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Abstract

Modern Foundation Models (FMs) are typically
trained on corpora spanning a wide range of dif-
ferent data modalities, topics, downstream tasks.
Utilizing these models can be very computation-
ally expensive and is out of reach for most con-
sumer devices. Furthermore, most of the broad
FM knowledge may actually be irrelevant for a
specific task at hand. Here we explore a technique
for mapping parameters of a large Transformer
to parameters of a smaller specialized model. By
making this transformation task-specific, we aim
to capture a narrower scope of the knowledge
needed for performing a specific task by a smaller
model. We study our method on image model-
ing tasks, showing that performance of generated
models exceeds that of universal conditional mod-
els.

1. Introduction
Transformer-based generative models have recently shown
a remarkable success in modeling complex data distribu-
tions across a wide spectrum of modalities including images,
audio and language. In the language domain, Large Lan-
guage Models (LLMs) became an extremely powerful tool
demonstrating impressive performance across a large scope
of language tasks. These models are typically very compu-
tationally complex to train and run and require vast amounts
of text data that encompass a wide range of topics, facts and
downstream applications. The generality of the resulting
LLMs can be extremely advantageous, but also prove re-
dundant or even detrimental in narrow applications and in
specialized tasks (Raffel et al., 2020).

Here we propose an approach to generating a task-specific
Transformer model of a smaller size from a larger Trans-
former. In our primary setup, similar to that explored in

*Equal contribution 1Google DeepMind. Correspondence to:
Andrey Zhmoginov <azhmogin@google.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

other related publications (see Appendix A), we maintain a
functional universal large Foundation Model (FM) and use it
to generate smaller specialized task-dependent Transformers
with an emphasis on multi-task learning and personalization
scenarios. Following the HyperNetwork approach (Ha et al.,
2016), we generate the specialized models on the fly from
the task specification without the need for any fine-tuning.

We study this idea experimentally in the visual domain
adopting IMAGEGPT approach (Chen et al., 2020a), in
which images are represented as sequences of discrete to-
kens and an autoregressive Transformer model is used to
model this sequence distribution. Here we compare per-
formance of task-specialized generated small Transformer
models with universal counterparts of the same size. We
also explore zero-shot generalization and knowledge trans-
fer across different tasks.

2. Method
In the following, we outline our approach, where we
use large Transformer models for generating smaller task-
specific Transformers. We simultaneously view this as (a)
a model specialization technique, where we can produce
a small Transformer best suited for a particular task; (b)
model compression technique where a single large model
can be used for producing a variety of models of different
sizes, and finally (c) a modular network approach, where
individual generated task-specialized model implicitly share
knowledge via a single large model. A more detailed dis-
cussion of weight space manifolds and associated model
specialization techniques can be found in Appendix B.

2.1. Matrix Generators

In the Transformer architecture, the embedding size typi-
cally defines the sizes of all self-attention and MLP weight
matrices. Choosing some maximum embedding size d, we
define a family of Transformer models {Ms}s∈S with the
embedding size ds. We typically choose s = 2−k with
integer k ≥ 0 assuming that d/2k is integer for all models
of interest. We generally assume that eachMs is a separate
model pretrained on some input data distribution p(x).

Given pretrainedM1 how can we generate a smaller Trans-

1



Projectable Models: One-Shot Generation of Small Specialized Transformers from Large Ones

Generated
using

task ID t

Self-Attention

MLP

Self-Attention

MLP

Self-Attention

MLP

Self-Attention

MLP

"Source Model" "Projected Model"
Source Model 

weight matrices
Projected Model 
weight matrices

Figure 1. Model diagram. Given the task ID t, the weights of
the large “source model”M1 (Transformer with the embedding
size d) are mapped to the weights of a smaller “projected model”
Ps (Transformer with the embedding size ds). The loss of Ps on
the input sequence is used to train the “projection operator” and
tuneM1, while a good performance ofM1 can be maintained by
continuing to train it with the original objective.

former with architecture of Ms and the embedding size
ds? One natural way of doing this is to map each linear
operator1 Ô`

1(z) := W`
1z+b`1 fromM1 to a corresponding

linear operator2 Ô`
s(z) := W`

sz + b`s in the small model.
Assuming that this transformation is linear, its most general
form is simply

(Ws)ij :=
∑
k,l

VW
ijkl(W1)kl + VB

ij ,

(bs)i :=
∑
k

UW
ik (b1)k + UB

i .

Projections. One natural choice of (VW ,VB ,UW ,UB)
comes from analyzing linear transformations of the embed-
ding space. Specifically, given two linear maps Q̂ : Rds →
Rd and P̂ : Rd → Rds mapping embeddings between em-
bedding spaces of two models, we can naturally define Ôs

via Ôs(z) ≡ P̂(Ô1(Q̂z)). In other words, the action Ôs(z)
is defined as a sequence of several steps: (a) mapping z to
a higher-dimensional embedding space via Q̂z, (b) acting
on this activation with Ô1 and finally (c) projecting the re-
sult down to the original low-dimensional embedding space
with P̂. Ignoring biases, we can define Q̂(z) = Qz and
P̂(z) = Pz with Q and P being two matrices, thus simply
obtaining:

Ws = PW1Q, bs = Pb1. (1)

In the following, we mainly adopt this model.

1all dense layers in self-attention and MLP operators
2In the following we use a hat to denote operators (X̂) and

roman font for matrices (X).

Figure 2. Projection of the source model weight W1 into the pro-
jected model weight Ws. Here t is the task identifier and P(t),
Q(t) are “projection matrices” whose diagonal elements are gen-
erated using shallow MLPs from t.

2.2. Task-Dependent Matrix Generators

Our primary goal is generating small task-specific Trans-
former models, which requires that the generated weight
matrices Ws depend on the task. In the following, we as-
sume that each task is uniquely defined by a task identifier
t ∈ T with T being a finite-dimensional vector space of all
possible tasks. Given t, we then define a projection opera-
tor ρs that first maps t to V(t) and U(t) at every layer as
discussed below and then uses these tensors and the large
Transformer source modelM1 to generate the weights of a
smaller projected model Ps = ρs(t;M1), in effect defining
a function family F(ρs,M1) = {ρs(t;M1)|t ∈ T}.

If the tasks are specified explicitly as a part of the training
dataset, we expect that ρs(t;M1) performs a task t better
than a universal task-agnostic model of the same architec-
ture. On the other hand, if task identifiers are not provided,
we could design synthetic tasks with the goal of making
the resulting F(ρs,M1) sufficiently rich to be useful for
possible downstream tasks.

While there may be numerous choices of defining linear
operators V̂(t) and Û(t), here we adopt the projection ma-
trix approach (1) by learning P(t) and Q(t) matrices (see
below). Our experiments suggested that the best way to gen-
erate high-quality specialized Ps required that the weights
ofM1 are also tuned thus increasing the number of trained
parameters and modifying a pretrained source modelM1

to be compatible with generated projections. We tunedM1

and learned projection operators by optimizing both the
original loss onM1 to maintain its quality and the loss on
the projected model Ps (see Eq. (2) below).

Since the projection matrix generator with many parameters
can be susceptible to overfitting on a given task distribution,
we propose a simple and low-parameter method of gener-
ating P ∈ R(sdn)×(dn) and Q ∈ R(dn)×(sdn). Namely, we
chose to train a set of MLPs that given t generated two
vectors p(t) and q(t) and chose: Pij = pj(t)δi,bsjc and
Qij = qi(t)δj,bsic (see Fig. 2). The resulting transformation
Ws = PW1Q can be seen as generating the output rows
and columns by linearly combining 2k rows and columns
of the source matrix. While there may be many other ap-
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proaches to generating weight matrices Ws, we leave this
question to be addressed in the future work.

2.3. Optimization Objective

During training, we typically optimized the sum of the losses
of the projected model Ps and the source modelM1:

E(ξ,t)∼D∗LPs(t)(ξ) + wsrcEξ∼DLM1(t)(ξ), (2)

where ξ = (x,y), D is the dataset used to train the Foun-
dation ModelM1, D∗ is the multi-task dataset for training
projected models and wsrc is an optional multiplier used to
re-weight the importance of the Foundation Model objective.
In autoregressive models, y is typically a shifted version of
the sequence x.

3. Experiments
In the following, we describe our experiments with model
projections. All of our experiments were conducted in
the image domain and followed the IMAGEGPT approach
(Chen et al., 2020a) using two separate datasets: synthetic
dataset SYNTHMNIST and a dataset based on IMAGENET.

3.1. Experimental Setup: Datasets

SYNTHMNIST. Our synthetic image dataset
SYNTHMNIST was based on MNIST with each
32 × 32 image generated by a deterministic function of a
task identifier t ∈ R18 specifying the background and d
encoding the index of the MNIST image to be overlaid on
top of this texture. The vector t uniquely defined which
of the three distinct types of the background textures to
use and specified texture parameters such as scale, rotation,
color and distortion. Treating d as a hidden variable, the
image distribution defining our multi-task dataset was given
by p(i|t)p(t) =

∑
d p(i|t, d)p(t)p(d). Some examples are

illustrated in Figure 3. For a more detailed discussion of the
dataset see Appendix C.

IMAGENET. For our experiments with realistic images,
we used 64× 64 RGB images from the IMAGENET dataset
(Deng et al., 2009). The task identifier t associated with
each image was chosen to be an embedding produced by a
pretrained SIMCLRV2 model (Chen et al., 2020b). Special-
ized IMAGEGPT models are therefore trained to model a

Figure 3. Examples of 32× 32 synthetic images generated from
the task ID t encoding the background texture (1 of 3 types of the
texture, scale, rotation, colors, distortion, etc.) and the overlaid
MNIST digit.

distribution of images with a given embedding t.

3.2. Experimental Setup: Model Architecture

In our SYNTHMNIST experiments, all 32× 32 RGB input
images were quantized by separately mapping each pixel
into one of 512 discrete tokens corresponding to one of the
color clusters. These tokens were then flattened into 1024-
long sequences and finally modelled autoregressively using
GPT-2-style models (Radford et al., 2019). Following Chen
et al. (2020a), our experiments with 64 × 64 RGB IMA-
GENET images (Deng et al., 2009) used a simple learned
CNN model with vector quantization for producing a fi-
nal sequence of 1024 discrete tokens. For details, see Ap-
pendix C.

The base model M1 (that we typically used as a source
foundation model) had 24 layers, 8 heads and used the
embedding dimension d = 512. Our smaller modelsMs

and Ps with the multiplier s ∈ {1/2, 1/4, 1/8} used the
same architecture asM1, but had a smaller embedding size
sd. The number of trainable parameters in models M1

throughM1/8 was approximately equal to 76.7M, 19.5M,
5M and 1.3M correspondingly.

Weight Generators. In our experiments, we used a spe-
cific choice of the MLP producing P and Q projection ma-
trices. The input task identifier t was first linearly mapped
to an r-dimensional vector (with r typically chosen between
4 and 32), which after the SWISH nonlinearity was followed
by a linear layer producing diagonal elements of P and Q
(as described in Sec. 2.2).

3.3. Experimental Results

3.3.1. BASELINE MODELS

We started by pretraining a GPT-2 based autoregressive
modelM1 on the image distribution (SYNTHMNIST and
IMAGENET). We also trained a number of smaller baseline
GPT-2 models Ms for the target model multiplier s ∈
{1/2, 1/4, 1/8}.

Along withMs we also trained conditional autoregressive
models M̃s. These models were identical toMs, but were
trained on sequences that in addition to image pixels also
encoded the information about the requested task identi-
fier t as the first embedding in the sequence. As a result,
while Ms is a model capable of generating arbitrary im-
ages, specialized models M̃s can generate images with any
predefined task identifier t. The losses of all unconditional
and conditional pretrained models are shown in Table 1 for
SYNTHMNIST and in Table 2 for IMAGENET datasets. In
the following, we compare our specialized generated models
Ps to corresponding universal conditional models M̃s.
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s Ms M̃s Ps P̃
1 0.45 0.39 (0.44) (0.46)

1/2 0.51 0.46 0.39 0.39
1/4 0.62 0.58 0.47 0.45
1/8 0.82 0.78 0.57 0.57

Table 1. Model losses on the SYNTHMNIST image dataset: (a)
Ms is a conventional autoregressive model using multiplier s;
(b) M̃s is an autoregressive model conditioned on t passed in
the first input token; (c) Ps is a projected model co-training the
original M1 and task-specific Ps(t); (d) P̃ is a single model
simultaneously co-trainingM1 and projections Ps(t) for all s ∈
{1/2, 1/4, 1/8}. Cells s = 1 and Ps/P̃ show “source model”
M1 performance after co-training (average value for all s for
Ps).

3.3.2. PROJECTIONS FROMM1

As our first experiment, we used a pretrainedM1 to train
our projected models Ps. Specifically, we continued to tune
M1 and our projection operators (described in Sec. 2) using
optimization objective (2). We carried out this process for
each projected model size s ∈ {1/2, 1/4, 1/8} with the
inner dimension r = 8 (see Sec. 3.2). The number of
parameters used by the projection operators ranged from
2.4M for the s = 1/2 model to 1.9M for s = 1/8 model.

The results of our experiments are presented in Tables 1
and 2. We observed that for both SYNTHMNIST and IM-
AGENET generated projected models Ps(t) typically out-
performed universal conditional models since the former
were generated from the task identifier t to only model
task-specific knowledge p(x1, . . . ,xn|t), whereas the latter
had to approximate the entire p(x1, . . . ,xn, t). The dif-
ference was especially pronounced on the SYNTHMNIST
dataset, where performance of projected models was seen
to be roughly comparable to the performance of univer-
sal conditional models that used 4 times as many parame-
ters3. On IMAGENET, the gap was smaller and we estimated
that the performance of P1/4 would roughly match the per-
formance of a 1.6× larger universal model, whereas P1/8

would roughly match a 2.5× larger conditional GPT-2.

These results illustrate the promise of generating small spe-
cialized Transformers that proved to be much more suitable
for modeling narrow image distributions (for a fixed t, all
SYNTHMNIST images share a similar background texture
and IMAGENET images are more likely to contain the same
object or a scene). It is also worth noticing that the source
modelM1 co-trained with projections ended up having the
same perplexity as a standalone model suggesting that the
resulting tunedM1 can be used as a “foundation model”
without any sacrifices to its performance.

3P1/8 roughly matching the performance of M̃1/4, P1/4

roughly matching M̃1/2, etc.

s M̃s Ps

1 2.176 –
1/2 2.211 2.210
1/4 2.264 2.246
1/8 2.332 2.297

Table 2. Results for IMAGENET with SIMCLRV2 embeddings as
task identifiers (evaluated on the validation set). The statistical
error of M̃s is around 0.001 and of Ps is approximately 0.002.

3.3.3. CO-TRAINING MULTIPLE PROJECTED MODELS

In the followup experiment, we trained a model P̃ that simul-
taneously projected M1 to all sizes s ∈ {1/2, 1/4, 1/8}.
Here, each Ps has it’s own projection operator, while the
source modelM1 needs to be compatible with all of the
projected model sizes. Results presented in Table 1 sug-
gest that co-training projection models of various sizes did
not lead to performance degradation (even showing minor
improvement in some cases). As a result, the final tuned
M1 with projection operators for all s ∈ {1/2, 1/4, 1/8}
provides us with the full spectrum of models: (a) a large
foundation model describing the full image distribution, and
(b) a capability to produce small task-specific models with
a variety of different sizes.

3.3.4. ADDITIONAL EXPERIMENTS

Appendix D discusses additional experimental results with
both SYNTHMNIST and IMAGENET datasets. Specifically,
we discuss our studies of (a) the effect of the source model
size on the specialized model performance (D.1); (b) cross-
task knowledge transfer in projected models (D.2) and (c)
zero-shot generalization of projected models (D.3).

4. Discussion
In this work, we propose and study a mechanism for con-
verting the weights of a large Transformer into the weights
of a smaller task-specialized model. While in the ideal case
scenario, the source Transformer is an arbitrary pretrained
model, our technique involves tuning this source model. We
then show that the resulting “projected” task-specialized
models outperform universal task-agnostic models and the
improvement is more pronounced for smaller generated
models and larger source models. Interestingly, we can use
a single source Foundational Model and a set of “projection
operators” to generate a variety of specialized models of
different sizes without any noticeable degradation of the
source model performance. We also demonstrate a cross-
task knowledge transfer in projected models, when a wealth
of training data for some tasks improves performance of
projected models on related, but different tasks.
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A. Related Work
HyperNetworks. One-shot generation of entire models has been popularized in (Ha et al., 2016). Since then, multiple
applications including those in image generation and segmentation (Zhang et al., 2023; Alaluf et al., 2022; Dinh et al.,
2022; Nirkin et al., 2021; Kang et al., 2023) (including conditioning Stable Diffusion (Rombach et al., 2022)), continual
learning (Von Oswald et al., 2019), 3D space representations (Littwin & Wolf, 2019; Sitzmann et al., 2020; Spurek et al.,
2022) and network architecture search (Zhang et al., 2018; Knyazev et al., 2021) have been proposed. In natural language
processing with Transformers, HyperNetwork-based approaches have also been widely adopted (Ye & Ren, 2021; Deb et al.,
2022; Tay et al., 2020; Mahabadi et al., 2021; Ivison & Peters, 2022). Two most recent directions target task-dependent
prompt generation (He et al., 2022) and one-shot generation of model perturbations (Phang et al., 2023) given a single or
few examples of a novel task. Several other related approaches have been explored since then in (Volk et al., 2023; Ivison
et al., 2022; Liang et al., 2023; Phang, 2024; Zhao et al., 2024; Li et al., 2024; Tack et al., 2024; Mu et al., 2024).

Generating smaller Transformer models. With the explosion of interest in Transformer models, there has been a growing
interest in techniques for generating smaller Transformers from larger capable pretrained models. For example, (Xia et al.,
2023; Ma et al., 2023; Chen et al., 2024) propose LLM pruning techniques and (Lin et al., 2020; Wang et al., 2023; Xu et al.,
2023; Samragh et al., 2023) outline approaches for initializing weights of a smaller model using a large Transformer model.
Two recent reviews (Wang et al., 2024; Tang et al., 2024) discuss recent publications exploring Transformer model pruning
among other approaches.

B. Weight Space Manifold
Consider a Transformer-based LLM trained on rich input data distribution p(x). Given a specific task t, one approach to
solving it relies on choosing a prompt r(t) and modeling task-specific distribution p(x|t) as pθ◦(x; r(t)) with the prompt r
used as a fixed sequence prefix. Here the parameters θ◦ of the trained model are kept fixed and are independent of the task
even if it is known in advance and does not change often.

Another way of specializing to task t is based on modifying the model itself. Perhaps the most widely used approach is to
fine-tune the model θ◦ → θ∗(t) on a small number of demonstrations from the task-specific distribution p(x|t). Note that
the final weights θ∗(t) generally depend on the tuning procedure, employed seeds, etc.

Yet another specialization technique is based on the HyperNetwork-based approach (Ha et al., 2016). Here we assume that
there exists an almost everywhere smooth weight space manifold θ(t) such that for each task t ∈ T it approximately holds
that pθ(t)(x) ≈ p(x|t). This manifold could be chosen to approximate a set of pretrained fine-tuned models {θ∗(ti)}i for
some {ti ∈ T}i, or could be learned directly on a given distribution of tasks over T . Note that by learning the manifold θ(t),
we store some information about the task-related knowledge in the model describing θ(t) thus potentially improving the
performance of the specialized generated models since they no longer need to carry information and knowledge relevant to
other potential questions and queries.

Weight manifold. The weight manifold of the model can be extremely complex. However, performing Taylor decomposi-
tion with respect to t around some fixed “base task” chosen here as t = 0, we can derive an approximate expression for
θ(t):

θ(t) ≈ θ(0)−
(
∂2L
∂θ2

)−1
∂2L
∂θ ∂t

t, (3)

where L(θ, t) is a model loss and all derivatives are computed at t = 0 and θ = θ(0). In other words, this equation explicitly
defines the hyperplane tangent to the weight manifold at t = 0. However, performing this computation in practice can be
exceptionally expensive and can only describe the local structure of the model.

Topology of the task space. The structure of the weight manifold θ(t) is defined by the model and the topology of the
task space. In a typical setup, the task t could be, for example, an embedding of a conversation topic, some representation
of the user writing style, image embedding, or metadata. If we choose t to be some normalized embedding ξ(x), the task
manifold becomes a sphere and θ(t) could also have a similar topology. Given a normalized embedding ξ, we can also
construct a distribution p(x|t) defined for all ‖t‖ ≤ 1 as a linear interpolation between the marginalized distribution and
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p(x|ξ) with ‖ξ‖ = 1:

p(x|t) := (1− ‖t‖)
∫
‖ξ‖=1

p(x|ξ)p(ξ)d ξ + ‖t‖p(x|ξ = t/‖t‖).

Using this constructed conditional distribution, the expansion around t = 0 becomes an expansion around the average
distribution with the direction of t defining the embedding of samples that become more prevalent in the distribution as ‖t‖
grows.

B.1. Learning the Weight Manifold

Performing the computation in Eq. (3) can be prohibitively expensive. An alternative approach to characterizing the weight
manifold θ(t) is then to learn this dependence.

Linear approximation. For example, if we are only interested in the local linear structure of θ(t), we can rely on the
approximation:

δθα(t) := θα(t)− θα(0) ≈
∑
i

Sα,iti, (4)

where α is an index of a specific parameter. We can then learn both θ(0) and Sα,i by drawing samples from the distribution
p(x|t)p(t) and training the model to optimize the loss L(θ(0),S) := E(x,t)∼DL(x; θ(t)). This approach requires dim θ ·
dim t total parameters to parameterize δθ(t).

Modular approximation. The linear approximation can be trivially reduced to a form of a modular network used
previously in multiple contexts. Here we can represent δθ via a linear combination of a large collection of individual
“modules” Sα,k:

δθα =
∑
k

Sα,kηk(t), (5)

where ηk(t) can now be arbitrarily complex non-linear functions of t. This modular approximation requires dim θ · dim η
parameters and could be “lighter” than the linear approximation if dim η < dim t. Notice that if ηk are linear functions, this
is equivalent to a low-rank version of Eq. (4).

Low-rank approximation. The required number of parameters necessary to describe δθ can be reduced further by
replacing kernels W of all linear operators in the model with low-rank approximations:

δW`(t) = W`(t)−W`(0) ≈ L`(t)R`(t) (6)

with ` being the operator index and L`(t)R`(t) forming a low-rank matrix. Both L`(t) and R`(t) can be represented as
shallow MLPs that accept t as input and produce all matrix components. The required number of parameters to describe an
n×m matrix δW`(t) is now reduced to roughly O((n+m)r dim t) with r being the rank. In the simplest cast with r = 1,
L` is a column and R` is a single row.

B.2. Projection Approximation

Another way of generating δθα is motivated by noticing that the individual module matrices S`,k combined as in Eq. (5)
could sometimes be arranged to form a larger matrix. This can be viewed as a way of mapping a larger Transformer into a
smaller model.

One natural choice in this potentially very rich family of transformation comes from analyzing linear maps of the embedding
space. Specifically, given two linear transformations Q̂ : Rds → Rd and P̂ : Rd → Rds mapping model activations between
embedding spaces of two models with embedding sizes d and ds and s = 2−k < 1, k ∈ Z, we can naturally define Ôs via

Ôs(z) ≡ P̂(Ô1(Q̂z)),

where Ôs and Ô1 are two linear operators in a smaller and a larger Transformer model correspondingly. This perspective
gives rise to a family of weight generators at the core of our main approach discussed in Sec. 2.

8



Projectable Models: One-Shot Generation of Small Specialized Transformers from Large Ones

Connection to Modular Networks. Conventional modular architectures can be viewed as a special case of the described
linear weight transformation. Consider an (dn) × (dm) weight matrix W1 of Ô1 and a smaller (dsn) × (dsm) weight
matrix Ws of Ôs. One can subdivide W1 into (dsn)× (dsm)-sized blocks and choose

Vijkl =

s−1−1∑
α=0

s−1−1∑
β=0

rαβδk,i+dsnαδl,j+dsmβ ,

resulting in the weight Ws becoming a linear combination of these blocks. This particular form is frequently referred to as a
modular network with individual blocks acting as modules. Here δ is a Kronecker delta and rαβ are s−2 coefficients of
individual modules forming Ws.

C. Models and Datasets
C.1. Training Details

A typical model has been trained for 200k to 800k steps with Adam optimizer and a learning rate of order of 10−3 with
cosine learning rate decay schedule (10k warmup steps). We typically used very weak weight decay (10−10 to 10−8), but
our dropout was frequently set to 10%.

C.2. VQ-VAE Model

We trained a separate VQ-VAE model (Van Den Oord et al., 2017) for mapping 64× 64 RGB images to sequences of 1024
tokens taking values in a discrete set of size 512. Model encoder contained 3 CNN layers with 3 × 3 kernels and leaky
ReLU nonlinearities. Layers had the following depths and strides: (32, 2), (64, 1), (64, 1). The decoder was composed of 4
transpose-convolutional leaky ReLU layers. Layers had the following depths, kernel sizes and strides: (64, 3, 2), (64, 3, 1),
(32, 3, 1) and the final (3, 1, 1). The full VQ-VAE model was typically trained with L2 loss and β = 0.2 (Van Den Oord
et al., 2017).

C.3. SYNTHMNIST Dataset

Each SYNTHMNIST image was generated by (a) first using t to produce an image texture and (b) overlaying one of the
MNIST images on top of this texture. Examples of generated images can be found in Fig. 3.

Texture. Task identifier t was sampled uniformly from [0, 1]18 and contained information about the image affine trans-
formation like angle of rotation (t0), scale (t1), rotation center x and y coordinates (t2 and t3). The actual angle was
equal to 2πt0, the scale was chosen as sc(t1) := 2 + 18t1. The image was also “warped” by applying a transformation
x → x + ax cos(sxx) and y → y + ay cos(syy) with ax,y := relu(āx,y − α)/(1 − α), α = 0.3, āx = t4, āy = t5 and
sx = sy = sc(t6). Each color component (red, green, blue) of the image was shifted relative to others as defined by t7 for
R, t8 for G and t9 for B. The image texture itself was randomly chosen from one of 3 classes (depending on which of t10,
t11 and t12 is larger) based on the following function profiles: (a) cos x̃ with x̃ being a transformed x coordinate, (b) cos ρ̃
with ρ̃ being a distance to the origin in transformed coordinates, (c) cos(10gt13 + 2t14) with g := cos(x̃/3) cos(ỹ/3) and ỹ
being a transformed y coordinate. Finally, the generated texture was multiplied by a random 3-channel RGB-color vector
(β + γt15, β + γt16, β + γt17), where we chose β = 0.5 and γ = 1.5. The produced image was clipped to a [−1, 1] output
range.

Digit. In the training dataset split, we used a random augmentation by horizontally flipping digit images with 50%
probability.

D. Additional Experimental Results
D.1. Projections fromMs

The task-specialized projected model Ps(t) is expected to derive its capabilities from: (a) the source modelM1, the weights
of which are used to generate Ps and (b) the projection operator parameterizing the way that these source weights are used
depending on the task identifier t. It is interesting to ask which of these sources is more important for the performance of the
projected model Ps.
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We explored this question by using source modelsMs of different sizes s for producing projected models Ps′ with s′ < s.
We also varied the size of the inner dimension r to control the number of parameters in the projection operator itself. The
number of parameters for the sourceMs with a particular value of r is roughly proportional to rs. Projecting fromM1

with r = 8 is thus roughly equivalent to projecting fromM1/2 with r = 16 and fromM1/4 with r = 32. The results of our
experiments presented in Table 3 suggest that the performance of the projected model is generally better for larger source
models. However, the benefit from using larger source models may be less pronounced once they exceed a particular size.

D.2. Cross-Task Knowledge Transfer

In our approach, models generated for different tasks indirectly share their weights via the source model. It is thus interesting
to explore the degree to which these models exchange information and quantify knowledge transfer across different tasks.
We accomplish this by noticing that providing additional training samples for some tasks may boost the performance of
models generated for related but different tasks. We study this phenomenon in IMAGENET models by subdividing the
training set into two parts based on the image labels: (a) part C1 contains images with labels below 500 and C2 with labels
above 500 and (b) part C1 containing images with labels l ≡ 0 (mod 2) and part C2 with image labels l ≡ 1 (mod 2). We
denote the first scenario as “1/2 − 1/2” and the second scenario as “mod 2”. Since IMAGENET labels are not entirely
random, but are ordered in a semantically meaningful way, we expect that tasks in C1 and C2 sets in the “mod 2” scenario
are more closely related to each other compared to the “1/2− 1/2” setup.

In our experiments, we trained three P1/2 models for each of the two scenarios: (a) using all training samples for both C1

and C2; (b) using only 1/8 of all existing training samples for both C1 and C2; (c) using 1/8 of training samples for C1 and
all training samples for C2. The results of our experiments are presented in Table 4. We observed that providing additional
examples for tasks in C2 actually boosts the performance of models generated for tasks in C1. This boost is especially
noticeable in the “mod 2” scenario, where tasks in C1 and C2 are closely related. Similarly, notice that the performance
on C2 suffers from a smaller training set for C1. In other words, there is a noticeable interaction and knowledge transfer
between models generated for different, but related tasks.

D.3. Zero-Shot Generalization

An important property of any model specialization technique is it’s zero-shot generalization capability. We explored model
generalization for SYNTHMNIST dataset by varying the scale component tscale of the task identifier t from 0 to 2, while
the training range of scales was [0, 1]. In Figure 4 we show the average loss of different models as a function of tscale
(horizontal scale axis in all of the plots). Notice that while all models start degrading around tscale = 1, the projected model
P1/2 shows better generalization than the Conditional GPT-2 model M̃1/2. However, P1/4 and especially P1/8 have much
greater difficulty generalizing to tscale ≈ 2, which could be explained by the fact that the corresponding projection operators
used a large number of parameters compared to the projected model size.

M1 M1/2 M1/4

r = 8 8 16 8 16 32
M1/4 0.47 0.50 0.49 – – –
M1/8 0.57 0.59 0.57 0.71 0.70 0.67

Table 3. Training losses for M1/4 and M1/8 models (rows) projected from M1, M1/2 and M1/4 source models (columns) with
different values of the projector inner dimension r. The projection operator size for the sourceM1 with r = 8 (∼ 2M parameters)
approximately matches the projection operator sizes forM1/2 with r = 16 andM1/4 with r = 32.
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1 1/8 1/8 and 1

1/2− 1/2 2.382, 2.040 2.395, 2.052 2.392, 2.045
mod 2 2.221, 2.201 2.233, 2.214 2.225, 2.206

Table 4. Losses on C1 and C2 of task-specific projected GPT-2 models with s = 1/2 computed on the IMAGENET validation set (50k
samples; the estimated error is approximately 0.002). The rows correspond to two different task partitions across C1 and C2. Three
columns show results for different sizes of the training sets for tasks in C1 and C2: (a) all tasks use all available training samples; (b) all
tasks use 1/8 of available training samples; (c) tasks in C1 are trained with 1/8 of available training samples and tasks in C2 use all
training samples.

(a) (b) (c)

Figure 4. Average loss as a function of the scale component tscale (plotted on the x axis) of the task identifier t with the following
projected models: (a) P1/2, (b) P1/4, (c) P1/8.
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