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ABSTRACT

In this paper, we propose a Shapley value based operation contribution evaluation
method (Shapley-NAS) for neural architecture search. Differentiable architecture
search (DARTS) acquires the expected architectures by optimizing the architec-
ture parameters with gradient descent, which benefits from the high efficiency due
to the significantly reduced search cost. However, DARTS leverages the learnable
architecture parameters of the supernet to represent the operation importance dur-
ing the search process, which fails to reveal the actual impacts of operations on
the task performance and therefore harms the effectiveness of obtained architec-
tures. On the contrary, we evaluate the direct influence of operations on accuracy
via Shapley value for supernet optimization and architecture discretization, so that
the optimal architectures are acquired by selecting the operations that contribute
significantly to the tasks. Specifically, we iteratively employ Monte-Carlo sam-
pling based algorithm with early truncation to efficiently approximate the Shapley
value of operations, and update weights of the supernet whose architecture pa-
rameters are assigned with the operation contribution evaluated by Shapley value.
At the end of the search process, operations with the largest Shapley value are
preserved to form the final architecture. Extensive experiments on CIFAR-10 and
ImageNet for image classification and on NAS-Bench-201 for optimal architec-
ture search show that our Shapley-NAS outperforms the state-of-the-art methods
by a sizable margin with light search cost.

1 INTRODUCTION

Neural architecture search (NAS) has attracted great interest in deep learning since it discovers the
optimal structure from a large search space of network components according to task performance
and hardware configurations. However, pioneering works applied reinforcement learning (Zoph &
Le, 2016), evolutionary algorithms (Real et al., 2019; Wang et al., 2020) and Bayesian optimization
(Liu et al., 2018a) for the architecture search, and the large computational overhead causes heavy
search burden that prohibits practical deployment of NAS algorithms. Therefore, it is desirable to
design highly efficient search strategies without performance degradation.

To reduce the search cost of architecture search, several efficient search strategies have been pre-
sented including one-shot NAS (Pham et al., 2018), network transformation (Cai et al., 2018a) and
architecture optimization (Luo et al., 2018). Among these approaches, one-shot NAS preserves the
optimal sub-networks from the over-parameterized supernet with weight sharing, which prevents
the time-consuming exhaustive training for model evaluation. In particular, DARTS (Liu et al.,
2018b) converted the discrete operation selection into continuous mixing weights, and utilized the
gradient descent to simultaneously optimize the architecture parameters and supernet weights with
significantly reduced search cost. However, DARTS methods leverage the learnable architecture pa-
rameters to represent the operation importance during search process, which fails to reflect the actual
contribution of operations to task performance (Wang et al., 2021b) and degrades the effectiveness
of acquired architectures.

In this paper, we present a Shapley-NAS method to evaluate the operation contribution via the Shap-
ley value of supernet components for neural architecture search. Unlike existing methods which
leverage the learnable architecture parameters to represent the operation importance in joint opti-
mization of supernet weights and architecture parameters, we directly evaluate operation influence
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Figure 1: The comparison between DARTS and our Shapley-NAS. (a) DARTS constructs a weight-
sharing supernet which consists of all candidate operations. The architecture parameters are op-
timized by gradient descent, which can not reflect the actual importance of operations. (b) The
proposed Shapley-NAS method directly evaluates operation contribution to the task performance,
and updates architecture parameters via the actual influence on accuracy.

on task performance according to the Shapley value of corresponding operations. The operation
aggregation in the supernet based on performance contribution enables effective optimization of su-
pernet weights, so that architectures with more promising performance are acquired. Figure 1 shows
the difference between our Shapley-NAS and existing DARTS methods. More specifically, we iter-
atively evaluate the Shapley value for architecture parameter assignments and update the supernet
weights. We employ the Monte-Carlo sampling with early truncation for operation set permutations
to efficiently approximate the Shapley value of individual operations, and the architecture param-
eters are determined by the Shapley value that reveals actual component contribution. Moreover,
we update the architecture parameters with momentum rather than direct assignment of the Shapley
value, so that the fluctuation of operation set permutation sampling in Shapley value approximation
is alleviated. We conducted extensive experiments on image classification and optimal architecture
search across various search space, where our Shapley-NAS outperforms the state-of-the-art differ-
entiable architecture search methods. We achieve an error rate of 2.43% on CIFAR-10 (Krizhevsky
et al., 2009) according to the search space of DARTS and obtain the top-1 accuracy of 23.9% on
ImageNet (Deng et al., 2009) under the mobile setting. Furthermore, our Shapley-NAS acquire the
optimal architectures on two datasets and the near-optimal solution on the NAS-Bench-201 bench-
mark (Dong & Yang, 2020).

2 RELATED WORK

Differentiable NAS: Differentiable architecture search (DARTS) was first proposed by Liu et al.
(2018b) with the goal of significant search cost reduction in NAS. They formulated a bi-level ob-
jective that simultaneously optimizes the architecture parameters and supernet weights according
to the overall objective, so that the efficient gradient descent was leveraged to search the graphi-
cal representation of the optimal network architectures. Since DARTS optimizes the single point
on the simplex of continuous search space and discretizes the final architecture after search, the
generalizability (Chen et al., 2019; Li et al., 2020; Xie et al., 2018; Yu et al., 2019) and the sta-
bility (Chen et al., 2020; Chen & Hsieh, 2020; Zhang et al., 2021; Zela et al., 2019; Wang et al.,
2021b) are challenged. In order to mitigate the performance gap between the training set and the
validation data, SNAS (Xie et al., 2018) and GDAS (Dong & Yang, 2019) adopted the differentiable
Gumbel-Softmax (Jang et al., 2016) to imitate the one-hot encoding during architecture discretiza-
tion. SGAS (Li et al., 2020) chose and pruned the candidate operations based on edge importance,
selection certainty and selection stability to alleviate the degenerate of search-evaluation correla-
tion, which reflects the true rankings of operation importance. RobustDARTS (Zela et al., 2019)
found that the solutions generalize poorly when they coincide with high validation loss curvature
during optimization, which results in significant performance drop after the architecture parameter
discretization. Aiming at eliminating the instability in architecture discretization, they performed
early stop regularization based on the largest eigenvalue. SmoothDARTS (Chen & Hsieh, 2020) fur-
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ther smoothed the loss landscape via perturbation based regularization including random smoothing
and adversarial attack. Moreover, the large memory and computing overheads obstruct the potential
efficiency enhancement of the DARTS framework (Yang et al., 2021). To address these, PC-DARTS
(Xu et al., 2019) only searched the partially-connected operations to reduce the redundancy in net-
work space exploration, where edge normalization degraded the search uncertainty to prevent edge
selecting inconsistency. However, empirical studies (Wang et al., 2021b; Zhou et al., 2021) have
demonstrated the learnable architecture parameter in DARTS framework fails to reveal the opera-
tion importance in the supernet, which requires effective metrics that fairly evaluate the operation
contribution during architecture search.

Shapley value: Shapley value has been widely studied in game theory as it fairly evaluates the
player contribution in the cooperative system (Roth, 1988; Winter, 2002; Shapley, 2016). Recently,
Shapley value was adopted in explainable machine learning to discover the importance of model
components, which can be divided into three groups: explaining feature importance (Mase et al.,
2019; Lundberg & Lee, 2017; Lundberg et al., 2020; Ancona et al., 2019; Strumbelj & Kononenko,
2010), model component importance (Ancona et al., 2020; Wang et al., 2021a; Ghorbani & Zou,
2020) and data importance (Jia et al., 2019; Yona et al., 2021). For the first regard, Ancona et al.
(2019) conducted an axiomatic comparison to show the advantage of the Shapley value over the
attribution methods for feature map explanation in deep networks. SHAP (Lundberg & Lee, 2017)
presented the additive feature attribution based on the Shapley value of features to acquire higher
consistency with human intuition. For model component importance explanation, ShapNets (Wang
et al., 2021a) leveraged the Shapley transform that transforms the input into Shapley representations
so that the network prediction can be explained during the forward pass. Neuron Shapley (Ghorbani
& Zou, 2020) pruned the neurons with the lowest Shapley value for deep networks, so that the
model efficiency is significantly strengthened without sizable performance degradation. For the last
aspect, Ghorbani & Zou (2019) quantified the contribution of individual data points which identified
the outliers and corrupted data. Since computing the exact Shapley value is NP-hard, Monte-Carlo
sampling (Ghorbani & Zou, 2019; 2020), perturbation-based approximation (Ancona et al., 2019),
influence function and many others were presented for efficient acquisition of Shapley value. In this
paper, we extend the Shapley value to operation importance evaluation in DARTS framework, so
that the optimal architectures are derived by selecting the operations that contribute significantly to
the tasks.

3 METHODOLOGY

In this section, we first briefly introduce differentiable architecture search (DARTS), which suffers
from degenerate architectures due to the mismatch between the architecture parameters and oper-
ation importance. Then we introduce a fair attribution metric called Shapley value to quantify the
relative contribution of operations, and also present the Monte-Carlo sampling algorithm with early
truncation for efficient approximation of Shapley value. Finally, we propose Shapley-based archi-
tecture search (Shapley-NAS) which can effectively identify the optimal architectures with the most
important operations in the large search space.

3.1 PRELIMINARIES

The differentiable architecture search (DARTS) is one of the most popular solutions to identify
effective architectures, as it largely reduces the search cost by continuously relaxing the architecture
search space. The search space is constructed by repetitions of normal and reduction cells. Each
cell is represented by a directed acyclic graph (DAG) with N nodes and E edges, where each node
x(i) defines a latent representation and each edge (i, j) is associated with an operation o(i,j). The
core idea of DARTS is to apply continuous relaxation to the search space to perform gradient-based
search. Concretely, the intermediate node is computed as a softmax mixture of candidate operations:

ō(i,j)(x(i)) =
∑
o∈O

exp(α
(i,j)
o )∑

o′∈O exp(α
(i,j)

o′
)
o(x(i)), (1)

where O is the set of all candidate operations and α(i,j)
o denotes the mixing weight for operation

o(i,j) to construct the architecture. With such relaxation, the architecture search can be performed
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by jointly optimizing the network weight w and architecture parameters α in a differentiable manner
with the following bi-level objective:

min
α
Lval(w∗, α) s.t. w∗ = arg min

w
Ltrain(w,α). (2)

During the search stage, a weight-sharing supernet containing all these candidate operations is op-
timized by gradient descent. At the end of the search stage, the final architecture is derived by
selecting the operation with the largest architecture parameter α on every edge across all operation
choices. This magnitude-based architecture selection process relies on an important assumption
that the magnitude of architecture parameters represents the operation importance. However, this
assumption has been proved to be untrue in most cases (Wang et al., 2021b), where the value of
architecture parameters does not reflect the operation contribution to the performance of the su-
pernet. To alleviate this issue, Wang et al. (2021b) proposes a perturbation-based architecture se-
lection method which measures the operation importance by its discretization accuracy. However,
their method greedily selects the best operation and performs discretization on each edge on top of
DARTS, which only includes first-order approximation of the supernet and neglects the interactions
between different edges.

3.2 OPERATION IMPORTANCE EVALUATION

The architecture parameters optimized by gradient descent can not reflect the actual operation impor-
tance. To further validate our assumption, we make a comparison between α and their corresponding
performance. We get the stand-alone test accuracy by discretizing the edge to every candidate op-
eration and training the derived architecture from scratch. Figure 2 shows the comparison between
α and stand-alone accuracy, where we use different colors to represent their relative rankings and
connect the units with the same ranking. As shown, the operation with the largest α does not result
in the highest final accuracy and there is no obvious correlation between their rankings.

Figure 2: The comparison between archi-
tecture parameters α in DARTS, their cor-
responding Shapley value and stand-alone
accuracy, where we use different colors to
show their relative rankings.

It is crucial to propose a fair attribution metric to
evaluate operation contribution instead of relying on
values of the architecture parameter α. Due to the
complex interactions between operations on different
edges, the task performance will change a lot when
composed of different subsets of operations. To ad-
dress this, we model the differentiable architecture
search process as a cooperative game. In a cooper-
ative game with a set of N players, a value func-
tion V maps each subset of players S ⊆ N to a
real value V (S), which represents the expected pay-
off a set of the players can obtain by cooperation.
In differentiable NAS, the supernet is composed of
several layers with identical cell structure, and each
cell has |E| edges each with |O| operations. There-
fore, a set of individual operations, N = O × E =
{o(i,j)}o∈O,(i,j)∈E , can be modeled as players in the
cooperative game, where all players work together to-
wards the supernet’s performance V (N). It has been
proved that, Shapley value (Roth, 1988; Winter, 2002; Shapley, 2016), denoted as φ(i,j)o in our
problem, is the only method that uniquely distributes the total gains of all players V (N) to each
player in N with the following properties:

Efficiency The performance of the entire supernet is the sum of contributions of individual oper-
ations, i.e.

∑
o(i,j)∈N φ

(i,j)
o = V (N).

Null Player If the operation has no impact on the performance when added to or removed from
any subsets of the supernet, then its contribution is zero. That is, if V (S) = V (S ∪ {o(i,j)}) for any
operation subset S ⊆ N \ {o(i,j)}, we can derive φ(i,j)o = 0. For example, the zero operation in
DARTS search space has no impact on the final performance and thus has zero attribution.
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Symmetry If two different operations could be exchanged without affecting the performance, they
should be assigned with equal contributions. For any operation subset S ⊆ N \ {o(i,j), o′(k,l)},
V (S ∪ {o(i,j)}) = V (S ∪ {o′(k,l)}), then we have φ(i,j)o = φ

(k,l)
o′ .

Linearity If the performance metric V is a linear combination of other metrics (i.e. V = a×V1 +

b× V2), the total contribution of each operation also satisfies φ(i,j)o (V ) = φ
(i,j)
o (V1) + φ

(i,j)
o (V2).

The Shapley value of operations provides a fair scheme to quantify the operation contribution as it
considers all possible combinations as a weighted mean and accounts for high correlations between
individual elements. Therefore, it can help us discover important operations which contribute the
most to the task performance during the search process.

For operation o(i,j) in our problem, its Shapley value can be computed as:

φ(i,j)o (V ) =
1

|N |
∑

S⊆N\{o(i,j)}

V (S ∪ {o(i,j)})− V (S)(|N |−1
|S|

) (3)

The operation importance represents the marginal contribution to the accuracy, which is obtained
by evaluating the performance difference between all operation permutation and the counterparts
without the given operation. Based on (3), we compute the Shapley value of different operations
and compare them with stand-alone accuracy in Figure 2. The ranking with Shapley value matches
the accuracy ranking very well, which demonstrates that Shapley value is an effective metric for
evaluating operation importance, especially for identifying the most important operations.

3.3 SHAPLEY VALUE APPROXIMATION

Although Shapley value is an desirable attribution metric for quantifying the contribution of oper-
ations, directly computing Shapley value from (3) requires 2|O|×|E| network evaluations caused by
enumerating all possible subsets. Therefore, exact computation of Shapley value becomes expen-
sive since |O|× |E| in the common search space is usually large. To efficiently estimate the Shapley
value, we present an approximate method based on Monte-Carlo sampling (Castro et al., 2009).
Specifically, the Shapley value of operation o(i,j) is equivalent to estimating the mean of a random
variable, which can be written as:

φ(i,j)o (V ) =
∑

R∈π(N)

1

N !
[V (RPre(o(i,j)) ∪ {o(i,j)})− V (RPre(o(i,j)))] (4)

where π(N) denotes the set of permutations of all elements in N , and RPre(o(i,j)) is the set of
predecessors of o(i,j) in a given permutation R ∈ π(N). Based on (4), we can get an unbiased
approximation of every operation’s Shapley value by sampling permutations of operation set N .
Notably, the Monte-Carlo estimation reduces the exponential calculation complexity to polynomial
time M × (|O|× |E|), whereM is the number of samples. Although this sampling-based estimation
of Shaley value requires repetitions of accuracy evaluation on the validation set, it only includes
the forward process through the supernet and no back-propagation is needed, thus enabling efficient
approximation of operation Shapley value.

Moreover, when the number of operations inRPre(o(i,j)) becomes too small, we find the task perfor-
mance degrades dramatically and yields unstable sampling results. Therefore, to reduce the fluctu-
ation of Shapley value estimation, we utilize the early truncation technique during the Monte-Carlo
sampling procedure. Specifically, when the masked out operations lead to an extreme performance
drop exceeding a pre-defined threshold, we break off the current sampling. This early truncation
technique also reduces nearly half of computation cost, which makes the overall computational
overheads comparable with gradient-based architecture parameter optimization in DARTS. The full
algorithm of Shapley value estimation is illustrated in Appendix A.1.

3.4 SHAPLEY-BASED ARCHITECTURE SEARCH

In order to reveal the actual operation importance to performance, we utilize Shapley value of op-
erations to guide the architecture search to find the best solutions. Figure 1 shows the difference
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between our Shapley-NAS and conventional differential NAS. Rather than updating the architec-
ture parameters by gradient descent in DARTS, we leverage Shapley value to represent the relative
strength of operations. Specifically, we use the performance on validation set Lval as the metric V
and thus reformulate the bi-level optimization problem in DARTS given in (2) as follows:

α = φ(Lval(w∗, α))) s.t. w∗ = arg min
w

Ltrain(w,α). (5)

The overall search process can be divided into two stages. At the first stage, we pre-train a supernet
by only fine-tuning its network weight w while keeping architecture parameters α frozen. This
warm-up process is essential for the initialized Shapley estimation and we keep α frozen to ensure
fair comparison. At the second stage, we iteratively optimize the network weight w and the mixing
operation weight α according to its Shapley value estimated by the algorithm in Section 3.3:

αt = αt−1 + ε · st
||st||2

(6)

where αt means the architecture parameter in the tth step during the optimization, st represents the
accumulated Shapley value in the tth step, || · ||2 is the L2 norm and ε is defined as the step size. To
reduce undesired fluctuation in updating caused by random sampling, we introduce the momentum
into the iteration to stabilize the optimization:

st = µ · st−1 + (1− µ) · φ(Lval(wt−1, αt−1))

||φ(Lval(wt−1, αt−1))||2
(7)

where µ is the momentum coefficient that balances the accumulated Shapley value and the current
sampling result. After the search stage is finished, we derive the final architecture by selecting the
operation with the largest contribution on each edge. The detailed algorithm of our Shapley-NAS
can be found in Appendix A.2.

4 EXPERIMENTS

In this paper, we conducted extensive experiments to evaluate our method on the DARTS search
space with CIFAR-10 (Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009) for image clas-
sification, as well as on a widely used NAS benchmark dataset, NAS-Bench-201 (Dong & Yang,
2020). In the following ablation study, we analyzed the effectiveness of the proposed Shapley value
evaluation, as well as the influence of hyperparameters on task performance and search cost.

4.1 COMPARISON WITH THE STATE-OF-THE-ART NAS METHODS

4.1.1 RESULTS ON CIFAR-10

For the CNN search space in DARTS, we first performed experiments on CIFAR-10 for the image
classification task. We employed the same operation space O as DARTS, constructed the supernet
by stacking 8 cells (6 normal cells and 2 reduction cells) and set the initial channel number as 16. We
utilized the partial connection strategy in PC-DARTS (Xu et al., 2019) to reduce memory overhead
and increase batch size. We set the partial channel parameter K = 4 and trained the supernet for
50 epochs with a batch size of 256 on a single GTX 1080Ti GPU (we first finetuned the network
weights for 15 epochs to warm up). The training set of CIFAR-10 containing 50K images was
divided into two parts with equal size, one for optimizing the network weights and the other for
evaluating Shapley value. We set the number of samples M to be 10 in the Monte-Carlo sampling
and the early truncation threshold η to be 0.5 in each iteration. In momentum-based updating of
architecture parameters, the momentum coefficient µ and step size ε were assigned to 0.8 and 0.1
respectively. At the evaluation phase, We simply followed the DARTS experimental settings for fair
comparison and retrained the network from scratch for 600 epochs on the entire 50K training set.

Table 1 shows the performance of Shapley-NAS on CIFAR-10 compared with the state-of-the-art
NAS methods, and the architecture of searched normal and reduction cells is visualized in Ap-
pendix A.4. Our Shapley-NAS achieves an average test error of 2.47% while only using 0.3 GPU
days, significantly surpassing the DARTS baseline in both search cost and accuracy. The test error
of the best single run in our experiments is 2.43%, ranking top amongst popular NAS methods.
Although ProxylessNAS (Cai et al., 2018b) achieves a lower test error of 2.08%, it performs archi-
tecture search on a different space with heavy search cost. The low variance of the experimental
results also demonstrates the stability of the proposed search method.
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Table 1: Comparison with state-of-the-art image classifiers on CIFAR-10.

Architecture Test Error
(%)

Params
(M)

Search Cost
(GPU days)

Search
Method

DenseNet-BC (Huang et al., 2017) 3.46 25.6 - manual
NASNet-A (Zoph et al., 2018) 2.65 3.3 2000 RL
AmoebaNet-A (Real et al., 2019) 3.34± 0.06 3.2 3150 evolution
AmoebaNet-B (Real et al., 2019) 2.55± 0.05 2.8 3150 evolution
PNAS (Liu et al., 2018a) 3.41± 0.09 3.2 225 SMBO
ENAS (Pham et al., 2018) 2.89 4.6 0.5 RL
NAONet (Luo et al., 2018) 3.53 3.1 0.4 NAO
RandomNAS (Li & Talwalkar, 2020) 2.85± 0.08 4.3 2.7 Random
DARTS (1st order) (Liu et al., 2018b) 3.00± 0.14 3.3 0.4 gradient
DARTS (2nd order) (Liu et al., 2018b) 2.76± 0.09 3.3 1.0 gradient
SNAS(moderate) (Xie et al., 2018) 2.85± 0.02 2.8 1.5 gradient
GDAS (Dong & Yang, 2019) 2.93 3.4 0.3 gradient
BayesNAS (Zhou et al., 2019) 2.81± 0.04 3.4 0.2 gradient
ProxylessNAS (Cai et al., 2018b) 2.08 5.7 4.0 gradient
P-DARTS (Chen et al., 2019) 2.50 3.4 0.3 gradient
PC-DARTS (Xu et al., 2019) 2.57± 0.07 3.6 0.1 gradient
SGAS (Cri 1. avg) (Li et al., 2020) 2.66± 0.24 3.7 0.25 gradient
SDARTS-RS (Chen & Hsieh, 2020) 2.61± 0.02 3.4 0.4 gradient
DrNAS (Chen et al., 2020) 2.54± 0.03 4.0 0.4 gradient
DARTS+PT (Wang et al., 2021b) 2.61± 0.08 3.0 0.8 gradient
Shapley-NAS(avg.)‡ 2.47± 0.04 3.4 0.3 sampling
Shapley-NAS(best) 2.43 3.6 0.3 sampling
‡ Means and standard deviations are obtained by repeated experiments with 4 random seeds.

4.1.2 RESULTS ON IMAGENET

ImageNet contains about 1.2 million training and 50K validation images from 1000 categories,
which is much more challenging than CIFAR-10. We randomly sampled 10% and 2.5% images
from the entire 1.3M training set of ImageNet for training network weights and estimating Shapley
value respectively. The supernet was trained for 50 epochs with batch size 1024 and the architecture
parameters remained frozen in the first 25 epochs. The other hyper-parameters were the same with
section 4.1.1. At the evaluation stage, we trained the network from scratch for 250 epochs by an
SGD optimizer with a linearly decayed learning rate initialized as 0.5, a momentum of 0.9 and a
weight decay of 3× 10−5.

The comparison results on ImageNet with other methods is demonstrated in Table 2. We trained
the best-found architecture on CIFAR-10 on ImageNet to evaluate its transferability. The searched
cells on CIFAR-10 achieve a competitive result with 24.3%/7.3% top-1/5 test error, which verifies
the generalization ability of our Shapley-NAS. We also evaluated the optimal architecture directly
searched on ImageNet and obtained a top-1/5 test error of 23.9%/7.2%, which outperforms all other
NAS methods with light search cost.

4.1.3 RESULTS ON NAS-BENCH-201

We also performed experiments on the NAS-Bench-201 space to further evaluate the performance
of our Shapley NAS. NAS-Bench-201 is a popular benchmark to analyze NAS algorithms, as it
provides performance of all candidate architectures which can be directly obtained by querying. In
the search space of NAS-Bench-201, the operation set O has 5 elements and each cell contains 4
nodes, which results in a total search space of 15,625 architectures. NAS-Bench-201 supports three
datasets, CIFAR-10, CIFAR-100 and ImageNet-16-120, and more details about the datasets can be
found in their paper (Dong & Yang, 2020). Following previous works (Dong & Yang, 2020; Yan
et al., 2020), we used the results obtained by training 12 epochs on CIFAR-10, and 200 epochs
on CIFAR-100 and ImageNet-16-120. Specifically, we acquired the task-specific performance by
directly searching on the evaluation dataset, and report the mean and standard deviation for the best
architecture from 4 independent runs with different random seeds.

As shown in Table 3, our Shapley-NAS achieves outstanding performance with 94.37%, 73.51%
and 46.85% test accuracy on CIFAR-10, CIFAR-100 and ImageNet-16-120 respectively. Notably,
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Table 2: Comparison with state-of-the-art image classifiers on ImageNet under the mobile setting.

Architecture Test Error(%) Params
(M)

Search Cost
(GPU days)

Search
Methodtop-1 top-5

Inception-v1 (Szegedy et al., 2015) 30.1 10.1 6.6 - manual
MobileNet (Howard et al., 2017) 29.4 10.5 4.2 - manual
ShuffleNet 2× (v1) (Zhang et al., 2018) 26.4 10.2 ∼ 5 - manual
ShuffleNet 2× (v2) (Ma et al., 2018) 25.1 - ∼ 5 - manual
NASNet-A (Zoph et al., 2018) 26.0 8.4 5.3 2000 RL
AmoebaNet-C (Real et al., 2019) 24.3 7.6 6.4 3150 evolution
PNAS (Liu et al., 2018a) 25.8 8.1 5.1 225 SMBO
MnasNet-92 (Tan et al., 2019) 25.2 8.0 4.4 - RL
DARTS (2nd) (Liu et al., 2018b) 26.7 8.7 4.7 1.0 gradient
SNAS (mild) (Xie et al., 2018) 27.3 9.2 4.3 1.5 gradient
GDAS (Dong & Yang, 2019) 26.0 8.5 5.3 0.3 gradient
BayesNAS (Zhou et al., 2019) 26.5 8.9 3.9 0.2 gradient
ProxylessNAS (GPU) (Cai et al., 2018b)† 24.9 7.5 7.1 8.3 gradient
P-DARTS (CIFAR-10) (Chen et al., 2019) 24.4 7.4 4.9 0.3 gradient
P-DARTS (CIFAR-100) (Chen et al., 2019) 24.7 7.5 5.1 0.3 gradient
PC-DARTS (CIFAR-10) (Xu et al., 2019) 25.1 7.8 5.3 0.1 gradient
PC-DARTS (ImageNet) (Xu et al., 2019)† 24.2 7.3 5.3 3.8 gradient
SGAS (Cri 1. best) (Li et al., 2020) 24.2 7.2 5.3 0.25 gradient
SDARTS-ADV (Chen & Hsieh, 2020) 25.6 8.2 6.1 0.4 gradient
DrNAS (ImageNet) (Chen et al., 2020)† 24.2 7.3 5.2 3.9 gradient
Shapley-NAS (CIFAR-10) 24.3 7.3 5.1 0.3 sampling
Shapley-NAS (ImageNet)† 23.9 7.2 5.4 4.2 sampling
† indicates the results obtained by searching on ImageNet, otherwise on CIFAR-10 or CIFAR-100.

Table 3: Comparison results with state-of-the-art NAS methods on NAS-Bench-201.

Method CIFAR-10 CIFAR-100 ImageNet-16-120
validation test validation test validation test

ResNet (He et al., 2016) 90.83 93.97 70.42 70.86 44.53 43.63
Random (baseline) 90.93± 0.36 93.70± 0.36 70.60± 1.37 70.65± 1.38 42.92± 2.00 42.96± 2.15
RSPS (Li & Talwalkar, 2020) 84.16± 1.69 87.66± 1.69 45.78± 6.33 46.60± 6.57 31.09± 5.65 30.78± 6.12
REINFORCE (Zoph et al., 2018)† 91.09± 0.37 93.85± 0.37 71.61± 1.12 71.71± 1.09 45.05± 1.02 45.24± 1.18
ENAS (Pham et al., 2018) 39.77± 0.00 54.30± 0.00 10.23± 0.12 10.62± 0.27 16.43± 0.00 16.32± 0.00
DARTS (Liu et al., 2018b)† 39.77± 0.00 54.30± 0.00 15.03± 0.00 15.61± 0.00 16.43± 0.00 16.32± 0.00
DARTS (Liu et al., 2018b) 39.77± 0.00 54.30± 0.00 38.57± 0.00 38.97± 0.00 18.87± 0.00 18.41± 0.00
SNAS (Xie et al., 2018) 90.10± 1.04 92.77± 0.83 69.69± 2.39 69.34± 1.98 42.84± 1.79 43.16± 2.64
GDAS (Dong & Yang, 2019) 90.01± 0.46 93.23± 0.23 24.05± 8.12 24.20± 8.08 40.66± 0.00 41.02± 0.00
PC-DARTS (Xu et al., 2019) 89.96± 0.15 93.41± 0.30 67.12± 0.39 67.48± 0.89 40.83± 0.08 41.31± 0.22
iDARTS (Zhang et al., 2021)† 89.96± 0.60 93.58± 0.32 70.57± 0.24 70.83± 0.48 40.38± 0.59 40.89± 0.68
DrNAS (Chen et al., 2020) 91.55± 0.00 94.36± 0.00 73.49± 0.00 73.51± 0.00 46.37± 0.00 46.34± 0.00
Shapley-NAS 91.61± 0.00 94.37± 0.00 73.49± 0.00 73.51± 0.00 46.57± 0.08 46.85± 0.12
optimal 91.61 94.37 73.49 73.51 46.77 47.31
† Results are obtained by searching on CIFAR-10, otherwise by directly searching on the evaluation dataset.

we obtain the global optimal architectures on CIFAR-10 and CIFAR-100, which indicates that the
proposed method can identify important operations and derive the best architecture from the large
search space. On the ImageNet-16-120 dataset, we also acquire a near-optimal solution, which
outperforms the state-of-the-art algorithms, again verifying the effectiveness of our Shapley-NAS.

4.2 ABLATION STUDY

Effectiveness of Shapley value evaluation To verify the effectiveness of Shapley-NAS, we con-
ducted experiments on 4 simplified search spaces S1-S4 proposed by Zela et al. (2019) across 3
datasets (CIFAR-10, CIFAR100 and SVHN). For comparison, we built a baseline, DARTS+Shapley,
by combining the proposed Shapley value evaluation method with DARTS. We took a pretrained su-
pernet from DARTS and applied Shapley value evaluation at the final discretization step, i.e. select-
ing operations based on their Shapley values instead of α. Moreover, we also tested the performance
under the same settings but keeping α frozen, denoted as DARTS+Shapley∗. As can be seen from
the results in Table 4, DARTS achieves competitive results with the proposed Shapley evaluation
method, even when α is not optimized in the training. Notably, our Shapley-NAS still outperforms
DARTS+Shapley and DARTS+Shapley∗, since taking Shapley value into the supernet optimization
can further alleviate the problem caused by gradient-based NAS methods.
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Method C10
S1 S2 S3 S4

DARTS 3.84 3.11 2.95 2.82
DARTS+Shapley 4.85 2.92 2.84 2.55
DARTS+Shapley∗ 3.34 2.58 2.67 2.42

Shapley-NAS 7.20 3.45 2.94 2.63

Method C100
S1 S2 S3 S4

DARTS 29.46 28.21 25.24 23.60
DARTS+Shapley 26.05 24.51 24.66 22.77
DARTS+Shapley∗ 28.90 23.67 22.39 21.92

Shapley-NAS 22.85 22.78 22.15 21.53

Method SVHN
S1 S2 S3 S4

DARTS 4.58 2.59 2.88 2.36
DARTS+Shapley 3.53 2.72 2.64 2.49
DARTS+Shapley∗ 3.41 2.83 2.49 2.34

Shapley-NAS 3.05 2.65 2.58 2.41

Table 4: The test error(%) of dif-
ferent search algorithms on S1-S4.
DARTS+Shapley denotes the combi-
nation of DARTS and Shapley value
evaluation, and ∗ means freezing α
during the search.
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(b) Varying early truncation threshold η

Figure 3: The test error (%) and search cost (GPU days) of the
proposed method on CIFAR-10 with (a) different sampling times
and (b) various thresholds of early truncation in the Shapley value
estimation.

Table 5: The test error (%) and parameter storage cost (M) of the final architectures w.r.t. different values of
momentum coefficient µ and different assignments of step size ε.

step size ε µ = 0.2 µ = 0.5 µ = 0.8 µ = 0.9
Test Error(%) Params(M) Test Error(%) Params(M) Test Error(%) Params(M) Test Error(%) Params(M)

0.01 2.89± 0.21 4.0 2.87± 0.16 3.7 2.67± 0.06 3.5 2.74± 0.11 3.8
0.05 2.85± 0.18 3.6 2.79± 0.12 3.4 2.55± 0.07 3.2 2.68± 0.07 3.5
0.1 2.82± 0.11 3.7 2.66± 0.10 3.3 2.47± 0.04 3.4 2.61± 0.06 4.1
0.5 2.92± 0.19 3.5 2.84± 0.13 4.2 2.71± 0.12 3.8 2.83± 0.15 3.9

Influence of sampling times M and early truncation threshold η We also explored the influ-
ence of sampling times M and early truncation threshold η in the Monte-Carlo sampling algorithm.
The values of sampling times M and early truncation threshold η are significant for accurate Shap-
ley value estimation, which also affect the overall search cost. Figure 3 shows the test error (%) and
search cost (GPU days) on CIFAR-10 with variousM and η. Reducing number of samples results in
lower search cost while degrades the performance since the sampling is not enough to make accurate
estimation. However, the estimation accuracy with samples larger than 10 is not sensitive to number
of samples, and we choose M = 10 for search efficiency. Meanwhile, medium η also achieves the
best accuracy-complexity trade-off as it mitigates the fluctuation in sampling as well as reducing the
search cost.

Impact of momentum coefficient µ and step size ε To investigate the influence of momentum
coefficient µ and step size ε on search accuracy, we implemented the architecture parameter as-
signment with different µ and ε. The test error range and model parameter cost is demonstrated
in Table 5, where medium ε outperforms other values. Small step sizes fail to achieve the optimal
distribution when reaching the maximum update iterations, and large step sizes make the supernet
optimization hard to converge. With the increase of µ, the training stabilization becomes enforced,
where µ with 0.8 achieves the best accuracy.

5 CONCLUSION

In this paper, we have presented Shapley-NAS, a Shapley value based operation contribution evalu-
ation method for neural architecture search. Since the learnable architecture parameters in DARTS
can not reveal the actual importance of operations on the task performance, we propose to evaluate
the marginal contribution of operations on accuracy via Shapley value. Specifically, the Shapley
value of operations can be efficiently approximated by Monte-Carlo sampling based algorithm with
early truncation, and thus enabling the optimization of the supernet whose architecture parameters
are directly updated with the operation contribution. Shapley-NAS achieves state-of-the-art perfor-
mance on CIFAR-10, ImageNet and NAS-Bench-201 benchmarks, which proves its effectiveness to
identify the optimal architectures with the most important operations in neural architecture search.
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A APPENDIX

A.1 THE MONTE-CARLO SAMPLING ALGORITHM FOR SHAPLEY VALUE ESTIMATION

Algorithm 1: Estimating Shapley value of operations

Input: Supernet components N = O×E = {o(i,j)}o∈O,(i,j)∈E , performance evaluation metric
V , sampling times M , early truncation threshold η

Output: Shapley value of operations {φ(i,j)o }o∈O,(i,j)∈E
Initialization:Shapley of operation {φ(i,j)o } = 0, t = 0.
while t < M do

Randomly generate a permutation R of N ;
v0 = V (N);
for k = 1, 2, ..., |N | do

if vk−1 > η · V (N) and R[k] 6= zero then
mask out operation R[k] and re-evaluate the validation accuracy V ;
Update vk: vk = V (R[k + 1], R[k + 2], ..., R[n]);

end
else

vk = vk−1
end
φR[k] = φR[k] + (vk−1 − vk)

end
end
Return φ(i,j)o = φ

(i,j)
o /M, for o(i,j) ∈ N .

A.2 THE FULL ALGORITHM OF SHAPLEY-NAS

Algorithm 2: Shapley-NAS
Input: Initialized supernet weights w0 and architecture parameters α0, warm-up epochs T1,

search epochs T2, momentum efficient µ, step size ε.
Output: The final architecture with chosen operation on every edge {o(i,j)}.
Initialization:accumulated Shapley s0 = 0, t = 0.
Stage 1 (Warm-up)
while t < T1 do

Update supernet weights wt by descending ∇wLtrain(wt−1, αt−1);
t = t+ 1;

end
Stage 2 (Architecture Search)
while t < T2 do

Update supernet weights wt by descending ∇wLtrain(wt−1, αt−1);
Estimate the Shapley value φ(Lval(wt−1, αt−1)) by Monte-Carlo sampling according to

Algorithm 1;
Compute the accumulated Shapley value: st = µ · st−1 + (1− µ) · φ(Lval(wt−1,αt−1))

||φ(Lval(wt−1,αt−1))||2 ;
Update architecture parameters: αt = αt−1 + ε · st

||st||2 ;
t = t+ 1;

end
Derive the final architecture through argmax: o(i,j) = arg maxo∈O α

(i,j)
o .

A.3 TRAINING DETAILS

CIFAR-10 The CIFAR-10 dataset includes 60K images equally divided into 10 classes, all of
which are with the size of 32×32. We keep the same operation space O as DARTS, including 3×3
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and 5×5 separable convolutions, 3×3 and 5×5 dilated separable convolutions, 3×3 max pooling,
3×3 average pooling, skip connect (i.e., identity) and zero (i.e., none). At the search phase, we
construct the supernet by stacking 8 cells (6 normal cells and 2 reduction cells) and set the initial
channel number as 16. Each cell hasN = 7 nodes (2 input nodes, 4 intermediate nodes and 1 output
nodes). The reduction cells are placed at the 1/3 and 2/3 of the total depth of the network. At
the evaluation phase, we stack 20 cells including 18 normal cells and 2 reduction cells with initial
channel number being 36 to form the architecture. Then we retrain the network from scratch for
600 epochs on the entire 50K training set. We employ the SGD optimizer with a cosine annealing
learning rate initialized as 0.025, a momentum of 0.9 and a weight decay of 3× 10−4. We also use
the cutout with length 16 (DeVries & Taylor, 2017) and drop-path (Zoph et al., 2018) with a rate of
0.3 for regularization.

ImageNet Different from the architecture for CIFAR-10, the network for ImageNet starts with
three convolution layers with stride of 2 which reduce the input resolution from 224×224 to 28×28
following previous works (Xu et al., 2019; Chen et al., 2019). At the evaluation stage, the network
is composed of 14 cells (18 normal cells and 2 reduction cells) and the initial channel number is
48. We train the network from scratch for 250 epochs by an SGD optimizer with a linearly decayed
learning rate initialized as 0.5, a momentum of 0.9 and a weight decay of 3 × 10−5. Similar to
previous works (Xu et al., 2019; Chen et al., 2019), label smoothing and an auxiliary loss tower are
employed during the training.

NAS-Bench-201 In the search space of NAS-Bench-201, the operation setO has 5 elements (zero,
skip connection, 1 × 1 and 3 × 3 convolution, and 3 × 3 average pooling) and each cell contains 4
nodes, which results in a total search space of 15,625 architectures. NAS-Bench-201 supports three
datasets, CIFAR-10, CIFAR-100 and ImageNet-16-120, and we use the results obtained by training
12 epochs on CIFAR-10, and 200 epochs on CIFAR-100 and ImageNet-16-120. Specifically, we
evaluate the task-specific performance by directly searching on the evaluation dataset. We keep the
hyper-parameters in the search and evaluation phase the same as CIFAR-10, and report the mean and
standard deviation for the best architecture from 4 independent runs with different random seeds.

A.4 SEARCHED ARCHITECTURES ON CIFAR-10
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Figure 4: Normal and Reduction cells discovered by Shapley-NAS on CIFAR-10
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A.5 SEARCHED ARCHITECTURES ON IMAGENET
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Figure 5: Normal and Reduction cells discovered by Shapley-NAS on ImageNet

15


	Introduction
	Related work
	Methodology
	Preliminaries
	Operation Importance Evaluation
	Shapley value Approximation
	Shapley-based Architecture Search

	Experiments
	Comparison with the State-of-the-art NAS Methods
	Results on CIFAR-10
	Results on ImageNet
	Results on NAS-Bench-201

	Ablation study

	Conclusion
	Appendix
	The Monte-Carlo sampling algorithm for Shapley value estimation
	The full algorithm of Shapley-NAS
	Training Details
	Searched Architectures on CIFAR-10
	Searched Architectures on ImageNet


