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ABSTRACT

Large Language Models (LLMs) are increasingly deployed in multi-agent sys-
tems, where effective inter-model communication is crucial. Existing communi-
cation protocols either rely on natural language, incurring high inference costs
and information loss, or on hidden states, which suffer from information concen-
tration bias and inefficiency. To address these limitations, we propose KVComm,
a novel communication framework that enables efficient communication between
LLMs through selective sharing of KV pairs. KVComm leverages the rich infor-
mation encoded in the KV pairs while avoiding the pitfalls of hidden states. We
introduce a KV layer-wise selection strategy based on attention importance scores
with a Gaussian prior to identify the most informative KV pairs for communica-
tion. Extensive experiments across diverse tasks and model pairs demonstrate that
KVComm achieves comparable performance to the upper-bound method, which
directly merges inputs to one model without any communication, while transmit-
ting as few as 30% of layers’ KV pairs. Our study highlights the potential of KV
pairs as an effective medium for inter-LLM communication, paving the way for
scalable and efficient multi-agent systems.

1 INTRODUCTION

Large Language Models (LLMs) have catalyzed a paradigm shift from isolated model capabilities
towards collaborative multi-agent systems (Guo et al., 2024; Tran et al., 2025). CAMEL (Li et al.,
2023), AutoGen (Wu et al., 2024), and ChatDev (Qian et al., 2023) have demonstrated the potential
of LLMs to collaborate effectively in multi-agent systems, achieving impressive results in various
tasks. These systems leverage the strengths of individual LLMs and enable them to work together
to solve complex problems that are beyond the capabilities of a single model (Yang et al., 2024a).

While multi-agent systems have shown great promise, they also introduce new challenges, particu-
larly in the area of inter-agent communication. Effective communication between LLMs is crucial
for the success of multi-agent systems. Explicit communication through natural language has been
explored in several works, enabling the models to share information (Du et al., 2023), coordinate
their actions (Sun et al., 2025), and make collective decisions (Yang et al., 2024b).

However, natural language communication leads to high inference costs due to the need for multi-
ple decoding steps, and may not fully capture the rich information that needs to be shared between
LLMs as information is lost in the sampling process (Pham et al., 2023; Ramesh & Li, 2025) that
occurs as each new token is produced. To address this limitation, recent works have explored alter-
native communication protocols that leverage the internal representations of LLMs. CIPHER (Pham
et al., 2023) proposed to use the embedding space as the medium of communication between LLMs.
Namely, they pass the weighted average of the token embeddings from one LLM to another, facilitat-
ing more efficient information exchange. Rather than using the embedding space, AC (Ramesh & Li,
2025) transmits the intermediate activations, specifically the last token’s hidden state. They replace
the last token’s hidden state of the receiver’s model (Mr) with that of the sender’s model (Ms),
allowing a more direct transfer of information. While these methods have shown promising results,
they still face challenges in terms of communication efficiency and effectiveness. CIPHER (Pham
et al., 2023) still requires multiple decoding steps, which can be costly, and AC (Ramesh & Li, 2025)
may lead to information loss as only limited activation information is transmitted.
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Figure 1: KVComm framework for efficient LLM communication through selective KV shar-
ing.R3-Q5

We start with the question: What is the most effective way to communicate between LLMs? We
argue that an ideal communication protocol should satisfy the following criteria: ① Effectiveness: It
should enableMr to effectively utilize the information fromMs. ② Efficiency: It should minimize
the computation needed byMs and the amount of data transmitted between models. ③ Generality:
It should be applicable to a wide range of tasks and model architectures, ensuring its versatility in
different scenarios. We choose to use activation information as the medium of communication, as
no decoding steps are needed forMs, andMr can directly utilize the rich information encoded in
the activations. We study different types of activation information (i.e., hidden states and KV pairs),
and in Section 2.2, we show that hidden states suffer from information concentration bias, where
the last token’s hidden state contains most of the information needed for the model’s output. This
makes it challenging to design an effective communication protocol using the last token’s hidden
state. Furthermore, we find that using all tokens’ hidden states from a single layer of the senderMs

does not guarantee effective communication.R4-Q3 A dilemma arises: if the hidden states are taken
from the early layers ofMs, the computation benefit is limited since the computation cost is similar
to concatenating the two inputs; if the hidden states are prepended to the later layers of Mr, the
performance drops significantly.

Based on these observations, we propose KVComm, a novel communication protocol that enables
efficient communication between LLMs through selective sharing of KV pairs. KV pairs are the
most representative activation information in each layer, and sharing them does not interact with
the hidden states ofMr directly, whileMr can decide how to utilize the information through the
attention mechanism. To further improve the efficiency of communication, we propose a selection
strategy to choose which (potentially non-contiguous) layers’ KV pairs to share. We formulate
hypotheses that (H1) KV pairs from intermediate layers encode transferable semantic knowledge,
and (H2) KV pairs from layers exhibiting stronger attention distributions are more effective for
communication. These hypotheses are validated by our experiments in Sections 4.3 and 4.5. Based
on these hypotheses, we define attention importance scores for each layer based on the average
attention weights assigned to the context tokens. We also apply a Gaussian distribution centered
at a certain layer as a prior on the attention importance scores. The intuition is that the Gaussian
distribution encourages selecting layers around a certain depth, which aligns with hypothesis H1.
The general framework is illustrated in Figure 1.

We evaluate KVComm on a diverse set of tasks with eight model pairs (see Section 4.1), showing
that it consistently outperforms existing communication protocols while significantly reducing the
data transmitted between models. In summary, our work makes three key contributions:

• We evaluate different types of activation information for communication between LLMs, and
identify the limitations of using hidden states as the medium of communication. We show
that the last token’s hidden state suffers from information concentration bias, and point out a
dilemma that arises when using all tokens’ hidden states.

• We propose KVComm, a novel communication protocol that enables efficient communication
between LLMs through selective sharing of KV pairs. We design a selection strategy based on
attention importance scores and a Gaussian prior to choose which layers’ KV pairs to share.
This is the first approach that makes it possible to choose non-contiguous layers of KV. More-
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over, we show the feasibility of using a single context/question pair for guiding the selection
for a given pair of models, prior to deployment.

• We conduct extensive experiments on a diverse set of tasks and model pairs, demonstrating
that KVComm enables effective and efficient communication between LLMs, achieving com-
parable performance to the Skyline method, which is the upper-bound and directly merges the
inputs without any communication, while reducing the computation costs by 2.5x to 6x. In
particular, KVComm enables up to a 3x reduction in communication relative to approaches
that transmit the entire set of KV pairs. Moreover, we demonstrate the performance benefits of
non-contiguous selection of KV layers. Finally, we demonstrate the increase in performance
that KVComm brings even over Skyline on two datasets, further illustrating the need to com-
municate in a non-strictly textual manner.

2 PROBLEM AND MOTIVATION

2.1 PROBLEM FORMULATION

We formally define the problem of solving a contextual task through the communication of two
LLMs: Ms andMr. Ms takes as input a context C, and generates the required information IC to
be communicated. Mr takes as input the query Q and the information IC fromMs, and produces
the final output. In this work, we limit the choices of the two LLMs to (1) two instances of the
same LLM, and (2) two models that are fine-tuned versions of the same base LLM. The objective
is to design a communication protocol which jointly optimizes the communication, computation
efficiency, and the information fidelity betweenMs andMr

R3-Q1.

2.2 WHY HIDDEN STATES FALL SHORT

When Decoder-Only LLMs infer, the input information flows through the model in the form of
activation values, which refer to the intermediate results output by each decoder layer during the
forward pass. We refer to the intermediate activation values that are passed between adjacent layers
as hidden states. We also consider the KV pairs used in the attention mechanism within each layer
as another type of activation information. In this section, we investigate the effectiveness of using
hidden states as the medium of communication by studying two questions: How important are
hidden states of tokens at different positions in the sequence? (Section 2.2.1) Are hidden states of
all tokens effective for communication? (Section 2.2.2)

2.2.1 TOKEN IMPORTANCE AT DIFFERENT POSITIONS

We begin with a simple experiment examining how token positions affect performance. Using
Llama-3.1-8B on MMLU Social Science, we remove or retain the hidden state of only specific
tokens at a given layer and measure the performance change. As shown in Figure 2, different to-
kens vary in importance across layers, with the last token becoming most critical in later layers.
This aligns with the intuition that the last token is often the most relevant to the current prediction.
Thus, the last token’s hidden state carries the most influential information for both model output and
inter-LLM communication. Results on additional datasets and models are provided in Appendix C.

To ensure efficient communication with hidden states built on this observation, two conditions must
hold: (1)Ms must send at least the last token’s hidden state, and (2) the communication protocol
should preserve Mr’s last token state as much as possible. The protocol in Ramesh & Li (2025)
either replacesMr’s last token state with that ofMs or averages the two, but both cause information
loss inMr’s last token state, harming its performance.

2.2.2 UTILIZING ALL TOKENS

Another straightforward approach to ensure the last token’s hidden state is preserved is to prepend
all tokens’ hidden states from Ms to Mr. The experiments on HotpotQA with Llama-3.1-8B,
presented in Figure 3, demonstrate that prepending all tokens’ hidden states from Ms to Mr is
effective if the hidden states are taken from the early layers ofMs and prepended to the early layers
ofMr. Appendix D shows experimental results on other datasets. We find that this method is caught

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25
0.2

0.3

0.4

0.5

0.6

Retain the token

Last
None
Random
First

0 5 10 15 20 25
0.2

0.3

0.4

0.5

0.6

Remove the token

Layer

Ac
cu

ra
cy

Figure 2: Compared to other token positions, the last token’s
hidden state is the most critical, especially in later layers.
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Figure 3: Prepending helps only
when using early-layer hidden
states.R3-Q2, R3-Q5

in a dilemma: (1) if the hidden states are taken from the early layers ofMs, the computation benefit
is limited since it is similar to concatenating the two inputs; (2) if the hidden states are prepended to
the later layers ofMr, the performance drops significantly.

These findings suggest that while utilizing all tokens’ hidden states can preserve the last token’s
information, it does not guarantee effective communication between LLMs.

3 EFFICIENT LLM COMMUNICATION THROUGH SELECTIVE KV SHARING

We propose a simple yet effective communication protocol that enables efficient communication
between LLMs by selectively sharing KV pairs. This approach addresses the limitations observed in
previous methods by ensuring that the most critical information is preserved. Our design satisfies the
three criteria outlined below: it enhances effectiveness by allowingMr to utilize essential context
(①), improves efficiency by reducing unnecessary computation and transmission overhead (②), and
ensures generality by being applicable across diverse tasks and architectures (③).

3.1 COMMUNICATION FRAMEWORK

For a given context C and query Q,Ms processes the context C and runs one forward pass (prefill
stage) to generate the KV pairs {(kl

s,v
l
s)} at each layer l, where l = 1, 2, . . . , L and L is the total

number of layers inMs. We apply a selection strategy to choose a subset of KV pairs {(kli
s ,v

li
s )},

where i = 1, 2, . . . ,M and M is the number of selected layers. The selected KV pairs are then
transmitted toMr.

Mr processes the query Q and incorporates the received KV pairs during its forward passes (prefill
and decoding stages). Specifically, at each layer l of Mr, if l corresponds to a selected layer li1,
the KV pairs fromMs are integrated into the attention mechanism. We simply concatenate the KV
pairs fromMs with those ofMr: kl

r ← [kli
s ;k

l
r], and vl

r ← [vli
s ;v

l
r]. This integration allowsMr

to attend to both its own context and the information provided byMs. After processing the query
Q with the integrated KV pairs,Mr generates the final output.

3.2 KV SELECTION STRATEGIES

The communication protocol critically depends on the selection strategy for choosing which KV
pairs to transmit fromMs toMr. Not all layers or attention heads contribute equally to encoding
task-relevant knowledge. A fundamental question when designing selection strategies is: Which
parts of the KV pairs encode the most relevant knowledge for communication?

Formally, given the set of candidate KV pairs {(kl
s,v

l
s)}Ll=1, our goal is to select a subset S ⊆

{1, . . . , L} such that the receiver’s output retains maximal information from the sender, given a
constraint on the number of selected layers |S| = M , which is determined by the desired communi-

1The layer indices are 1-to-1 matched betweenMs andMr since we only consider the case where the two
models are the same or fine-tuned versions of the same base LLM.
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cation efficiency. This can be formulated as the following optimization problem:

max
S⊆{1,...,L},|S|=M

f(Mr(Q, {(kl
s,v

l
s)}l∈S)),

where f(·) is a performance metric (e.g., accuracy, F1 score), andMr(Q, {(kl
s,v

l
s)}l∈S) denotes

the output of the receiver model given the query Q and the selected KV pairs. Since direct compu-
tation of this objective is intractable, we instead propose two hypotheses H1 and H2 that serve as
priors for designing practical heuristics.

The first hypothesis H1 is that KV pairs from intermediate layers contain the most readily trans-
ferable semantic knowledge. Prior analyses (Jawahar et al., 2019; Geva et al., 2020) suggest a hi-
erarchy: early layers capture surface patterns, middle layers encode semantic abstractions, and late
layers specialize in task predictions. Thus, intermediate KV pairs should carry the richest generaliz-
able information, making them most effective for communication. Experiment results in Section 4.3
support this hypothesis.

Another hypothesis H2 is that KV pairs from layers exhibiting stronger attention distributions are
more effective for communication. We quantify this notion of attention distribution using the at-
tention importance score Sl

a, defined in Equation (1) below. We deem layer li to exhibit stronger
attention distribution than lj , if Sli

a > S
lj
a .R3-Q2 Intuitively, if a head consistently allocates high at-

tention mass to the given tokens, its KV cache encodes salient contextual relations that are critical
for the model’s reasoning. Attention concentration thus serves as a proxy for the communication
value of a KV subset, suggesting that such heads should be prioritized for selection. This hypothesis
is also validated by our experiments in Section 4.5.

Our selection strategy is based on these two hypotheses. We first define attention importance scores
for each layer, which are calculated as the average attention weights that have been assigned to the
context tokens by all heads in that layer during the prefill stage. We then take a Gaussian distribution
centered at a certain layer as a prior to select layers with high attention importance scores. The
intuition is that the Gaussian prior encourages selecting layers around a certain depth, which aligns
with hypothesis H1 that intermediate layers are more likely to contain transferable knowledge.

Mathematically, the attention importance score for each layer l is computed as:

Ŝl
a =

1

HT

H∑
h=1

T∑
t=1

|C|∑
c=1

alh,t,c, (1)

where H is the number of attention heads, T is the number of tokens in the query, |C| is the number
of context tokens, and alh,t,c is the attention weight assigned by head h at layer l from token t to
context token c. Ŝl

a is then normalized to the range [0, 1] across all layers to obtain the final attention

importance score Sl
a =

Ŝl
a−minl′ Ŝ

l′
a

maxl′ Ŝ
l′
a −minl′ Ŝ

l′
a

.

We define a Gaussian prior centered at layer µ with standard deviation σ as P l = exp
(
− (l−µ)2

2σ2

)
.

The final selection score for each layer l is computed as a weighted combination of the attention
importance score and the Gaussian prior:

Sl = αSl
a + (1− α)P l,

where α ∈ [0, 1] is a hyperparameter that balances the two components. We then select the top M
layers with the highest selection scores Sl to form the subset S for communication.

For each model pair and dataset, the top M layers are selected based on the selection scores com-
puted from a calibration set. The selected layers are then fixed and used for all samples in the test set.
We found that a calibration set as small as a single sample is sufficient to obtain a robust selection
that generalizes well to the entire test set, as shown in the experiments in Appendix H.

3.3 COMPLEXITY ANALYSIS

We analyze the computational complexity of our KVComm framework compared to baseline meth-
ods. Compared to the NLD (Du et al., 2023) method, our method does not require multiple decoding
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steps forMs, which significantly reduces the computation cost. When the number of tokens gen-
erated during debate (Du et al., 2023) is large, the computation margin of our method over NLD is
on the order of O(L(Ts + Tr + |Q|)2d), where Ts and Tr are the number of tokens generated by
Ms andMr in the debate, respectively, and |Q| and d are the number of tokens in the query and the
hidden dimension of the model, respectively. Compared to the Skyline (Section 4.1) method, our
method also reduces the computation cost, especially when M is small. The computation margin of
our method over Skyline is on the order of O(|C|d(L(2|Q|+ T )−M(|Q|+ T ))), where |C| is the
number of tokens in the context, and |T | is the number of tokens generated byMr.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We evaluate KVComm on a diverse set of contextual reasoning tasks. Following Ramesh
& Li (2025), we synthetically generate two datasets, Countries, which asks questions about coun-
tries based on landmark information, and Tipsheets, which requires investment decisions from fi-
nancial tips. Examples of these two datasets are shown in Table 3 in Appendix B.1. Moreover,
we select six benchmarks, including HotpotQA (Yang et al., 2018), QASPER (Dasigi et al., 2021),
MuSiQuest (Trivedi et al., 2022), two subsets of LongBench (Bai et al., 2024)(MultiFieldQA-en
and 2WikiMQA), and TMATH (Qi et al., 2025). The last dataset is a mathematical problem-solving
dataset that contains hints as context. We use ROUGE-L Recall as the evaluation metric for the last
dataset, and F1 score for all other datasets. Statistics are summarized in Table 4 in Appendix B.1.

Models We conduct experiments on eight different model pairs, shown in Table 5 in Appendix B.3.
The model pairs include two instances of the same LLM and two models that are fine-tuned versions
of the same base LLM. These models cover different families, including LLaMA (Dubey et al.,
2024), Qwen (Qwen et al., 2024), and Falcon (Almazrouei et al., 2023).

Compared Methods We compare KVComm with several representative approaches: Baseline
(no communication betweenMr andMs), Skyline (concatenating context C and query Q as an up-
per bound), Natural Language Debate (NLD) (Du et al., 2023), CIPHER (Pham et al., 2023), and
AC (Ramesh & Li, 2025). Detailed descriptions for these methods are provided in Appendix B.4.
Implementation details are provided in Appendix B.2.

4.2 COMMUNICATION RESULTS

Table 1 reports results on three model pairs fine-tuned from the same base LLM. The results on other
model pairs are provided in Table 8 in Appendix F, which show similar trends. We observe that
KVComm consistently outperforms all baseline communication methods across datasets and model
pairs. AC can outperform the Baseline method on some datasets, but they are still significantly
worse than KVComm and Skyline, as hidden states ofMr are corrupted during communication.

NLD and CIPHER can achieve performance close to that of KVComm or Skyline on Countries
and Tipsheets datasets, which is because these datasets require only a very small and highly salient
amount of information to be transferred. For all other datasets, the sender has access to the entire
context but not the question, and natural-language communication cannot reliably extract and trans-
mit the task-relevant subset of information. As a result, NLD and CIPHER perform substantially
below KVComm on complex, long-context reasoning tasks. We conduct further experiments in
Appendix I to eliminate the influence of hyperparameters.R3-Q3

KVComm can achieve comparable performance to Skyline when selecting 70% of layers’ KV pairs
for communication, demonstrating the effectiveness of our selection strategy. Even when selecting
only 30% of layers’ KV pairs, KVComm can still outperform most baseline communication methods
on many datasets, showing its potential for efficient communication with minimal overhead.

Note that KVComm can outperform Skyline on some datasets. We attribute this to two factors: (1)
Ms may complementMr with stronger capabilities in certain aspects, and (2) selective KV sharing
provides a regularization effect, which helps Mr to focus on the most relevant information and
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Table 1: Communication results of different methods. Best results are bolded, second best
underlined (excluding Baseline and Skyline). We report the results withMr for Baseline and Sky-
line for fairness. KVComm (0.3/0.5/0.7) denotes selecting 30%/50%/70% of layers’ KV pairs for
communication, i.e., M = ⌈0.3L⌉, M = ⌈0.5L⌉, M = ⌈0.7L⌉.R3-Q3

Method Countries Tipsheets HotpotQA QASPER MuSiQuest MultiField
-QA-en

2WikiM
-QA TMATH

Ms: huihui-ai/Llama-3.2-3B-Instruct-abliterated;Mr: suayptalha/DeepSeek-R1-Distill-Llama-3B
Baseline 0.05 0.32 0.23 0.05 0.02 0.11 0.27 0.34
Skyline 0.57 0.91 0.73 0.25 0.51 0.47 0.40 0.36
NLD 0.43 0.72 0.43 0.10 0.18 0.09 0.30 0.33
CIPHER 0.42 0.69 0.50 0.10 0.18 0.13 0.32 0.32
AC (mean) 0.03 0.45 0.25 0.05 0.02 0.13 0.23 0.35
AC (replace) 0.00 0.49 0.05 0.01 0.01 0.12 0.03 0.34
AC (sum) 0.02 0.46 0.23 0.05 0.01 0.13 0.24 0.34
KVComm (0.3) 0.46 0.45 0.46 0.09 0.28 0.15 0.28 0.35
KVComm (0.5) 0.57 0.81 0.57 0.27 0.32 0.51 0.36 0.35
KVComm (0.7) 0.57 0.81 0.65 0.29 0.36 0.47 0.37 0.35

Ms: Orion-zhen/Qwen2.5-7B-Instruct-Uncensored;Mr: bespokelabs/Bespoke-Stratos-7B
Baseline 0.01 0.36 0.13 0.05 0.03 0.08 0.09 0.35
Skyline 0.51 0.97 0.53 0.10 0.25 0.40 0.09 0.35
NLD 0.21 0.80 0.16 0.02 0.04 0.11 0.02 0.35
CIPHER 0.04 0.60 0.03 0.01 0.03 0.07 0.03 0.34
AC (mean) 0.00 0.00 0.03 0.00 0.00 0.08 0.01 0.01
AC (replace) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AC (sum) 0.00 0.00 0.02 0.00 0.00 0.07 0.04 0.03
KVComm (0.3) 0.04 0.26 0.02 0.01 0.01 0.09 0.08 0.31
KVComm (0.5) 0.19 0.88 0.28 0.07 0.12 0.26 0.10 0.33
KVComm (0.7) 0.41 0.89 0.41 0.21 0.25 0.29 0.15 0.34

Ms: ehristoforu/falcon3-ultraset;Mr: huihui-ai/Falcon3-7B-Instruct-abliterated
Baseline 0.08 0.36 0.21 0.06 0.04 0.09 0.23 0.31
Skyline 0.56 0.95 0.76 0.32 0.56 0.51 0.45 0.37
NLD 0.46 0.80 0.52 0.19 0.25 0.11 0.24 0.15
CIPHER 0.30 0.19 0.27 0.02 0.07 0.06 0.25 0.17
AC (mean) 0.01 0.46 0.25 0.06 0.04 0.09 0.23 0.31
AC (replace) 0.00 0.49 0.12 0.00 0.01 0.13 0.17 0.31
AC (sum) 0.01 0.46 0.25 0.06 0.03 0.10 0.24 0.31
KVComm (0.3) 0.46 0.69 0.59 0.19 0.40 0.35 0.29 0.32
KVComm (0.5) 0.40 0.92 0.63 0.25 0.44 0.45 0.34 0.35
KVComm (0.7) 0.19 0.96 0.55 0.26 0.42 0.51 0.31 0.36

avoid wasting its capacity on less important signals. This also explains why using fewer layers can
sometimes yield better performance than using more.

Also note that the performance gain of KVComm is not substantial on TMATH. We attribute this
to that pretraining gives LLMs solid capabilities in mathematical reasoning, which may not dra-
matically benefit from additional context or hints. Moreover, AC performs relatively well on this
dataset, which we consider is because the hints contain information about questions, so even if the
last token’s hidden states are corrupted, it can still generate some useful information.

4.3 BENEFIT OF SELECTIVE KV OVER ONE CONTIGUOUS CHUNK

DroidSpeak (Liu et al., 2024b) chooses to use one contiguous chunk of context for communication
between LLMs. Despite different problem settings, we evaluate KVComm by replacing the selec-
tion strategy with two hyperparameters, which are two layer indices layerfrom and layerto, then all
layers between layerfrom and layerto are selected for communication. This is equivalent to using one
contiguous chunk of context for communication. We vary them to select different chunks of layers.

Figure 4 shows that using a single contiguous chunk for communication yields good performance
only in a small region of the hyperparameter space, making it tricky to find the right hyperparam-
eters. In contrast, the scatter and curve plots in Figure 5 demonstrate that KVComm consistently
achieves the best or even outperforms the best contiguous chunk setting for the same number of
layers. Line plots in Figure 6 show that contiguous chunks are most effective when taken from in-
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termediate layers, consistent with hypothesis H1 in Section 3.2. All results are on HotpotQA with
the Llama-3.1-8B pair, with more in Appendix O.

4.4 ABLATION STUDY ON SELECTION STRATEGY

Table 2 compares KVComm with random selection. We find that KVComm consistently outper-
forms random selection across different datasets and selection ratios. When the ratio is high (i.e.,
0.7), the performance gap between our selection strategy and random selection becomes smaller, as
more layers are selected and the impact of the selection strategy is reduced. However, when the ratio
is low (i.e., 0.3), our selection strategy significantly outperforms random selection, demonstrating
its effectiveness in selecting the most informative layers for communication. Comparison results on
other model pairs are provided in Table 9 in Appendix G, which show similar trends.

Table 2: Comparison with random selection. Best results for each selection ratio are bolded.

Method Countries Tipsheets HotpotQA QASPER MuSiQuest MultiField
-QA-en

2WikiM
-QA TMATH

Ms: huihui-ai/Llama-3.2-3B-Instruct-abliterated;Mr: suayptalha/DeepSeek-R1-Distill-Llama-3B
Random (0.3) 0.05 0.32 0.18 0.07 0.01 0.06 0.17 0.33
KVComm (0.3) 0.46 0.45 0.46 0.09 0.28 0.15 0.28 0.35
Random (0.5) 0.26 0.44 0.37 0.08 0.10 0.09 0.21 0.34
KVComm (0.5) 0.57 0.81 0.57 0.27 0.32 0.51 0.36 0.35
Random (0.7) 0.57 0.82 0.62 0.20 0.34 0.30 0.28 0.35
KVComm (0.7) 0.57 0.81 0.65 0.29 0.36 0.47 0.37 0.35
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nication with limited hyperpa-
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4.5 ATTENTION DISTRIBUTION ANALYSIS

We validate hypothesis H2 in Section 3.2 by selecting layers with different attention importance
scores for communication. We select 9 layers with different levels of attention importance scores,
and test the communication performance with Llama-3.2-3B model. The results are shown in Fig-
ure 7. We can find that selecting layers with higher scores can achieve better performance, while
selecting layers with lower scores can diminish the performance. This validates hypothesis H2 that
layers with higher attention importance scores are more effective for communication.

4.6 SYSTEM EFFICIENCY

Mathematically, we have shown in Section 3.3 that KVComm can reduce the computation cost
compared to Skyline. We validate this through experiments on the Llama-3.2-3B model pair with
Tipsheets and MultiFieldQA-en datasets. We report the relative FLOPs of KVComm and Skyline
over AC in Figure 8. NLD and CIPHER are not included since they require multiple decoding steps
forMs, which makes the computation cost significantly higher than AC. We can find that KVComm
has a significant computation advantage over Skyline, especially when selecting fewer layers for
communication. This demonstrates the efficiency of our KVComm framework in enabling effective
communication with reduced computational overhead by 2.5x to 6x.
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In addition to FLOPs, we also report the memory consumption among methods. KVComm similarly
shows a substantial memory advantage over Skyline, as the reduced number of communicated layers
not only lowers computation but also alleviates memory pressure. On Tipsheets, KVComm uses
23% to 73% less memory than Skyline. KVComm This further highlights the efficiency of our
KVComm framework in achieving lightweight inter-model communication.R2-Q5

Attention Level (high  low)
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Tipsheets
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Figure 7: Better communication per-
formance with higher attention level.
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Figure 8: KVComm requires less computation and mem-
ory compared to Skyline.R2-Q5

5 RELATED WORK

LLM Inference Acceleration Lots of work has focused on accelerating LLM inference.
Computation-level methods such as FlashAttention (Dao et al., 2022) and Memory-Efficient At-
tention (Rabe & Staats, 2021) reduce memory and speed up attention; system-level methods such
as vLLM (Kwon et al., 2023) and DeepSpeed-Inference (Aminabadi et al., 2022) improve overall
throughput and latency; and model-level methods such as quantization (Lin et al., 2024) and prun-
ing (Ma et al., 2023) reduce model size and complexity. These works mainly focus on working with
only one model processing a single long input with the aim of minimizing computation cost.R3-Q1

These approaches are orthogonal to ours and can be combined with KVComm to further improve
efficiency.

Closest to our work are methods that reuse computation across decoding steps or requests. Gao
et al. (2024) introduces a hierarchical KV caching system for all requests; Gim et al. (2024) reuses
prompt KV caches across queries by decomposing inputs; Liu et al. (2024c) compresses KV caches
into compact bitstreams; and Yao et al. (2025) combines multiple chunks’ KV caches by selectively
recomputing a few tokens. In contrast, our work targets communication across different LLMs,
which is more challenging due to parameter differences. Moreover, while prior methods reuse KV
caches uniformly across layers, we enable selective sharing of KV caches from different layers,
further improving efficiency. We do not compare with these works since they are orthogonal to ours.

DroidSpeak (Liu et al., 2024b) aims to accelerate inference for queries with shared prefixes. It
reuses the partial KV cache of these prefixes among different queries. Specifically, it empirically
selects a single contiguous chunk of layers and recomputes the rest with large calibration overhead,
whereas our strategy flexibly selects non-contiguous layers with low overhead, without needing to
recompute the remaining layers. Despite different problem settings, we compare their contiguous-
chunk strategy with ours in Section 4.3, showing the advantages of our approach.R1-Q2

Ye et al. (2025) adjusts KV cache for shared content by referencing a pool of cached examples-
termed anchors that store observed cache deviations under varying prefixes. Our work goes beyond
this related work by: 1) enabling a different type of communication, where the receiver does not
have access to the context, 2) making it possible to efficiently and selectively choose layers of KV
pairs that will be transmitted, and 3) being able to work effectively across different models that are
fine-tuned from one model.R4-Q7

Inter-LLM Communication Communication between multiple LLMs has been explored in sev-
eral recent works. Most works focus on using natural language as the medium of communication.
For example, Du et al. (2023) proposed a natural language debate framework where LLMs itera-
tively critique each other’s answers in natural language to improve the final answer. Liang et al.
(2023) followed a similar idea but introduced a judge model to manage the debate process.
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CIPHER (Pham et al., 2023) proposed using embedding space as the medium of communication.
They pass the weighted average of the token embeddings from one LLM to another. Moreover,
AC (Ramesh & Li, 2025) proposed to use the last token’s hidden state as the medium of commu-
nication. They replace the last token’s hidden state of the receiver model with that of the sender
model. Instead, we propose to use the KV pairs as the medium, which can preserve more informa-
tion than just using the last token’s hidden state. We also propose a more effective selection strategy
for choosing which KV pairs to share, which can further improve efficiency.

KV Cache Optimization Several works have explored optimizing KV caches for a single LLM
by (1) compressing the KV caches to reduce memory usage (Ge et al., 2023; Liu et al., 2024a) or (2)
managing the KV caches (offloading) to improve the inference speed (Lee et al., 2024; Xiong et al.,
2024). As our work focuses on layer-wise selection of KV caches for communication between two
LLMs, these methods are orthogonal and can be combined with our method.

6 DISCUSSION

In this section, we discuss the limitations, clarify the scope of current design choices, and outline
promising directions for future research. Additional discussions can be found in Appendix K.

Heterogeneous Model Architectures Our current KVComm framework assumes that both LLMs
share the same base architecture, i.e., identical models or fine-tuned versions of the same base LLM.
This is because KV pair structures differ substantially across model families, making direct KV ex-
change undefined. This architecture dependency is a practical limitation but not a fundamental one.
Future work could explore learning latent projections, adapters, or other transformation functions to
enable KV exchange across heterogeneous architectures.R1-Q1, R2-Q1, R3-Q4, R4-Q1

Multiple Sender/Receiver Extensions While we focus on a single sender-receiver pair in this
work, KVComm can be naturally extended to multiple senders and/or receivers. KVComm can
integrate information from multiple senders by concatenating KV caches, and multiple receivers
can independently select layers based on their own attention patterns. As shown in Appendix J, we
mathematically extend our framework to multiple senders, and perform a preliminary experiment
with two senders and one receiver, showing that multiple senders can improve performance due to
diversified information sources. However, a systematic study of scaling behaviors in larger multi-
agent networks remains future work.R4-Q1

Context-adaptive Online Calibration KVComm currently adopts a fixed layer-selection strat-
egy after calibration for simplicity and computational efficiency, while context-adaptive selection is
a promising extension. KVComm can naturally support online and dynamic selection. A demon-
stration and analysis of this mechanism is provided in Appendix L.R2-Q2

Layer Selection Priors Given our goal of keeping the method simple, efficient, and broadly repro-
ducible, we opt for the Gaussian prior. Other alternatives, such as entropy-weighted or data-driven,
are promising but introduce significantly higher complexity, e.g., larger calibration sets, training a
selector, or risking overfitting to a particular task distribution. Exploring more sophisticated priors
is an interesting direction for future work.R2-Q3

7 CONCLUSION

In this work, we identified the potential of using KV pairs as an effective medium for communication
between two LLMs. We proposed a novel KVComm framework that enables efficient communica-
tion by selectively sharing KV pairs between LLM models. We designed a selection strategy based
on attention importance scores and a Gaussian prior to select the most relevant layers. Extensive
experiments on diverse datasets and model pairs demonstrated that KVComm can achieve compa-
rable or even superior performance to the Skyline upper bound and other methods, while reducing
communication costs by up to 3x. We highlight the generalization ability of our selection strategy,
which can be effectively calibrated with only a single sample. Our work opens up new possibilities
for efficient inter-LLM communication and paves the way for future research in this direction.
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REPRODUCIBILITY STATEMENT

We provide detailed descriptions of the datasets, model pairs, and implementation details in Ap-
pendix B. The code and synthetic datasets, Countries and Tipsheets, are uploaded to the supplemen-
tary materials for review and to facilitate reproducibility upon the publication of this work.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models, including ChatGPT, were employed to provide assistance in improving
the clarity, coherence, and fluency of the manuscript. These tools were used solely for language
refinement, and all scientific content and interpretations remain the responsibility of the authors.

B EXPERIMENTAL SETUP

In this appendix, we provide more details about the experimental setup, including dataset details,
implementation details, fine-tuned model pairs, and descriptions of compared methods.

B.1 DATASET

We provide sample prompts and expected answers for the Countries and Tipsheets datasets in Ta-
ble 3, which are inspired by Ramesh & Li (2025). We also provide the statistics of all datasets
used in our experiments in Table 4. HotpotQA, QASPER, MuSiQuest, and TMATH datasets are
randomly sampled from their original datasets to reduce the evaluation cost. Extended results on the
full datasets are provided in Appendix E.R2-S3

Table 3: Sample prompts and expected answers for Countries and Tipsheets datasets inspired by
Ramesh & Li (2025).

Dataset Role Content

Countries
C Uma is at the Mahaffie House.
Q Which country is Uma located in?
Answer United States

Tipsheets
C Atlas LLC is under pressure amid softer trends; EPS -17%; won a sizable

customer contract but faces a lawsuit. Sable LLC shows clear momentum
and improving execution; authorized a buyback but reported a cyber in-
cident. Trace LLC looks balanced with a mixed near-term setup.

Q You must invest in exactly one company from Atlas LLC, Sable LLC, Trace
LLC. Which do you choose?

Answer Sable LLC

Table 4: Statistics of the datasets in our experiments.

Dataset Size
Countries 200
Tipsheets 500
HotpotQA (Yang et al., 2018) 500
QASPER (Dasigi et al., 2021) 500
MuSiQuest (Trivedi et al., 2022) 500
MultiFieldQA-en (Bai et al., 2024) 150
2WikiMQA (Bai et al., 2024) 200
TMATH (Qi et al., 2025) 300

B.2 IMPLEMENTATION DETAILS

We implement our KVComm framework based on the Hugging Face Transformers library (Wolf
et al., 2020), and models are loaded in bfloat16 precision. We set the hyperparameters of our selec-
tion strategy as µ = L/2, and σ = 10, where L is the total number of layers in the model. For NLD
and CIPHER methods, we set the number of debate rounds to 2, and the maximum generation length
to 256 in the debate process. For KVComm, α is set to 1 for Llama family models, and 0.8 for Qwen
and Falcon family models. These values are obtained by validating on a left-out set. All experiments
are conducted on a cluster of nodes, each equipped with an Intel®Xeon®Platinum 8358 Processor
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@ 2.60GHz and 4 NVIDIA A100 GPUs with 64GB memory. We obtain the FLOPs with PyTorch
Profiler2.

B.3 MODEL PAIRS

We conduct experiments on eight different model pairs, shown in Table 5. The first four pairs consist
of the same LLMs, while the last four pairs consist of models that are fine-tuned on the same base
LLM.

Table 5: Model pairs in the evaluation.Ms is the sender model, andMr is the receiver model.

Index Ms Mr Note
1 meta-llama/Llama-3.1-8B-Instruct meta-llama/Llama-3.1-8B-Instruct Same model
2 meta-llama/Llama-3.2-3B-Instruct meta-llama/Llama-3.2-3B-Instruct Same model
3 Qwen/Qwen2.5-7B-Instruct Qwen/Qwen2.5-7B-Instruct Same model
4 tiiuae/Falcon3-7B-Instruct tiiuae/Falcon3-7B-Instruct Same model
5 yuvraj17/EvolCodeLlama-3.1-8B-Instruct Team-ACE/ToolACE-2-Llama-3.1-8B Fine-tuned on 1
6 huihui-ai/Llama-3.2-3B-Instruct-abliterated suayptalha/DeepSeek-R1-Distill-Llama-3B Fine-tuned on 2
7 Orion-zhen/Qwen2.5-7B-Instruct-Uncensored bespokelabs/Bespoke-Stratos-7B Fine-tuned on 3
8 ehristoforu/falcon3-ultraset huihui-ai/Falcon3-7B-Instruct-abliterated Fine-tuned on 4
9 arcee-ai/Llama-3.1-SuperNova-LiteR4-Q6 deepseek-ai/DeepSeek-R1-Distill-Llama-8BR4-Q6 Fine-tuned on 1

B.4 COMPARED METHOD DESCRIPTIONS

We compare our proposed KVComm framework with the following methods:

• Baseline:Mr processes the query Q without any communication fromMs.

• Skyline: Mr directly processes the concatenation of the context C and query Q. This
serves as an upper bound for performance.

• Natural Language Debate (NLD) (Du et al., 2023): Each model generates an initial an-
swer, and then they iteratively critique each other’s answers in natural language for a fixed
number of rounds. Finally, one model produces the final answer based on the entire debate
history. Compared to the original debate style setting, we use an information-transfer style,
which explicitly promptsMs that it has to summarize the context C in its initial answer.
We set the number of debate rounds to 2.R3-Q3

• CIPHER (Pham et al., 2023): Similar to NLD, but instead of communicating in natural
language, the models communicate by passing the weighted average of the token embed-
dings from one LLM to another. We use the same prompt as NLD, and set the number of
debate rounds to 2.

• AC (Ramesh & Li, 2025): Communicate with the last token’s hidden state. Replace the last
token’s hidden state ofMr with that ofMs. We also test with mean and sum operations.

C TOKEN IMPORTANCE AT DIFFERENT POSITIONS

We add more details and experiments related to Section 2.2.1 in this appendix.

C.1 DETAILED EXPERIMENT PROCEDURER3-Q2

We provide a detailed description of the experiment procedure in Section 2.2.1. Considering a model
M with L layers, given an input X with N tokens, we run a partial forward pass until layer l to
obtain the hidden states {hl

i}Ni=1. Then, given a specific token position k, if we perform the Retain
operation, we create a modified set of hidden states {h̃l

i}Ni=1 as follows:

h̃l
i =

{
hl
i, if i = k

0, otherwise

2https://docs.pytorch.org/docs/stable/profiler.html
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If we perform the Remove operation, we create the modified set of hidden states {h̃l
i}Ni=1 as follows:

h̃l
i =

{
0, if i = k

hl
i, otherwise

We then continue the forward pass from layer l + 1 to layer L using the modified hidden states
{h̃l

i}Ni=1 as input, and obtain the final output of the model. We evaluate the model’s performance on
the task with different token positions k and layer l.

C.2 MORE EXPERIMENTS ON TOKEN IMPORTANCE

We conduct the same experiment as in Section 2.2.1 on other datasets and models to investigate the
effect of tokens at different positions in the sequence on the model’s output. We report the results on
MMLU Social Science, MMLU STEM, and MMLU Humanities using Llama-3.1-8B and Llama-
3.2-3B models in Figure 9. We can see that the last token’s hidden state plays the most critical role
in the latter layers, which is consistent with the observation in Section 2.2.1.
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Figure 9: Effect of removing or retaining a token’s hidden state across different positions on MMLU
Social Science, MMLU STEM, and MMLU Humanities accuracy using Llama-3.1-8B and Llama-
3.2-3B models.

D UTILIZING ALL TOKENS

We add more details and experiments related to Section 2.2.2 in this appendix.

D.1 DETAILED EXPERIMENT PROCEDURER3-Q2, R4-Q3

We provide a detailed description of the experiment procedure in Section 2.2.2. Considering two
models Ms and Mr, each with L layers, given C and Q as input, we run a partial forward pass
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ofMs until layer k to obtain the hidden state Hs
k ∈ R|C|×d for all tokens in C, where |C| is the

number of tokens in C, and d is the hidden dimension. Another partial forward pass ofMr is run
until layer j to obtain the hidden state Hr

j ∈ R|Q|×d for all tokens in Q, where |Q| is the number
of tokens in Q. We then modify the hidden states ofMr at layer j by prepending the hidden states
fromMs at layer k as follows:

H̃r
j =

[
Hs

k
Hr

j

]
We continue the forward pass from layer j + 1 to layer L using the modified hidden states H̃r

j as
input, and obtain the final output of the model. We evaluate the model’s performance on the task
with different layers k and j.

D.2 MORE EXPERIMENTS ON UTILIZING ALL TOKENS

We conduct the same experiment as in Section 2.2.2 on Countries, Tipsheets, and HotpotQA datasets
using Llama-3.1-8B, Llama-3.2-3B, and Qwen2.5-7B models. The results are shown in Figure 10.
We can see the results are consistent with the observation in Section 2.2.2.
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Figure 10: Performance heatmap of prepending the hidden states from certain layers of Ms to
certain layers ofMr on Countries, Tipsheets, and HotpotQA.
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E EXPERIMENT RESULTS WITH EXTENDED DATASETS

To further validate the effectiveness of our KVComm framework, we conduct experiments on the full
datasets of HotpotQA, QASPER, MuSiQuest, mainly HotpotQA-E, QASPER-E, and MuSiQuest-E.
Moreover, we include a new human-created summarization dataset, SAMSum, which represents a
different task type. The statistics of these datasets are shown in Table 7. We report the results on
these extended datasets in Table 6. The results show similar trends as in Section 4.2, demonstrating
the robustness of our KVComm framework across different datasets and tasks.R2-S3

Table 6: Communication results on extended communication tasks. The best results in each block
are in bold, and the second best results are underlined.R2-S3

Method HotpotQA-E QASPER-E MuSiQuest-E SAMSum
Ms: huihui-ai/Llama-3.2-3B-Instruct-abliterated;
Mr: suayptalha/DeepSeek-R1-Distill-Llama-3B

Baseline 0.22 0.03 0.06 0.26
Skyline 0.77 0.52 0.25 0.33
NLD 0.45 0.10 0.18 0.28
CIPHER 0.51 0.10 0.20 0.28
AC (mean) 0.24 0.03 0.06 0.26
AC (replace) 0.06 0.00 0.01 0.26
AC (sum) 0.23 0.03 0.06 0.26
KVComm (0.3) 0.44 0.25 0.11 0.25
KVComm (0.5) 0.61 0.36 0.25 0.28
KVComm (0.7) 0.71 0.38 0.30 0.29

Ms: Orion-zhen/Qwen2.5-7B-Instruct-Uncensored;
Mr: bespokelabs/Bespoke-Stratos-7B

Baseline 0.15 0.04 0.06 0.25
Skyline 0.58 0.27 0.10 0.35
NLD 0.24 0.02 0.07 0.28
CIPHER 0.04 0.01 0.02 0.37
AC (mean) 0.03 0.00 0.00 0.01
AC (replace) 0.00 0.00 0.00 0.00
AC (sum) 0.03 0.00 0.00 0.04
KVComm (0.3) 0.02 0.00 0.01 0.18
KVComm (0.5) 0.21 0.14 0.08 0.30
KVComm (0.7) 0.40 0.34 0.21 0.35

Ms: Orion-ehristoforu/falcon3-ultraset;
Mr: huihui-ai/Falcon3-7B-Instruct-abliterated

Baseline 0.21 0.06 0.06 0.27
Skyline 0.78 0.60 0.33 0.36
NLD 0.52 0.10 0.28 0.28
CIPHER 0.28 0.03 0.09 0.17
AC (mean) 0.24 0.06 0.07 0.26
AC (replace) 0.12 0.02 0.01 0.26
AC (sum) 0.23 0.05 0.06 0.26
KVComm (0.3) 0.59 0.15 0.40 0.28
KVComm (0.5) 0.59 0.22 0.46 0.31
KVComm (0.7) 0.59 0.26 0.36 0.32

Table 7: Statistics of extended datasets.R2-S3

Dataset Size
HotpotQA-E (Yang et al., 2018) 7,405
QASPER-E (Dasigi et al., 2021) 1,726
MuSiQuest-E (Trivedi et al., 2022) 2,417
SAMSum (Gliwa et al., 2019) 819

F MORE COMMUNICATION RESULTS

We provide more communication results on different model pairs in Table 8, which show similar
trends as in Section 4.2.
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Table 8: More communication results of different methods. Best results are bolded, second best
underlined (excluding Baseline and Skyline). We reportMr for Baseline and Skyline for fairness.
KVComm (0.3/0.5/0.7) denotes selecting 30%/50%/70% of layers’ KV pairs for communication,
i.e., M = ⌈0.3L⌉, M = ⌈0.5L⌉, M = ⌈0.7L⌉.R3-Q3, R4-Q6

Method Countries Tipsheets HotpotQA QASPER MuSiQuest MultiField
-QA-en

2WikiM
-QA TMATH

Ms: meta-llama/Llama-3.1-8B-Instruct;Mr: meta-llama/Llama-3.1-8B-Instruct
Baseline 0.00 0.05 0.19 0.02 0.01 0.07 0.06 0.35
Skyline 0.62 0.92 0.74 0.35 0.54 0.56 0.52 0.36
NLD 0.58 0.87 0.52 0.13 0.25 0.17 0.10 0.36
CIPHER 0.57 0.84 0.57 0.13 0.25 0.15 0.10 0.36
AC (mean) 0.00 0.12 0.19 0.02 0.01 0.08 0.03 0.35
AC (replace) 0.00 0.36 0.15 0.02 0.01 0.07 0.05 0.35
AC (sum) 0.00 0.09 0.20 0.02 0.01 0.09 0.04 0.35
KVComm (0.3) 0.51 0.93 0.33 0.07 0.11 0.21 0.29 0.37
KVComm (0.5) 0.62 0.95 0.60 0.29 0.34 0.50 0.37 0.37
KVComm (0.7) 0.62 0.96 0.69 0.29 0.39 0.53 0.38 0.38

Ms: meta-llama/Llama-3.2-3B-Instruct;Mr: meta-llama/Llama-3.2-3B-Instruct
Baseline 0.02 0.01 0.16 0.00 0.02 0.10 0.09 0.35
Skyline 0.56 0.87 0.72 0.23 0.45 0.45 0.37 0.38
NLD 0.51 0.71 0.49 0.09 0.18 0.11 0.07 0.34
CIPHER 0.45 0.73 0.46 0.08 0.17 0.09 0.07 0.33
AC (mean) 0.00 0.07 0.18 0.01 0.02 0.09 0.06 0.35
AC (replace) 0.01 0.37 0.13 0.01 0.02 0.06 0.03 0.34
AC (sum) 0.00 0.34 0.20 0.02 0.02 0.10 0.07 0.34
KVComm (0.3) 0.51 0.48 0.47 0.10 0.20 0.17 0.28 0.35
KVComm (0.5) 0.55 0.79 0.58 0.24 0.27 0.47 0.35 0.36
KVComm (0.7) 0.57 0.80 0.65 0.27 0.29 0.48 0.31 0.37

Ms: Qwen/Qwen2.5-7B-Instruct;Mr: Qwen/Qwen2.5-7B-Instruct
Baseline 0.00 0.32 0.19 0.05 0.03 0.06 0.17 0.32
Skyline 0.54 0.97 0.68 0.30 0.48 0.49 0.45 0.33
NLD 0.18 0.86 0.37 0.09 0.11 0.11 0.19 0.30
CIPHER 0.18 0.87 0.34 0.07 0.10 0.11 0.16 0.31
AC (mean) 0.00 0.37 0.15 0.01 0.02 0.10 0.20 0.33
AC (replace) 0.00 0.35 0.02 0.00 0.00 0.10 0.09 0.32
AC (sum) 0.00 0.41 0.14 0.02 0.02 0.08 0.17 0.32
KVComm (0.3) 0.04 0.31 0.06 0.02 0.01 0.19 0.19 0.32
KVComm (0.5) 0.57 0.92 0.49 0.18 0.20 0.40 0.25 0.32
KVComm (0.7) 0.56 0.98 0.72 0.29 0.48 0.45 0.35 0.33

Ms: tiiuae/Falcon3-7B-Instruct;Mr: tiiuae/Falcon3-7B-Instruct
Baseline 0.06 0.33 0.19 0.04 0.04 0.09 0.21 0.31
Skyline 0.57 0.95 0.70 0.24 0.50 0.49 0.48 0.35
NLD 0.38 0.71 0.44 0.07 0.19 0.13 0.24 0.20
CIPHER 0.47 0.63 0.41 0.03 0.19 0.09 0.21 0.21
AC (mean) 0.03 0.51 0.22 0.04 0.04 0.09 0.22 0.32
AC (replace) 0.00 0.57 0.09 0.00 0.02 0.12 0.14 0.31
AC (sum) 0.04 0.51 0.22 0.04 0.03 0.09 0.22 0.32
KVComm (0.3) 0.06 0.67 0.41 0.12 0.22 0.41 0.23 0.32
KVComm (0.5) 0.16 0.94 0.52 0.22 0.33 0.47 0.33 0.32
KVComm (0.7) 0.23 0.96 0.54 0.22 0.32 0.47 0.29 0.32

Ms: yuvraj17/EvolCodeLlama-3.1-8B-Instruct;Mr: Team-ACE/ToolACE-2-Llama-3.1-8B
Baseline 0.00 0.07 0.04 0.00 0.01 0.08 0.01 0.34
Skyline 0.24 0.95 0.37 0.17 0.15 0.51 0.25 0.39
NLD 0.29 0.82 0.17 0.04 0.05 0.13 0.02 0.34
CIPHER 0.21 0.86 0.19 0.03 0.06 0.15 0.03 0.33
AC (mean) 0.00 0.31 0.03 0.00 0.01 0.11 0.01 0.34
AC (replace) 0.00 0.30 0.05 0.00 0.01 0.10 0.02 0.33
AC (sum) 0.00 0.27 0.04 0.00 0.01 0.09 0.01 0.34
KVComm (0.3) 0.12 0.95 0.12 0.05 0.04 0.26 0.19 0.36
KVComm (0.5) 0.55 0.98 0.38 0.15 0.14 0.43 0.28 0.38
KVComm (0.7) 0.53 0.97 0.51 0.22 0.25 0.49 0.33 0.38

Ms: arcee-ai/Llama-3.1-SuperNova-Lite;Mr: deepseek-ai/DeepSeek-R1-Distill-Llama-8B
Baseline 0.07 0.30 0.11 0.01 0.03 0.09 0.16 0.23
Skyline 0.55 0.80 0.52 0.17 0.40 0.41 0.16 0.29

Continued on next page
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Table 8 – continued from previous page

Method Countries Tipsheets HotpotQA QASPER MuSiQuest MultiField
-QA-en

2WikiM
-QA TMATH

NLD 0.30 0.39 0.20 0.02 0.06 0.08 0.19 0.22
CIPHER 0.47 0.71 0.27 0.03 0.11 0.14 0.14 0.18
AC (mean) 0.00 0.31 0.08 0.02 0.02 0.09 0.14 0.25
AC (replace) 0.00 0.39 0.04 0.01 0.00 0.16 0.16 0.28
AC (sum) 0.02 0.34 0.07 0.02 0.02 0.08 0.16 0.24
KVComm (0.3) 0.09 0.52 0.10 0.01 0.03 0.09 0.08 0.28
KVComm (0.5) 0.41 0.76 0.33 0.05 0.21 0.23 0.09 0.29
KVComm (0.7) 0.53 0.76 0.47 0.12 0.28 0.31 0.14 0.29

G ABLATION STUDY ON SELECTION STRATEGY

We conduct more ablation studies on the selection strategy by comparing with random selection and selection
based on only attention importance scores. The results are shown in Table 9, which show similar trends as in
Section 4.4.

Table 9: More comparison results with random selection. Best results for each selection ratio are
bolded.

Method Countries Tipsheets HotpotQA QASPER MuSiQuest MultiField
-QA-en

2WikiM
-QA TMATH

Ms: meta-llama/Llama-3.1-8B-Instruct;Mr: meta-llama/Llama-3.1-8B-Instruct
Random (0.3) 0.02 0.35 0.24 0.07 0.04 0.07 0.12 0.35
KVComm (0.3) 0.51 0.93 0.33 0.07 0.11 0.21 0.29 0.37
Random (0.5) 0.49 0.76 0.58 0.15 0.29 0.29 0.27 0.36
KVComm (0.5) 0.62 0.95 0.60 0.29 0.34 0.50 0.37 0.37
Random (0.7) 0.63 0.88 0.76 0.32 0.49 0.52 0.34 0.37
KVComm (0.7) 0.62 0.96 0.69 0.29 0.39 0.53 0.38 0.38

Ms: Orion-zhen/Qwen2.5-7B-Instruct-Uncensored;Mr: bespokelabs/Bespoke-Stratos-7B
Random (0.3) 0.00 0.09 0.00 0.00 0.00 0.06 0.01 0.31
KVComm (0.3) 0.04 0.26 0.02 0.01 0.01 0.09 0.08 0.31
Random (0.5) 0.12 0.32 0.06 0.00 0.03 0.15 0.04 0.33
KVComm (0.5) 0.19 0.88 0.28 0.07 0.12 0.26 0.10 0.33
Random (0.7) 0.16 0.76 0.14 0.03 0.02 0.20 0.04 0.34
KVComm (0.7) 0.41 0.89 0.41 0.21 0.25 0.29 0.15 0.34

Ms: ehristoforu/falcon3-ultraset;Mr: huihui-ai/Falcon3-7B-Instruct-abliterated
Random (0.3) 0.35 0.36 0.23 0.06 0.07 0.14 0.24 0.31
KVComm (0.3) 0.46 0.69 0.59 0.19 0.40 0.35 0.29 0.32
Random (0.5) 0.23 0.42 0.27 0.09 0.08 0.15 0.28 0.31
KVComm (0.5) 0.40 0.92 0.63 0.25 0.44 0.45 0.34 0.35
Random (0.7) 0.18 0.94 0.51 0.23 0.35 0.47 0.30 0.34
KVComm (0.7) 0.19 0.96 0.55 0.26 0.42 0.51 0.31 0.36

Ms: meta-llama/Llama-3.2-3B-Instruct;Mr: meta-llama/Llama-3.2-3B-Instruct
Random (0.3) 0.02 0.29 0.11 0.06 0.02 0.07 0.16 0.34
KVComm (0.3) 0.51 0.48 0.47 0.10 0.20 0.17 0.28 0.35
Random (0.5) 0.28 0.44 0.30 0.06 0.06 0.06 0.19 0.35
KVComm (0.5) 0.55 0.79 0.58 0.24 0.27 0.47 0.35 0.36
Random (0.7) 0.54 0.81 0.62 0.21 0.30 0.30 0.26 0.36
KVComm (0.7) 0.57 0.80 0.65 0.27 0.29 0.48 0.31 0.37

Ms: Qwen/Qwen2.5-7B-Instruct;Mr: Qwen/Qwen2.5-7B-Instruct
Random (0.3) 0.00 0.34 0.05 0.00 0.00 0.08 0.10 0.30
KVComm (0.3) 0.04 0.31 0.06 0.02 0.01 0.19 0.19 0.32
Random (0.5) 0.00 0.32 0.10 0.02 0.02 0.10 0.16 0.32
KVComm (0.5) 0.57 0.92 0.49 0.18 0.20 0.40 0.25 0.32
Random (0.7) 0.41 0.71 0.28 0.04 0.04 0.21 0.17 0.32
KVComm (0.7) 0.56 0.98 0.72 0.29 0.48 0.45 0.35 0.33

Ms: tiiuae/Falcon3-7B-Instruct;Mr: tiiuae/Falcon3-7B-Instruct
Random (0.3) 0.01 0.35 0.18 0.04 0.03 0.12 0.21 0.30
KVComm (0.3) 0.06 0.67 0.41 0.12 0.22 0.41 0.23 0.32
Random (0.5) 0.04 0.41 0.24 0.03 0.05 0.16 0.24 0.31
KVComm (0.5) 0.16 0.94 0.52 0.22 0.33 0.47 0.33 0.32

Continued on next page
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Table 9 – continued from previous page

Method Countries Tipsheets HotpotQA QASPER MuSiQuest MultiField
-QA-en

2WikiM
-QA TMATH

Random (0.7) 0.19 0.95 0.51 0.20 0.29 0.42 0.26 0.32
KVComm (0.7) 0.23 0.96 0.54 0.22 0.32 0.47 0.29 0.32

Ms: yuvraj17/EvolCodeLlama-3.1-8B-Instruct;Mr: Team-ACE/ToolACE-2-Llama-3.1-8B
Random (0.3) 0.00 0.34 0.06 0.00 0.01 0.13 0.03 0.34
KVComm (0.3) 0.12 0.95 0.12 0.05 0.04 0.26 0.19 0.36
Random (0.5) 0.03 0.79 0.29 0.06 0.09 0.32 0.16 0.35
KVComm (0.5) 0.55 0.98 0.38 0.15 0.14 0.43 0.28 0.38
Random (0.7) 0.37 0.85 0.59 0.21 0.27 0.47 0.33 0.36
KVComm (0.7) 0.53 0.97 0.51 0.22 0.25 0.49 0.33 0.38
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Figure 11: Effect of calibration set size. Calibration set size does not significantly affect the test
performance.

We investigate how many samples are needed in the calibration set so that the selection strategy can generalize
well to the test set. If a smaller calibration set can achieve good performance on the test set, it would be more
practical since it would require less cost to obtain the selected layers. We conduct the experiment on Countries,
Tipsheets, and HotpotQA datasets using the Llama-3.2-3B model. As the results in Figure 11 show, we can
see that using only one sample in the calibration set can already achieve the same performance as using more
samples (up to 128 samples). This suggests that our selection strategy can generalize well to the test set even
with a very small calibration set. In all other experiments in the paper, we use one sample in the calibration set.

I IMPACT OF TRANSMITTED TOKEN LENGTH ON NLD

Transmitted token length is an important factor affecting the performance of natural language-based commu-
nication methods like NLD, which refers to the maximum number of tokens generated by the sender model to
communicate with the receiver model. To investigate the impact of transmitted token length on NLD, we con-
duct experiments on HotpotQA, MultiFieldQA-en, and 2WikiMQA datasets with different transmitted token
lengths ranging from 64 to 1024 tokens. The results are shown in Figure 12. We can see that as the transmitted
token length increases from 64 to 128, the performance of NLD improves. However, as the transmitted token
length continues to increase beyond 128 tokens, the performance gains become marginal. This suggests that
there is a moderate transmitted token length (e.g., 128 tokens) is sufficient without incurring excessive com-
munication overhead. In our main experiments, we set the transmitted token length to 256 tokens for NLD to
ensure a fair comparison with other methods.R3-Q3

J MULTI-SOURCE KVCOMM

J.1 EXTENDING KVCOMM TO MULTIPLE SOURCES

KVComm can be naturally extended to multiple sources by integrating the KV pairs from different sender
models. Mathematically, if we have Ns sender modelsMs1 ,Ms2 , . . . ,MsNs

and one receiver modelMr ,
each senderMsi processes the context Ci and generates its own KV pairs {(kl

si ,v
l
si)} at each layer l. The

receiverMr can then receive the KV pairs from all senders and use them to compute the attention scores. The
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Figure 12: Effect of transmitted token length on NLD. A moderate length is sufficient for NLD.R3-Q3

attention scores can be computed as follows:R4-Q1

Ŝl
a =

1

HT

H∑
h=1

T∑
t=1

Ns∑
i=1

|Ci|∑
c=1

al
h,t,i,c,

where |Ci| is the number of tokens in the context Ci, and al
h,t,i,c is the attention weight assigned by head h at

layer l from token t to the context token c of senderMsi . The attention scores Ŝl
a are then integrated with the

Gaussian prior to compute the selection scores.R4-Q1

Given the selection scores, a subset of KV pairs {(klj
si ,v

lj
si)} can be selected from each sender model Msi

at each layer lj . The selected KV pairs are concatenated to form the final KV pairs for the receiver model
Mr:R4-Q1

kl
r ← [k

lj
s1 ;k

lj
s2 ; . . . ;k

lj
sNs

;kl
r],

vl
r ← [v

lj
s1 ;v

lj
s2 ; . . . ;v

lj
sNs

;vl
r].

where l corresponds to a selected layer lj .R4-Q1

J.2 EXPERIMENT WITH TWO SENDERS AND ONE RECEIVER

We experiment with the scenario of two senders and one receiver to demonstrate the feasibility of extending
KVComm to multiple sources. As shown in Table 10, we find that two senders can outperform one sender, for
17 out of 27 cases. We argue this is because of the diversification of information sources and agent thought.
Owing to the usage of KV pairs, we can naturally integrate multiple sources, while NLD and CIPHER cannot,
suffering performance degradation.R4-Q1

K ADDITIONAL DISCUSSION

We have additional discussions on the details and choices of our method.

Positional Embedding Coherence KVComm is designed to preserve positional coherence across all
layers. For the receiver model, in each layer, we shift all its positions by |C|, where |C| is the length of the
context. For selected layers, we concatenate the KV pairs of the sender at positions [0, |C|), and the KV pairs
of the receiver follow at positions [|C|, |C| + |Q|). For non-selected layers, positions [0, |C|) are left empty
(unattended), but the KV of the receiver still starts at position |C|. This approach ensures that all layers share a
consistent positional frame, so the attention mechanism sees the same offsets at every depth, avoiding positional
drift across layers. We perform an ablation study to validate this design in Appendix M.R2-Q4

Communication Cost Under the scenario where agents are connected with high-bandwidth links, the com-
munication cost is relatively low compared to recomputation cost (Jin et al., 2024; Liu et al., 2024c). KVComm
is more preferred when the information exchange volume is large (e.g., long contexts) and the communication
bandwidth is sufficient. In scenarios with limited bandwidth, further compression of KV pairs or more aggres-
sive layer selection may be necessary, which we leave for future work.R3-Q1

L CONTEXT-ADAPTIVE ONLINE CALIBRATION

A simple yet effective dynamic selection mechanism is to recompute the selected layers every T queries, where
T is a hyperparameter that can be dynamically determined by server workload. We make two fully mixed
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Table 10: Communication results for one sender and two senders scenarios. We bold the better
result comparing one sender and two senders for each method. KVComm (0.3/0.5/0.7) denotes
selecting 30%/50%/70% of layers’ KV pairs for communication, i.e., M = ⌈0.3L⌉, M = ⌈0.5L⌉,
M = ⌈0.7L⌉.R4-Q1

Method Sender HotpotQA MuSiQuest 2WikiMQA
Ms1 : arcee-ai/Llama-3.1-SuperNova-Lite;

Ms2 : yuvraj17/EvolCodeLlama-3.1-8B-Instruct;
Mr: Team-ACE/ToolACE-2-Llama-3.1-8B

Baseline NA 0.04 0.01 0.01
Skyline 0.37 0.15 0.25

NLD Ms2 0.17 0.05 0.02
Ms1 andMs2 0.14 0.04 0.03

CIPHER Ms2 0.19 0.06 0.03
Ms1 andMs2 0.16 0.05 0.03

KVComm (0.3) Ms2 0.12 0.04 0.19
Ms1 andMs2 0.16 0.06 0.23

KVComm (0.5) Ms2 0.38 0.14 0.28
Ms1 andMs2 0.39 0.20 0.21

KVComm (0.7) Ms2 0.51 0.25 0.33
Ms1 andMs2 0.53 0.29 0.34

Ms1 : cooperleong00/Qwen2.5-7B-Instruct-Jailbroken;
Ms2 : Orion-zhen/Qwen2.5-7B-Instruct-Uncensored;

Mr: bespokelabs/Bespoke-Stratos-7B
Baseline NA 0.13 0.03 0.09
Skyline 0.53 0.25 0.09

NLD Ms2 0.16 0.04 0.02
Ms1 andMs2 0.18 0.06 0.02

CIPHER Ms2 0.03 0.03 0.03
Ms1 andMs2 0.02 0.01 0.01

KVComm (0.3) Ms2 0.02 0.01 0.08
Ms1 andMs2 0.02 0.00 0.05

KVComm (0.5) Ms2 0.28 0.12 0.10
Ms1 andMs2 0.32 0.18 0.08

KVComm (0.7) Ms2 0.41 0.25 0.15
Ms1 andMs2 0.50 0.24 0.24

Ms1 : RedaAlami/Falcon3-7B-Instruct-Distill-DS-v1;
Ms2 : ehristoforu/falcon3-ultraset;

Mr: huihui-ai/Falcon3-7B-Instruct-abliterated
Baseline NA 0.21 0.04 0.23
Skyline 0.76 0.56 0.45

NLD Ms2 0.52 0.25 0.24
Ms1 andMs2 0.22 0.13 0.20

CIPHER Ms2 0.27 0.07 0.25
Ms1 andMs2 0.15 0.04 0.14

KVComm (0.3) Ms2 0.59 0.40 0.29
Ms1 andMs2 0.51 0.30 0.27

KVComm (0.5) Ms2 0.63 0.44 0.34
Ms1 andMs2 0.49 0.43 0.35

KVComm (0.7) Ms2 0.55 0.42 0.31
Ms1 andMs2 0.60 0.46 0.31

datasets, i.e., mixing all the samples from two datasets: Countries and Tipsheets; Countries and MultiFieldQA-
en. We then perform online calibration and evaluate with different calibration intervals T . As shown in Fig-
ure 13, we find the performance drops when T increases, which is consistent with intuition.R2-Q2

Beyond periodic recomputation, more sophisticated adaptive mechanisms are also feasible. For example, the
receiver model could leverage lightweight signals, such as token-level entropy, attention sparsity patterns, to
trigger on-demand re-selection of informative layers. This is an exciting direction for future work, and KV-
Comm provides a clean foundation for such extensions.R2-Q2

Additionally, to illustrate how different the selected layers are for different datasets, we calculate the Kendall’s
Tau similarity of layer rankings for each pair of datasets across all models. As shown in Figure 14, some
tasks share quite a similar layer ranking for a given model pair, e.g., model pair index 6 shares a similar layer
ranking for HotpotQA and MuSiQuest datasets. This phenomenon could guide the design of dynamic selection
mechanisms in future work.R2-Q2

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

100 101 102 103 104

Calibration Interval T

0.2

0.4

0.6

F1
 S

co
re

Countries_MultiFieldQA_en
Model Pair Index 6
Model Pair Index 7
Model Pair Index 8

100 101 102 103 104

Calibration Interval T

Countries_TipSheets
KVComm (0.3) Results on Mixed tasks with Online Calibration

Figure 13: Online calibration performance drops when the calibration interval increases.R2-Q2
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Figure 14: Kendall’s Tau similarity of layer rankings between different datasets.R2-Q2

M POSITIONAL EMBEDDING COHERENCE

Table 11: Comparison of KVComm and KVComm-S. KVComm-S denotes shifting back the token
positions of non-selected layers to 0. We bold the best results between KVComm and KVComm-S
under the same settings.R2-Q4

Method Countries Tipsheets HotpotQA QASPER MuSiQuest MultiField
-QA-en

2WikiM
-QA TMATH

Ms: huihui-ai/Llama-3.2-3B-Instruct-abliterated;Mr: suayptalha/DeepSeek-R1-Distill-Llama-3B
KVComm-S (0.3) 0.26 0.65 0.40 0.10 0.14 0.19 0.21 0.36
KVComm (0.3) 0.46 0.45 0.46 0.09 0.28 0.15 0.28 0.35
KVComm-S (0.5) 0.49 0.74 0.57 0.28 0.32 0.45 0.30 0.35
KVComm (0.5) 0.57 0.81 0.57 0.27 0.32 0.51 0.36 0.35
KVComm-S (0.7) 0.52 0.76 0.65 0.30 0.39 0.46 0.32 0.35
KVComm (0.7) 0.57 0.81 0.65 0.29 0.36 0.47 0.37 0.35

Ms: Orion-zhen/Qwen2.5-7B-Instruct-Uncensored;Mr: bespokelabs/Bespoke-Stratos-7B
KVComm-S (0.3) 0.00 0.20 0.02 0.02 0.01 0.09 0.05 0.34
KVComm (0.3) 0.04 0.26 0.02 0.01 0.01 0.09 0.08 0.31
KVComm-S (0.5) 0.04 0.90 0.33 0.13 0.18 0.35 0.16 0.35
KVComm (0.5) 0.19 0.88 0.28 0.07 0.12 0.26 0.10 0.33
KVComm-S (0.7) 0.36 0.94 0.42 0.19 0.24 0.35 0.16 0.34
KVComm (0.7) 0.41 0.89 0.41 0.21 0.25 0.29 0.15 0.34

Ms: ehristoforu/falcon3-ultraset;Mr: huihui-ai/Falcon3-7B-Instruct-abliterated
KVComm-S (0.3) 0.47 0.71 0.54 0.10 0.36 0.19 0.26 0.32
KVComm (0.3) 0.46 0.69 0.59 0.19 0.40 0.35 0.29 0.32
KVComm-S (0.5) 0.36 0.97 0.67 0.27 0.46 0.34 0.36 0.34
KVComm (0.5) 0.40 0.92 0.63 0.25 0.44 0.45 0.34 0.35
KVComm-S (0.7) 0.21 0.95 0.59 0.26 0.52 0.46 0.37 0.36
KVComm (0.7) 0.19 0.96 0.55 0.26 0.42 0.51 0.31 0.36

We quantify the importance of positional embedding coherence between the sender and receiver models. We
performed an ablation experiment where, for non-selected layers, instead of shifting the receiver’s tokens to
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position |C|, we place them back to position 0, creating a positional inconsistency with selected layers. As
shown in Table 11, positional inconsistency does not have a detrimental effect on performance, but overall, our
approach has merit.R2-Q4

N COMPLEXITY ANALYSIS DETAILS

We compare the computational complexity of our KVComm framework with the Skyline method and the NLD
method. Recall that L is the total number of layers in the model, M is the number of selected layers for
communication. We use d to denote the hidden dimension of the model, and |Q| and |C| to denote the number
of tokens in the query and context, respectively. SupposeMr would generate T tokens in total, and the number
of generated tokens is the same across different methods. For NLD,Ms andMr would each generate Ts and
Tr tokens for the initial answer, respectively.

Ignoring the embedding, output layers, and other minor components, the computational complexity of prefilling
a sequence of length N with a single decoder layer is O(Nd2 + N2d), while the complexity of decoding a
single token is O(d2+(N+i)d), where i is the index of the generated token. Therefore, the total computational
complexity ofMs to process the context C is O(L(|C|d2 + |C|2d)).

The total computational complexity of KVComm consists of three parts: (1) the complexity ofMs to process
the context C, which is O(L(|C|d2 + |C|2d)), (2) the complexity of Mr to process the query Q with the
selected M KV pairs from Ms, which is O(L|Q|d2 + M(|C| + |Q|)|Q|d + (L −M)|Q|2d), and (3) the
complexity of Mr to generate T tokens with the selected M KV pairs from Ms, which is O(T (Ld2 +
M(|C|+ |Q|+ T )d+ (L−M)(|Q|+ T )d)). Therefore, the total computational complexity of KVComm is:

T (KVComm) = O
(
L (|C|+ |Q|+ T ) d2

)
+O

((
L
(
|C|2 + |Q|2 + T 2 + T |Q|

)
+ CM (|Q|+ T )

)
d
)

The computational complexity of Skyline method consists of two parts: (1) the complexity of prefilling the
concatenation of the context C and query Q, which is O(L(|C| + |Q|)d2 + L(|C| + |Q|)2d), and (2) the
complexity of decoding T tokens, which is O(TL(d2+(|C|+ |Q|+T )d)). Therefore, the total computational
complexity of the Skyline method is:

T (Skyline) = O
(
L
(
|C|+ |Q|+ T

)
d2
)

+O
(
L
(
(|C|+ |Q|)2 + T

(
|C|+ |Q|+ T

))
d
)

The margin of KVComm over Skyline is:

T (Skyline)− T (KVComm) = O
(
|C|d

(
L(2|Q|+ T )−M(|Q|+ T )

))
For NLD, the total computational complexity consists of three parts: (1) the complexity ofMs to process the
context C and generate Ts tokens, which is O(L(|C|d2+ |C|2d)+TsL(d

2+(|C|+Ts)d)), (2) the complexity
ofMr to process the query Q and generate Tr tokens, which is O(L(|Q|d2 + |Q|2d) + TrL(d

2 + (|Q| +
Tr)d)), and (3) the complexity of Mr to process the entire debate history and generate T tokens, which is
O(L((Ts + Tr + |Q|)d2 + (Ts + Tr + |Q|)2d) + TL(d2 + (Ts + Tr + |Q| + T )d)). Therefore, the total
computational complexity of NLD is:

T (NLD) = O

(
L
(
|C|+ 2|Q|+ 2Ts + 2Tr + T

)
d2
)

+O

(
L
(
|C|2 + T 2

s + |Q|2 + T 2
r +

(
Ts + Tr + |Q|

)2
+ T

(
Ts + Tr + T + |Q|

)
+ Ts|C|+ Tr|Q|

)
d

)

The margin of KVComm over NLD is:

T (NLD)− T (KVComm) = O
(
L
(
2Ts + 2Tr + |Q|

)
d2
)

+O

((
L
(
T 2
s + T 2

r +
(
Ts + Tr + |Q|

)2
+ Ts|C|+ Tr|Q|+ T (Ts + Tr)

)
− CM

(
|Q|+ T

))
d

)

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

O USING ONE CHUNK OF LAYERS

We conduct the same experiment as in Section 4.3 on the HotpotQA dataset using other model pairs in Table 5.
The results are shown in Figure 15. We can see that the results are consistent with the observation in Section 4.3.
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(a) Llama-3.2-3B-Instruct as bothMs andMr
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(b) Qwen2.5-7B-Instruct as bothMs andMr
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(c) Qwen2.5-7B-Instruct-Uncensored asMs and Bespoke-Stratos-7B asMr
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(d) EvolCodeLlama-3.1-8B-Instruct asMs and ToolACE-2-Llama-3.1-8B asMr
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(e) Llama-3.2-3B-Instruct-abliterated asMs and DeepSeek-R1-Distill-Llama-3B asMr

Figure 15: Experiment results of using one chunk of layers for communication on HotpotQA dataset
using different model pairs.
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