

000 KVComm: Enabling Efficient LLM Communication 001 through Selective KV Sharing

002
003
004
005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT

009
010
011 Large Language Models (LLMs) are increasingly deployed in multi-agent sys-
012 tems, where effective inter-model communication is crucial. Existing communi-
013 cation protocols either rely on natural language, incurring high inference costs
014 and information loss, or on hidden states, which suffer from information concen-
015 tration bias and inefficiency. To address these limitations, we propose KVComm,
016 a novel communication framework that enables efficient communication between
017 LLMs through selective sharing of KV pairs. KVComm leverages the rich infor-
018 mation encoded in the KV pairs while avoiding the pitfalls of hidden states. We
019 introduce a KV layer-wise selection strategy based on attention importance scores
020 with a Gaussian prior to identify the most informative KV pairs for communica-
021 tion. Extensive experiments across diverse tasks and model pairs demonstrate that
022 KVComm achieves comparable performance to the upper-bound method, which
023 directly merges inputs to one model without any communication, while transmit-
024 ting as few as 30% of layers' KV pairs. Our study highlights the potential of KV
025 pairs as an effective medium for inter-LLM communication, paving the way for
026 scalable and efficient multi-agent systems.

027 028 1 INTRODUCTION

029
030 Large Language Models (LLMs) have catalyzed a paradigm shift from isolated model capabilities
031 towards collaborative multi-agent systems (Guo et al., 2024; Tran et al., 2025). CAMEL (Li et al.,
032 2023), AutoGen (Wu et al., 2024), and ChatDev (Qian et al., 2023) have demonstrated the potential
033 of LLMs to collaborate effectively in multi-agent systems, achieving impressive results in various
034 tasks. These systems leverage the strengths of individual LLMs and enable them to work together
035 to solve complex problems that are beyond the capabilities of a single model (Yang et al., 2024a).

036
037 While multi-agent systems have shown great promise, they also introduce new challenges, particu-
038 larly in the area of inter-agent communication. Effective communication between LLMs is crucial
039 for the success of multi-agent systems. Explicit communication through natural language has been
040 explored in several works, enabling the models to share information (Du et al., 2023), coordinate
041 their actions (Sun et al., 2025), and make collective decisions (Yang et al., 2024b).

042
043 However, natural language communication leads to high inference costs due to the need for multi-
044 ple decoding steps, and may not fully capture the rich information that needs to be shared between
045 LLMs as information is lost in the sampling process (Pham et al., 2023; Ramesh & Li, 2025) that
046 occurs as each new token is produced. To address this limitation, recent works have explored alter-
047 native communication protocols that leverage the internal representations of LLMs. CIPHER (Pham
048 et al., 2023) proposed to use the embedding space as the medium of communication between LLMs.
049 Namely, they pass the weighted average of the token embeddings from one LLM to another, facilitat-
050 ing more efficient information exchange. Rather than using the embedding space, AC (Ramesh & Li,
051 2025) transmits the intermediate activations, specifically the last token's hidden state. They replace
052 the last token's hidden state of the **receiver's model** (\mathcal{M}_r) with that of the **sender's model** (\mathcal{M}_s),
053 allowing a more direct transfer of information. While these methods have shown promising results,
they still face challenges in terms of communication efficiency and effectiveness. CIPHER (Pham
et al., 2023) still requires multiple decoding steps, which can be costly, and AC (Ramesh & Li, 2025)
may lead to information loss as only limited activation information is transmitted.

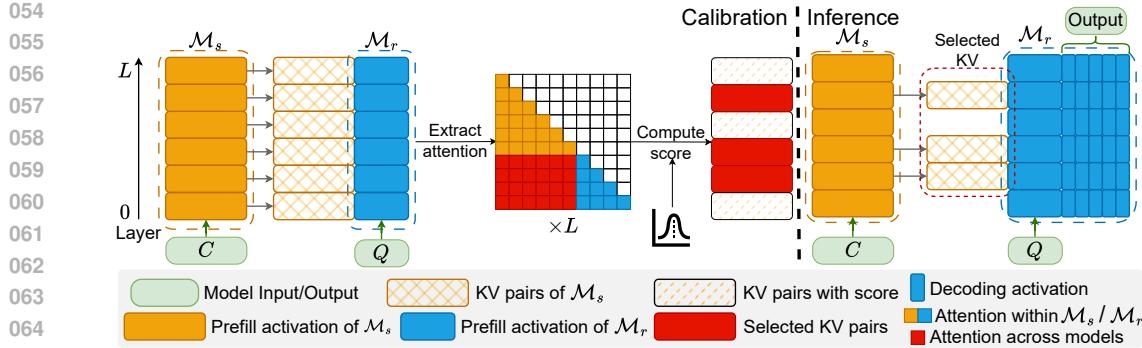


Figure 1: KVComm framework for efficient LLM communication through selective KV sharing.^{R3-Q5}

We start with the question: *What is the most effective way to communicate between LLMs?* We argue that an ideal communication protocol should satisfy the following criteria: ① **Effectiveness**: It should enable \mathcal{M}_r to effectively utilize the information from \mathcal{M}_s . ② **Efficiency**: It should minimize the computation needed by \mathcal{M}_s and the amount of data transmitted between models. ③ **Generality**: It should be applicable to a wide range of tasks and model architectures, ensuring its versatility in different scenarios. We choose to use activation information as the medium of communication, as no decoding steps are needed for \mathcal{M}_s , and \mathcal{M}_r can directly utilize the rich information encoded in the activations. We study different types of activation information (i.e., hidden states and KV pairs), and in Section 2.2, we show that hidden states suffer from information concentration bias, where the last token's hidden state contains most of the information needed for the model's output. This makes it challenging to design an effective communication protocol using the last token's hidden state. Furthermore, [we find that using all tokens' hidden states from a single layer of the sender \$\mathcal{M}_s\$ does not guarantee effective communication.](#)^{R4-Q3} A dilemma arises: if the hidden states are taken from the early layers of \mathcal{M}_s , the computation benefit is limited since the computation cost is similar to concatenating the two inputs; if the hidden states are prepended to the later layers of \mathcal{M}_r , the performance drops significantly.

Based on these observations, we propose **KVComm**, a novel communication protocol that enables efficient communication between LLMs through selective sharing of KV pairs. KV pairs are the most representative activation information in each layer, and sharing them does not interact with the hidden states of \mathcal{M}_r directly, while \mathcal{M}_r can decide how to utilize the information through the attention mechanism. To further improve the efficiency of communication, we propose a selection strategy to choose which (potentially non-contiguous) layers' KV pairs to share. We formulate hypotheses that **(H1)** *KV pairs from intermediate layers encode transferable semantic knowledge*, and **(H2)** *KV pairs from layers exhibiting stronger attention distributions are more effective for communication*. These hypotheses are validated by our experiments in Sections 4.3 and 4.5. Based on these hypotheses, we define attention importance scores for each layer based on the average attention weights assigned to the context tokens. We also apply a Gaussian distribution centered at a certain layer as a prior on the attention importance scores. The intuition is that the Gaussian distribution encourages selecting layers around a certain depth, which aligns with hypothesis **H1**. The general framework is illustrated in Figure 1.

We evaluate KVComm on a diverse set of tasks with eight model pairs (see Section 4.1), showing that it consistently outperforms existing communication protocols while significantly reducing the data transmitted between models. In summary, our work makes three key contributions:

- We evaluate different types of activation information for communication between LLMs, and identify the limitations of using hidden states as the medium of communication. We show that the last token's hidden state suffers from information concentration bias, and point out a dilemma that arises when using all tokens' hidden states.
- We propose KVComm, a novel communication protocol that enables efficient communication between LLMs through selective sharing of KV pairs. We design a selection strategy based on attention importance scores and a Gaussian prior to choose which layers' KV pairs to share. This is the first approach that makes it possible to choose non-contiguous layers of KV. More-

108 over, we show the feasibility of using a single context/question pair for guiding the selection
 109 for a given pair of models, prior to deployment.
 110

- 111 • We conduct extensive experiments on a diverse set of tasks and model pairs, demonstrating
 112 that KVComm enables effective and efficient communication between LLMs, achieving com-
 113 parable performance to the Skyline method, which is the upper-bound and directly merges the
 114 inputs without any communication, while reducing the computation costs by 2.5x to 6x. In
 115 particular, KVComm enables up to a 3x reduction in communication relative to approaches
 116 that transmit the entire set of KV pairs. Moreover, we demonstrate the performance benefits of
 117 non-contiguous selection of KV layers. Finally, we demonstrate the increase in performance
 118 that KVComm brings even over Skyline on two datasets, further illustrating the need to com-
 119 municate in a non-strictly textual manner.
 120

2 PROBLEM AND MOTIVATION

2.1 PROBLEM FORMULATION

124 We formally define the problem of solving a contextual task through the communication of two
 125 LLMs: \mathcal{M}_s and \mathcal{M}_r . \mathcal{M}_s takes as input a context C , and generates the required information I_C to
 126 be communicated. \mathcal{M}_r takes as input the query Q and the information I_C from \mathcal{M}_s , and produces
 127 the final output. In this work, we limit the choices of the two LLMs to (1) two instances of the
 128 same LLM, and (2) two models that are fine-tuned versions of the same base LLM. **The objective**
 129 **is to design a communication protocol which jointly optimizes the communication, computation**
 130 **efficiency, and the information fidelity between \mathcal{M}_s and \mathcal{M}_r** ^{R3-Q1}.
 131

2.2 WHY HIDDEN STATES FALL SHORT

132 When Decoder-Only LLMs infer, the input information flows through the model in the form of
 133 activation values, which refer to the intermediate results output by each decoder layer during the
 134 forward pass. We refer to the intermediate activation values that are passed between adjacent layers
 135 as hidden states. We also consider the KV pairs used in the attention mechanism within each layer
 136 as another type of activation information. In this section, we investigate the effectiveness of using
 137 hidden states as the medium of communication by studying two questions: *How important are*
 138 *hidden states of tokens at different positions in the sequence?* (Section 2.2.1) *Are hidden states of*
 139 *all tokens effective for communication?* (Section 2.2.2)
 140

2.2.1 TOKEN IMPORTANCE AT DIFFERENT POSITIONS

141 We begin with a simple experiment examining how token positions affect performance. Using
 142 Llama-3.1-8B on MMLU Social Science, we remove or retain the hidden state of **only** specific
 143 tokens at a given layer and measure the performance change. As shown in Figure 2, different to-
 144 kens vary in importance across layers, with the last token becoming most critical in later layers.
 145 This aligns with the intuition that the last token is often the most relevant to the current prediction.
 146 Thus, the last token’s hidden state carries the most influential information for both model output and
 147 inter-LLM communication. Results on additional datasets and models are provided in Appendix C.
 148

149 To ensure efficient communication with hidden states built on this observation, two conditions must
 150 hold: (1) \mathcal{M}_s must send at least the last token’s hidden state, and (2) the communication protocol
 151 should preserve \mathcal{M}_r ’s last token state as much as possible. The protocol in Ramesh & Li (2025)
 152 either replaces \mathcal{M}_r ’s last token state with that of \mathcal{M}_s or averages the two, but both cause information
 153 loss in \mathcal{M}_r ’s last token state, harming its performance.
 154

2.2.2 UTILIZING ALL TOKENS

155 Another straightforward approach to ensure the last token’s hidden state is preserved is to prepend
 156 all tokens’ hidden states from \mathcal{M}_s to \mathcal{M}_r . The experiments on HotpotQA with Llama-3.1-8B,
 157 presented in Figure 3, demonstrate that prepending all tokens’ hidden states from \mathcal{M}_s to \mathcal{M}_r is
 158 effective if the hidden states are taken from the early layers of \mathcal{M}_s and prepended to the early layers
 159 of \mathcal{M}_r . Appendix D shows experimental results on other datasets. We find that this method is caught
 160

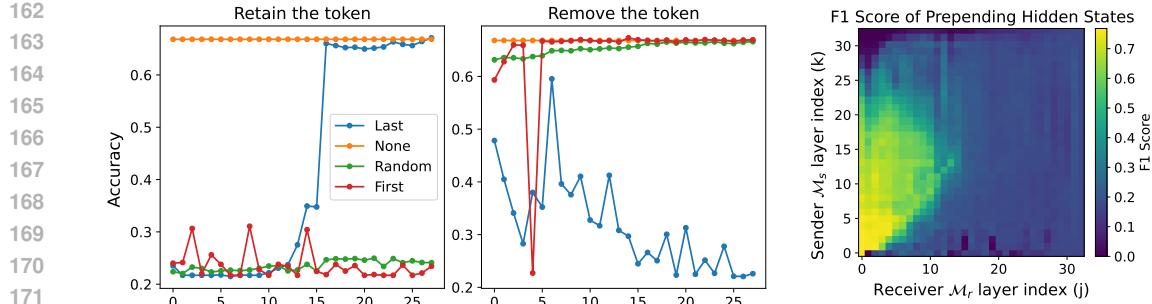


Figure 2: Compared to other token positions, the last token’s hidden state is the most critical, especially in later layers.

in a dilemma: (1) if the hidden states are taken from the early layers of \mathcal{M}_s , the computation benefit is limited since it is similar to concatenating the two inputs; (2) if the hidden states are prepended to the later layers of \mathcal{M}_r , the performance drops significantly.

These findings suggest that while utilizing all tokens’ hidden states can preserve the last token’s information, it does not guarantee effective communication between LLMs.

3 EFFICIENT LLM COMMUNICATION THROUGH SELECTIVE KV SHARING

We propose a simple yet effective communication protocol that enables efficient communication between LLMs by selectively sharing KV pairs. This approach addresses the limitations observed in previous methods by ensuring that the most critical information is preserved. Our design satisfies the three criteria outlined below: it enhances effectiveness by allowing \mathcal{M}_r to utilize essential context (①), improves efficiency by reducing unnecessary computation and transmission overhead (②), and ensures generality by being applicable across diverse tasks and architectures (③).

3.1 COMMUNICATION FRAMEWORK

For a given context C and query Q , \mathcal{M}_s processes the context C and runs one forward pass (prefill stage) to generate the KV pairs $\{(\mathbf{k}_s^l, \mathbf{v}_s^l)\}$ at each layer l , where $l = 1, 2, \dots, L$ and L is the total number of layers in \mathcal{M}_s . We apply a selection strategy to choose a subset of KV pairs $\{(\mathbf{k}_s^{l_i}, \mathbf{v}_s^{l_i})\}$, where $i = 1, 2, \dots, M$ and M is the number of selected layers. The selected KV pairs are then transmitted to \mathcal{M}_r .

\mathcal{M}_r processes the query Q and incorporates the received KV pairs during its forward passes (prefill and decoding stages). Specifically, at each layer l of \mathcal{M}_r , if l corresponds to a selected layer l_i^1 , the KV pairs from \mathcal{M}_s are integrated into the attention mechanism. We simply concatenate the KV pairs from \mathcal{M}_s with those of \mathcal{M}_r : $\mathbf{k}_r^l \leftarrow [\mathbf{k}_s^{l_i^1}; \mathbf{k}_r^l]$, and $\mathbf{v}_r^l \leftarrow [\mathbf{v}_s^{l_i^1}; \mathbf{v}_r^l]$. This integration allows \mathcal{M}_r to attend to both its own context and the information provided by \mathcal{M}_s . After processing the query Q with the integrated KV pairs, \mathcal{M}_r generates the final output.

3.2 KV SELECTION STRATEGIES

The communication protocol critically depends on the selection strategy for choosing which KV pairs to transmit from \mathcal{M}_s to \mathcal{M}_r . Not all layers or attention heads contribute equally to encoding task-relevant knowledge. A fundamental question when designing selection strategies is: *Which parts of the KV pairs encode the most relevant knowledge for communication?*

Formally, given the set of candidate KV pairs $\{(\mathbf{k}_s^l, \mathbf{v}_s^l)\}_{l=1}^L$, our goal is to select a subset $\mathcal{S} \subseteq \{1, \dots, L\}$ such that the receiver’s output retains maximal information from the sender, given a constraint on the number of selected layers $|\mathcal{S}| = M$, which is determined by the desired communi-

¹The layer indices are 1-to-1 matched between \mathcal{M}_s and \mathcal{M}_r since we only consider the case where the two models are the same or fine-tuned versions of the same base LLM.

216 cation efficiency. This can be formulated as the following optimization problem:
 217

$$218 \max_{\mathcal{S} \subseteq \{1, \dots, L\}, |\mathcal{S}|=M} f(\mathcal{M}_r(Q, \{(\mathbf{k}_s^l, \mathbf{v}_s^l)\}_{l \in \mathcal{S}})),$$

220 where $f(\cdot)$ is a performance metric (e.g., accuracy, F1 score), and $\mathcal{M}_r(Q, \{(\mathbf{k}_s^l, \mathbf{v}_s^l)\}_{l \in \mathcal{S}})$ denotes
 221 the output of the receiver model given the query Q and the selected KV pairs. Since direct compu-
 222 tation of this objective is intractable, we instead propose two hypotheses **H1** and **H2** that serve as
 223 priors for designing practical heuristics.

224 The first hypothesis **H1** is that *KV pairs from intermediate layers contain the most readily trans-
 225 ferable semantic knowledge*. Prior analyses (Jawahar et al., 2019; Geva et al., 2020) suggest a hi-
 226 erarchy: early layers capture surface patterns, middle layers encode semantic abstractions, and late
 227 layers specialize in task predictions. Thus, intermediate KV pairs should carry the richest generaliz-
 228 able information, making them most effective for communication. Experiment results in Section 4.3
 229 support this hypothesis.

230 Another hypothesis **H2** is that *KV pairs from layers exhibiting stronger attention distributions are
 231 more effective for communication*. We quantify this notion of *attention distribution* using the at-
 232 tention importance score S_a^l , defined in Equation (1) below. We deem layer l_i to exhibit stronger
 233 attention distribution than l_j , if $S_a^{l_i} > S_a^{l_j}$.^{R3-Q2} Intuitively, if a head consistently allocates high at-
 234 tention mass to the given tokens, its KV cache encodes salient contextual relations that are critical
 235 for the model’s reasoning. Attention concentration thus serves as a proxy for the communication
 236 value of a KV subset, suggesting that such heads should be prioritized for selection. This hypothesis
 237 is also validated by our experiments in Section 4.5.

238 Our selection strategy is based on these two hypotheses. We first define attention importance scores
 239 for each layer, which are calculated as the average attention weights that have been assigned to the
 240 context tokens by all heads in that layer during the prefill stage. We then take a Gaussian distribution
 241 centered at a certain layer as a prior to select layers with high attention importance scores. The
 242 intuition is that the Gaussian prior encourages selecting layers around a certain depth, which aligns
 243 with hypothesis **H1** that intermediate layers are more likely to contain transferable knowledge.

244 Mathematically, the attention importance score for each layer l is computed as:
 245

$$246 \hat{S}_a^l = \frac{1}{HT} \sum_{h=1}^H \sum_{t=1}^T \sum_{c=1}^{|C|} a_{h,t,c}^l, \quad (1)$$

249 where H is the number of attention heads, T is the number of tokens in the query, $|C|$ is the number
 250 of context tokens, and $a_{h,t,c}^l$ is the attention weight assigned by head h at layer l from token t to
 251 context token c . \hat{S}_a^l is then normalized to the range $[0, 1]$ across all layers to obtain the final attention
 252 importance score $S_a^l = \frac{\hat{S}_a^l - \min_{l'} \hat{S}_a^{l'}}{\max_{l'} \hat{S}_a^{l'} - \min_{l'} \hat{S}_a^{l'}}.$
 253

254 We define a Gaussian prior centered at layer μ with standard deviation σ as $P^l = \exp\left(-\frac{(l-\mu)^2}{2\sigma^2}\right)$.
 255 The final selection score for each layer l is computed as a weighted combination of the attention
 256 importance score and the Gaussian prior:
 257

$$258 S^l = \alpha S_a^l + (1 - \alpha) P^l,$$

260 where $\alpha \in [0, 1]$ is a hyperparameter that balances the two components. We then select the top M
 261 layers with the highest selection scores S^l to form the subset \mathcal{S} for communication.

262 For each model pair and dataset, the top M layers are selected based on the selection scores com-
 263 puted from a calibration set. The selected layers are then fixed and used for all samples in the test set.
 264 We found that a calibration set as small as a single sample is sufficient to obtain a robust selection
 265 that generalizes well to the entire test set, as shown in the experiments in Appendix H.

267 3.3 COMPLEXITY ANALYSIS

268 We analyze the computational complexity of our KVComm framework compared to baseline meth-
 269 ods. Compared to the NLD (Du et al., 2023) method, our method does not require multiple decoding

270 steps for \mathcal{M}_s , which significantly reduces the computation cost. When the number of tokens generated during debate (Du et al., 2023) is large, the computation margin of our method over NLD is on the order of $O(L(T_s + T_r + |Q|)^2 d)$, where T_s and T_r are the number of tokens generated by \mathcal{M}_s and \mathcal{M}_r in the debate, respectively, and $|Q|$ and d are the number of tokens in the query and the hidden dimension of the model, respectively. Compared to the Skyline (Section 4.1) method, our method also reduces the computation cost, especially when M is small. The computation margin of our method over Skyline is on the order of $O(|C|d(L(2|Q| + T) - M(|Q| + T)))$, where $|C|$ is the number of tokens in the context, and $|T|$ is the number of tokens generated by \mathcal{M}_r .

279 4 EXPERIMENTS

281 4.1 EXPERIMENTAL SETUP

283 **Datasets** We evaluate KVComm on a diverse set of contextual reasoning tasks. Following Ramesh & Li (2025), we synthetically generate two datasets, Countries, which asks questions about countries based on landmark information, and Tipsheets, which requires investment decisions from financial tips. Examples of these two datasets are shown in Table 3 in Appendix B.1. Moreover, we select six benchmarks, including HotpotQA (Yang et al., 2018), QASPER (Dasigi et al., 2021), MuSiQuest (Trivedi et al., 2022), two subsets of LongBench (Bai et al., 2024)(MultiFieldQA-en and 2WikiMQA), and TMATH (Qi et al., 2025). The last dataset is a mathematical problem-solving dataset that contains hints as context. We use ROUGE-L Recall as the evaluation metric for the last dataset, and F1 score for all other datasets. Statistics are summarized in Table 4 in Appendix B.1.

293 **Models** We conduct experiments on eight different model pairs, shown in Table 5 in Appendix B.3. The model pairs include two instances of the same LLM and two models that are fine-tuned versions 294 of the same base LLM. These models cover different families, including LLaMA (Dubey et al., 295 2024), Qwen (Qwen et al., 2024), and Falcon (Almazrouei et al., 2023).

297 **Compared Methods** We compare KVComm with several representative approaches: **Baseline** 298 (no communication between \mathcal{M}_r and \mathcal{M}_s), **Skyline** (concatenating context C and query Q as an upper bound), **Natural Language Debate (NLD)** (Du et al., 2023), **CIPHER** (Pham et al., 2023), and 300 **AC** (Ramesh & Li, 2025). Detailed descriptions for these methods are provided in Appendix B.4. 301 Implementation details are provided in Appendix B.2.

303 4.2 COMMUNICATION RESULTS

306 Table 1 reports results on three model pairs fine-tuned from the same base LLM. The results on other 307 model pairs are provided in Table 8 in Appendix F, which show similar trends. We observe that 308 KVComm consistently outperforms all baseline communication methods across datasets and model 309 pairs. AC can outperform the Baseline method on some datasets, but they are still significantly 310 worse than KVComm and Skyline, as hidden states of \mathcal{M}_r are corrupted during communication.

311 **NLD and CIPHER can achieve performance close to that of KVComm or Skyline on Countries** 312 **and Tipsheets datasets, which is because these datasets require only a very small and highly salient** 313 **amount of information to be transferred. For all other datasets, the sender has access to the entire** 314 **context but not the question, and natural-language communication cannot reliably extract and** 315 **transmit the task-relevant subset of information. As a result, NLD and CIPHER perform substantially** 316 **below KVComm on complex, long-context reasoning tasks. We conduct further experiments in** 317 **Appendix I to eliminate the influence of hyperparameters.**^{R3-Q3}

318 KVComm can achieve comparable performance to Skyline when selecting 70% of layers' KV pairs 319 for communication, demonstrating the effectiveness of our selection strategy. Even when selecting 320 only 30% of layers' KV pairs, KVComm can still outperform most baseline communication methods 321 on many datasets, showing its potential for efficient communication with minimal overhead.

322 Note that KVComm can outperform Skyline on some datasets. We attribute this to two factors: (1) 323 \mathcal{M}_s may complement \mathcal{M}_r with stronger capabilities in certain aspects, and (2) selective KV sharing 324 provides a regularization effect, which helps \mathcal{M}_r to focus on the most relevant information and

324
 325 Table 1: Communication results of different methods. Best results are **bolded**, second best
 326 underlined (excluding Baseline and Skyline). We report the results with \mathcal{M}_r for Baseline and Sky-
 327 line for fairness. **KVComm (0.3/0.5/0.7)** denotes selecting 30%/50%/70% of layers’ KV pairs for
 328 communication, i.e., $M = [0.3L]$, $M = [0.5L]$, $M = [0.7L]$.^{R3-Q3}

Method	Countries	Tipsheets	HotpotQA	QASPER	MuSiQuest	MultiField-QA-en	2WikiM-QA	TMATH
\mathcal{M}_s : huihui-ai/Llama-3.2-3B-Instruct-ableliterated; \mathcal{M}_r : suayptalha/DeepSeek-R1-Distill-Llama-3B								
Baseline	0.05	0.32	0.23	0.05	0.02	0.11	0.27	0.34
Skyline	0.57	0.91	0.73	0.25	0.51	0.47	0.40	0.36
NLD	0.43	<u>0.72</u>	0.43	0.10	0.18	0.09	0.30	0.33
CIPHER	0.42	0.69	0.50	0.10	0.18	0.13	0.32	0.32
AC (mean)	0.03	0.45	0.25	0.05	0.02	0.13	0.23	0.35
AC (replace)	0.00	0.49	0.05	0.01	0.01	0.12	0.03	0.34
AC (sum)	0.02	0.46	0.23	0.05	0.01	0.13	0.24	0.34
KVComm (0.3)	0.46	0.45	0.46	0.09	0.28	0.15	0.28	0.35
KVComm (0.5)	0.57	0.81	<u>0.57</u>	<u>0.27</u>	<u>0.32</u>	0.51	<u>0.36</u>	0.35
KVComm (0.7)	0.57	0.81	<u>0.65</u>	0.29	0.36	0.47	0.37	0.35
\mathcal{M}_s : Orion-zhen/Qwen2.5-7B-Instruct-Uncensored; \mathcal{M}_r : bespokelabs/Bespoke-Stratos-7B								
Baseline	0.01	0.36	0.13	0.05	0.03	0.08	0.09	0.35
Skyline	0.51	0.97	0.53	0.10	0.25	0.40	0.09	0.35
NLD	0.21	0.80	0.16	0.02	0.04	0.11	0.02	0.35
CIPHER	0.04	0.60	0.03	0.01	0.03	0.07	0.03	<u>0.34</u>
AC (mean)	0.00	0.00	0.03	0.00	0.00	0.08	0.01	0.01
AC (replace)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AC (sum)	0.00	0.00	0.02	0.00	0.00	0.07	0.04	0.03
KVComm (0.3)	0.04	0.26	0.02	0.01	0.01	0.09	0.08	0.31
KVComm (0.5)	0.19	<u>0.88</u>	<u>0.28</u>	<u>0.07</u>	<u>0.12</u>	0.26	<u>0.10</u>	0.33
KVComm (0.7)	0.41	0.89	0.41	0.21	0.25	0.29	0.15	0.34
\mathcal{M}_s : christoforu/falcon3-ultraset; \mathcal{M}_r : huihui-ai/Falcon3-7B-Instruct-ableliterated								
Baseline	0.08	0.36	0.21	0.06	0.04	0.09	0.23	0.31
Skyline	0.56	0.95	0.76	0.32	0.56	0.51	0.45	0.37
NLD	0.46	0.80	0.52	0.19	0.25	0.11	0.24	0.15
CIPHER	0.30	0.19	0.27	0.02	0.07	0.06	0.25	0.17
AC (mean)	0.01	0.46	0.25	0.06	0.04	0.09	0.23	0.31
AC (replace)	0.00	0.49	0.12	0.00	0.01	0.13	0.17	0.31
AC (sum)	0.01	0.46	0.25	0.06	0.03	0.10	0.24	0.31
KVComm (0.3)	0.46	0.69	<u>0.59</u>	0.19	0.40	0.35	0.29	0.32
KVComm (0.5)	0.40	<u>0.92</u>	0.63	<u>0.25</u>	0.44	0.45	0.34	0.35
KVComm (0.7)	0.19	0.96	0.55	0.26	0.42	0.51	0.31	0.36

357
 358
 359 avoid wasting its capacity on less important signals. This also explains why using fewer layers can
 360 sometimes yield better performance than using more.

361 Also note that the performance gain of KVComm is not substantial on TMATH. We attribute this
 362 to that pretraining gives LLMs solid capabilities in mathematical reasoning, which may not dra-
 363 matically benefit from additional context or hints. Moreover, AC performs relatively well on this
 364 dataset, which we consider is because the hints contain information about questions, so even if the
 365 last token’s hidden states are corrupted, it can still generate some useful information.

367 4.3 BENEFIT OF SELECTIVE KV OVER ONE CONTIGUOUS CHUNK

368
 369 DroidSpeak (Liu et al., 2024b) chooses to use one contiguous chunk of context for communication
 370 between LLMs. Despite different problem settings, we evaluate KVComm by replacing the selec-
 371 tion strategy with two hyperparameters, which are two layer indices $layer_{from}$ and $layer_{to}$, then all
 372 layers between $layer_{from}$ and $layer_{to}$ are selected for communication. This is equivalent to using one
 373 contiguous chunk of context for communication. We vary them to select different chunks of layers.

374 Figure 4 shows that using a single contiguous chunk for communication yields good performance
 375 only in a small region of the hyperparameter space, making it tricky to find the right hyperparam-
 376 eters. In contrast, the scatter and curve plots in Figure 5 demonstrate that KVComm consistently
 377 achieves the best or even outperforms the best contiguous chunk setting for the same number of
 layers. Line plots in Figure 6 show that contiguous chunks are most effective when taken from in-

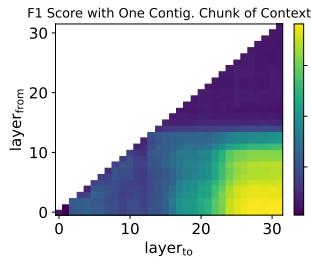
378 intermediate layers, consistent with hypothesis **H1** in Section 3.2. All results are on HotpotQA with
 379 the Llama-3.1-8B pair, with more in Appendix O.
 380

381 4.4 ABLATION STUDY ON SELECTION STRATEGY

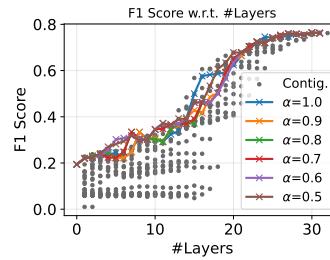
383 Table 2 compares KVComm with random selection. We find that KVComm consistently outper-
 384 forms random selection across different datasets and selection ratios. When the ratio is high (i.e.,
 385 0.7), the performance gap between our selection strategy and random selection becomes smaller, as
 386 more layers are selected and the impact of the selection strategy is reduced. However, when the ratio
 387 is low (i.e., 0.3), our selection strategy significantly outperforms random selection, demon-
 388 strating its effectiveness in selecting the most informative layers for communication. Comparison results on
 389 other model pairs are provided in Table 9 in Appendix G, which show similar trends.

390 Table 2: Comparison with random selection. Best results for each selection ratio are **bolded**.
 391

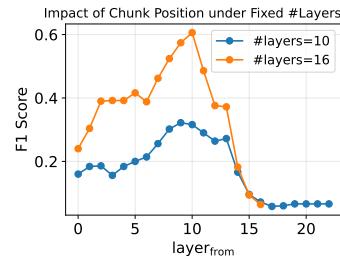
Method	Countries	Tipsheets	HotpotQA	QASPER	MuSiQuest	MultiField -QA-en	2WikiM -QA	TMATH
<i>\mathcal{M}_s: huihui-ai/Llama-3.2-3B-Instruct-ableitized; \mathcal{M}_r: suayptalha/DeepSeek-R1-Distill-Llama-3B</i>								
Random (0.3)	0.05	0.32	0.18	0.07	0.01	0.06	0.17	0.33
KVComm (0.3)	0.46	0.45	0.46	0.09	0.28	0.15	0.28	0.35
Random (0.5)	0.26	0.44	0.37	0.08	0.10	0.09	0.21	0.34
KVComm (0.5)	0.57	0.81	0.57	0.27	0.32	0.51	0.36	0.35
Random (0.7)	0.57	0.82	0.62	0.20	0.34	0.30	0.28	0.35
KVComm (0.7)	0.57	0.81	0.65	0.29	0.36	0.47	0.37	0.35



410 Figure 4: Effective commu-
 411 nication with limited hyperpa-
 412 rameters.



410 Figure 5: KVComm achieves
 411 nearly the best or even outper-
 412 forms contig. chunks.



410 Figure 6: Chunks in interme-
 411 diate layers achieve the most ef-
 412 fective communication.

415 4.5 ATTENTION DISTRIBUTION ANALYSIS

417 We validate hypothesis **H2** in Section 3.2 by selecting layers with different attention importance
 418 scores for communication. We select 9 layers with different levels of attention importance scores,
 419 and test the communication performance with Llama-3.2-3B model. The results are shown in Fig-
 420 ure 7. We can find that selecting layers with higher scores can achieve better performance, while
 421 selecting layers with lower scores can diminish the performance. This validates hypothesis **H2** that
 422 layers with higher attention importance scores are more effective for communication.

423 4.6 SYSTEM EFFICIENCY

425 Mathematically, we have shown in Section 3.3 that KVComm can reduce the computation cost
 426 compared to Skyline. We validate this through experiments on the Llama-3.2-3B model pair with
 427 Tipsheets and MultiFieldQA-en datasets. We report the relative FLOPs of KVComm and Skyline
 428 over AC in Figure 8. NLD and CIPHER are not included since they require multiple decoding steps
 429 for \mathcal{M}_s , which makes the computation cost significantly higher than AC. We can find that KVComm
 430 has a significant computation advantage over Skyline, especially when selecting fewer layers for
 431 communication. This demonstrates the efficiency of our KVComm framework in enabling effective
 432 communication with reduced computational overhead by 2.5x to 6x.

In addition to FLOPs, we also report the memory consumption among methods. KVComm similarly shows a substantial memory advantage over Skyline, as the reduced number of communicated layers not only lowers computation but also alleviates memory pressure. On Tipsheets, KVComm uses 23% to 73% less memory than Skyline. KVComm This further highlights the efficiency of our KVComm framework in achieving lightweight inter-model communication. ^{R2-Q5}

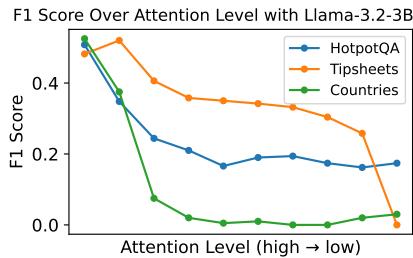


Figure 7: Better communication performance with higher attention level.

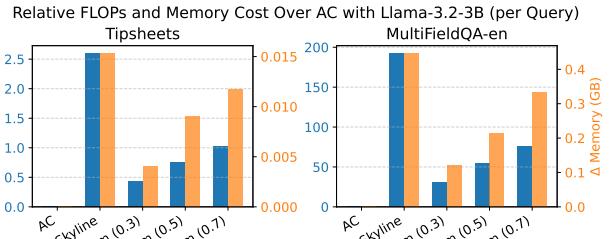


Figure 8: KVComm requires less computation and memory compared to Skyline. ^{R2-Q5}

5 RELATED WORK

LLM Inference Acceleration Lots of work has focused on accelerating LLM inference. Computation-level methods such as FlashAttention (Dao et al., 2022) and Memory-Efficient Attention (Rabe & Staats, 2021) reduce memory and speed up attention; system-level methods such as vLLM (Kwon et al., 2023) and DeepSpeed-Inference (Aminabadi et al., 2022) improve overall throughput and latency; and model-level methods such as quantization (Lin et al., 2024) and pruning (Ma et al., 2023) reduce model size and complexity. These works mainly focus on working with only one model processing a single long input with the aim of minimizing computation cost. ^{R3-Q1} These approaches are orthogonal to ours and can be combined with KVComm to further improve efficiency.

Closest to our work are methods that reuse computation across decoding steps or requests. Gao et al. (2024) introduces a hierarchical KV caching system for all requests; Gim et al. (2024) reuses prompt KV caches across queries by decomposing inputs; Liu et al. (2024c) compresses KV caches into compact bitstreams; and Yao et al. (2025) combines multiple chunks' KV caches by selectively recomputing a few tokens. In contrast, our work targets communication across different LLMs, which is more challenging due to parameter differences. Moreover, while prior methods reuse KV caches uniformly across layers, we enable selective sharing of KV caches from different layers, further improving efficiency. We do not compare with these works since they are orthogonal to ours.

DroidSpeak (Liu et al., 2024b) aims to accelerate inference for queries with shared prefixes. It reuses the partial KV cache of these prefixes among different queries. Specifically, it empirically selects a single contiguous chunk of layers and recomputes the rest with large calibration overhead, whereas our strategy flexibly selects non-contiguous layers with low overhead, without needing to recompute the remaining layers. Despite different problem settings, we compare their contiguous-chunk strategy with ours in Section 4.3, showing the advantages of our approach. ^{R1-Q2}

Ye et al. (2025) adjusts KV cache for shared content by referencing a pool of cached examples—termed anchors that store observed cache deviations under varying prefixes. Our work goes beyond this related work by: 1) enabling a different type of communication, where the receiver does not have access to the context, 2) making it possible to efficiently and selectively choose layers of KV pairs that will be transmitted, and 3) being able to work effectively across different models that are fine-tuned from one model. ^{R4-Q7}

Inter-LLM Communication Communication between multiple LLMs has been explored in several recent works. Most works focus on using natural language as the medium of communication. For example, Du et al. (2023) proposed a natural language debate framework where LLMs iteratively critique each other's answers in natural language to improve the final answer. Liang et al. (2023) followed a similar idea but introduced a judge model to manage the debate process.

486 CIPHER (Pham et al., 2023) proposed using embedding space as the medium of communication.
 487 They pass the weighted average of the token embeddings from one LLM to another. Moreover,
 488 AC (Ramesh & Li, 2025) proposed to use the last token’s hidden state as the medium of communication.
 489 They replace the last token’s hidden state of the receiver model with that of the sender
 490 model. Instead, we propose to use the KV pairs as the medium, which can preserve more information
 491 than just using the last token’s hidden state. We also propose a more effective selection strategy
 492 for choosing which KV pairs to share, which can further improve efficiency.

493 **KV Cache Optimization** Several works have explored optimizing KV caches for a single LLM
 494 by (1) compressing the KV caches to reduce memory usage (Ge et al., 2023; Liu et al., 2024a) or (2)
 495 managing the KV caches (offloading) to improve the inference speed (Lee et al., 2024; Xiong et al.,
 496 2024). As our work focuses on layer-wise selection of KV caches for communication between two
 497 LLMs, these methods are orthogonal and can be combined with our method.
 498

499 6 DISCUSSION

500 In this section, we discuss the limitations, clarify the scope of current design choices, and outline
 501 promising directions for future research. Additional discussions can be found in Appendix K.

502 **Heterogeneous Model Architectures** Our current KVComm framework assumes that both LLMs
 503 share the same base architecture, i.e., identical models or fine-tuned versions of the same base LLM.
 504 This is because KV pair structures differ substantially across model families, making direct KV ex-
 505 change undefined. This architecture dependency is a practical limitation but not a fundamental one.
 506 Future work could explore learning latent projections, adapters, or other transformation functions to
 507 enable KV exchange across heterogeneous architectures.^{R1-Q1, R2-Q1, R3-Q4, R4-Q1}
 508

509 **Multiple Sender/Receiver Extensions** While we focus on a single sender-receiver pair in this
 510 work, KVComm can be naturally extended to multiple senders and/or receivers. KVComm can
 511 integrate information from multiple senders by concatenating KV caches, and multiple receivers
 512 can independently select layers based on their own attention patterns. As shown in Appendix J, we
 513 mathematically extend our framework to multiple senders, and perform a preliminary experiment
 514 with two senders and one receiver, showing that multiple senders can improve performance due to
 515 diversified information sources. However, a systematic study of scaling behaviors in larger multi-
 516 agent networks remains future work.^{R4-Q1}
 517

518 **Context-adaptive Online Calibration** KVComm currently adopts a fixed layer-selection strat-
 519 egy after calibration for simplicity and computational efficiency, while context-adaptive selection is
 520 a promising extension. KVComm can naturally support online and dynamic selection. A demon-
 521 stration and analysis of this mechanism is provided in Appendix L.^{R2-Q2}
 522

523 **Layer Selection Priors** Given our goal of keeping the method simple, efficient, and broadly repro-
 524 ducible, we opt for the Gaussian prior. Other alternatives, such as entropy-weighted or data-driven,
 525 are promising but introduce significantly higher complexity, e.g., larger calibration sets, training a
 526 selector, or risking overfitting to a particular task distribution. Exploring more sophisticated priors
 527 is an interesting direction for future work.^{R2-Q3}
 528

530 7 CONCLUSION

531 In this work, we identified the potential of using KV pairs as an effective medium for communication
 532 between two LLMs. We proposed a novel KVComm framework that enables efficient communica-
 533 tion by selectively sharing KV pairs between LLM models. We designed a selection strategy based
 534 on attention importance scores and a Gaussian prior to select the most relevant layers. Extensive
 535 experiments on diverse datasets and model pairs demonstrated that KVComm can achieve compa-
 536 rable or even superior performance to the Skyline upper bound and other methods, while reducing
 537 communication costs by up to 3x. We highlight the generalization ability of our selection strategy,
 538 which can be effectively calibrated with only a single sample. Our work opens up new possibilities
 539 for efficient inter-LLM communication and paves the way for future research in this direction.

540 REPRODUCIBILITY STATEMENT

541

542 We provide detailed descriptions of the datasets, model pairs, and implementation details in Ap-
 543 pendix B. The code and synthetic datasets, Countries and Tipsheets, are uploaded to the supple-
 544 mentary materials for review and to facilitate reproducibility upon the publication of this work.

545

546 REFERENCES

547

548 Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Co-
 549 jocaru, Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien Launay, Quentin Malartic,
 550 et al. The falcon series of open language models. *arXiv preprint arXiv:2311.16867*, 2023.

551

552 Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li, Du Li, Elton
 553 Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley, et al. DeepSpeed-inference:
 554 enabling efficient inference of transformer models at unprecedented scale. In *SC22: International
 555 Conference for High Performance Computing, Networking, Storage and Analysis*, pp. 1–15. IEEE,
 556 2022.

557

558 Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
 559 Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilingual,
 560 multitask benchmark for long context understanding. In *Proceedings of the 62nd Annual Meet-
 561 ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 3119–3137,
 562 Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
 563 2024.acl-long.172. URL <https://aclanthology.org/2024.acl-long.172>.

564

565 Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
 566 efficient exact attention with io-awareness. *Advances in neural information processing systems*,
 567 35:16344–16359, 2022.

568

569 Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A Smith, and Matt Gardner. A dataset
 570 of information-seeking questions and answers anchored in research papers. *arXiv preprint
 571 arXiv:2105.03011*, 2021.

572

573 Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving fac-
 574 tuality and reasoning in language models through multiagent debate. In *Forty-first International
 575 Conference on Machine Learning*, 2023.

576

577 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 578 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 579 *arXiv e-prints*, pp. arXiv–2407, 2024.

580

581 Bin Gao, Zhuomin He, Puru Sharma, Qingxuan Kang, Djordje Jevdjic, Junbo Deng, Xingkun Yang,
 582 Zhou Yu, and Pengfei Zuo. {Cost-Efficient} large language model serving for multi-turn conver-
 583 sations with {CachedAttention}. In *2024 USENIX Annual Technical Conference (USENIX ATC
 584 24)*, pp. 111–126, 2024.

585

586 Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
 587 you what to discard: Adaptive kv cache compression for llms. *arXiv preprint arXiv:2310.01801*,
 588 2023.

589

590 Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
 591 key-value memories. *arXiv preprint arXiv:2012.14913*, 2020.

592

593 In Gim, Guojun Chen, Seung-seob Lee, Nikhil Sarda, Anurag Khandelwal, and Lin Zhong. Prompt
 594 cache: Modular attention reuse for low-latency inference. *Proceedings of Machine Learning and
 595 Systems*, 6:325–338, 2024.

596

597 Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. SAMSum corpus: A human-
 598 annotated dialogue dataset for abstractive summarization. In *Proceedings of the 2nd Workshop
 599 on New Frontiers in Summarization*, pp. 70–79, Hong Kong, China, November 2019. Association
 600 for Computational Linguistics. doi: 10.18653/v1/D19-5409. URL <https://www.aclweb.org/anthology/D19-5409>.

594 Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V. Chawla, Olaf Wiest,
 595 and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
 596 challenges, 2024. URL <https://arxiv.org/abs/2402.01680>.

597 Ganesh Jawahar, Benoît Sagot, and Djamel Seddah. What does bert learn about the structure of
 598 language? In *ACL 2019-57th Annual Meeting of the Association for Computational Linguistics*,
 599 2019.

600 Shuowei Jin, Xueshen Liu, Qingzhao Zhang, and Z Morley Mao. Compute or load kv cache? why
 601 not both? *arXiv preprint arXiv:2410.03065*, 2024.

603 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 604 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 605 serving with pagedattention. In *Proceedings of the 29th symposium on operating systems prin-
 606 ciples*, pp. 611–626, 2023.

608 Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. {InfiniGen}: Efficient generative
 609 inference of large language models with dynamic {KV} cache management. In *18th USENIX
 610 Symposium on Operating Systems Design and Implementation (OSDI 24)*, pp. 155–172, 2024.

611 Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Com-
 612 municative agents for “mind” exploration of large language model society. *Advances in Neural
 613 Information Processing Systems*, 36:51991–52008, 2023.

614 Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming
 615 Shi, and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-
 616 agent debate. *arXiv preprint arXiv:2305.19118*, 2023.

618 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
 619 Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
 620 for on-device llm compression and acceleration. *Proceedings of machine learning and systems*,
 621 6:87–100, 2024.

622 Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Minicache:
 623 Kv cache compression in depth dimension for large language models. *Advances in Neural Infor-
 624 mation Processing Systems*, 37:139997–140031, 2024a.

625 Yuhan Liu, Yuyang Huang, Jiayi Yao, Shaoting Feng, Zhuohan Gu, Kuntai Du, Hanchen Li, Yihua
 626 Cheng, Junchen Jiang, Shan Lu, et al. Droidspeak: Kv cache sharing for cross-llm communication
 627 and multi-llm serving. *arXiv preprint arXiv:2411.02820*, 2024b.

629 Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray, Yuyang Huang, Qizheng Zhang, Kuntai Du,
 630 Jiayi Yao, Shan Lu, Ganesh Ananthanarayanan, et al. Cachegen: Kv cache compression and
 631 streaming for fast large language model serving. In *Proceedings of the ACM SIGCOMM 2024
 632 Conference*, pp. 38–56, 2024c.

633 Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
 634 language models. *Advances in neural information processing systems*, 36:21702–21720, 2023.

636 Chau Pham, Boyi Liu, Yingxiang Yang, Zhengyu Chen, Tianyi Liu, Jianbo Yuan, Bryan A Plumer,
 637 Zhaoran Wang, and Hongxia Yang. Let models speak ciphers: Multiagent debate through
 638 embeddings. *arXiv preprint arXiv:2310.06272*, 2023.

639 Changyong Qi, Yu’ang Wei, Haoxin Xu, Longwei Zheng, Peiji Chen, and Xiaoqing Gu. Tmath
 640 a dataset for evaluating large language models in generating educational hints for math word
 641 problems. In *Proceedings of the 31st International Conference on Computational Linguistics*, pp.
 642 5082–5093, 2025.

643 Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu,
 644 and Maosong Sun. Communicative agents for software development. *arXiv preprint
 645 arXiv:2307.07924*, 6(3):1, 2023.

647 A Yang Qwen, Baosong Yang, B Zhang, B Hui, B Zheng, B Yu, Chengpeng Li, D Liu, F Huang,
 H Wei, et al. Qwen2. 5 technical report. *arXiv preprint*, 2024.

648 Markus N Rabe and Charles Staats. Self-attention does not need $O(n^2)$ memory. *arXiv preprint*
 649 *arXiv:2112.05682*, 2021.

650

651 Vignav Ramesh and Kenneth Li. Communicating activations between language model agents. *arXiv*
 652 *preprint arXiv:2501.14082*, 2025.

653 Lijun Sun, Yijun Yang, Qiqi Duan, Yuhui Shi, Chao Lyu, Yu-Cheng Chang, Chin-Teng Lin, and
 654 Yang Shen. Multi-agent coordination across diverse applications: A survey, 2025.

655

656 Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O’Sullivan, and
 657 Hoang D. Nguyen. Multi-agent collaboration mechanisms: A survey of llms, 2025.

658

659 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
 660 questions via single-hop question composition. *Transactions of the Association for Computational*
Linguistics, 10:539–554, 2022.

661

662 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 663 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
 664 von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
 665 ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art
 666 natural language processing. In *Proceedings of the 2020 Conference on Empirical Methods in*
Natural Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. As-
 667 sociation for Computational Linguistics. URL <https://www.aclweb.org/anthology/2020.emnlp-demos.6>.

668

669

670 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
 671 Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-
 672 agent conversations. In *First Conference on Language Modeling*, 2024.

673

674 Yi Xiong, Hao Wu, Changxu Shao, Ziqing Wang, Rui Zhang, Yuhong Guo, Junping Zhao,
 675 Ke Zhang, and Zhenxuan Pan. Layerkv: Optimizing large language model serving with layer-
 676 wise kv cache management. *arXiv preprint arXiv:2410.00428*, 2024.

677

678 Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming Jiang, Shaochen
 679 Zhong, Bing Yin, and Xia Hu. Harnessing the power of llms in practice: A survey on chatgpt
 680 and beyond. *ACM Trans. Knowl. Discov. Data*, 18(6), 2024a. ISSN 1556-4681. doi: 10.1145/3649506. URL <https://doi.org/10.1145/3649506>.

681

682 Joshua C Yang, Damian Dalisan, Marcin Korecki, Carina I Hausladen, and Dirk Helbing. Llm
 683 voting: Human choices and ai collective decision-making. In *Proceedings of the AAAI/ACM*
Conference on AI, Ethics, and Society, volume 7, pp. 1696–1708, 2024b.

684

685 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
 686 and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
 687 answering. In *Conference on Empirical Methods in Natural Language Processing (EMNLP)*,
 2018.

688

689 Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yihua Cheng, Qizheng Zhang, Kuntai Du, Shan
 690 Lu, and Junchen Jiang. Cacheblend: Fast large language model serving for rag with cached
 691 knowledge fusion. In *Proceedings of the Twentieth European Conference on Computer Systems*,
 692 pp. 94–109, 2025.

693

694 Hancheng Ye, Zhengqi Gao, Mingyuan Ma, Qinsi Wang, Yuzhe Fu, Ming-Yu Chung, Yueqian Lin,
 695 Zhijian Liu, Jianyi Zhang, Danyang Zhuo, et al. Kvcomm: Online cross-context kv-cache com-
 696 munication for efficient llm-based multi-agent systems. *arXiv preprint arXiv:2510.12872*, 2025.

697

698

699

700

701

702 A THE USE OF LARGE LANGUAGE MODELS (LLMs)

704 Large language models, including ChatGPT, were employed to provide assistance in improving
 705 the clarity, coherence, and fluency of the manuscript. These tools were used solely for language
 706 refinement, and all scientific content and interpretations remain the responsibility of the authors.
 707

708 B EXPERIMENTAL SETUP

711 In this appendix, we provide more details about the experimental setup, including dataset details,
 712 implementation details, fine-tuned model pairs, and descriptions of compared methods.
 713

714 B.1 DATASET

716 We provide sample prompts and expected answers for the Countries and Tipsheets datasets in Ta-
 717 ble 3, which are inspired by Ramesh & Li (2025). We also provide the statistics of all datasets
 718 used in our experiments in Table 4. HotpotQA, QASPER, MuSiQuest, and TMATH datasets are
 719 randomly sampled from their original datasets to reduce the evaluation cost. [Extended results on the](#)
 720 [full datasets are provided in Appendix E](#).^{R2-S3}
 721

722 Table 3: Sample prompts and expected answers for Countries and Tipsheets datasets inspired by
 723 Ramesh & Li (2025).

724 Dataset	725 Role	726 Content
726 Countries	<i>C</i>	<i>Uma is at the Mahaffie House.</i>
	<i>Q</i>	<i>Which country is Uma located in?</i>
	Answer	<i>United States</i>
729 Tipsheets	<i>C</i>	<i>Atlas LLC is under pressure amid softer trends; EPS -17%; won a sizable customer contract but faces a lawsuit. Sable LLC shows clear momentum and improving execution; authorized a buyback but reported a cyber incident. Trace LLC looks balanced with a mixed near-term setup.</i>
	<i>Q</i>	<i>You must invest in exactly one company from Atlas LLC, Sable LLC, Trace LLC. Which do you choose?</i>
	Answer	<i>Sable LLC</i>

735
 736 Table 4: Statistics of the datasets in our experiments.
 737

739 Dataset	740 Size
Countries	200
Tipsheets	500
HotpotQA (Yang et al., 2018)	500
QASPER (Dasigi et al., 2021)	500
MuSiQuest (Trivedi et al., 2022)	500
MultiFieldQA-en (Bai et al., 2024)	150
2WikiMQA (Bai et al., 2024)	200
TMATH (Qi et al., 2025)	300

748 B.2 IMPLEMENTATION DETAILS

750 We implement our KVComm framework based on the Hugging Face Transformers library (Wolf
 751 et al., 2020), and models are loaded in bfloat16 precision. We set the hyperparameters of our selec-
 752 tion strategy as $\mu = L/2$, and $\sigma = 10$, where L is the total number of layers in the model. For NLD
 753 and CIPHER methods, we set the number of debate rounds to 2, and the maximum generation length
 754 to 256 in the debate process. For KVComm, α is set to 1 for Llama family models, and 0.8 for Qwen
 755 and Falcon family models. These values are obtained by validating on a left-out set. All experiments
 are conducted on a cluster of nodes, each equipped with an Intel®Xeon®Platinum 8358 Processor

756 @ 2.60 GHz and 4 NVIDIA A100 GPUs with 64 GB memory. We obtain the FLOPs with PyTorch
 757 Profiler².
 758

759 B.3 MODEL PAIRS 760

761 We conduct experiments on eight different model pairs, shown in Table 5. The first four pairs consist
 762 of the same LLMs, while the last four pairs consist of models that are fine-tuned on the same base
 763 LLM.

764 Table 5: Model pairs in the evaluation. \mathcal{M}_s is the sender model, and \mathcal{M}_r is the receiver model.
 765

766 Index	767 \mathcal{M}_s	768 \mathcal{M}_r	769 Note
1	meta-llama/Llama-3.1-8B-Instruct	meta-llama/Llama-3.1-8B-Instruct	Same model
2	meta-llama/Llama-3.2-3B-Instruct	meta-llama/Llama-3.2-3B-Instruct	Same model
3	Qwen/Qwen2.5-7B-Instruct	Qwen/Qwen2.5-7B-Instruct	Same model
4	tiuae/Falcon3-7B-Instruct	tiuae/Falcon3-7B-Instruct	Same model
5	yuvraj17/EvoLCodeLlama-3.1-8B-Instruct	Team-ACE/ToolACE-2-Llama-3.1-8B	Fine-tuned on 1
6	huihui-ai/Llama-3.2-3B-Instruct-abliterated	suayptalha/DeepSeek-R1-Distill-Llama-3B	Fine-tuned on 2
7	Orion-zhen/Qwen2.5-7B-Instruct-Uncensored	bespokelabs/Bespoke-Stratos-7B	Fine-tuned on 3
8	ehristoforou/falcon3-ultraret	huihui-ai/Falcon3-7B-Instruct-abliterated	Fine-tuned on 4
9	arcee-ai/Llama-3.1-SuperNova-Lite ^{R4-Q6}	deepseek-ai/DeepSeek-R1-Distill-Llama-8B ^{R4-Q6}	Fine-tuned on 1

774 B.4 COMPARED METHOD DESCRIPTIONS 775

776 We compare our proposed KVComm framework with the following methods:
 777

- 779 • **Baseline**: \mathcal{M}_r processes the query Q *without* any communication from \mathcal{M}_s .
 780
- 781 • **Skyline**: \mathcal{M}_r directly processes the concatenation of the context C and query Q . This
 782 serves as an upper bound for performance.
- 783 • **Natural Language Debate (NLD)** (Du et al., 2023): Each model generates an initial
 784 answer, and then they iteratively critique each other’s answers in natural language for a fixed
 785 number of rounds. Finally, one model produces the final answer based on the entire debate
 786 history. **Compared to the original debate style setting, we use an information-transfer style,**
 787 **which explicitly prompts \mathcal{M}_s that it has to summarize the context C in its initial answer.**
 788 **We set the number of debate rounds to 2.**^{R3-Q3}
- 789 • **CIPHER** (Pham et al., 2023): Similar to NLD, but instead of communicating in natural
 790 language, the models communicate by passing the weighted average of the token embed-
 791 dings from one LLM to another. We use the same prompt as NLD, and set the number of
 792 debate rounds to 2.
- 793 • **AC** (Ramesh & Li, 2025): Communicate with the last token’s hidden state. Replace the last
 794 token’s hidden state of \mathcal{M}_r with that of \mathcal{M}_s . We also test with mean and sum operations.

795 C TOKEN IMPORTANCE AT DIFFERENT POSITIONS

796 We add more details and experiments related to Section 2.2.1 in this appendix.
 797

800 C.1 DETAILED EXPERIMENT PROCEDURE^{R3-Q2} 801

802 We provide a detailed description of the experiment procedure in Section 2.2.1. Considering a model
 803 \mathcal{M} with L layers, given an input X with N tokens, we run a partial forward pass until layer l to
 804 obtain the hidden states $\{\mathbf{h}_i^l\}_{i=1}^N$. Then, given a specific token position k , if we perform the **Retain**
 805 operation, we create a modified set of hidden states $\{\tilde{\mathbf{h}}_i^l\}_{i=1}^N$ as follows:

$$\tilde{\mathbf{h}}_i^l = \begin{cases} \mathbf{h}_i^l, & \text{if } i = k \\ \mathbf{0}, & \text{otherwise} \end{cases}$$

806
 807 ²<https://docs.pytorch.org/docs/stable/profiler.html>
 808
 809

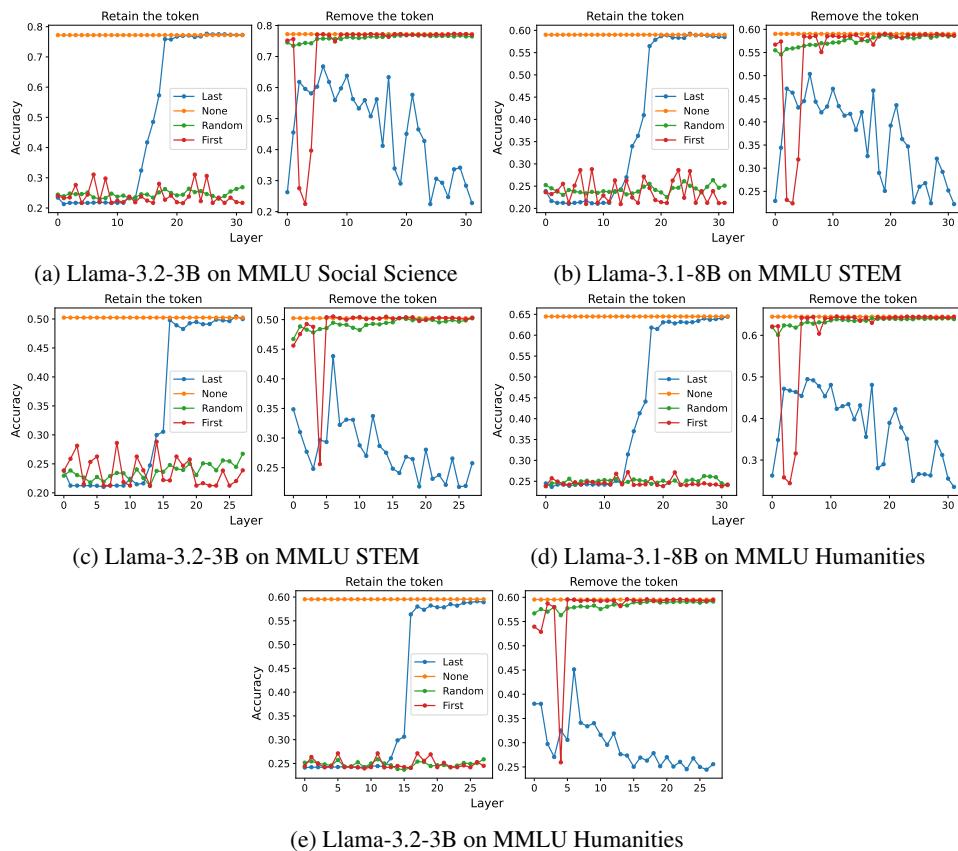
810 If we perform the **Remove** operation, we create the modified set of hidden states $\{\tilde{\mathbf{h}}_i^l\}_{i=1}^N$ as follows:
 811

$$\tilde{\mathbf{h}}_i^l = \begin{cases} \mathbf{0}, & \text{if } i = k \\ \mathbf{h}_i^l, & \text{otherwise} \end{cases}$$

814 We then continue the forward pass from layer $l + 1$ to layer L using the modified hidden states
 815 $\{\tilde{\mathbf{h}}_i^l\}_{i=1}^N$ as input, and obtain the final output of the model. We evaluate the model’s performance on
 816 the task with different token positions k and layer l .
 817

818 C.2 MORE EXPERIMENTS ON TOKEN IMPORTANCE

820 We conduct the same experiment as in Section 2.2.1 on other datasets and models to investigate the
 821 effect of tokens at different positions in the sequence on the model’s output. We report the results on
 822 MMLU Social Science, MMLU STEM, and MMLU Humanities using Llama-3.1-8B and Llama-
 823 3.2-3B models in Figure 9. We can see that the last token’s hidden state plays the most critical role
 824 in the latter layers, which is consistent with the observation in Section 2.2.1.
 825



852 Figure 9: Effect of removing or retaining a token’s hidden state across different positions on MMLU
 853 Social Science, MMLU STEM, and MMLU Humanities accuracy using Llama-3.1-8B and Llama-
 854 3.2-3B models.
 855

856 D UTILIZING ALL TOKENS

859 We add more details and experiments related to Section 2.2.2 in this appendix.
 860

861 D.1 DETAILED EXPERIMENT PROCEDURE^{R3-Q2, R4-Q3}

863 We provide a detailed description of the experiment procedure in Section 2.2.2. Considering two
 864 models \mathcal{M}_s and \mathcal{M}_r , each with L layers, given C and Q as input, we run a partial forward pass

of \mathcal{M}_s until layer k to obtain the hidden state $\mathbf{H}_k^s \in \mathbb{R}^{|C| \times d}$ for all tokens in C , where $|C|$ is the number of tokens in C , and d is the hidden dimension. Another partial forward pass of \mathcal{M}_r is run until layer j to obtain the hidden state $\mathbf{H}_j^r \in \mathbb{R}^{|Q| \times d}$ for all tokens in Q , where $|Q|$ is the number of tokens in Q . We then modify the hidden states of \mathcal{M}_r at layer j by prepending the hidden states from \mathcal{M}_s at layer k as follows:

$$\tilde{\mathbf{H}}_j^r = \begin{bmatrix} \mathbf{H}_k^s \\ \mathbf{H}_j^r \end{bmatrix}$$

We continue the forward pass from layer $j + 1$ to layer L using the modified hidden states $\tilde{\mathbf{H}}_j^r$ as input, and obtain the final output of the model. We evaluate the model's performance on the task with different layers k and j .

D.2 MORE EXPERIMENTS ON UTILIZING ALL TOKENS

We conduct the same experiment as in Section 2.2.2 on Countries, Tipsheets, and HotpotQA datasets using Llama-3.1-8B, Llama-3.2-3B, and Qwen2.5-7B models. The results are shown in Figure 10. We can see the results are consistent with the observation in Section 2.2.2.

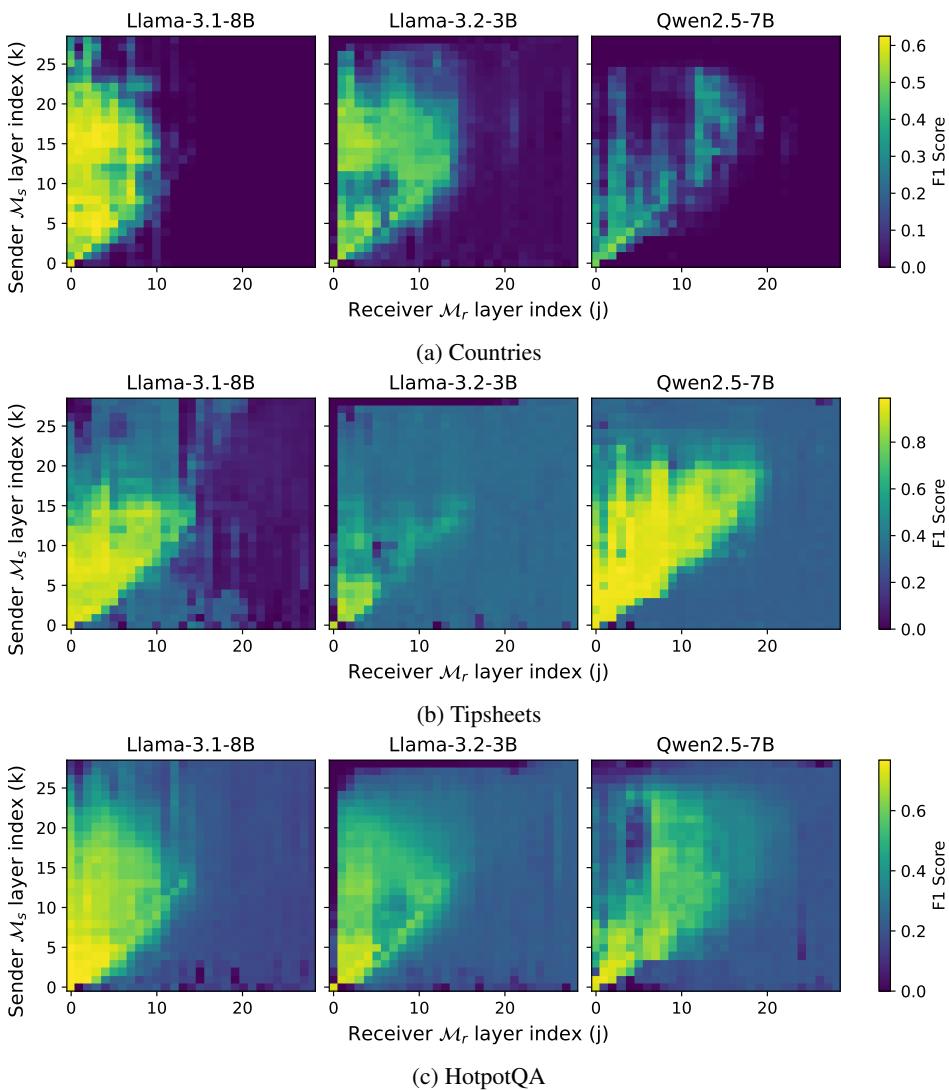


Figure 10: Performance heatmap of prepending the hidden states from certain layers of \mathcal{M}_s to certain layers of \mathcal{M}_r on Countries, Tipsheets, and HotpotQA.

918 E EXPERIMENT RESULTS WITH EXTENDED DATASETS

920 To further validate the effectiveness of our KVComm framework, we conduct experiments on the full
 921 datasets of HotpotQA, QASPER, MuSiQuest, mainly HotpotQA-E, QASPER-E, and MuSiQuest-E.
 922 Moreover, we include a new human-created summarization dataset, SAMSum, which represents a
 923 different task type. The statistics of these datasets are shown in Table 7. We report the results on
 924 these extended datasets in Table 6. The results show similar trends as in Section 4.2, demonstrating
 925 the robustness of our KVComm framework across different datasets and tasks.^{R2-S3}

926 Table 6: Communication results on extended communication tasks. The best results in each block
 927 are in **bold**, and the second best results are underlined.^{R2-S3}

929 Method	930 HotpotQA-E	931 QASPER-E	932 MuSiQuest-E	933 SAMSum
\mathcal{M}_s : huihui-ai/Llama-3.2-3B-Instruct- <u>abliterated</u> ;				
\mathcal{M}_r : suayptalha/DeepSeek-R1-Distill-Llama-3B				
932 Baseline	0.22	0.03	0.06	0.26
933 Skyline	0.77	0.52	0.25	0.33
934 NLD	0.45	0.10	0.18	0.28
935 CIPHER	0.51	0.10	0.20	<u>0.28</u>
936 AC (mean)	0.24	0.03	0.06	<u>0.26</u>
937 AC (replace)	0.06	0.00	0.01	0.26
938 AC (sum)	0.23	0.03	0.06	0.26
939 KVComm (0.3)	0.44	0.25	0.11	0.25
KVComm (0.5)	<u>0.61</u>	<u>0.36</u>	0.25	0.28
KVComm (0.7)	0.71	0.38	<u>0.30</u>	0.29
\mathcal{M}_s : Orion-zhen/Qwen2.5-7B-Instruct-Uncensored;				
\mathcal{M}_r : bespokelabs/Bespoke-Stratos-7B				
942 Baseline	0.15	0.04	0.06	0.25
943 Skyline	0.58	0.27	0.10	0.35
944 NLD	<u>0.24</u>	0.02	0.07	0.28
945 CIPHER	0.04	0.01	0.02	0.37
946 AC (mean)	0.03	0.00	0.00	0.01
947 AC (replace)	0.00	0.00	0.00	0.00
948 AC (sum)	0.03	0.00	0.00	0.04
KVComm (0.3)	0.02	0.00	0.01	0.18
KVComm (0.5)	0.21	0.14	<u>0.08</u>	0.30
KVComm (0.7)	0.40	<u>0.34</u>	0.21	<u>0.35</u>
\mathcal{M}_s : Orion-ehristoforu/falcon3-ultraset;				
\mathcal{M}_r : huihui-ai/Falcon3-7B-Instruct- <u>abliterated</u>				
951 Baseline	0.21	0.06	0.06	0.27
952 Skyline	0.78	0.60	0.33	0.36
953 NLD	<u>0.52</u>	0.10	0.28	0.28
954 CIPHER	0.28	0.03	0.09	0.17
955 AC (mean)	0.24	0.06	0.07	0.26
956 AC (replace)	0.12	0.02	0.01	0.26
957 AC (sum)	0.23	0.05	0.06	0.26
958 KVComm (0.3)	0.59	0.15	0.40	0.28
KVComm (0.5)	0.59	<u>0.22</u>	0.46	0.31
KVComm (0.7)	0.59	0.26	<u>0.36</u>	0.32

959
 960 Table 7: Statistics of extended datasets.^{R2-S3}

962 Dataset	963 Size
963 HotpotQA-E (Yang et al., 2018)	7,405
964 QASPER-E (Dasigi et al., 2021)	1,726
965 MuSiQuest-E (Trivedi et al., 2022)	2,417
966 SAMSum (Gliwa et al., 2019)	819

968 F MORE COMMUNICATION RESULTS

969 We provide more communication results on different model pairs in Table 8, which show similar
 970 trends as in Section 4.2.

972 Table 8: More communication results of different methods. Best results are **bolded**, second best
 973 underlined (excluding Baseline and Skyline). We report \mathcal{M}_r for Baseline and Skyline for fairness.
 974 **KVComm (0.3/0.5/0.7)** denotes selecting 30%/50%/70% of layers' KV pairs for communication,
 975 i.e., $M = \lceil 0.3L \rceil$, $M = \lceil 0.5L \rceil$, $M = \lceil 0.7L \rceil$. R3-Q3, R4-Q6

Method	Countries	Tipsheets	HotpotQA	QASPER	MuSiQuest	MultiField-QA-en	2WikiM-QA	TMATH
\mathcal{M}_s : meta-llama/Llama-3.1-8B-Instruct; \mathcal{M}_r : meta-llama/Llama-3.1-8B-Instruct								
Baseline	0.00	0.05	0.19	0.02	0.01	0.07	0.06	0.35
Skyline	0.62	0.92	0.74	0.35	0.54	0.56	0.52	0.36
NLD	0.58	0.87	0.52	0.13	0.25	0.17	0.10	0.36
CIPHER	0.57	0.84	0.57	0.13	0.25	0.15	0.10	0.36
AC (mean)	0.00	0.12	0.19	0.02	0.01	0.08	0.03	0.35
AC (replace)	0.00	0.36	0.15	0.02	0.01	0.07	0.05	0.35
AC (sum)	0.00	0.09	0.20	0.02	0.01	0.09	0.04	0.35
KVComm (0.3)	<u>0.51</u>	0.93	0.33	<u>0.07</u>	0.11	0.21	0.29	<u>0.37</u>
KVComm (0.5)	0.62	0.95	<u>0.60</u>	0.29	0.34	0.50	0.37	0.37
KVComm (0.7)	0.62	0.96	0.69	0.29	0.39	0.53	0.38	0.38
\mathcal{M}_s : meta-llama/Llama-3.2-3B-Instruct; \mathcal{M}_r : meta-llama/Llama-3.2-3B-Instruct								
Baseline	0.02	0.01	0.16	0.00	0.02	0.10	0.09	0.35
Skyline	0.56	0.87	0.72	0.23	0.45	0.45	0.37	0.38
NLD	0.51	0.71	0.49	0.09	0.18	0.11	0.07	0.34
CIPHER	0.45	0.73	0.46	0.08	0.17	0.09	0.07	0.33
AC (mean)	0.00	0.07	0.18	0.01	0.02	0.09	0.06	0.35
AC (replace)	0.01	0.37	0.13	0.01	0.02	0.06	0.03	0.34
AC (sum)	0.00	0.34	0.20	0.02	0.02	0.10	0.07	0.34
KVComm (0.3)	0.51	0.48	0.47	0.10	0.20	0.17	0.28	0.35
KVComm (0.5)	<u>0.55</u>	0.79	<u>0.58</u>	0.24	0.27	0.47	0.35	0.36
KVComm (0.7)	0.57	0.80	0.65	0.27	0.29	0.48	<u>0.31</u>	<u>0.37</u>
\mathcal{M}_s : Qwen/Qwen2.5-7B-Instruct; \mathcal{M}_r : Qwen/Qwen2.5-7B-Instruct								
Baseline	0.00	0.32	0.19	0.05	0.03	0.06	0.17	0.32
Skyline	0.54	0.97	0.68	0.30	0.48	0.49	0.45	0.33
NLD	0.18	0.86	0.37	0.09	0.11	0.11	0.19	0.30
CIPHER	0.18	0.87	0.34	0.07	0.10	0.11	0.16	0.31
AC (mean)	0.00	0.37	0.15	0.01	0.02	0.10	0.20	0.33
AC (replace)	0.00	0.35	0.02	0.00	0.00	0.10	0.09	<u>0.32</u>
AC (sum)	0.00	0.41	0.14	0.02	0.02	0.08	0.17	<u>0.32</u>
KVComm (0.3)	0.04	0.31	0.06	0.02	0.01	0.19	0.19	<u>0.32</u>
KVComm (0.5)	0.57	0.92	0.49	0.18	0.20	0.40	0.25	0.32
KVComm (0.7)	<u>0.56</u>	0.98	0.72	0.29	0.48	0.45	0.35	0.33
\mathcal{M}_s : tiuae/Falcon3-7B-Instruct; \mathcal{M}_r : tiuae/Falcon3-7B-Instruct								
Baseline	0.06	0.33	0.19	0.04	0.04	0.09	0.21	0.31
Skyline	0.57	0.95	0.70	0.24	0.50	0.49	0.48	0.35
NLD	<u>0.38</u>	0.71	0.44	0.07	0.19	0.13	0.24	0.20
CIPHER	0.47	0.63	0.41	0.03	0.19	0.09	0.21	0.21
AC (mean)	0.03	0.51	0.22	0.04	0.04	0.09	0.22	0.32
AC (replace)	0.00	0.57	0.09	0.00	0.02	0.12	0.14	<u>0.31</u>
AC (sum)	0.04	0.51	0.22	0.04	0.03	0.09	0.22	0.32
KVComm (0.3)	0.06	0.67	0.41	0.12	0.22	0.41	0.23	<u>0.32</u>
KVComm (0.5)	0.16	<u>0.94</u>	<u>0.52</u>	0.22	0.33	0.47	0.33	0.32
KVComm (0.7)	0.23	0.96	0.54	0.22	<u>0.32</u>	0.47	<u>0.29</u>	0.32
\mathcal{M}_s : yuvraj17/EvolCodeLlama-3.1-8B-Instruct; \mathcal{M}_r : Team-ACE/ToolACE-2-Llama-3.1-8B								
Baseline	0.00	0.07	0.04	0.00	0.01	0.08	0.01	0.34
Skyline	0.24	0.95	0.37	0.17	0.15	0.51	0.25	0.39
NLD	0.29	0.82	0.17	0.04	0.05	0.13	0.02	0.34
CIPHER	0.21	0.86	0.19	0.03	0.06	0.15	0.03	0.33
AC (mean)	0.00	0.31	0.03	0.00	0.01	0.11	0.01	0.34
AC (replace)	0.00	0.30	0.05	0.00	0.01	0.10	0.02	0.33
AC (sum)	0.00	0.27	0.04	0.00	0.01	0.09	0.01	0.34
KVComm (0.3)	0.12	0.95	0.12	0.05	0.04	0.26	0.19	<u>0.36</u>
KVComm (0.5)	0.55	0.98	<u>0.38</u>	<u>0.15</u>	<u>0.14</u>	<u>0.43</u>	<u>0.28</u>	0.38
KVComm (0.7)	<u>0.53</u>	<u>0.97</u>	0.51	0.22	0.25	0.49	0.33	0.38
\mathcal{M}_s : arcee-ai/Llama-3.1-SuperNova-Lite; \mathcal{M}_r : deepseek-ai/DeepSeek-R1-Distill-Llama-8B								
Baseline	0.07	0.30	0.11	0.01	0.03	0.09	0.16	0.23
Skyline	0.55	0.80	0.52	0.17	0.40	0.41	0.16	0.29

Continued on next page

1026

Table 8 – continued from previous page

1027

1028

Method	Countries	Tipsheets	HotpotQA	QASPER	MuSiQuest	MultiField-QA-en	2WikiM-QA	TMATH
NLD	0.30	0.39	0.20	0.02	0.06	0.08	0.19	0.22
CIPHER	0.47	0.71	0.27	0.03	0.11	0.14	0.14	0.18
AC (mean)	0.00	0.31	0.08	0.02	0.02	0.09	0.14	0.25
AC (replace)	0.00	0.39	0.04	0.01	0.00	0.16	0.16	0.28
AC (sum)	0.02	0.34	0.07	0.02	0.02	0.08	0.16	0.24
KVComm (0.3)	0.09	0.52	0.10	0.01	0.03	0.09	0.08	0.28
KVComm (0.5)	0.41	0.76	0.33	0.05	0.21	0.23	0.09	0.29
KVComm (0.7)	0.53	0.76	0.47	0.12	0.28	0.31	0.14	0.29

1035

1036

G ABLATION STUDY ON SELECTION STRATEGY

1037

1038

We conduct more ablation studies on the selection strategy by comparing with random selection and selection based on only attention importance scores. The results are shown in Table 9, which show similar trends as in Section 4.4.

1041

1042

Table 9: More comparison results with random selection. Best results for each selection ratio are **bolded**.

1043

1044

Method	Countries	Tipsheets	HotpotQA	QASPER	MuSiQuest	MultiField-QA-en	2WikiM-QA	TMATH
\mathcal{M}_s : meta-llama/Llama-3.1-8B-Instruct; \mathcal{M}_r : meta-llama/Llama-3.1-8B-Instruct								
Random (0.3)	0.02	0.35	0.24	0.07	0.04	0.07	0.12	0.35
KVComm (0.3)	0.51	0.93	0.33	0.07	0.11	0.21	0.29	0.37
Random (0.5)	0.49	0.76	0.58	0.15	0.29	0.29	0.27	0.36
KVComm (0.5)	0.62	0.95	0.60	0.29	0.34	0.50	0.37	0.37
Random (0.7)	0.63	0.88	0.76	0.32	0.49	0.52	0.34	0.37
KVComm (0.7)	0.62	0.96	0.69	0.29	0.39	0.53	0.38	0.38
\mathcal{M}_s : Orion-zhen/Qwen2.5-7B-Instruct-Uncensored; \mathcal{M}_r : bespokelabs/Bespoke-Stratos-7B								
Random (0.3)	0.00	0.09	0.00	0.00	0.00	0.06	0.01	0.31
KVComm (0.3)	0.04	0.26	0.02	0.01	0.01	0.09	0.08	0.31
Random (0.5)	0.12	0.32	0.06	0.00	0.03	0.15	0.04	0.33
KVComm (0.5)	0.19	0.88	0.28	0.07	0.12	0.26	0.10	0.33
Random (0.7)	0.16	0.76	0.14	0.03	0.02	0.20	0.04	0.34
KVComm (0.7)	0.41	0.89	0.41	0.21	0.25	0.29	0.15	0.34
\mathcal{M}_s : christoforou/falcon3-ultraset; \mathcal{M}_r : huihui-ai/Falcon3-7B-Instruct-obliterated								
Random (0.3)	0.35	0.36	0.23	0.06	0.07	0.14	0.24	0.31
KVComm (0.3)	0.46	0.69	0.59	0.19	0.40	0.35	0.29	0.32
Random (0.5)	0.23	0.42	0.27	0.09	0.08	0.15	0.28	0.31
KVComm (0.5)	0.40	0.92	0.63	0.25	0.44	0.45	0.34	0.35
Random (0.7)	0.18	0.94	0.51	0.23	0.35	0.47	0.30	0.34
KVComm (0.7)	0.19	0.96	0.55	0.26	0.42	0.51	0.31	0.36
\mathcal{M}_s : meta-llama/Llama-3.2-3B-Instruct; \mathcal{M}_r : meta-llama/Llama-3.2-3B-Instruct								
Random (0.3)	0.02	0.29	0.11	0.06	0.02	0.07	0.16	0.34
KVComm (0.3)	0.51	0.48	0.47	0.10	0.20	0.17	0.28	0.35
Random (0.5)	0.28	0.44	0.30	0.06	0.06	0.06	0.19	0.35
KVComm (0.5)	0.55	0.79	0.58	0.24	0.27	0.47	0.35	0.36
Random (0.7)	0.54	0.81	0.62	0.21	0.30	0.30	0.26	0.36
KVComm (0.7)	0.57	0.80	0.65	0.27	0.29	0.48	0.31	0.37
\mathcal{M}_s : Qwen/Qwen2.5-7B-Instruct; \mathcal{M}_r : Qwen/Qwen2.5-7B-Instruct								
Random (0.3)	0.00	0.34	0.05	0.00	0.00	0.08	0.10	0.30
KVComm (0.3)	0.04	0.31	0.06	0.02	0.01	0.19	0.19	0.32
Random (0.5)	0.00	0.32	0.10	0.02	0.02	0.10	0.16	0.32
KVComm (0.5)	0.57	0.92	0.49	0.18	0.20	0.40	0.25	0.32
Random (0.7)	0.41	0.71	0.28	0.04	0.04	0.21	0.17	0.32
KVComm (0.7)	0.56	0.98	0.72	0.29	0.48	0.45	0.35	0.33
\mathcal{M}_s : tiuae/Falcon3-7B-Instruct; \mathcal{M}_r : tiuae/Falcon3-7B-Instruct								
Random (0.3)	0.01	0.35	0.18	0.04	0.03	0.12	0.21	0.30
KVComm (0.3)	0.06	0.67	0.41	0.12	0.22	0.41	0.23	0.32
Random (0.5)	0.04	0.41	0.24	0.03	0.05	0.16	0.24	0.31
KVComm (0.5)	0.16	0.94	0.52	0.22	0.33	0.47	0.33	0.32

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Continued on next page

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Table 9 – continued from previous page

Method	Countries	Tipsheets	HotpotQA	QASPER	MuSiQuest	MultiField-QA-en	2WikiM-QA	TMATH
Random (0.7)	0.19	0.95	0.51	0.20	0.29	0.42	0.26	0.32
KVComm (0.7)	0.23	0.96	0.54	0.22	0.32	0.47	0.29	0.32
$\mathcal{M}_s: \text{yuvraj17/EvolCodeLlama-3.1-8B-Instruct}$; $\mathcal{M}_r: \text{Team-ACE/ToolACE-2-Llama-3.1-8B}$								
Random (0.3)	0.00	0.34	0.06	0.00	0.01	0.13	0.03	0.34
KVComm (0.3)	0.12	0.95	0.12	0.05	0.04	0.26	0.19	0.36
Random (0.5)	0.03	0.79	0.29	0.06	0.09	0.32	0.16	0.35
KVComm (0.5)	0.55	0.98	0.38	0.15	0.14	0.43	0.28	0.38
Random (0.7)	0.37	0.85	0.59	0.21	0.27	0.47	0.33	0.36
KVComm (0.7)	0.53	0.97	0.51	0.22	0.25	0.49	0.33	0.38

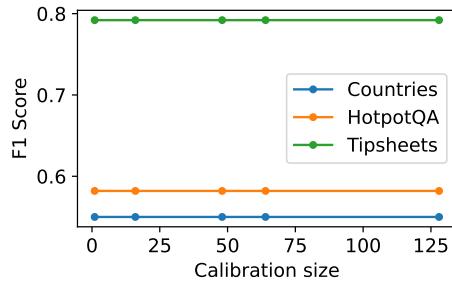


Figure 11: Effect of calibration set size. Calibration set size does not significantly affect the test performance.

We investigate how many samples are needed in the calibration set so that the selection strategy can generalize well to the test set. If a smaller calibration set can achieve good performance on the test set, it would be more practical since it would require less cost to obtain the selected layers. We conduct the experiment on Countries, Tipsheets, and HotpotQA datasets using the Llama-3.2-3B model. As the results in Figure 11 show, we can see that using only one sample in the calibration set can already achieve the same performance as using more samples (up to 128 samples). This suggests that our selection strategy can generalize well to the test set even with a very small calibration set. In all other experiments in the paper, we use one sample in the calibration set.

I IMPACT OF TRANSMITTED TOKEN LENGTH ON NLD

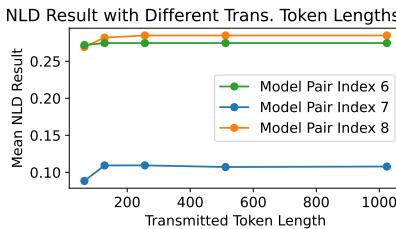
Transmitted token length is an important factor affecting the performance of natural language-based communication methods like NLD, which refers to the maximum number of tokens generated by the sender model to communicate with the receiver model. To investigate the impact of transmitted token length on NLD, we conduct experiments on HotpotQA, MultiFieldQA-en, and 2WikiMQA datasets with different transmitted token lengths ranging from 64 to 1024 tokens. The results are shown in Figure 12. We can see that as the transmitted token length increases from 64 to 128, the performance of NLD improves. However, as the transmitted token length continues to increase beyond 128 tokens, the performance gains become marginal. This suggests that there is a moderate transmitted token length (e.g., 128 tokens) is sufficient without incurring excessive communication overhead. In our main experiments, we set the transmitted token length to 256 tokens for NLD to ensure a fair comparison with other methods.^{R3-Q3}

J MULTI-SOURCE KVCOMM

J.1 EXTENDING KVCOMM TO MULTIPLE SOURCES

KVComm can be naturally extended to multiple sources by integrating the KV pairs from different sender models. Mathematically, if we have N_s sender models $\mathcal{M}_{s_1}, \mathcal{M}_{s_2}, \dots, \mathcal{M}_{s_{N_s}}$ and one receiver model \mathcal{M}_r , each sender \mathcal{M}_{s_i} processes the context C_i and generates its own KV pairs $\{(\mathbf{k}_{s_i}^l, \mathbf{v}_{s_i}^l)\}$ at each layer l . The receiver \mathcal{M}_r can then receive the KV pairs from all senders and use them to compute the attention scores. The

1134
1135
1136
1137
1138
1139
1140
1141
1142



1143 Figure 12: Effect of transmitted token length on NLD. A moderate length is sufficient for NLD.^{R3-Q3}

1144
1145
1146

attention scores can be computed as follows:^{R4-Q1}

$$1147 \hat{S}_a^l = \frac{1}{HT} \sum_{h=1}^H \sum_{t=1}^T \sum_{i=1}^{N_s} \sum_{c=1}^{|C_i|} a_{h,t,i,c}^l,$$

$$1148$$

$$1149$$

1150 where $|C_i|$ is the number of tokens in the context C_i , and $a_{h,t,i,c}^l$ is the attention weight assigned by head h at
1151 layer l from token t to the context token c of sender \mathcal{M}_{s_i} . The attention scores \hat{S}_a^l are then integrated with the
1152 Gaussian prior to compute the selection scores.^{R4-Q1}

1153 Given the selection scores, a subset of KV pairs $\{(\mathbf{k}_{s_i}^{l_j}, \mathbf{v}_{s_i}^{l_j})\}$ can be selected from each sender model \mathcal{M}_{s_i}
1154 at each layer l_j . The selected KV pairs are concatenated to form the final KV pairs for the receiver model
1155 \mathcal{M}_r .^{R4-Q1}

1156

$$1157 \mathbf{k}_r^l \leftarrow [\mathbf{k}_{s_1}^{l_j}; \mathbf{k}_{s_2}^{l_j}; \dots; \mathbf{k}_{s_{N_s}}^{l_j}; \mathbf{k}_r^l],$$

$$1158 \mathbf{v}_r^l \leftarrow [\mathbf{v}_{s_1}^{l_j}; \mathbf{v}_{s_2}^{l_j}; \dots; \mathbf{v}_{s_{N_s}}^{l_j}; \mathbf{v}_r^l].$$

$$1159$$

1160

where l corresponds to a selected layer l_j .^{R4-Q1}

1161
1162

J.2 EXPERIMENT WITH TWO SENDERS AND ONE RECEIVER

1163
1164
1165
1166
1167

We experiment with the scenario of two senders and one receiver to demonstrate the feasibility of extending KVComm to multiple sources. As shown in Table 10, we find that two senders can outperform one sender, for 17 out of 27 cases. We argue this is because of the diversification of information sources and agent thought. Owing to the usage of KV pairs, we can naturally integrate multiple sources, while NLD and CIPHER cannot, suffering performance degradation.^{R4-Q1}

1168

K ADDITIONAL DISCUSSION

1169

We have additional discussions on the details and choices of our method.

1170

Positional Embedding Coherence KVComm is designed to preserve positional coherence across all layers. For the receiver model, in each layer, we shift all its positions by $|C|$, where $|C|$ is the length of the context. For selected layers, we concatenate the KV pairs of the sender at positions $[0, |C|]$, and the KV pairs of the receiver follow at positions $[|C|, |C| + |Q|]$. For non-selected layers, positions $[0, |C|]$ are left empty (unattended), but the KV of the receiver still starts at position $|C|$. This approach ensures that all layers share a consistent positional frame, so the attention mechanism sees the same offsets at every depth, avoiding positional drift across layers. We perform an ablation study to validate this design in Appendix M.^{R2-Q4}

1171

Communication Cost Under the scenario where agents are connected with high-bandwidth links, the communication cost is relatively low compared to recomputation cost (Jin et al., 2024; Liu et al., 2024c). KVComm is more preferred when the information exchange volume is large (e.g., long contexts) and the communication bandwidth is sufficient. In scenarios with limited bandwidth, further compression of KV pairs or more aggressive layer selection may be necessary, which we leave for future work.^{R3-Q1}

1172

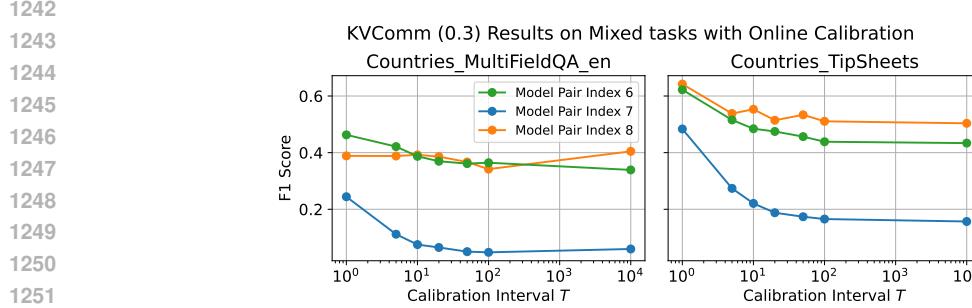
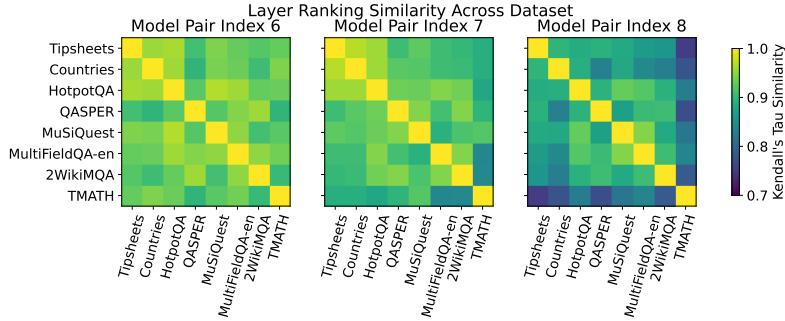
L CONTEXT-ADAPTIVE ONLINE CALIBRATION

1173

A simple yet effective dynamic selection mechanism is to recompute the selected layers every T queries, where T is a hyperparameter that can be dynamically determined by server workload. We make two fully mixed

Table 10: Communication results for one sender and two senders scenarios. We **bold** the better result comparing one sender and two senders for each method. **KVComm (0.3/0.5/0.7)** denotes selecting 30%/50%/70% of layers’ KV pairs for communication, i.e., $M = \lceil 0.3L \rceil$, $M = \lceil 0.5L \rceil$, $M = \lceil 0.7L \rceil$.^{R4-Q1}

Method	Sender	HotpotQA	MuSiQuest	2WikiMQA
\mathcal{M}_{s_1} : arcee-ai/Llama-3.1-SuperNova-Lite;				
\mathcal{M}_{s_2} : yuvraj17/EvolCodeLlama-3.1-8B-Instruct;				
\mathcal{M}_r : Team-ACE/ToolACE-2-Llama-3.1-8B				
Baseline	NA	0.04	0.01	0.01
Skyline		0.37	0.15	0.25
NLD	\mathcal{M}_{s_2}	0.17	0.05	0.02
CIPHER	\mathcal{M}_{s_1} and \mathcal{M}_{s_2}	0.14	0.04	0.03
KVComm (0.3)	\mathcal{M}_{s_2}	0.19	0.06	0.03
KVComm (0.5)	\mathcal{M}_{s_1} and \mathcal{M}_{s_2}	0.16	0.05	0.03
KVComm (0.7)	\mathcal{M}_{s_2}	0.12	0.04	0.19
\mathcal{M}_{s_1} : cooperleong00/Qwen2.5-7B-Instruct-Jailbroken;				
\mathcal{M}_{s_2} : Orion-zhen/Qwen2.5-7B-Instruct-Uncensored;				
\mathcal{M}_r : bespokelabs/Bespoke-Stratos-7B				
Baseline	NA	0.13	0.03	0.09
Skyline		0.53	0.25	0.09
NLD	\mathcal{M}_{s_2}	0.16	0.04	0.02
CIPHER	\mathcal{M}_{s_1} and \mathcal{M}_{s_2}	0.18	0.06	0.02
KVComm (0.3)	\mathcal{M}_{s_2}	0.03	0.03	0.03
KVComm (0.5)	\mathcal{M}_{s_1} and \mathcal{M}_{s_2}	0.02	0.01	0.01
KVComm (0.7)	\mathcal{M}_{s_2}	0.02	0.01	0.08
\mathcal{M}_{s_1} : RedaAlami/Falcon3-7B-Instruct-Distill-DS-v1;				
\mathcal{M}_{s_2} : ehristoforu/falcon3-ultraset;				
\mathcal{M}_r : huihui-ai/Falcon3-7B-Instruct-abliterated				
Baseline	NA	0.21	0.04	0.23
Skyline		0.76	0.56	0.45
NLD	\mathcal{M}_{s_2}	0.52	0.25	0.24
CIPHER	\mathcal{M}_{s_1} and \mathcal{M}_{s_2}	0.22	0.13	0.20
KVComm (0.3)	\mathcal{M}_{s_2}	0.27	0.07	0.25
KVComm (0.5)	\mathcal{M}_{s_1} and \mathcal{M}_{s_2}	0.15	0.04	0.14
KVComm (0.7)	\mathcal{M}_{s_2}	0.59	0.40	0.29
datasets, i.e., mixing all the samples from two datasets: Countries and Tipsheets; Countries and MultiFieldQA-en. We then perform online calibration and evaluate with different calibration intervals T . As shown in Figure 13, we find the performance drops when T increases, which is consistent with intuition. ^{R2-Q2}				
Beyond periodic recomputation, more sophisticated adaptive mechanisms are also feasible. For example, the receiver model could leverage lightweight signals, such as token-level entropy, attention sparsity patterns, to trigger on-demand re-selection of informative layers. This is an exciting direction for future work, and KV-Comm provides a clean foundation for such extensions. ^{R2-Q2}				
Additionally, to illustrate how different the selected layers are for different datasets, we calculate the Kendall’s Tau similarity of layer rankings for each pair of datasets across all models. As shown in Figure 14, some tasks share quite a similar layer ranking for a given model pair, e.g., model pair index 6 shares a similar layer ranking for HotpotQA and MuSiQuest datasets. This phenomenon could guide the design of dynamic selection mechanisms in future work. ^{R2-Q2}				

Figure 13: Online calibration performance drops when the calibration interval increases. ^{R2-Q2}Figure 14: Kendall's Tau similarity of layer rankings between different datasets. ^{R2-Q2}

M POSITIONAL EMBEDDING COHERENCE

Table 11: Comparison of KVComm and KVComm-S. KVComm-S denotes shifting back the token positions of non-selected layers to 0. We bold the best results between KVComm and KVComm-S under the same settings. ^{R2-Q2}

Method	Countries	TipSheets	HotpotQA	QASPER	MuSiQuest	MultiField-QA-en	2WikiM-QA	TMATH
\mathcal{M}_s : huihui-ai/Llama-3.2-3B-Instruct-abliterated; \mathcal{M}_r : suayptalha/DeepSeek-R1-Distill-Llama-3B								
KVComm-S (0.3)	0.26	0.65	0.40	0.10	0.14	0.19	0.21	0.36
KVComm (0.3)	0.46	0.45	0.46	0.09	0.28	0.15	0.28	0.35
KVComm-S (0.5)	0.49	0.74	0.57	0.28	0.32	0.45	0.30	0.35
KVComm (0.5)	0.57	0.81	0.57	0.27	0.32	0.51	0.36	0.35
KVComm-S (0.7)	0.52	0.76	0.65	0.30	0.39	0.46	0.32	0.35
KVComm (0.7)	0.57	0.81	0.65	0.29	0.36	0.47	0.37	0.35
\mathcal{M}_s : Orion-zhen/Qwen2.5-7B-Instruct-Uncensored; \mathcal{M}_r : bespokelabs/Bespoke-Stratos-7B								
KVComm-S (0.3)	0.00	0.20	0.02	0.02	0.01	0.09	0.05	0.34
KVComm (0.3)	0.04	0.26	0.02	0.01	0.01	0.09	0.08	0.31
KVComm-S (0.5)	0.04	0.90	0.33	0.13	0.18	0.35	0.16	0.35
KVComm (0.5)	0.19	0.88	0.28	0.07	0.12	0.26	0.10	0.33
KVComm-S (0.7)	0.36	0.94	0.42	0.19	0.24	0.35	0.16	0.34
KVComm (0.7)	0.41	0.89	0.41	0.21	0.25	0.29	0.15	0.34
\mathcal{M}_s : ehrifotu/falcon3-ultraset; \mathcal{M}_r : huihui-ai/Falcon3-7B-Instruct-abliterated								
KVComm-S (0.3)	0.47	0.71	0.54	0.10	0.36	0.19	0.26	0.32
KVComm (0.3)	0.46	0.69	0.59	0.19	0.40	0.35	0.29	0.32
KVComm-S (0.5)	0.36	0.97	0.67	0.27	0.46	0.34	0.36	0.34
KVComm (0.5)	0.40	0.92	0.63	0.25	0.44	0.45	0.34	0.35
KVComm-S (0.7)	0.21	0.95	0.59	0.26	0.52	0.46	0.37	0.36
KVComm (0.7)	0.19	0.96	0.55	0.26	0.42	0.51	0.31	0.36

We quantify the importance of positional embedding coherence between the sender and receiver models. We performed an ablation experiment where, for non-selected layers, instead of shifting the receiver's tokens to

1296 position $|C|$, we place them back to position 0, creating a positional inconsistency with selected layers. As
 1297 shown in Table 11, positional inconsistency does not have a detrimental effect on performance, but overall, our
 1298 approach has merit.^{R2-Q4}

1300 N COMPLEXITY ANALYSIS DETAILS

1302 We compare the computational complexity of our KVComm framework with the Skyline method and the NLD
 1303 method. Recall that L is the total number of layers in the model, M is the number of selected layers for
 1304 communication. We use d to denote the hidden dimension of the model, and $|Q|$ and $|C|$ to denote the number
 1305 of tokens in the query and context, respectively. Suppose \mathcal{M}_r would generate T tokens in total, and the number
 1306 of generated tokens is the same across different methods. For NLD, \mathcal{M}_s and \mathcal{M}_r would each generate T_s and
 1307 T_r tokens for the initial answer, respectively.

1308 Ignoring the embedding, output layers, and other minor components, the computational complexity of prefilling
 1309 a sequence of length N with a single decoder layer is $O(Nd^2 + N^2d)$, while the complexity of decoding a
 1310 single token is $O(d^2 + (N+i)d)$, where i is the index of the generated token. Therefore, the total computational
 1311 complexity of \mathcal{M}_s to process the context C is $O(L(|C|d^2 + |C|^2d))$.

1312 The total computational complexity of KVComm consists of three parts: (1) the complexity of \mathcal{M}_s to process
 1313 the context C , which is $O(L(|C|d^2 + |C|^2d))$, (2) the complexity of \mathcal{M}_r to process the query Q with the
 1314 selected M KV pairs from \mathcal{M}_s , which is $O(L|Q|d^2 + M(|C| + |Q|)|Q|d + (L - M)|Q|^2d)$, and (3) the
 1315 complexity of \mathcal{M}_r to generate T tokens with the selected M KV pairs from \mathcal{M}_s , which is $O(T(Ld^2 +
 1316 M(|C| + |Q| + T)d + (L - M)(|Q| + T)d))$. Therefore, the total computational complexity of KVComm is:

$$1316 T(\text{KVComm}) = O(L(|C| + |Q| + T)d^2) \\ 1317 + O(L(|C|^2 + |Q|^2 + T^2 + T|Q|) + CM(|Q| + T)d)$$

1319 The computational complexity of Skyline method consists of two parts: (1) the complexity of prefilling the
 1320 concatenation of the context C and query Q , which is $O(L(|C| + |Q|)d^2 + L(|C| + |Q|)^2d)$, and (2) the
 1321 complexity of decoding T tokens, which is $O(TL(d^2 + (|C| + |Q| + T)d))$. Therefore, the total computational
 1322 complexity of the Skyline method is:

$$1323 T(\text{Skyline}) = O(L(|C| + |Q| + T)d^2) \\ 1324 + O(L(|C| + |Q|)^2 + T(|C| + |Q| + T)d)$$

1326 The margin of KVComm over Skyline is:

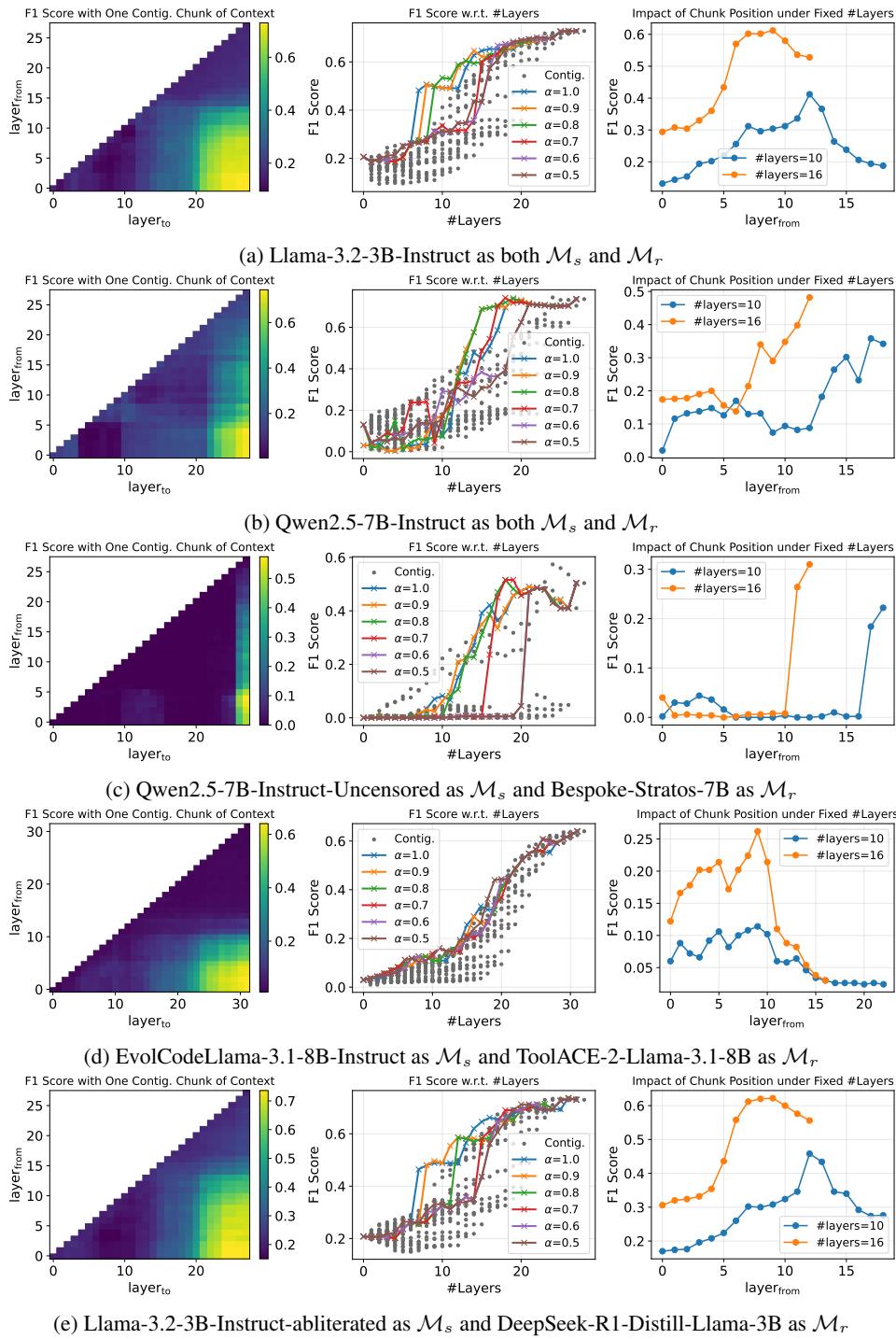
$$1328 T(\text{Skyline}) - T(\text{KVComm}) = O(|C|d(L(2|Q| + T) - M(|Q| + T)))$$

1330 For NLD, the total computational complexity consists of three parts: (1) the complexity of \mathcal{M}_s to process the
 1331 context C and generate T_s tokens, which is $O(L(|C|d^2 + |C|^2d) + T_sL(d^2 + (|C| + T_s)d))$, (2) the complexity
 1332 of \mathcal{M}_r to process the query Q and generate T_r tokens, which is $O(L(|Q|d^2 + |Q|^2d) + T_rL(d^2 + (|Q| +
 1333 T_r)d))$, and (3) the complexity of \mathcal{M}_r to process the entire debate history and generate T tokens, which is
 1334 $O(L((T_s + T_r + |Q|)d^2 + (T_s + T_r + |Q|)^2d) + TL(d^2 + (T_s + T_r + |Q| + T)d))$. Therefore, the total
 1335 computational complexity of NLD is:

$$1335 T(\text{NLD}) = O(L(|C| + 2|Q| + 2T_s + 2T_r + T)d^2) \\ 1336 + O(L(|C|^2 + T_s^2 + |Q|^2 + T_r^2 + (T_s + T_r + |Q|)^2 \\ 1337 + T(T_s + T_r + T + |Q|) + T_s|C| + T_r|Q|)d)$$

1343 The margin of KVComm over NLD is:

$$1344 T(\text{NLD}) - T(\text{KVComm}) = O(L(2T_s + 2T_r + |Q|)d^2) \\ 1345 + O\left(L\left(T_s^2 + T_r^2 + (T_s + T_r + |Q|)^2\right.\right. \\ 1346 \left.\left. + T_s|C| + T_r|Q| + T(T_s + T_r)\right) - CM(|Q| + T)\right)d \\ 1347 \\ 1348 \\ 1349$$

1350 **O USING ONE CHUNK OF LAYERS**
13511352 We conduct the same experiment as in Section 4.3 on the HotpotQA dataset using other model pairs in Table 5.
1353 The results are shown in Figure 15. We can see that the results are consistent with the observation in Section 4.3.
13541399 Figure 15: Experiment results of using one chunk of layers for communication on HotpotQA dataset
1400 using different model pairs.
1401
1402
1403