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ABSTRACT

Recent advancements in deep learning have seen breakthroughs in training algo-
rithms, benefiting speech, text, image, and video processing. While deeper archi-
tectures like ResNet have made strides, shallow Convolutional Neural Networks
(CNNs) remain underexplored. Activation functions, pivotal for introducing non-
linearity, drive significant progress. This paper investigates complex piece-wise
linear hidden layer activations. Our experiments highlight their superiority over
traditional Rectified Linear Units (ReLUs) across architectures. We introduce
AdAct, an Adaptive Activation algorithm showing promising performance boosts
in diverse CNN and multilayer perceptron setups, advocating for its adoption.

1 INTRODUCTION AND NOVELTY

Convolutional Neural Networks (CNNs) serve as pivotal tools in image-centric tasks.Despite their
prevalence, CNNs face challenges like reliance on oversimplified nonlinear activation functions such
as ReLU and leaky ReLU. While these nonlinear functions offer advantages in computer vision Glo-
rot et al. (2011) and deep neural networks Goodfellow et al. (2016), their simplicity compared to
sigmoids or hyperbolic tangent only partially addresses the vanishing gradient problem Hochreiter
(1998). Optimizing activations for individual filters in a multi-filter image classification CNN re-
mains an ongoing exploration.

Efforts to design adaptive or fixed Piece-Wise Linear Activations (PLAs) [Nicolae (2018), Guarnieri
et al. (1999), Campolucci et al. (1996), Jagtap et al. (2020)] have surfaced. Notably, adaptive activa-
tion functions for deep CNNs are introduced in Agostinelli et al. (2015), where the author employs
gradient descent to train curve slopes and hinges.

This paper explores complex piece-wise linear activations in diverse neural network architectures,
contrasting them with conventional ReLUs and highlighting their superior effectiveness in both
CNNs and MLPs. Our adaptive activation algorithm, AdAct, demonstrates promising performance
enhancements across datasets, offering a robust alternative to fixed activation functions. This re-
search significantly advances our understanding of activation functions in neural networks, facilitat-
ing refined design choices for improved model performance in various applications.

2 PROPOSED WORK

Piecewise linear functions, reliant on ReLU units as primary components Goodfellow et al. (2016),
adeptly approximate sigmoid and Tanh activations. Research explores adaptive piecewise linear
functions (PLAs) in MLPs and deep learning Guarnieri et al. (1999); Agostinelli et al. (2015). No-
tably, hybrid piecewise linear units (PLU) fuse Tanh and ReLU activations, outperforming fixed
ReLUs due to enhanced hinge representation Nicolae (2018). However, fixed PLAs lack adaptabil-
ity, hindering universal approximation Cybenko (1989).

In contrast, adaptive PLAs introduced in Agostinelli et al. (2015) address these limitations, surpass-
ing fixed PLAs in complexity. While initialization methods for adaptive activations remain unspeci-
fied, the adaptive activation function is defined as op = max(0,np)+

∑H
s=1 a

s ·max (0,−np + bs),
Here, as and bs, controlled by gradient descent, dictate segment slopes and sample point locations,
respectively. Existing PLAs face limitations, especially with minimal height differences between
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hinges during training. Each term in the sum, representing a ramp function multiplied by a coeffi-
cient, nullifies contributions to the sum when n1 value differences yield non-positive results. Our
proposed robust PLA supports initialization via various pre-defined activations like ReLU Bishop
(2006) and leaky ReLU Bishop (2006), ensuring differentiability.

The proposed methodology introduces piecewise linear activations (A) trained via gradient descent.
Initially, leveraging the MOLF algorithm Tyagi et al. (2022), an Nh-dimensional learning factor
vector, z, is obtained using orthogonal least squares (OLS) Tyagi et al. (2022) by solving Hmolf ·z =
gmolf, where Hmolf and gmolf denote the Hessian and negative gradient, respectively, related to the
error and z. Next, the negative gradient matrix (Ga) in relation to Ece, a cross-entropy error, is
computed. This includes adapting hinges based on pattern-specific net values, updating the network
weights as A = A+z ·Ga, and determining the learning factor z = ∂E

∂z . Finally, the output network
weights Wo are computed through output weight optimization Tyagi et al. (2022). A pseudo-code
for the proposed AdAct algorithm is outlined below.

Algorithm 1 AdAct algorithm
1: Initialize W,Woi,Woh, Nit, Fixed hinges ns and hinge activation a , it← 0
2: while it < Nit do
3: MOLF step: Calculate hessian Hmolf and gradient gmolf to solve for z using OLS.
4: AdAct step: Calculate Ga and learning factor z to update activation.
5: OWO step : Solve for output weights.
6: it← it + 1
7: end while

3 EXPERIMENTAL RESULTS AND CONCLUSION

Our study compares our proposed AdAct algorithm’s performance across MLP and CNN networks,
contrasting it with MOLF, CG-MLP, SSCG, and LM methodologies Tyagi et al. (2014; 2022); Bat-
titi (1992). We specifically focus on shallow CNNs and Transfer learning due to space constraints.
CIFAR-10 experiments involve shallow CNN models with ReLU, leaky ReLU, and adaptive activa-
tions across one, two, and three VGG layers Simonyan & Zisserman (2014). These models vary in
configurations, utilizing diverse activation functions, where adaptive activations showcase improved
accuracy, particularly in deeper layers, as seen in Table 1. We adapt ImageNet pretrained VGG11
and ResNet18 models for CIFAR-10 using transfer learning, fine-tuning for a minimum of 100 it-
erations. This approach uses their existing knowledge, resulting in outcomes with reduced data and
iterations. We integrate adaptive activations in end layers, improving parameter efficiency and the
modeling of deeper features Zeiler & Fergus (2013). While Table ?? highlights the superior perfor-
mance of adaptive activations, it comes with a minor increase in parameters and training duration. In
transfer learning, we performed a 10-fold cross-validation testing accuracy results for classification
datasets, showcasing the performance of models using adaptive activations and ReLU activations.
Notably, the VGG11 model achieved an accuracy of 91.78% with adaptive activations compared to
91.44% with ReLU activations. Similarly, the ResNet18 model demonstrated a higher accuracy of
95.30% with adaptive activations in contrast to 95.1% with ReLU activations.

Models Weight-
Initialization

AdAct ReLU LeakyReLU

1 - VGG layers Glorot Normal 67.8 66.56 66.45
2 - VGG layers Glorot Normal 74.2 71.82 73.09
3 - VGG layers Glorot Normal 75.53 72.58 73.3

Table 1: 10-fold cross validation accuracy testing results on various activation functions for CIFAR-
10 dataset, (best testing accuracy is in bold)

This paper highlights the AdAct algorithm’s superiority over traditional ReLUs in neural networks.
Adaptive activations outperform fixed functions, particularly in approximating complex outputs.
Though computationally demanding, they excel in accurately representing curved outputs, showcas-
ing their adaptability and convergence advantages.
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