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Abstract

Large language models (LLMs) have recently showcased remarkable capabilities,
spanning a wide range of tasks and applications, including those in the medical
domain. Models like GPT-4 excel in medical question answering but may face
challenges in the lack of interpretability when handling complex tasks in real
clinical settings. We thus introduce the diagnostic reasoning dataset for clinical
notes (DiReCT), aiming at evaluating the reasoning ability and interpretability of
LLMs compared to human doctors. It contains 511 clinical notes, each meticu-
lously annotated by physicians, detailing the diagnostic reasoning process from
observations in a clinical note to the final diagnosis. Additionally, a diagnostic
knowledge graph is provided to offer essential knowledge for reasoning, which
may not be covered in the training data of existing LLMs. Evaluations of leading
LLMs on DiReCT bring out a significant gap between their reasoning ability and
that of human doctors, highlighting the critical need for models that can reason
effectively in real-world clinical scenarios ‡.

1 Introduction

Recent advancements of large language models (LLMs) [Zhao et al., 2023] have ushered in new
possibilities and challenges for a wide range of natural language processing (NLP) tasks [Min
et al., 2023]. In the medical domain, these models have demonstrated remarkable prowess [Anil
et al., 2023, Han et al., 2023], particularly in medical question answering (QA) [Jin et al., 2021].
Leading-edge models, such as GPT-4 [OpenAI, 2023a], exhibit profound proficiency in understanding
and generating text [Bubeck et al., 2023], even achieved high scores on the United States Medical
Licensing Examination (USMLE) questions [Nori et al., 2023].

Despite the advancements, interpretability is critical, particularly in medical NLP tasks [Liévin et al.,
2024] because these tasks directly impact patient health and treatment decisions. Without clear
interpretability, there’s a risk of misdiagnosis and improper treatment, making it vital for ensuring
medical safety. Some studies assess this capability over medical QA [Pal et al., 2022, Li et al., 2023,
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‡Data and code are available at https://github.com/wbw520/DiReCT.
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Radiology: A 3.0 x 1.1 cm
left thalamic hematoma
appears stable when ......
MR HEAD: Only ***** T1,
axial T1, and axial FLAIR 
sequences were ......
CT HEAD: Stable **** basal
ganglia ......

Chief Complaint: Right
weakness and aphasia. 
Events: He had episode of
maurosis fugax in right eye
******** ago ......
Past Medical History:
HTN, COPD on home 1L
...... Admission Consultation Examination

Suspected
Stroke

Hemorrhagic
Stroke

Final
Diagnosis

Diagnosis Procedure

Figure 1: When a patient is admitted, an initial consultation takes place to collect subjective informa-
tion. Subsequent observations may then require further examination to confirm the diagnosis.

Chen et al., 2024] or natural language inference (NLI) [Jullien et al., 2023]. Putting more attention on
interpretability, they use relatively simple tasks as testbeds, taking short text as input. Nevertheless,
real-world clinical tasks are often more complex [Gao et al., 2023a], as illustrated in Figure 1, a
typical diagnosis requires comprehending and combining various information, such as health records,
physical examinations, and laboratory tests, for further reasoning of possible diseases in a step-by-step
manner following the established guidelines. This observation suggests that both perception, or
reading (e.g., finding necessary information in the medical record) and reasoning (determining the
disease based on the observations) should be counted when evaluating interpretability in LLM-based
medical NLP tasks.

For a more comprehensive evaluation of LLMs for supporting diagnosis in a more realistic setting,
we propose a Diagnostic Reasoning dataset for Clinical noTes (DiReCT). The task basically is
predicting the diagnosis from a clinical note of a patient, which is a collection of various medical
records, written in natural language. Our dataset contains 511 clinical notes spanning 25 disease
categories, sampled from a publicly available database, MIMIC-IV [Johnson et al., 2023]. Each
clinical note undergoes fine-grained annotation by professional physicians. The annotators (i.e., the
physicians) are responsible for identifying the text, or the observation, in the note that leads to a
certain diagnosis, as well as the explanation. The dataset also provides a diagnostic knowledge graph
based on existing diagnostic guidelines to facilitate more consistent annotations and to supply a
model with essential knowledge for reasoning that might not be encompassed in its training data.

To underscore the challenge offered by our dataset, we propose a simple AI-agent based baseline [Xi
et al., 2023, Tang et al., 2023] that utilizes the knowledge graph to decompose the diagnosis into a
sequence of diagnoses from a smaller number of observations. Our experimental findings indicate
that current state-of-the-art LLMs still fall short of aligning well with human doctors.

Contribution. DiReCT offers a new challenge in diagnosis from a complex clinical note with explicit
knowledge of established guidelines. This challenge aligns with a realistic medical scenario that
doctors are experiencing. In the application aspect, the dataset facilitates the development of a model
to support doctors in diagnosis, which is error-prone [Middleton et al., 2013, Liu et al., 2022]. From
the technical aspect, the dataset can benchmark models’ ability to read long text and find necessary
observations for multi-evidence entailment tree reasoning, an extension of the original entailment tree
explanation [Dalvi et al., 2021] for complex scenarios in medical NLP tasks. As shown in Figure 3,
this is not trivial because of the variations in writing; superficial matching does not help, and medical
knowledge is vital. Meanwhile, reasoning itself is facilitated by the knowledge graph. The model
does not necessarily have the knowledge of diagnostic guidelines. With this choice, the knowledge
graph explains the reasoning process, which is also beneficial when deploying such a diagnosis
assistant system in practical uses.

2 Related Works

Natural language explanation. Recent advancements in NLP have led to significant achieve-
ments [Min et al., 2023]. However, existing models often lack explainability, posing potential risks
[Danilevsky et al., 2020, Gurrapu et al., 2023]. Numerous efforts have been made to address this
challenge. One effective approach is to provide a human-understandable plain text explanation
alongside the model’s output [Camburu et al., 2018, Rajani et al., 2019]. Another strategy involves
identifying evidence within the input that serves as a rationale for the model’s decisions, aligning with
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Table 1: Comparison of existing datasets for medical reasoning tasks and ours. “t” and “w” mean
tokens and words for the length of input, respectively.

Dataset Task Data Source Length Explanation # Cases
MedMCQA [Pal et al., 2022] QA Examination 9.93 t Plain Text 194,000
ExplainCPE [Li et al., 2023] QA Examination 37.79 w Plain Text 7,000
JAMA Challenge [Chen et al., 2024] QA Clinical Cases 371 w Plain Text 1,524
Medbullets [Chen et al., 2024] QA Online Questions 163 w Plain Text 308
N2N2 [Gao et al., 2022] Sum Clinical Notes 785.46 t Evidences 768
NLI4CT [Jullien et al., 2023] NLI Clinical Trail Reports 10-35 t Multi-hop 2,400
NEJM CPC [Zack et al., 2023] CD Clinical Cases - Plain Text 2,525
DiReCT (Ours) CD Clinical Notes 1074.6 t Entailment Tree 511

human reasoning [DeYoung et al., 2020]. Expanding on this concept, [Jhamtani and Clark, 2020]
introduces chain-structured explanations, given that a diagnosis can demand multi-hop reasoning.
This idea is further refined by ProofWriter [Tafjord et al., 2021] through a proof stage for explanations,
and by [Zhao et al., 2021] through retrieval from a corpus. [Dalvi et al., 2021] proposes the entailment
tree, offering more detailed explanations and facilitating inspection of the model’s reasoning. More
recently, [Zhang et al., 2024] employed cumulative reasoning to tap into the potential of LLMs to
provide explanation via a directed acyclic graph. Although substantial progress has been made,
interpreting NLP tasks in medical domains remains an ongoing challenge [Liévin et al., 2024].

Benchmarks of interpretability in the medical domain Several datasets are designed to assess
a model’s reasoning together with its interpretability in medical NLP (Table 1). MedMCQA [Pal
et al., 2022] and other medical QA datasets [Li et al., 2023, Chen et al., 2024] provide plain text as
explanations for QA tasks. NLI4CT [Jullien et al., 2023] uses clinical trial reports, focusing on NLI
supported by multi-hop reasoning. N2N2 [Gao et al., 2022] proposes a summarization (Sum) task
for a diagnosis based on multiple pieces of evidence in the input clinical note. NEJM CPC [Zack
et al., 2023] interprets clinicians’ diagnostic reasoning as plain text for reasoning clinical diagnosis
(CD). DR.BENCH [Gao et al., 2023b] aggregates publicly available datasets to assess the diagnostic
reasoning of LLMs. Utilizing an multi-evidence entailment tree explanation, DiReCT introduces a
more rigorous task to assess whether LLMs can align with doctors’ reasoning in real clinical settings.

3 A benchmark for Clinical Notes Diagnosis

This section first detail clinical notes (Section 3.1). We also describes the knowledge graph that
encodes existing guidelines (Section 3.2). Our task definition, which tasks a clinical note and the
knowledge graph as input is given in Section 3.4. We then present our annotation process for clinical
notes (Section 3.3) and the evaluation metrics (Section 3.5).

3.1 Clinical Notes

Clinical notes used in DiReCT are stored in the SOAP format [Weed, 1970]. A clinical note comprises
four components: In the subjective section, the physician records the patient’s chief complaint, the
history of present illness, and other subjective experiences reported by the patient. The objective
section contains structural data obtained through examinations (inspection, auscultation, etc.) and
other measurable means. The assessment section involves the physician’s analysis and evaluation of
the patient’s condition. This may include a summary of current status, etc. Finally, the plan section
outlines the physician’s proposed treatment and management plan. This may include prescribed
medications, recommended therapies, and further investigations. A clinical note also includes a
primary discharge diagnosis (PDD) in the assessment section.

DiReCT’s clinical notes are sourced from the MIMIC-IV dataset [Johnson et al., 2023] (PhysioNet
Credentialed Health Data License 1.5.0), which encompasses over 40,000 patients admitted to the
intensive care units. Each note contains clinical data for a patient. To construct DiReCT, we curated a
subset of 511 notes whose PDDs fell within one of 25 disease categories i in 5 medical domains.

In our task, a note R = {r} is an excerpt of 6 clinical data in the subjective and objective sections (i.e.,
|R| = 6): chief complaint, history of present illness, past medical history, family history, physical

3



exam, and pertinent results.1 We also identified the PDD d⋆ associated with R.2 The set of d⋆’s for
all R’s collectively forms D⋆. We manually removed any descriptions that disclose the PDD in R.

3.2 Diagnostic Knowledge Graph

Existing knowledge graphs for the medical domain, e.g., UMLS KG [Bodenreider, 2004], lack the
ability to provide specific clinical decision support (e.g., diagnostic threshold, context-specific data,
dosage information, etc.), which are critical for accurate diagnosis.

Our knowledge graphs K = {ki} is a collection of graph ki for disease category i. ki is based on
the diagnosis criteria in existing guidelines (refer to supplementary material for details). ki’s nodes
are either premise p ∈ Pi (medical statement, e.g., Headache is a symptom of) and diagnoses
d ∈ Di (e.g., Suspected Stroke). ki consists of two different types of edges. One is premise-to-
diagnosis edges Si = {(p, d)}; an edge is from p to d. This edge represents the necessary premise p
to make a diagnosis d. We refer to them as supporting edges. The other is diagnosis-to-diagnosis
edges Fi = {(d, d′)}, where d, d′ ∈ Di and the edge is from d to d′, which represents the diagnostic
flow. These edges are referred to as procedural edges.

A disease category is defined according to an existing guideline, which starts from a certain diagnosis;
therefore, a procedural graph gi = (Di,Fi) (G = {gi}) has only one root node and arbitrarily
branches toward multiple leaf nodes that represent PDDs (i.e., the clinical notes in DiReCT are
chosen to cover all leaf nodes of gi). Thus, gi is a tree. We denote the set of the leaf nodes (or PDDs)
as D⋆

i ⊂ Di. The knowledge graph is denoted by ki = (Di,Pi,Si,Fi).

Suspected ACS Strongly
Suspected ACS

Any Severe
Presentations ...

Third Heart
Sound ...

Breathlessness
is a symptom ...

Arrhythmias
is ...

......

......

STEMI-ACS

NSTE-ACS

NSTEMI-ACS

UA

ST Elevation
is criteria ... 

non-ST
Elevation ...

hs-cTn
Exceeded ...

Cardiac
Troponin ↑

No Obvious
ECG  ...

Figure 2: A part of ki for i being Acute Coronary Syndromes.

Figure 2 shows a part of ki,
where i is Acute Coronary
Syndromes (ACS). Premises in
Pi and diagnoses in Di are given
in the blue and gray boxes, while
PDDs in D⋆

i are ones without out-
going edges (i.e., STEMI-ACS and
NSTEMI-ACS, and UA). The black
and red arrows are edges in S and
F , respectively, where the black
arrows indicate the supporting edges.

K serves two essential functions: (1) They serve as the gold standard for annotation, guiding doctors
in the precise and uniform interpretation of clinical notes. (2) Our task also allows a model to use
them to ensure the output from an LLM can be closely aligned with the reasoning processes of
medical professionals.

3.3 Data Annotation

Let d⋆ ∈ D⋆
i denote the PDD of disease category i associated with R. We can find a subgraph ki(d

⋆)
of ki that contains all ancestors of d⋆, including premises in Pi. We also denote the set of supporting
edges in ki(d

⋆) as Si(d
⋆). Our annotation process is, for each supporting edge (p, d) ∈ Si(d

⋆),
to extract observation o ∈ O in R (highlighted text in the clinical note in Figure 3) and provide
rationalization z of this deduction why o is a support for d or corresponds to p.3 They form the
explanation E = {(o, z, d)} for (R, d⋆). This annotation process was carried out by 9 clinical
physicians and subsequently verified for accuracy and completeness by three senior medical experts.

Table 2 summarizes statistics of our dataset. The second and third columns (“# cats.” and “# samples”)
show the numbers of disease categories and samples in the respective medical domains. |Di| and
|D⋆

i | are the total numbers of diagnoses (diseases) and PDDs, summed over all diagnostic categories

1We excluded data, such as review system and social history, because they are often missing in the original
clinical notes and are less relevant to the diagnosis.

2All clinical notes in DiReCT are related to only one PDD, and there is no secondary discharge diagnosis.
3All annotations strictly follow the procedural flow in ki, and each observation is only related to one

diagnostic node. If R does not provide sufficient observations for the PDD (which may happen when a certain
test is omitted), the annotators were asked to add plausible observations to R. Refer to amended data points in
supplementary for details.
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Suspected HF

Strongly
Suspected HF

HF

HFmrEF

Peripheral oedema is
a sign of heart failure

Cardiac systolic dysfunction ~49%
can lead to the diagnosis of HFmrEF

Hypertension is the risk factor
of heart failure

......

Cardiac structure abnormalities are
diagnostic criteria of heart failure

......

......

......
NT-proBNP 3843≥125pg/ml is a
diagnostic criteria of strong HF

Chief Complaint: Scrotal and leg swelling ...
History of Present Illness: ... In the last 3 days his ***** has become quite
swollen. It is similar ***** swelling when he was admitted with acute CHF ... EKG
was consistent with priors (NSR, NANI, ********** changes). The left ventricle is
mildly enlarged. He was given ********* with good UOP ... 
Past Medical History: ... -Diabetes, -Hypertension, -CKD, stage 3, -GERD, -
Depression, - Amputation of ***********, Pneumonia, - Osteoarthritis- History of
*********, Asthma  ...
Family History：There is no family history of **************** artery ...
Physical Exam: ... LUNG: bibasilar rales that do not clear with deep inspiration.
... ABDOMEN: nondistended, ********* all quadrants. EXTREMITIES: bilateral
pitting edema to the sacrum, extending to the up abdomen. Warm, well perfused.
... HEENT: AT/NC, EOMI, PERRL. ...
Pertinent Results: __03:50PM BLOOD WBC-8.0 RBC-3.26* Hgb-9.3* Hct-
30.9* MCHC-29.9* ... __ 11:30AM BLOOD proBNP-3843 ... Overall left ventricular
systolic function is mildly depressed (LVEF= 45-50 %) without regional wall motion
abnormalities. *********** imaging suggests an increased ******* filling pressure
(PCWP>******Hg) ... 
 

Clinical Note Rationale Diagnosis

Figure 3: An annotation sample of Heart Failure (HF). The left part is the clinical note alongside
extracted observations by a doctor. The middle part outlines the steps of the rationale for the premise
corresponding to each diagnostic node shown in the right part.

in the medical domain, respectively. |O| is the average number of annotated observations. “Length”
is the average number of tokens in R.

3.4 Task Definition

Table 2: Statistics of DiReCT.

Medical domain # cat. # samples |Di| |D⋆
i | |O| Length

Cardiology 7 184 27 16 8.7 1156.6 t
Gastroenterology 4 103 11 7 4.3 1026.0 t
Neurology 5 77 17 11 11.9 1186.3 t
Pulmonology 5 92 26 17 10.7 940.7 t
Endocrinology 4 55 20 14 6.9 1063.5 t

Overall 25 511 101 65 8.5 1074.6 t

We propose two tasks with different levels of
supplied external knowledge. The first task
is, given R and G, to predict the associated
PDD d⋆ and generate an explanation E that
explains the model’s diagnostic procedure
from R to d⋆, i.e., letting M denote a model:

d̂⋆, Ê = M(R,G), (1)

where d̂⋆ ∈ ∪iD⋆
i and Ê are predictions for the PDD and explanation, respectively. With this task,

the knowledge of specific diagnostic procedures in existing guidelines can be used for prediction,
facilitating interpretability. The second task takes K as input instead of G, i.e.,:

d̂⋆, Ê = M(R,K). (2)

This task allows for the use of broader knowledge of premises for prediction. One may also try a task
without any external knowledge.

3.5 Evaluation Metrics

We designed three metrics to quantify the predictive performance over our benchmark.

(1) Accuracy of diagnosis Accdiag evaluates if a model can correctly identify the diagnosis. Accdiag = 1

if d⋆ = d̂, and Accdiag = 0 otherwise. The average is reported.

(2) Completeness of observations Obscomp evaluates whether a model extracts all and only necessary
observations for the prediction. Let O and Ô denote the sets of observations in E and Ê , respectively.
The metric is defined as Obscomp = |O ∩ Ô|/|O ∪ Ô|, where the numerator is the number of
observations that are common in both O and Ô.4 This metric simultaneously evaluates the correctness
of each observation and the coverage. To supplement it, we also report the precision Obspre and recall
Obsrec, given by Obspre = |O ∩ Ô|/|Ô| and Obsrec = |O ∩ Ô|/|O|.
(3) Faithfulness of explanations evaluates if the diagnostic flow toward the PDD is fully supported by
observations with faithful rationalizations. This involves establishing a one-to-one correspondence
between deductions in the prediction and the ground truth. We use the correspondences established for
computing Obscomp. Let o ∈ O and ô ∈ Ô denote corresponding observations. This correspondence

4We find the common observations with an LLM (refer to the supplementary material for more detail).
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Reasoning

Reasoning

Observations
① Elevated blood pressures

② CXR showed mild pulmonary edema

③ CHF/Cardiomyopathy

④ Severe LV diastolic dysfunction

⑤ BPs: 148/98, 156/93
......

Perception

Diagnostic KG
r2: History of Present Illness

r3: Past Medical History

r5: Physical Examination

r6: Pertinent Results

r1: Chief Complaint

r4: Family History

Clinical
Note

① ② ③ ④ ⑤

① ② ③ ④ ⑤

① ② ③ ④ ⑤

Narrowing-
down

......

U

W

V

V

...

R

dt

d0

d0

d0 d1

d1

Figure 4: Pipeline of our baseline. The dotted line in the right-most boxes means deductions from an
observation to a diagnosis.

is considered successful if z and ẑ as well as d and d̂ associated with o and ô matches. Let m(E , Ê)
denote the number of successful matches. We use the ratio of m(E , Ê) to |O ∩ Ô| and |O ∪ Ô|
as evaluation metrics Expcom and Expall, respectively, to see failures come from observations or
explanations and diagnosis.

4 Baseline

Figure 4 provides an overview of our baseline, which comprises three LLM-based modules:
narrowing-down (U ), perception (W ), and reasoning (V ). In our experiments, each module utilizes
the same type of LLM with different prompts (refer to the supplementary material for more details).
U analyze the entire note R to determine the possible disease type î. W extracts observations that
may lead to diseases from each r, producing a list of original disease descriptions. V iteratively
derives possible diseases from observations based on the diagnosis knowledge graph, providing
rationales for each deduction (o, z, d).

The narrowing-down module U takes R as input to make a prediction î of the disease category, i.e.,
î = U(R). Let dt ∈ Dî be the diagnosis that has been reached with t iterations over kî, where t
corresponds to the depth of node dt and so is less than or equal to the depth of kî. d0 is the root node
of kî. For d0, we apply the perception module to extract all observations in R and explanation E0 to
support d0 as

Ô, Ê0 = W (d0, kî). (3)

kî is supplied to facilitate the model to extract all observations for the following reasoning process.5

After the perception module W (iteration t = 0), we obtain all observations Ô, the root node of the
diagnosis d0, and an explanation Ê0 for the initial iteration. Assuming that by iteration t, we already
know the diagnosis for iteration t as dt. {dn} is the set of dt’s children, and Pî({dn}) represents the
corresponding premises that support each dn. V identifies the diagnosis for the next step, dt+1, and
provides a justification Et+1. V will verify if there is any ô in Ô that supports a dn. If fully supported,
dn is identified as dt+1 for the (t+ 1)-th iteration, i.e.,

dt+1, Êt+1 = V (Ô, {dn},Pî({dn})), (4)

V continues until dt+1 in D∗ is identified. If no observation supports a dn, the reasoning process will
be stopped.

In our annotation, an observation o is associated with only one d. However, our method employs
an iterative reasoning pipeline. Initially, the perception module W generates an explanation set Ê0,
linking all ô to d0. During the t-th iteration of V , the explanation set is Êt, where at least one ô is

5We used only pairs of an observation and a premise. We abuse K to mean this for notation simplicity. The
perception model can also utilize gi instead of ki for the first task.
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Table 3: Evaluation of diagnostic reasoning ability using G or K as input.
Diagnosis Observation Explanation

Task Models Acccat Accdiag Obspre Obsrec Obscomp Expcom Expall

With G

Zephyr 7B 0.274 0.151 0.123±0.200 0.115±0.166 0.092±0.108 0.071±0.139 0.014±0.037
Mistral 7B 0.507 0.306 0.211±0.190 0.317±0.253 0.173±0.157 0.230±0.312 0.062±0.088
Mixtral 8×7B 0.413 0.237 0.147±0.165 0.266±0.261 0.124±0.138 0.144±0.268 0.029±0.056
LLama3 8B 0.569 0.364 0.248±0.157 0.410±0.218 0.211±0.138 0.325±0.375 0.087±0.118
LLama3 70B 0.822 0.606 0.306±0.151 0.543±0.183 0.279±0.146 0.409±0.328 0.124±0.120
GPT-3.5 turbo 0.679 0.455 0.389±0.212 0.351±0.192 0.275±0.167 0.331±0.366 0.103±0.127
GPT-4 turbo 0.804 0.610 0.486±0.207 0.481±0.180 0.391±0.189 0.481±0.362 0.210±0.188

With K
LLama3 8B 0.576 0.344 0.235±0.162 0.394±0.227 0.199±0.142 0.327±0.375 0.087±0.114
LLama3 70B 0.786 0.652 0.268±0.147 0.524±0.211 0.258±0.142 0.549±0.372 0.152±0.130
GPT-3.5 turbo 0.652 0.413 0.347±0.241 0.279±0.203 0.232±0.184 0.374±0.408 0.121±0.152
GPT-4 turbo 0.808 0.611 0.470±0.209 0.459±0.190 0.371±0.192 0.645±0.385 0.273±0.216

linked to dt. The final diagnosis explanation is the combination of Ê0, . . . , ÊT and d0, . . . , dT , where
T represents the final iteration. In this combination, if an ô is eventually processed in the iteration for
Êt, the corresponding (o, z, d) in all preceding Ê0, . . . , Êt−1 will be removed. That is, ô will always
be possessed by the dt closest to the leaf PDD node.

5 Experiments

5.1 Experimental Setup

We assess the reasoning capabilities of 7 recent LLMs from diverse families and model sizes,
including 5 instruction-tuned models that are openly accessible: LLama3 8B and 70B [AI@Meta,
2024], Zephyr 7B [Tunstall et al., 2023], Mistral 7B [Jiang et al., 2023], and Mixtral 8×7B [Jiang
et al., 2023]. We have also obtained access to private versions of the GPT-3.5 turbo [OpenAI, 2023b]
and GPT-4 turbo [OpenAI, 2023a] 6, which are high-performance closed-source models. Each LLM
is utilized to implement our baseline’s narrowing-down, perception, and reasoning modules. The
temperature is set to 0. For computing evaluation metrics, we use LLama3 8B with few-shot prompts
to make correspondences between O and Ô as well as to verify a match between predicted and
ground-truth explanations (refer to the supplementary material for more details).

5.2 Results

Comparison among LLMs. Table 3 shows the performance of our baseline built on top of various
LLMs. We first evaluate a variant of our task that takes graph G = {Gi} consisting of only procedural
flow as external knowledge instead of K. Comparison between G and K demonstrates the importance
of supplying premises with the model and LLMs’ capability to make use of extensive external
knowledge that may be superficially different from statements in R. Subsequently, some models are
evaluated with our task using K. In addition to the metrics in Section 3.5, we also adopt the accuracy
of disease category Acccat, which gives 1 when î = i, as our baseline’s performance depends on it.

With G, we can see that GPT-4 achieves the best performance in most metrics, especially related
to observations and explanations, surpassing LLama3 70B by a large margin. In terms of accuracy
(in both category and diagnosis levels), LLama3 70B is comparable to GPT-4. LLama3 70B also
has a higher Obsrec but low Obspre and Obscomp, which means that this model tends to extract many
observations. Models with high diagnostic accuracy are not necessarily excel in finding essential
information in long text (i.e., observations) and generating reasons (i.e., explanations).

When K is given, all models show better diagnostic accuracy (in LLama3 70B) and explanations,
while observations are slightly degraded (this may related to the instruction following ability due to
the input length when giving K as input). GPT-4 with K enhances Accdiag, Expcom, and Expall scores.
This suggests that premises and supporting edges are beneficial for diagnosis and explanation. Lower

6These two models are housed on a HIPPA-compliant instance within Microsoft Azure AI Studio. No data is
transferred to either Microsoft or OpenAI. This secure environment enables us to safely conduct experiments
with the MIMIC-IV dataset, in compliance with the Data Use Agreement.
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Table 4: Evaluation of diagnostic reasoning ability without external knowledge.
Observation Explanation

Task Models Accdiag Obspre Obsrec Obscomp Expcom Expall

With D⋆

LLama3 8B 0.070 0.154±0.139 0.330±0.244 0.135±0.122 0.020±0.100 0.004±0.016
LLama3 70B 0.502 0.257±0.150 0.509±0.213 0.237±0.145 0.138±0.209 0.034±0.054
GPT-3.5 turbo 0.223 0.164±0.242 0.149±0.212 0.116±0.174 0.091±0.231 0.025±0.065
GPT-4 turbo 0.636 0.461±0.206 0.482±0.160 0.378±0.174 0.186±0.221 0.074±0.090

No Knowledge

LLama3 8B 0.023 0.137±0.159 0.258±0.274 0.119±0.141 0.018±0.083 0.006±0.026
LLama3 70B 0.037 0.246 ±0.148 0.504±0.222 0.227±0.148 0.022±0.093 0.007±0.030
GPT-3.5 turbo 0.059 0.161±0.238 0.148±0.215 0.113±0.171 0.036±0.131 0.011±0.039
GPT-4 turbo 0.074 0.410±0.208 0.443±0.191 0.324±0.182 0.047±0.143 0.019±0.058

LLama3 GPT-3.5 GPT-4
Cardiology

0.0

0.2

0.4

0.6

0.8

1.0

LLama3 GPT-3.5 GPT-4
Gastroenterology

LLama3 GPT-3.5 GPT-4
Neurology

LLama3 GPT-3.5 GPT-4
Pulmonology

LLama3 GPT-3.5 GPT-4
Endocrinology

Acc Comp Faith

Figure 5: Performance of LLama3 70B, GPT-3.5, and GPT-4 under different medical domains. We
use the task with G.

observational performance may indicate that the models lack the ability to associate premises and
text in R, which are often superficially different though semantically consistent.

LLMs may undergo inherent challenges for evaluation when no external knowledge is supplied. They
may have the knowledge to diagnose but cannot make consistent observations and explanations that
our task expects through K. To explore this, we evaluate two settings: (1) giving D⋆ and (2) no
knowledge is supplied to a model (shown in Table 4). The prompts used for this setup are detailed
in the supplementary material. We do not evaluate the accuracy of disease category prediction
as it is basically the same as Table 3. We can clearly see that with D⋆, GPT-4’s diagnostic and
observational scores are comparable to those of the task with K, though explanatory performance
is much worse. Without any external knowledge, the diagnostic accuracy is also inferior.7 The
deteriorated performance can be attributed to inconsistent wording of diagnosis names, which makes
evaluation tough. High observational scores imply that observations in R can be identified without
relying on external knowledge. There can be some cues to spot them.

Performance in individual domains. Figure 5 summarizes the performance of LLama3 70B, GPT-
3.5, and GPT-4 across different medical domains, evaluated using Accdiag, Obscomp (Comp), and
Expall (Faith). Neurology gives the best diagnostic accuracy, where LLama3 achieved an accuracy of
0.779. GPT-4 also performed well (0.753). In terms of Obscomp and Expall, GPT-4’s results were 0.437
and 0.280, respectively. However, GPT-4 yields a higher diagnostic accuracy score while a lower
explanatory score, suggesting that the observations captured by the model or their rationalizations
differ from human doctors.

Diagnostic reasoning under conditions of incomplete observation. In real-world scenarios, doctors
often have to make diagnoses based on incomplete information. To explore this, we conducted
experiments on the 73 amended cases which originally lack observation to the final diagnosis (refer
to supplementary for detailed introduction of amended data point). One set of experiments used
the unmodified original notes, labeled as "Original," while the other set used notes with added
observations labeled as "Amended." We tested three models—Llama3 70B, GPT-3.5-turbo, and
GPT-4 turbo—under two settings: one with only the procedural graph G and the other with the
complete knowledge graph K. The results are presented in Tables 5 and 6. We can observe that in
both G and K settings, the performance on the Amended data was consistently better across all metrics
compared to the Original data. This suggests that even a single added observation can significantly
impact the model’s diagnostic reasoning.

7We understand this comparison is unfair, as the prompts differ. We intend to give a rough idea about the
challenge without external knowledge.
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Table 5: Amendment ablation study using G.
Diagnosis Observation Explanation

Setting Models Acccat Accdiag Obspre Obsrec Obscomp Expcom Expall

Original
LLama3 70B 0.547 0.273 0.225±0.143 0.472±0.144 0.253±0.138 0.216±0.271 0.073±0.087
GPT-3.5 turbo 0.507 0.273 0.393±0.216 0.355±0.174 0.278±0.151 0.207±0.305 0.062±0.093
GPT-4 turbo 0.616 0.328 0.446±0.211 0.418±0.164 0.340±0.178 0.242±0.324 0.098±0.137

Amended
LLama3 70B 0.698 0.534 0.250±0.173 0.507±0.134 0.240±0.129 0.296±0.354 0.133±0.142
GPT-3.5 turbo 0.671 0.411 0.487±0.206 0.351±0.152 0.310±0.145 0.272±0.321 0.092±0.118
GPT-4 turbo 0.726 0.547 0.546±0.184 0.465±0.148 0.412±0.171 0.391±0.374 0.180±0.186

Table 6: Amendment ablation study using K.
Diagnosis Observation Explanation

Setting Models Acccat Accdiag Obspre Obsrec Obscomp Expcom Expall

Original
LLama3 70B 0.575 0.219 0.109±0.233 0.443±0.171 0.203±0.186 0.304±0.388 0.114±0.135
GPT-3.5 turbo 0.548 0.233 0.293±0.243 0.218±0.198 0.184±0.166 0.251±0.357 0.072±0.106
GPT-4 turbo 0.616 0.260 0.452±0.241 0.410±0.211 0.349±0.223 0.467±0.437 0.220±0.256

Amended
LLama3 70B 0.685 0.537 0.261±0.195 0.493±0.230 0.277±0.171 0.452±0.407 0.185±0.194
GPT-3.5 turbo 0.657 0.465 0.390±0.227 0.272±0.194 0.232±0.156 0.401±0.394 0.127±0.145
GPT-4 turbo 0.712 0.589 0.534±0.214 0.452±0.180 0.401±0.201 0.607±0.442 0.286±0.258

For Cardiology and Endocrinology, the diagnostic accuracy of the models is relatively low (GPT-
4 achieved 0.458 and 0.468, respectively). Nevertheless, Obscomp and Expall are relatively high.
Endocrinology results in lower diagnostic accuracy and higher explanatory performance. A smaller
gap may imply that in these two domains, successful predictions are associated with observations
similar to those of human doctors, and the reasoning process may be analogous. Conversely, in
Gastroenterology, higher Acccat) is accompanied by lower Obscomp and Expall (especially for LLama3),
potentially indicating a significant divergence in the reasoning process from human doctors. Overall,
DiReCT demonstrates that the degree of alignment between the model’s diagnostic reasoning ability
and that of human doctors varies across different medical domains.

Reliability of automatic evaluation. We randomly pick out 100 samples from DiReCT and their
prediction by GPT-4 over the task with G to assess the consistency of our automated metrics
to evaluate the observational and explanatory performance in Section 3.3 to human judgments.

Table 7: Consistency of automated evaluation with human
judgments. Evaluated by mean and confidence interval (CI).

Observation Rationalization

Model Mean 95% CI Mean 95% CI

LLama3 8B 0.887 0.844 ∼ 0.878 0.835 0.759 ∼ 0.818
GPT-4 turbo 0.902 0.830 ∼ 0.863 0.876 0.798 ∼ 0.853

Three physicians joined this experi-
ment. For each prediction ô ∈ Ô, they
are asked to find a similar observation
in ground truth O. For explanatory
metrics, they verify if each prediction
ẑ ∈ Ê for ô ∈ Ô align with ground-
truth z ∈ E corresponding to o. A pre-
diction and a ground truth are deemed
aligned for both assessments if at least
two specialists agree. We compare LLama3’s and GPT-4’s judgments to explore if there is a gap
between these LLMs. As summarized in Table 7, GPT-4 achieves the best results, with LLama3 8B
also displaying a similar performance. From these results, we argue that our automated evaluation
metrics are consistent with human judgments, and LLama3 is sufficient for this evaluation, allowing
the cost-efficient option. Detailed analysis is available in the supplementary material.

Prediction examples. Figure 6 shows a sample generated by GPT-4. The ground-truth PDD of
the input clinical note is Hemorrhagic Stroke. In this figure, purple, orange, and red indicate
explanations only in the ground truth, only in prediction, and common in both, respectively; therefore,
red is a successful prediction of an explanation, while purple and orange are a false negative and false
positive. GPT-4 treats the observation of aurosis fugax as the criteria for diagnosing Ischemic
Stroke. However, this observation only supports Suspected Stroke. Conversely, observation
thalamic hematoma, which is the key indicator of Hemorrhagic Stroke, is regarded as a less
important clue. Such observation-diagnosis correspondence errors lead to the model’s misdiagnosis.
In Figure 7, we can observe that GPT-4 can find the key observation for the diagnosis of GERD,
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 Suspected
Stroke

Hemorrhagic
Stroke

Clinical Note Diagnosis

Present Illne: He underwent a right carotid ********************,     
and per notes, it was uneventful. This was done as an elective
procedure after he had episodes of amaurosis fugax in ***********
******** days ago, which, on evaluation, showed significant (more
than ******* percent) carotid stenosis. ...
Past Medical History: +HTN, +Diverticulosis, +CHF ...
Physical Exam: Mental status: Awake, *****, doesn't verbalize.
Can only say ****** words. Comprehension is relatively spared,
can answer with ********** to yes and No type questions. ...
Pertinent Results: CT HEAD W/O CONTRAST Study Date 
FINDINGS: A ****** cm left thalamic hematoma appears stable
when compared to ********** from outside the ******** imaged
approximately ******** ago. There is an increased amount of
layering hemorrhage in the ************ of the left lateral ventricle. A
small amount of intraventricular blood is noted in the
***************** of the right lateral ventricle, ******. There is
surrounding *******, which appears ****** from prior CT. ...

Rationale

Transient vision loss typically
indicates a transient ischemic
attack, often associated with

carotid artery disease.

Carotid artery stenosis is an
important cause of insufficient
blood flow to the brain and is
associated with  risk of stroke

Ischemic
Stroke

CHF reduced ability of the heart to pump blood may
lead to increase the risk of stroke

Thalamus hematoma
means brain bleeding
which is a common

diagnostic criterion for
hemorrhagic stroke

The presence of a thalamic
hematoma is directly related

to symptoms of stroke,
indicating brain bleeding
which can lead to stroke

Figure 6: An example prediction for a clinical note with PDD of Hemorrhagic Stroke by GPT-4.

 Suspected
GERD

GERD

Clinical Note Diagnosis

Chief Complaint: epigastric and substernal chest pain
Present Illne: suspected PBC with severe epigastric pain that
radiates to her mid-sternal area beginning at ** AM. She noted
gradual ************************minutes. It did not radiate to her
back, and was similar in character to past episodes. However, she
felt the pain was much more severe, and did not respond to her
usual reflux techniques (drinking water, taking tums, and drinking a
lidocaine water mixture). She denied SOB, chest pain, palpitations,
nausea, *****************is. She also denies change in **********,
such as melena or BRBPR. Endoscopy showed hiatal hernia and
erosions at the GE junction that were shown to be benign on
pathology ...
Past Medical History: ...
Pertinent Results: EGD: Normal mucosa in the esophagus,
stomach, and duodenum. *********** polyp in the upper
stomach. *********************************** part of the
duodenum. EKG: upright axis, sinus rhythm, regular rate at ~60
bpm, intervals wnl, no acute ST changes. ************* reflux
monitor: total AET:6.5% on pH-impedance monitoring. 

Common symptoms of GERD
include chest pain that can be

substernal or epigastric.

Epigastric and substernal chest
pain are atypical and typical

symptoms of GERD,respectively.

AET greater than 4% on pH-impedance
monitoring supports the diagnosis of GERD

Rationale 

Indicates absence of erosive damage typically seen in severe
GERD, but does not rule out GERD as symptoms can occur

without visible mucosal damage.

Erosions at the GE junction
may be an endoscopic

finding of GERD but was
not graded.

Hiatal hernia and erosions
at the gastroesophageal

junction are common
findings in GERD

Figure 7: An example prediction for a clinical note with PDD of GERD by GPT-4

which is consistent with human in both observation and rationale. However, it still lacks the ability to
identify all observations. More samples are available in the supplementary material.

6 Conclusion and Limitations

We proposed DiReCT as the first benchmark for evaluating the diagnostic reasoning ability of LLMs
with interpretability by supplying external knowledge as a graph. Our evaluations reveal a notable
disparity between current leading-edge LLMs and human experts, underscoring the urgent need for
AI models that can perform reliable and interpretable reasoning in clinical environments. DiReCT
can be easily extended to more challenging settings by removing the knowledge graph from the input,
facilitating evaluations of future LLMs.

Limitations. DiReCT encompasses only a subset of disease categories and considers only one PDD,
omitting the inter-diagnostic relationships due to their complexity—a significant challenge even for
human doctors. Additionally, our baseline may not use optimal prompts or address issues related
to hallucinations in task responses. Our dataset is solely intended for model evaluation but not for
use in clinical environments. The use of the diagnostic knowledge graph is also limited to serving
merely as a part of the input and once a knowledge graph is provided, the focus shifts to whether the
LLM follows the graph’s rules well (refer to supplementary). Future work will focus on constructing
a more comprehensive disease dataset and developing an extensive diagnostic knowledge graph.
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