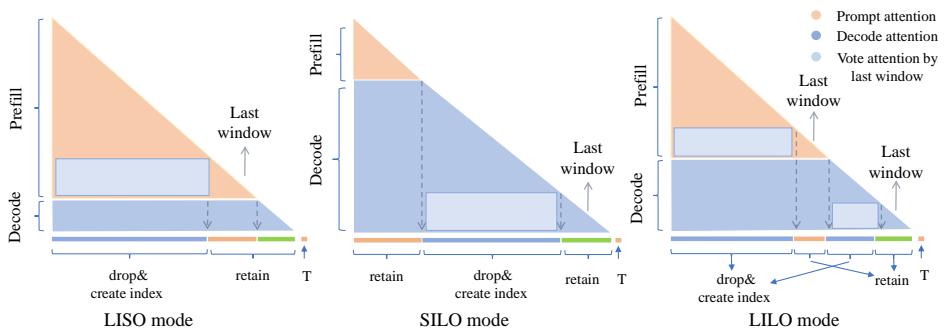


Figure 5: Illustration of the vote distribution under three different compression modes.

exceed the KV cache budget, frequent voting computations are required to guarantee the constraint of the KV cache budget.

To address this issue, we adopt a grouping compression strategy, which is conducted for every L_n newly generated tokens instead of every one. Specifically, once L_n new tokens are generated, we perform a compression operation over all KV entries. The compression is controlled by a tunable hyperparameter α . Before compression, the length of the KV cache is denoted as L_{history} . After each compression, the resulting KV length becomes $L_{\text{compression}}$.

$$L_{\text{compression}} = (L_{\text{history}} + L_n) \times \alpha.$$

This grouping strategy allows the KV budget to be dynamically adjusted and significantly reduces the number of expensive compression operations. Hence, it enhances the overall efficiency of the GPU inference. Even though fewer KV cache updates in the generation, our method does not compromise the quality of the KV cache, because close tokens in the generation sequence have similar attention patterns as discussed in the second observation in Section 3. The effectiveness of such a grouping compression strategy is verified in the experiments. For more details, the pseudocode of the compression strategy is provided in the Appendix C.

Different index construction strategies are applied for different compression scenarios. In the LISO scenario, the aforementioned compression strategy is used to offload unimportant KV entries to the CPU and construct a static index. As to SILO and LILO scenarios, when evicted KV entries are offloaded to the CPU for the first time, a dynamic index is constructed. Subsequently, as more KV entries are offloaded, the index is incrementally updated, i.e., new KV entries are dynamically inserted into the existing index.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets: We evaluate our method on two open-source datasets: **LongGenBench**(Wu et al., 2025) and **LongProc**(Ye et al., 2025). Both datasets are designed to assess the model’s accuracy in long-form generation tasks. For **LongGenBench**, we select a generation length of 8K tokens for the short dataset and 16K tokens for the long dataset. For **LongProc**, the generation length is dynamically determined based on the specific sub-dataset. Additionally, we employ retrieval techniques in combination with **SnapKV** and **PyramidKV** in an orthogonal manner to further improve accuracy. We utilize **LongBench**(Bai et al., 2023) to evaluate the effectiveness of this integration. Detailed descriptions of dataset selection and configuration can be found in the Appendix A.

Baseline Methods: To evaluate the effectiveness of RACC, we compare it against full-cache generation and several other compression-based methods.

1. **Scope**(Wu et al., 2024) performs KV compression in the decoding stage in a sliding manner.
2. **CakeKV**(Qin et al., 2025) focuses on the allocation of KV cache size among layers.
3. **SqueezeAttn**(Wang et al., 2024) adjusts the sliding window budget across layers.

Table 1: Latency comparison of RACC and baseline methods.

Method	TTFT (ms)	OGL with Different Generated Tokens		
		512 (s)	1024 (s)	2048 (s)
Full Cache	254	15.40	30.71	63.88
SqueezeAttn	275	20.84	40.98	81.75
Scope	413	19.27	38.24	83.88
Cakekv	268	16.23	33.85	70.72
RACC	259	15.96	32.40	65.66

Table 2: Comparison of Generation Accuracy in LongGenBench

Model	Method	Short Experiment (token=8k)			Long Experiment (token=16k)		
		Completion Rate	Single Accuracy	Range Accuracy	Completion Rate	Single Accuracy	Range Accuracy
Llama	Full Cache	66.0	34.7	58.2	37.5	60.8	53.4
	SqueezeAttn	61.8	29.7	52.3	34.3	56.0	48.4
	Scope	62.0	27.3	52.1	34.8	57.1	43.7
	CakeKV	59.5	25.8	39.8	32.5	54.6	39.8
	RACC	65.8	31.6	54.5	36.0	58.3	50.5
Mistral	Full Cache	67.5	39.1	62.4	36.5	56.1	52.7
	SqueezeAttn	64.3	36.0	48.4	34.3	46.2	44.7
	Scope	64.8	36.5	55.7	32.8	46.5	45.7
	CakeKV	62.5	24.6	32.8	32.5	44.6	42.8
	RACC	66.0	38.0	58.5	35.0	48.4	48.5

Notably, our method **RACC** is able to seamlessly integrate with any KV cache compression methods in addition to **SnapKV** and **PyramidKV**.

Implementation Details: We conduct our experiments on a NVIDIA A6000 GPU and an Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz. We use **LLaMA-3.1-8B** and **Mistral-7B-v0.2** as the LLM models, both of which demonstrate strong performance on the aforementioned datasets and support long generation. Our method sets the compression ratio of KV cache compression as a hyperparameter, dynamically compressing tokens in generation. In this work, we define the compression ratio as the ratio between the number of tokens stored in GPU at the last generation step and the total number of generated tokens. More details could be found in the Appendix A.

5.2 GENERATION LATENCY AND FIRST-TOKEN LATENCY

Two metrics, i.e., overall generation latency (OGL) and time to first token (TTFT), are used to evaluate the generation latency. We show our experimental results in Table 1, where Full Cache refers to inference without any KV compression. First, KV cache compression methods introduce additional cost, and thus present significantly higher generation latency than full cache in SILO scenarios. Among the methods with KV cache compression, our method RACC achieves the smallest generation latency, and is even comparable to full cache. This experiment demonstrates the advantages of our method in generation latency.

5.3 GENERATION ACCURACY EVALUATION

We further compare our method with baselines in generation accuracy. To make a fair comparison, we allocate the same memory budget of KV Cache for all compression methods by setting their compression ratio to 15% during inference. The experimental results in LongGenBench and Long-Proc are shown in Table 2 and Table 3, respectively. Here, “completion rate” denotes the proportion of cases where the model produces outputs that follow the required prompt format, while “accuracy” measures the proportion of correct responses among them. The results demonstrate that, with the same KV cache budget, our method, RACC, presents significantly higher generation accuracy than

432 Table 3: Comparison between RACC and the baseline across different datasets in LongProc
433

434 435 436 437 Model	438 439 440 441 Method	442 443 444 445 Path traversal (8K))		446 447 448 449 Tom tracking (8K)		450 451 452 453 Travel planning (8k)	
		454 455 456 Completion Rate	457 458 459 Task Accuracy	460 461 462 Completion Rate	463 464 465 Task Accuracy	466 467 468 Completion Rate	469 470 471 Task Accuracy
472 473 474 475 Llama	476 477 478 479 Full Cache	480 481 482 66.7	483 484 485 1.99	486 487 488 100.0	489 490 491 18.42	492 493 494 53.3	495 496 497 5.31
	498 499 500 501 SqueezeAttn	502 503 504 63.3	505 506 507 1.70	508 509 510 100.0	511 512 513 17.40	514 515 516 43.3	517 518 519 5.21
	520 521 522 523 Scope	524 525 526 60.0	527 528 529 1.84	530 531 532 100.0	533 534 535 16.34	536 537 538 46.7	539 540 541 5.15
	542 543 544 545 CakeKV	546 547 548 63.3	549 550 551 1.65	552 553 554 80.0	555 556 557 15.17	558 559 560 39.6	561 562 563 3.48
	564 565 566 567 RACC	568 569 570 66.3	571 572 573 1.73	574 575 576 100.0	577 578 579 17.40	580 581 582 52.7	583 584 585 5.25
472 473 474 475 Mistral	476 477 478 479 Full Cache	480 481 482 74.5	483 484 485 2.01	486 487 488 100.0	489 490 491 15.67	492 493 494 52.7	495 496 497 5.38
	498 499 500 501 SqueezeAttn	502 503 504 67.4	505 506 507 1.78	508 509 510 80.0	511 512 513 13.27	514 515 516 43.5	517 518 519 4.73
	520 521 522 523 Scope	524 525 526 65.8	527 528 529 1.83	530 531 532 100.0	533 534 535 14.20	536 537 538 47.7	539 540 541 4.67
	542 543 544 545 CakeKV	546 547 548 58.5	549 550 551 1.71	552 553 554 80.0	555 556 557 13.67	558 559 560 42.6	561 562 563 3.98
	564 565 566 567 RACC	568 569 570 68.0	571 572 573 1.89	574 575 576 100.0	577 578 579 14.60	580 581 582 47.5	583 584 585 5.13

448 Table 4: Performance (Score) of different methods across Longbench for Llama and Mistral.
449

450 451 452 Method	453 454 455 Llama			456 457 458 Mistral		
	459 460 461 gov_report	462 463 464 muti_news	465 466 467 qmsum	468 469 470 gov_report	471 472 473 muti_news	474 475 476 qmsum
SnapKV	26.84	22.09	22.48	30.20	24.36	24.71
SnapKV + RACC	27.95	24.2	23.35	31.14	25.47	25.53
PyramidKV	27.84	21.75	23.63	27.59	22.31	23.96
PyramidKV + RACC	28.70	22.38	24.46	28.40	22.95	24.67

459 the baseline compression methods. Such an improvement in accuracy is achieved by the retrieval
460 of essential tokens from the evicted ones through the compression method. In particular, our CPU-
461 side vector retrieval is efficient and accurate, and executed in an asynchronous manner that does not
462 block the GPU inference. Additional experimental results under different parameter settings can be
463 found in Appendix E.

464 5.4 TESTING THE GENERALITY OF RACC

466 As aforementioned, our method RACC could be seamlessly integrated with the KV cache compres-
467 sion method. In the previous experiments, we focus on the SILO benchmarks, where the decoding-
468 stage KV cache compression is crucial. In this experiment, we integrate our method with prefilling-
469 only compression methods, i.e., SnapKV and PyramidKV on LISO benchmark LongBench. The
470 experimental results are reported in Table 4. We can see that SnapKV + RACC obviously out-
471 performs SnapKV in various tasks, achieving 3%–9.6% improvement in accuracy. Besides, similar
472 phenomena could be found between PyramidKV and PyramidKV + RACC. This experiment demon-
473 strates the generality of our RACC framework that is able to seamlessly integrate with any KV cache
474 compression method.

475 6 CONCLUSION

478 In this work, we aim to enhance the performance of LLM inference with a limited GPU memory
479 budget. We propose a combined method that integrates KV cache compression methods and CPU-
480 side vector retrieval methods. Moreover, we employ the closes tokens of the one being generated in
481 the output sequence as the query in the vector retrieval and execute the retrieval in an asynchronous
482 manner, which maintains the GPU inference speed and also returns high-quality KV pairs for the
483 current token. Our experiments demonstrate the superiority of our method in both efficiency and
484 accuracy over existing KV cache compresison methods.

486 REFERENCES
487

488 Anthropic. Claude 3.7 sonnet. <https://www.anthropic.com/news/claude-3-7-sonnet>, 2025.

489

490 Yoram Bachrach, Yehuda Finkelstein, Ran Gilad-Bachrach, Liran Katzir, Noam Koenigstein, Nir
491 Nice, and Ulrich Paquet. Speeding up the xbox recommender system using a euclidean trans-
492 formation for inner-product spaces. In *Proceedings of the 8th ACM Conference on Recom-
493 mender Systems*, RecSys '14, pp. 257–264, New York, NY, USA, 2014. Association for Com-
494 puting Machinery. ISBN 9781450326681. doi: 10.1145/2645710.2645741. URL <https://doi.org/10.1145/2645710.2645741>.

495

496 Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
497 Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
498 context understanding. *arXiv preprint arXiv:2308.14508*, 2023.

499

500 Sebastian Bruch, Franco Maria Nardini, Amir Ingber, and Edo Liberty. An approximate algorithm
501 for maximum inner product search over streaming sparse vectors. *ACM Transactions on Infor-
502 mation Systems*, 42(2):1–43, 2023.

503

504 Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Yucheng Li, Tianyu Liu, Keming Lu, Wayne
505 Xiong, Yue Dong, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyra-
506 midal information funneling. *arXiv preprint arXiv:2406.02069*, 2024.

507

508 Riley Carlson, John Bauer, and Christopher D Manning. A new pair of gloves. *arXiv preprint
arXiv:2507.18103*, 2025.

509

510 Lijie Chen. On the hardness of approximate and exact (bichromatic) maximum inner product. *arXiv
preprint arXiv:1802.02325*, 2018.

511

512 Tingyang Chen, Cong Fu, Kun Wang, Xiangyu Ke, Yunjun Gao, Wenchao Zhou, Yabo Ni, and
513 Anxiang Zeng. Maximum inner product is query-scaled nearest neighbor. *Proc. VLDB Endow.*, 18
514 (6):1770–1783, August 2025. ISSN 2150-8097. doi: 10.14778/3725688.3725705. URL <https://doi.org/10.14778/3725688.3725705>.

515

516 Seonghwan Choi, Beomseok Kang, Dongwon Jo, and Jae-Joon Kim. Retrospective sparse attention
517 for efficient long-context generation. *arXiv preprint arXiv:2508.09001*, 2025.

518

519 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
520 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
521 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
522 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

523

524 Paul Denny, David H Smith IV, Max Fowler, James Prather, Brett A Becker, and Juho Leinonen.
525 Explaining code with a purpose: An integrated approach for developing code comprehension and
526 prompting skills. In *Proceedings of the 2024 on Innovation and Technology in Computer Science
527 Education V. 1*, pp. 283–289. 2024.

528

529 Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvassy, Pierre-
530 Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. *arXiv
531 preprint arXiv:2401.08281*, 2024.

532

533 Ruiqi Guo, Sanjiv Kumar, Krzysztof Choromanski, and David Simcha. Quantization based fast
534 inner product search. In *Artificial intelligence and statistics*, pp. 482–490. PMLR, 2016.

535

536 Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of
537 dimensionality. In *Proceedings of the thirtieth annual ACM symposium on Theory of computing*,
538 pp. 604–613, 1998.

539

540 Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
541 search. *IEEE transactions on pattern analysis and machine intelligence*, 33(1):117–128, 2010.

542

543 Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
544 Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
545 generation. *Advances in Neural Information Processing Systems*, 37:22947–22970, 2024.

540 Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-
 541 gruidong Zhang, Bailu Ding, Kai Zhang, et al. Retrievalattention: Accelerating long-context llm
 542 inference via vector retrieval. *arXiv preprint arXiv:2409.10516*, 2024.

543

544 Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
 545 Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
 546 hypothesis for llm kv cache compression at test time. *Advances in Neural Information Processing
 547 Systems*, 36:52342–52364, 2023.

548 Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search
 549 using hierarchical navigable small world graphs. *IEEE transactions on pattern analysis and
 550 machine intelligence*, 42(4):824–836, 2018.

551 OpenAI. Gpt-5 model documentation. <https://platform.openai.com/docs/models/gpt-5>, 2025.

552

553 Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
 554 Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
 555 *Proceedings of machine learning and systems*, 5:606–624, 2023.

556

557 Ziran Qin, Yuchen Cao, Mingbao Lin, Wen Hu, Shixuan Fan, Ke Cheng, Weiyao Lin, and Jianguo
 558 Li. Cake: Cascading and adaptive kv cache eviction with layer preferences. *arXiv preprint
 559 arXiv:2503.12491*, 2025.

560

561 Yutao Sun, Tianzhu Ye, Li Dong, Yuqing Xia, Jian Chen, Yizhao Gao, Shijie Cao, Jianyong Wang,
 562 and Furu Wei. Rectified sparse attention. *arXiv preprint arXiv:2506.04108*, 2025.

563

564 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 565 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information
 566 processing systems*, 30, 2017.

567

568 Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xiangyu Wang, Xi-
 569 angzhou Guo, Chengming Li, Xiaohai Xu, et al. Milvus: A purpose-built vector data manage-
 570 ment system. In *Proceedings of the 2021 international conference on management of data*, pp.
 2614–2627, 2021.

571

572 Zihao Wang, Bin Cui, and Shaoduo Gan. Squeezeattention: 2d management of kv-cache in llm
 573 inference via layer-wise optimal budget. *arXiv preprint arXiv:2404.04793*, 2024.

574

575 Jialong Wu, Zhenglin Wang, Linhai Zhang, Yilong Lai, Yulan He, and Deyu Zhou. Scope: Optimiz-
 576 ing key-value cache compression in long-context generation. *arXiv preprint arXiv:2412.13649*,
 2024.

577

578 Yuhao Wu, Ming Shan Hee, Zhiqiang Hu, and Roy Ka-Wei Lee. Longgenbench: Benchmark-
 579 ing long-form generation in long context LLMs. In *The Thirteenth International Conference on
 580 Learning Representations*, 2025. URL <https://openreview.net/forum?id=3A71qNKWAS>.

581

582 x.ai. Introduction. <https://docs.x.ai/docs/introduction>, 2025.

583

584 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 585 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 586 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 587 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 588 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 589 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 590 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 591 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 592 Qiu. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

593

594 Xi Ye, Fangcong Yin, Yinghui He, Joie Zhang, Howard Yen, Tianyu Gao, Greg Durrett, and Danqi
 595 Chen. Longproc: Benchmarking long-context language models on long procedural generation.
 596 *arXiv preprint arXiv:2501.05414*, 2025.

594 Zihao Yi, Jiarui Ouyang, Zhe Xu, Yuwen Liu, Tianhao Liao, Haohao Luo, and Ying Shen. A survey
595 on recent advances in llm-based multi-turn dialogue systems. *arXiv preprint arXiv:2402.18013*,
596 2024.

597 Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu, Xupeng Miao, Xiaonan Nie, Weipeng Chen,
598 and Bin Cui. Pqcache: Product quantization-based kvcache for long context llm inference. *Pro-
599 ceedings of the ACM on Management of Data*, 3(3):1–30, 2025.

600 Yang Zhang, Hanlei Jin, Dan Meng, Jun Wang, and Jinghua Tan. A comprehensive survey on
601 process-oriented automatic text summarization with exploration of llm-based methods. *arXiv
602 preprint arXiv:2403.02901*, 2024.

603 Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
604 Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
605 erative inference of large language models. *Advances in Neural Information Processing Systems*,
606 36:34661–34710, 2023.

607 Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
608 Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. *arXiv
609 preprint arXiv:2303.18223*, 1(2), 2023.

610 Zhixin Zhou, Shulong Tan, Zhaozhuo Xu, and Ping Li. Möbius transformation for fast inner product
611 search on graph. *Advances in Neural Information Processing Systems*, 32, 2019.

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648
649

A EXPERIMENTAL DETAILS

650
651

A.1 METHOD FOR CALCULATING COMPRESSION RATIOS

652
653
654
655
656
657
658
659
660

Different KV compression works adopt varying strategies for KV compression. Some works do not directly treat "compression ratio" as a hyperparameter, but instead set a memory budget for KV at each layer or dynamically adjust the compression ratio. Therefore, we propose the following calculation rule: the compression ratio P is defined as the ratio of the number of KV pairs stored in the GPU at the end of the model's generation to the total number of KV pairs in the model's context. Since the number of KVs is equivalent to the number of tokens, we will use the token count to refer to the tokens. For **CakeKV**(Qin et al., 2025), **Scope**(Wu et al., 2024), and **SqueezeAttn**(Wang et al., 2024), KV cache compression is performed by fixing the number of tokens allocated (budgeted) in each layer's KV cache. Therefore, the compression ratio P is calculated as the ratio of the budgeted tokens to the generated tokens.

661
662
663
664

$$P = \frac{\text{\#Budgeted Tokens}}{\text{\#Generated Tokens}}$$

665
666
667
668

For **RACC**, compression is performed on the entire KV cache every time L_n new KV pairs are generated. The compression rate for each compression operation is defined as the hyperparameter α . Additionally, β is defined as the proportion of KV pairs retrieved from the CPU relative to the total KV in the context.

669
670

The number of compression operations n is determined by dividing the total number of generated tokens by L_n , and rounding down to the nearest integer:

671

$$n = \left\lfloor \frac{\text{\#Generated tokens}}{L_n} \right\rfloor$$

672
673
674

Therefore, the compression rate P_R is given by the sum of a geometric series, plus the retrieval cost β :

675
676
677
678
679
680

$$P_R = \frac{\alpha^n - 1}{n(\alpha - 1)} + \beta \quad (4)$$

681
682
683

Here, α is the hyperparameter defining the compression rate for each operation, n is the number of compression operations, and β represents the retrieval cost of KV pairs from the CPU.

684
685

A.2 DETAILS OF THE EXPERIMENTAL SETUP

686
687
688
689
690

For all the control groups in Experiments 5.2 and 5.3, the full prompt sequence KV is preserved with a compression rate set to 15%. In Eq. 4, we define three parameters related to the compression rate P_R , namely n , α , and β , where n is determined by the window size L_n . We treat α , β , and L_n as hyperparameters. In the experiments presented in the main text, we set $\alpha = 60\%$, $\beta = 1\%$, and $L_n = 400$. A sensitivity analysis of these three parameters is provided in Appendix E.3.

691
692

A.3 DATASET SELECTION

693
694
695
696
697
698
699
700
701

For the accuracy evaluation of long-text generation, we select two benchmarks, LongGenbench and Longproc, which are designed to assess the model's performance in long-text generation. For the experiments in Section 5.4, we choose three datasets from LongBench: `gov_report`, `multi_news`, and `qmsum`. The prompts in LongBench are generally long, making them suitable for evaluating the model's ability to comprehend and utilize context. We did not choose all available datasets for testing, because for other datasets, the output length of the generated text is within the range of 50–200 tokens, where the KV cache selection strategy incurs minimal errors. Therefore, no retrieval techniques are required for error correction. In contrast, the datasets `gov_report`, `multi_news`, and `qmsum` have output lengths of 512 tokens, which provide a sufficiently long context window for retrieval techniques to correct errors. This was also verified in our experiments.

702 B DETAILED EXPLANATION OF THE VOTING MECHANISM 703

704 As shown in Figure 6, in order to describe the method, we introduce the following terminology:
705

- 706 • **Prompt length (L_1):** the length of the prompt token sequence.
- 707 • **Previously generated tokens (L_2):** all tokens generated prior to the most recent window,
708 which account for the majority of the sequence.
- 709 • **Observation window tokens (L_3):** all tokens within the most recent window. The total
710 number of tokens before generating the new token is defined as
711

$$712 L = L_1 \oplus L_2 \oplus L_3.$$

713 where \oplus denotes the concatenation operation.

- 714 • **New token (T):** the token that the model is currently generating.
- 715 • **Vote attention:** attention scores are computed between the queries from L_3 and the keys
716 from L_2 . Formally, given the query $Q_{L_3} \in \mathbb{R}^{B \times L_3 \times H \times D}$ and the cached keys $K_{L_2} \in$
717 $\mathbb{R}^{B \times L_2 \times H \times D}$, the score matrix (S) is defined as
718

$$719 S_{L_3 \rightarrow L_2} = \frac{Q_{L_3} K_{L_2}^\top}{\sqrt{D}}, \quad (5)$$

720 where
721

$$722 S_{L_3 \rightarrow L_2} \in \mathbb{R}^{B \times H \times L_3 \times L_2}.$$

723 By summing over the L_3 dimension, we obtain the final vote score for each token in L_2 :

$$724 S_{L_2} = \sum_{i=1}^{L_3} S_{L_3 \rightarrow L_2}[:, :, i, :], \quad (6)$$

725 with
726

$$727 S_{L_2} \in \mathbb{R}^{B \times H \times L_2}.$$

728 Here, B denotes the batch size and H denotes the number of attention heads.

- 729 • **Top-k Compression:** Based on the vote scores s_{L_2} , we select the top-k tokens in L_2 to
730 compress. This is done by sorting the attention scores and choosing the top-k highest-
731 scoring tokens for each attention head:

$$732 S_{\text{top-k}} = \text{TopK}(S_{L_2}, k),$$

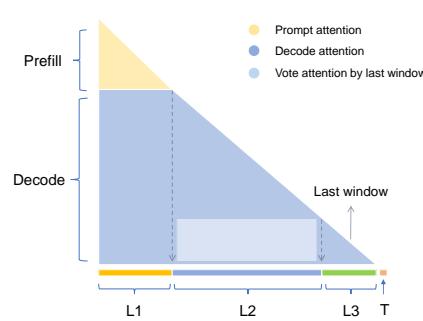
733 where $S_{\text{top-k}}$ contains the indices of the top-k tokens.

734 The corresponding tokens in L_2 are selected based on these indices and compressed.

- 735 • **Reconstruction:** After compression, the compressed L_2 is concatenated back with the
736 original L_1 and L_3 :

$$737 L_{\text{final}} = L_1 \oplus \text{Compressed}(L_2) \oplus L_3,$$

738 where \oplus denotes the concatenation operation.



739 Figure 6: Description of the vote mechanism.
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 C DETAILED PSEUDOCODE FOR THE COMPRESSION STRATEGY
757

758 The algorithm 1 presents the pseudocode for our Compression Strategy. Lines 3 to 6 illustrate the
759 *vote attention* from L_3 to L_2 , which selects the critical token sequences from L_2 . Lines 12 to 26
760 show the update of the KV cache in GPU memory. Lines 19 to 23 describe an optional retrieval
761 strategy that loads previously discarded tokens—whose keys and values are critical for the current
762 generation—back into the GPU and concatenates them with the existing KV cache.
763

764 **Algorithm 1** KV Compression with Optional Offline KV Linking

```

765 1: Input: Key, Value, Query_window, compress_ratio, retrieval_kv (optional), Index (optional)
766 2: Output: Updated Key and Value
767 3:  $attn\_weight \leftarrow vote\_attn(Query\_window, Key)$ 
768 4:  $vote \leftarrow attn\_weight.sum(column-wise)$ 
769 5:  $K \leftarrow L_2.size \times compress\_ratio$ 
770 6:  $topk\_index \leftarrow vote.topk(K)$ 
771 7:  $full\_index \leftarrow \{0, 1, \dots, L_1.size + L_2.size + L_3.size - 1\}$ 
772 8:  $drop\_index \leftarrow full\_index \setminus (L_1 \cup L_3 \cup topk\_index)$ 
773 9: // Compute indices of tokens to be dropped
774 10:  $compress\_key \leftarrow Key_{L2}.gather(index = topk\_index)$ 
775 11:  $compress\_value \leftarrow Value_{L2}.gather(index = topk\_index)$ 
776 12:  $Key \leftarrow concat(Key_{L1}, compress\_key, Key_{L3})$ 
777 13:  $Value \leftarrow concat(Value_{L1}, compress\_value, Value_{L3})$ 
778 14: if retrieval_kv is not None then
779 15:     // Link offline retrieval KV
780 16:      $Key \leftarrow concat(Key, retrieval\_kv.key\_states)$ 
781 17:      $Value \leftarrow concat(Value, retrieval\_kv.value\_states)$ 
782 18: end if
783 19: if Index is not None then
784 20:     // Offload dropped KV to CPU and update index
785 21:      $drop\_key \leftarrow Key_{L2}.gather(index = drop\_index).to(cpu)$ 
786 22:      $drop\_value \leftarrow Value_{L2}.gather(index = drop\_index).to(cpu)$ 
787 23:      $Index.add(drop\_key, drop\_value)$ 
788 24: end if
789 25: // Update KV cache
790 26:  $Cache.update(Key, Value, layer\_id)$ 
791 27: return Key, Value

```

792 D DETAILED EXPLANATION OF MIPS
793794 D.1 PROOF OF THE EQUIVALENCE BETWEEN MIPS AND NNS
795

796 We now present a formal proof sketch showing that the Maximum Inner Product Search (MIPS)
797 problem can be reduced to a Nearest Neighbor Search (NNS) problem in Euclidean space.
798

799 **Problem Setup.** Given a query $q \in \mathbb{R}^D$ and database $\mathcal{X} \subset \mathbb{R}^D$, MIPS seeks

$$x^* = \arg \max_{x \in \mathcal{X}} \langle q, x \rangle,$$

800 while NNS under ℓ_2 norm is

$$x' = \arg \min_{x \in \mathcal{X}} \|q - x\|_2.$$

801 **Transformation.** Define

$$\phi(x) = \text{Concat}\left(x, \sqrt{M - \|x\|_2^2}\right), \quad v(q) = \text{Concat}(q, 0),$$

802 with $M \geq \max_{x \in \mathcal{X}} \|x\|_2^2$.
803

810 **Equivalence.** We have
 811

$$\|v(q) - \phi(x)\|_2^2 = \|q\|_2^2 + M - 2\langle q, x \rangle.$$

813 Since $\|q\|_2^2$ and M are constants, minimizing the ℓ_2 distance is equivalent to maximizing $\langle q, x \rangle$.
 814

815 D.2 IMPLEMENTATION

817 The main advantage of transforming MIPS into NNS is that it enables the use of highly opti-
 818 mized nearest neighbor indices, thereby providing a convenient and high-performance solution for
 819 inner product search. We implement this nearest neighbor search on top of Faiss(Douze et al.,
 820 2024), a widely-used open-source vector library, and adapt it for three types of indexes: Flat Index,
 821 IVFPQ(Jegou et al., 2010), and HNSW(Malkov & Yashunin, 2018).

822 **Flat Index:** The Flat index stores all vectors in a simple list, where the vector search is performed
 823 by computing the distance between the query vector and every stored vector to find the most similar
 824 one. Unlike other more complex indexing methods, the Flat index does not involve any division or
 825 optimization of the vector space. The retrieval process is a linear scan, where each stored vector is
 826 compared one by one, returning the closest result.

827 **IVFPQ (Inverted File with Product Quantization):** IVFPQ divides the vector space into multiple
 828 clusters and stores vectors in their corresponding clusters. During search, it first locates the top- n
 829 closest clusters to the query vector, and then searches within these clusters. To further reduce mem-
 830 ory usage and accelerate distance computation, the vectors in each cluster are compressed using
 831 product quantization (PQ), where each vector is partitioned into sub-vectors and quantized sepa-
 832 rately. This combination significantly reduces the number of vectors to compare while also lowering
 833 storage cost, leading to efficient large-scale retrieval.

834 **HNSW (Hierarchical Navigable Small World):** HNSW constructs multi-level graphs to map the
 835 vector space, with edges connecting vectors to represent their similarity. The search process in
 836 HNSW traverses the graph, maintaining a candidate list to store the top- k nearest vectors. This
 837 index is particularly effective for high-dimensional vector spaces, as it balances search accuracy
 838 with efficiency through hierarchical graph traversal.

839 D.3 EVALUATION OF APPROACHES

841 We design experiments to evaluate the memory usage, latency, and query accuracy of the three
 842 retrieval methods mentioned above.
 843

844 EXPERIMENTAL SETUP

846 We conducted experiments on an Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz, using the GloVe
 847 (Carlson et al., 2025) dataset. We randomly selected 100,000 vectors to construct the index, with
 848 100 queries and the top- k set to 100 for each query. We evaluated the performance of IVFPQ and
 849 HNSW by testing various parameter combinations. The specific parameters are as follows:

- 850 • **IVFPQ-1:** nlist=2048, nprobe=32, m=16
- 851 • **IVFPQ-2:** nlist=2048, nprobe=32, m=32
- 852 • **IVFPQ-3:** nlist=4096, nprobe=32, m=16
- 853 • **IVFPQ-4:** nlist=2048, nprobe=64, m=16
- 854 • **HNSW-1:** M=16, efConstruction=200, efSearch=2000
- 855 • **HNSW-2:** M=32, efConstruction=200, efSearch=1500
- 856 • **HNSW-3:** M=16, efConstruction=200, efSearch=1500

860 EXPERIMENTAL RESULTS

862 The experimental results are shown in Table 5. The Flat Index has a shorter construction time but
 863 longer query time, though it supports lossless retrieval. IVFPQ, on the other hand, has a longer
 construction time but extremely short query times. HNSW, both in terms of construction and query

864
865
866 Table 5: Comparison of three Faiss indexes in terms of latency, memory, and accuracy.
867
868
869
870
871
872
873
874
875
876
877
878
879
880

Method	Build Latency (s)	Search Latency (ms/query)	Memory Usage (MB)	Accuracy (%)
Flat	0.03	0.577	49.12	100.00
IVFPQ-1	7.27	0.018	57.12	81.93
IVFPQ-2	8.25	0.025	82.49	83.89
IVFPQ-3	14.19	0.016	67.75	81.92
IVFPQ-4	7.49	0.020	54.00	82.63
HNSW-1	0.39	0.068	49.05	81.65
HNSW-2	0.43	0.038	73.21	82.69
HNSW-3	0.81	0.038	48.53	81.57

880 times, exhibits relatively shorter durations. The memory cost of all three methods is comparable. In
881 our open-source code, the construction method is set as a hyperparameter, allowing for flexibility in
882 choosing the most suitable approach based on the specific use case.
883

884
885 E EXTENDED EXPERIMENTS
886887
888 E.1 ADDITIONAL LATENCY ANALYSIS EXPERIMENTS
889

890 In the main paper, we mentioned that retrieval-based methods incur relatively high latency, but we
891 did not provide detailed numbers. Therefore, we designed an experiment similar to Table 1 to
892 analyze the latency of **PQCache**(Zhang et al., 2025), and the results are shown in Table 6.
893

894
895 Table 6: Latency comparison of **RACC** and **PQCache**.
896

Method	TTFT (ms)	OGL with Different Generated Tokens		
		512 (s)	1024 (s)	2048 (s)
Full Cache	254	15.40	30.71	63.88
SqueezeAttn	515	46.83	96.09	186.75
RACC	259	15.96	32.40	65.66

903 The average generation speed of **PQCache** is approximately 10.967 tokens/s. Meanwhile, another
904 retrieval-based method mentioned in the main paper, **RetrievalAttention**(Liu et al., 2024), is cur-
905 rently not open-sourced, so we cannot reproduce its implementation for experiments. However, its
906 paper provides a clear number: around 0.188 s/token, i.e., 5.31 tokens/s. The standard inference
907 speed is about 30 tokens/s, indicating that retrieval-based methods incur significantly higher latency
908 compared to conventional compression methods.
909

910
911 E.2 RESULTS AT DIFFERENT COMPRESSION RATIOS
912

913 In the main text, we compared the performance of **RACC** and baseline methods using a single
914 compression ratio of 15%. Here, we additionally report the performance of each method at 20% and
915 30% compression ratios, tested using the Short Experiment of **LongGenBench**(Wu et al., 2025).
916 The experimental results are shown in Table 7.
917

918 The experimental results demonstrate that RACC still achieves the best performance at other com-
919 pression ratios.
920

Table 7: Comparison between RACC and Baselines at Other Compression Ratios

Method	Compression Ratios=20%			Compression Ratios=30%		
	Completion Rate	Single Accuracy	Range Accuracy	Completion Rate	Single Accuracy	Range Accuracy
Full Cache	66.0	34.7	58.2	66.0	34.7	58.2
SqueezeAttn	62.4	30.1	52.5	60.5	31.8	53.3
Scope	54.1	31.3	52.6	53.7	32.7	54.9
CakeKV	61.8	27.6	45.3	63.5	28.9	49.3
RACC	64.9	32.1	54.2	64.7	33.3	55.1

E.3 HYPERPARAMETER SENSITIVITY ANALYSIS

According to Eq. 4, L_n is the compression window size, α is the window compression rate, β is the retrieval budget, and P_R is the overall compression rate.

These three hyperparameters (L_n , α , β) can all affect the final generation accuracy by indirectly influencing the compression rate. To analyze the impact of different parameters on RACC's performance under the same compression rate, we conducted additional experiments. The experimental results are shown in Table 8.

Table 8: Sensitivity Analysis of Hyperparameters (L_n , α , β) on RACC Performance

L_n	α	β	P_R	Completion Rate	Single Accuracy	Range Accuracy	Average Accuracy
400	60%	1%	15%	65.8	31.6	54.5	43.05
400	60%	5%	20%	66.8	31.8	54.4	43.1
540	60%	1%	20%	64.5	31.7	54.1	42.9
400	70%	1%	20%	64.9	32.1	54.2	43.15
540	70%	5%	30%	65.7	33.2	54.8	44.0
400	80%	1%	30%	64.7	33.3	55.1	44.2
830	60%	1%	30%	65.9	33.1	54.8	43.95
Full Cache	—	—	100%	66.0	34.7	58.2	46.45

The experimental results show that a larger retrieval budget and a higher window compression rate both improve generation accuracy, at the cost of increased GPU and CPU memory consumption. Increasing the window size L_n also leads to higher GPU memory usage, but the resulting accuracy gain is relatively limited.

E.4 ABLATION STUDY

To investigate the contributions of the compression module and the retrieval module to the final accuracy, we design the following ablation study. Since the retrieval module cannot function independently without the compression module, we divide the method into two variants: **RACC (without Retrieval)** and **RACC (with Retrieval)**. By comparing their latency and accuracy, we can quantify the individual impact of each module and understand their overall influence on system performance.

We evaluate accuracy using the Short Experiment of **LongGenBench**, with the retrieval budget β set to 1%. The results are summarized in Table 9.

The experimental results in this section demonstrate that both the compression module and the retrieval module play essential roles in enhancing the model’s long-text generation capability. The retrieval module further improves accuracy on top of the compression module while introducing only minimal latency overhead, whereas the compression module provides stable baseline performance with reduced memory consumption. The combination of these two modules achieves a favorable balance among memory usage, latency, and accuracy, thereby validating the necessity and effectiveness of our overall design.

972
973
974 Table 9: Latency and Accuracy Ablation of RACC.
975
976
977
978
979
980
981**(a) Latency Comparison**

Method	TTFT (ms)	OGL with Different Generated Tokens		
		512 tokens (s)	1024 tokens (s)	2048 tokens (s)
Full Cache	254	15.40	30.71	63.88
RACC (w/o retrieval)	259	15.71	32.12	64.80
RACC (with retrieval)	259	15.96	32.40	65.66

(b) Accuracy Comparison

Method	Completion Rate (%)	Single Accuracy (%)	Range Accuracy (%)
Full Cache	66.0	34.7	58.2
RACC (w/o retrieval)	67.1	28.41	50.3
RACC (with retrieval)	65.8	31.6	54.5

982
983 E.5 GENERALIZATION TO NEW MODEL ARCHITECTURES
984

985 To validate the adaptability of our method to larger models and updated model architectures, we
986 applied it to the Qwen3 series(Yang et al., 2025). We conducted additional experiments on **Qwen3-14B**,
987 using the Short Experiments from **LongGenBench** as the benchmark. Table 10 shows the
988 comparison of RACC with a 15% compression rate against the full cache in terms of accuracy.

989
990 Table 10: RACC performance on **Qwen3-14B**
991

Method	Completion Rate (%)	Single Accuracy (%)	Range Accuracy (%)
Full Cache	51.4	48.9	75.1
RACC	48.8	43.39	71.0

992 The experimental results demonstrate that our method exhibits strong generalizability and adaptability.
993 It is effective not only on the models evaluated in the main experiments but also on larger and
994 more recent model architectures, highlighting its broad applicability.

1000
1001 F THE USE OF LARGE LANGUAGE MODELS(LLMs)
1002

1003 This work utilized the assistance of LLMs solely for translation and language polishing. The ideas
1004 and the writing of the manuscript were developed independently, without the use of LLMs. We take
1005 full responsibility for all content presented in this article.