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Abstract

Optimistic Online Learning algorithms have been developed to exploit expert advices as-
sumed optimistically to be always useful. However, it is legitimate to question the relevance
of such advices w.r.t. the learning information provided by gradient-based online algorithms.
We develop in this work the optimistically tempered (OT) online learning framework as
well as OT adaptations of online algorithms. Our algorithms come with sound theoretical
guarantees in the form of dynamic regret bounds and we eventually provide experimental
validation of the usefulness of the OT approach.

1 Introduction

Online learning (OL) is a paradigm in which data is processed sequentially, either because the practitionner
does not collect all data prior to analysis or because the dataset dynamically evolves through time, or simply
because handling batch of data is numerically too demanding. From the seminal work of Zinkevich (2003),
which proposed an online version of the celebrated gradient descent algorithm, OL has been at the core
of many contributions (we refer to Hazan et al., 2007; Duchi et al., 2011; Rakhlin and Sridharan, 2013a
for an overview). The classical performance criterion of an online learning algorithm is the static regret.
Given a sequence of loss functions (`t : K → R)t≥1, the static regret compares the efficiency of a sequence
of predictors µ̂ = (µ̂t)t≥1 to the best fixed strategy: S-RegretT (µ̂) =

∑T
t=1 `t(µ̂t) − infµ0∈K

∑T
t=1 `t(µ0),

T > 0. Classical upper bounds on static regret involve a sub-linear rate. For instance, Zinkevich (2003)
proposed a O(

√
T ) bound for Online Gradient Descent (OGD) which is valid for convex losses. Hazan et al.

(2007) proved a O(d log(T )) rate for the Online Newton Step (ONS) algorithm with exp-concave losses when
K ⊆ Rd.

Dynamic Regret. Static regret may not be sufficient to assert the efficiency of an online algorithm as the
class of static strategies is limited compared to all possible strategies. Hence the notion of dynamic regret
introduced by Zinkevich (2003) and further developed by Hall and Willett (2013). For any sequence µ̂ of
predictors and any sequence µ of dynamic strategies, the dynamic regret is given by

D-RegretT (µ̂, µ) =
T∑
t=1

`t(µ̂t)−
T∑
t=1

`t(µt) , T ≥ 1 .

Dynamic regret has attracted many studies recently, especially when the comparator sequence is µ∗ = (µ∗t ) =
(infµ∈K `t(µ))t≥1 (worst-case dynamic regret, as in Besbes et al., 2015; Jadbabaie et al., 2015; Yang et al.,
2016; Zhang et al., 2017; 2018b; Zhao and Zhang, 2021) but also for any comparator sequence (universal
dynamic regret, as in Zhao et al., 2020). Those works have established various upper bounds which depend on
measures of the cumulative distance between successive optima. For any horizon T ≥ 1, for any sequence µ =
(µt)t≥1, Zinkevich (2003) introduced the path length to measure this discrepancy PT (µ) =

∑T−1
t=1 ‖µt+1−µt‖.

Zhang et al. (2017) introduced the squared path length: ST (µ) =
∑T−1
t=1 ‖µt+1 − µt‖2. Finally, the function

variation has been introduced by Besbes et al. (2015): for any sequence of losses (`t)t≥1 (these are provided
by the environment),V `T (µ) =

∑T−1
t=1 supµ∈K ‖`t+1(µ) − `t(µ)‖. When using the path length1 P ∗T := PT (µ∗)

of the minimisers µ∗ = (µ∗t )t≥1, dynamic regret of OGD is at most O(
√
T (1 + P ∗T )) for convex functions

1similar definitions hold for the squared path length and the function variation.
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(Zinkevich, 2003; Yang et al., 2016). We similarly define S∗T := ST (µ∗).
For strongly convex and smooth functions, Mokhtari et al. (2016) established that the dynamic regret is
O(P ∗T ). Zhang et al. (2017) introduced the Online Multiple Gradient Descent (OMGD) and the Online
Multiple Newton Update (OMNU) which achieved a O(min(P ∗T , S∗T )) dynamic regret. Yang et al. (2016)
showed that the O(P ∗T ) rate is also reached for convex and smooth functions under the assumption that all
minimisers lie onto the interior of a convex set of interest. Besbes et al. (2015) proved a O(T 2/3(V ∗T )1/3)
dynamic regret for OGD with a restarting strategy. Finally, Baby and Wang (2019) improved the rate
to O(T 1/3(V ∗T )2/3) for 1-dimensional square loss with filtering techniques. Note that all the aforementioned
results assume implicitly access to P ∗T , S∗T , V ∗T and that a notion of universal dynamic regret has been studied
by Zhang et al. (2018a); Zhao et al. (2020; 2022) to compete with any PT (µ), ST (µ), VT (µ) rather than P ∗T ,
S∗T , V ∗T .
Optimistic online learning (O-OL). Optimistic online learning exploits, at each time step, a (possibly)
history-dependent additional information provided by an expert. Being optimistic in this context is relying
on the fact that the expert advices are relevant and can be exploited within an optimization procedure.
Optimistic online learning can be traced back to Hazan and Kale (2010); Chiang et al. (2012) and has
been further developed by Rakhlin and Sridharan (2013a;b) which introduced the celebrated Optimistic
Mirror Descent (OptMD). Those works involved static regret bound exploiting explicitly the experts’ advice.
Jadbabaie et al. (2015) bridged the gap between dynamic regret and optimistic online learning by providing
an adaptive version of OptMD allowing to obtain dynamic regret bounds for bounded convex functions.

1.1 A general class of online algorithms with expert advices.

O-OL algorithms rely on a trust in available expert advice, which is, for instance, directly incorporated in
the dual space for the OptMD algorithm. More generally, in what follows, we consider the class of gradient-
based online learning (GB-OL) algorithms with judge f whom the update phase consists in a gradient step
alongside the incorporation of additional knowledge through the judge f . With expert advice ν (being a
sequence of vectors in Rd), a GB-OL algorithm satisfies the pattern of Algorithm 1.

Algorithm 1: A GB-OL algorithm with judge f .
Parameters : Horizon T , step-sizes (ηt)
Initialisation: Initial point µ̂1 ∈ K, additional information (ν1) ∈ K

1 For t in {1, . . . , T − 1}:
2 Update µ̂temp,t+1 = µ̂t − ηt∇`t(µ̂t)
3 Observe νt+1,
4 µ̂t+1 = f(t, ν, µ̂temp,t+1)
5 Return µ̂ = (µ̂t)t=1,...,T

Recovering classical algorithms in the GB-OL framework. The role of the judge f is to determine,
at time t, how to combine the expert ν with the information provided by the gradient descent µ̂temp,t+1. The
choice of the judge depends on the confidence we have in ν. For instance, assume that νt at time t is given
by an approximation of µ∗t−1 given by multiple gradient descent steps on `t−1 (which is assumed accessible at
time t). In this case both OMGD (Zhang et al., 2017) and OGD can be seen as GB-OL algorithms. Indeed,
OMGD is a GB-OL algorithm with judge f(t, ν, µ̂temp,t+1) = νt+1. This corresponds to the case where the
judge estimates that the additional knowledge is perfectly relevant for the next prediction. OGD is a GB-OL
algorithm with judge f(t, ν, µ̂temp,t+1) = µ̂temp,t+1. This corresponds to the case where the judge estimates
that the additional knowledge is useless or adversarial and then chooses to ignore it.
Allowing different types of expert advice, OptMD can also be seen as a GB-OL algorithm when the regulari-
sation function is the squared distance. Then f is f(t, ν, µ̂temp,t+1) = µ̂temp,t+1−ηνt, where η is the gradient
step. This judge is less naive than OMGD and OGD on combining additional knowledge and gradient step
while remaining fairly confident in ν as it uses this additional knowledge in any case.
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1.2 Optimistically tempered online learning

The general framework of Sec. 1.1 allows characterizing optimistic algorithms as follows: a GB-OL algorithm
is optimistic if expert advice is considered independently of the gradient term and if the judge does not ignore
experts, this covers in particular OptMD and OMGD. However, one may wonder about the case where
experts provide information whose quality is uncertain. It is legitimate to exploit them, but only if we can
attenuate its impact if we realize that this additional knowledge is not useful. We refer to this setting as
optimistically tempered online learning (OT-OL).
In other words, the OT-OL framework aims to provide algorithms with a weaker confidence assumption on
the experts than the optimistic framework. In doing so, we aim to derive algorithms where experts can be
exploited even if one is unsure of their usefulness. OT-OL already appeared for linear losses in Bhaskara
et al. (2020) as a follow-up of Dekel et al. (2017), however, we go a step further by combining tempered
optimism with GB-OL algorithms in a general framework.
A way to fit the OT-OL framework would be to consider online model selection (e.g. Orabona, 2014;
Wintenberger, 2017). Thus, it is possible to attenuate the confidence we have in a single expert relative to
others. However, this approach requires at least two experts with non-similar advice to be efficient. Such
knowledge is not always available in practice because of prohibitive computational costs.

Contributions and outline. In this work, we investigate a different route, we propose novel gradient-
based OT-OL algorithms allowing a single expert, not necessarily trusted. Those algorithms come with
sound theoretical guarantees in the form of D-Regret bounds, while most of the existing guarantees of
online model aggregation (seen as OT-OL procedures) are S-Regret bounds. Thus, our work is in line with
Jadbabaie et al. (2015), while going beyond optimism to reach OT-OL.
Our results are based on: (i) a novel judge named Adjust (see Sec. 2) fitting the OT-OL framework which
adjusts the candidate predictor (e.g. the OGD update) with respect to the expert advice, (ii) the procedure
Construct which generates the expert advice from multiple gradient descent steps on the current loss.
This combination yields optimistically tempered (OT) versions of three classical online algorithms: Online
Gradient Descent (OGD, Zinkevich, 2003), Online Newton Step (ONS, Hazan et al., 2007) and AdaGrad
(Duchi et al., 2011). Those optimistically tempered versions allow to adapt S-Regret proofs of Hazan (2019)
to D-Regret proofs. This leads to D-Regret worst-case guarantees that hold for strongly convex losses: in
particular the losses are not necessarily smooth. This focus on non-smooth losses is novel in the dynamic
regret field and has been recently studied by Baby and Wang (2022). Note that our guarantees hold for any
expert advice satisfying technical conditions (notably satisfied by Construct but going beyond it).
More precisely, we present fully empirical D-Regret bounds for expert advice ν (detailed in Sec. 3) which
depend on PT (ν), ST (ν) instead of PT (µ∗), ST (µ∗). This is noticeable as we do not need to know the true
minimizers to reach an empirical upper bound. Our D-Regret bounds have the following form:

D-RegretT (µ̂, µ∗) ≤ f (PT (ν), ST (ν)) + g(T ).

Our main results are gathered in Thms. 3.1, 3.3 and 3.5. A key takeaway message is that we decorrelate
the impact of the time horizon T from the impact of the path lengths PT , ST . Our bounds feature a sum
of two terms: a function g(T ) and a function f(PT , ST ) combining the different paths. Those results differ
from the (optimal) state-of-the-art bound for convex functions of Zhang et al. (2018a, Theorem 4) which
is in O(

√
T (1 + PT )). Such a decoupling allows us to pin down more precisely what costs in the learning

process, be it the optimization phase or the complexity of the problem.
Furthermore, the optimistically tempered versions of OGD, ONS, and AdaGrad provably satisfy D-Regret
bounds on the loss sequence defined for any t ≥ 1: Et−1[`t] = E[`t | Ft−1] with (Ft)t≥1 a filtration adapted
to the environment and Et−1[`t]. This ensures that our predictors are robust to the randomness of the envi-
ronment. Thus, we define the Dynamic Cumulative Risk (D-C-Risk) (already introduced in Wintenberger,
2024) as follows: for any predictable2 sequences µ̂ and µ of predictors (i.e.,, µ̂t and µt are Ft−1 measurable),
we denote Lt = Et−1[`t], t ≥ 1, and D-C-RiskT (µ̂, µ) =

∑T
t=1 Lt(µ̂t)−

∑T
t=1 Lt(µt), T ≥ 1.

Our novel algorithms then satisfy dynamic cumulative risks of the following form: for any predictable se-
quences µ̂ and µ, any expert advice ν, with probability at least 1− δ,

D-C-RiskT (µ̂, µ) ≤ f(PT (ν), ST (ν)) + g(T, δ).
2in the sense that predictors only depend on the past.
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Those results, gathered in Thms. 3.2, 3.4 and 3.6, are universal in the sense that our comparators can be
any predictable sequence and pessimistic as the bound does not involve those comparators.
Finally, we perform experiments (Sec. 4) to assess our algorithm’s efficiency. In particular, we test one of
our methods (OT-OGD) on several real-life datasets to compare its performance to OGD or OMGD. The
comparison with OMGD is particularly relevant since our theoretical results, while slightly weaker than
Zhang et al. (2017); Zhao and Zhang (2021, Corollary 4), have a broader range of application, and require
weaker assumptions than those Zhang et al. (2017) and different than Zhao and Zhang (2021) (strong
convexity vs. convexity and smoothness). We also propose a toy experiment illustrating the interest of using
an OT-OL algorithm instead of OGD and OMGD involving dynamic cumulative risks: tempering the impact
of expert advice is beneficial for learning. We close this work with some additional technical background
(Appendix A), further details on motivation (Appendix B), and we defer to Appendices C and D the proofs
of the results of Sec. 3.

2 A new optimistically tempered judge

Framework. In this work (unless explicitly precised), we use the following mathematical objects and their
associated assumptions. First, the set of predictors K ⊆ Rd is a closed convex set with finite diameter D.
Second, we denote by ||.|| the Euclidean norm on Rd. Also, our loss functions (`t)t≥1 are λ-strongly convex:

∀(t, µ, µ0) ∈ N/{0} ×K2, `t(µ)− `t(µ0) ≤ 〈∇`t(µ), µ− µ0〉 − λ‖µ− µ0‖2.

Finally, all gradients are bounded by some constant G: ∀t ≥ 1, µ ∈ K, ||∇`t(µ)|| ≤ G.

The Adjust algorithm. We introduce an optimistically tempered judge (namely Adjust, Algorithm 2)
which adjusts a candidate predictor (e.g., obtained through classical OGD) with respect to expert advice.
In what follows, we consider those advice as an additional knowledge which consists in a sequence of vectors
belonging to Rd. In the OT-OL spirit, this knowledge has to be carefully infused into the algorithm. To do
so, we exploit the additional knowledge through the notion of performance.
Definition 2.1. We use the notation 〈x, y〉H := xTHy to denote the inner product associated to a positive
definite matrix H. For a sequence of additional knowledge ν = (νt)t≥0, a sequence µ̂temp = (µ̂temp,t)t≥1 ∈ KN

(the output of a classical online procedure) and for any positive definite matrix H, one defines the performance
at time t of µ̂temp with regards to ν,H as follows: we set mt := νt+1+νt

2 and

Perf(t,H, µ̂temp, ν) := 〈µ̂temp,t+1 −mt, νt+1 − νt〉H .

For more details about this notion of performance, we refer to Appendix B.

Understanding the performance. At time t, the performance exploits the expert ν through mt and
νt+1 − νt. The first term is new to the best of our knowledge while the second is similar to Rakhlin and
Sridharan (2013a). Indeed, the expert advice of Rakhlin and Sridharan (2013a) provides information on the
gradient space, and νt+1 − νt gives similar information. This point is also highlighted in Jadbabaie et al.
(2015) as their path DT focuses on the distance between additional and the gradient of their predictor.
We now state the algorithm Adjust (Algorithm 2) which takes as input µ̂temp, ν, H, t as defined in def-
inition 2.1 and outputs an updated predictor µ̂t+1. We denote by ΠK,H the projection over the closed
convex set K with respect to the distance induced by 〈., .〉H . We illustrate in Fig. 1 what Adjust concretely
performs when H = I2 and K = R2.

Fig. 1 is crucial to understand why we call Adjust an optimistically tempered judge. Indeed, the influence
of the expert advice is seen as follows: if the dynamic νt+1 − νt points in the same direction as µ̂temp,t+1
in the referential centered in mt, then Adjust considers that the expert does not provide an information
which is not contained in the gradient (included in µ̂temp,t+1 in a GB-OL algorithm) and choose then ignore
it. Otherwise, Perf(t, I, µ̂temp, ν) < 0, meaning that the expert can provide information not contained in the
gradient, it then adjusts the gradient trajectory w.r.t. the dynamic νt+1 − νt of the expert.
The mathematical translation of this analysis is that Adjust makes µ̂t+1 closer from νt+1 than νt, which
implies less confidence on the expert than directly involving νt+1. This is further developed in Lemma 2.2.
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Algorithm 2: The Adjust algorithm
Parameters : Time t, positive definite H, additional knowledge (νi)i=1..t+1, candidate µ̂temp,t+1

1 Set up mt = νt+1+νt
2 .

2 If Perf(t,H, µ̂temp, ν) < 0, then:
3 Set µ̂t+1 = arg min

µ∈K
‖2mt − µ̂temp,t+1 − µ‖2

H := ΠK,H(2mt − µ̂temp,t+1)

4 Else:
5 Set µ̂t+1 = arg min

µ∈K
‖µ̂temp,t+1 − µ‖2

H := ΠK,H(µ̂temp,t+1)

6 Return µ̂t+1

νt

νt+1

µ̂t+1 = 2mt − µ̂temp,t+1

mt

µ̂temp,t+1

Figure 1: Action of Adjust when performance is negative

Lemma 2.2. For all t ≥ 0, any positive definite H, any µ̂temp,t+1, νt+1, νt defined as in Adjust (algo-
rithm 2): we denote by ‖.‖2

H the norm associated to the scalar product 〈., .〉H .
We then have: ‖µ̂t+1 − νt+1‖2

H ≤ ‖µ̂temp,t+1 − νt‖2
H .

Proof of Lemma 2.2. First, if Perf(t+ 1, H, µ̂temp, ν) < 0, then µ̂t+1 = ΠK,H(2mt − µ̂temp,t+1) and one has:

‖µ̂t+1 − νt+1‖2
H = ‖ΠK,H(2mt − µ̂temp,t+1)− νt+1‖2

H ≤ ‖2mt − µ̂temp,t+1 − νt+1‖2
H

= ‖µ̂temp,t+1 − νt‖2
H .

The last line holding thanks to the definition of mt. Second, if Perf(t,H, µ̂temp, ν) ≥ 0, we use:

Lemma 2.3. We have ∀t > 0, ‖µ̂temp,t+1 − νt+1‖2
H = ‖µ̂temp,t+1 − νt‖2

H − 2Perf(t,H, µ̂temp, ν).

Proof of Lemma 2.3. Recall that mt = νt+1+νt
2 . We have:

‖µ̂temp,t+1 − νt+1‖2
H = ‖µ̂temp,t+1 −mt +mt − νt+1‖2

H

= ‖µ̂temp,t+1 −mt‖2
H − Perf(t,H, µ̂temp, ν) + ‖νt − νt+1‖2

H

4 .

And ‖µ̂temp,t+1 − νt‖2
H = ‖µ̂temp,t+1 −mt‖2

H + Perf(t,H, µ̂temp, ν) + ‖νt+1−νt‖2
H

4 .

Thus, ‖µ̂temp,t+1 − νt+1‖2
H = ‖µ̂temp,t+1 − νt‖2

H − 2Perf(t,H, µ̂temp, ν).

Finally, ‖µ̂t+1 − νt+1‖2
H = ‖ΠK,H(µ̂temp,t+1)− νt+1‖2

H ≤ ‖µ̂temp,t+1 − νt+1‖2
H

= ‖µ̂temp,t+1 − νt‖2
H − 2Perf(t,H, µ̂temp, ν) (by Lemma 2.3)

≤ ‖µ̂temp,t+1 − νt‖2
H .
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The last line holding because our performance is positive in this case. This concludes the proof.

Constructing additional knowledge. We formalize the following data-driven procedure to obtain ad-
ditional knowledge. We take inspiration from the OMGD algorithm (Zhang et al., 2017). We name this
procedure Construct and detail it in algorithm 3. It consists of applying K > 0 steps of the classical
gradient descent algorithm to obtain a good approximation of the last observed minimum.

Algorithm 3: The Construct algorithm.
Parameters : The number K of iterations, step-sizes (η′j)j=1..K

Current loss function `t, current point µ̂t
Initialisation: Set x0 := µ̂t

1 For j in 0..K − 1:
2 Update

xj+1 = ΠK

(
xj − η′j∇`t(xj)

)
3 Return νt+1 := 1

K

∑K
j=1 xj

We recall in Lemma 2.4 a convergence property of the gradient descent algorithm.
Lemma 2.4. Assume the considered steps (η′j) verify for all j, 1

η′
j
− λ ≤ 1

η′
j−1

. Then for any t we have,

`t(νt+1)− `t(µ∗t ) ≤ G2

K

∑K
j=1 η

′
j .

Proof is deferred to Appendix C. Remark that it is essential to consider strongly convex functions to obtain
the rate of Lemma 2.4. To satisfy the technical condition on the step sizes, we can consider the step sequence
( 1
λtα )t≥1 for any α ∈ [0, 1].

3 Main results

Outline. We present in this section three optimistically tempered variations of OGD, ONS and AdaGrad
followed by theoretical guarantees for D-Regret and D-C-Risk. Our theoretical result assumes the Con-
struct algorithm but also works for any additional knowledge satisfying technical assumptions (translating
here that the experts’ advice at time t is a good approximation of the minimum at time t− 1).
Proof technique. Proofs concerning the dynamic regret of our methods (resp. Thms. 3.1, 3.3 and 3.5 )
are gathered in Appendix C and consists in an adaptation of the static proofs of OGD, ONS, and AdaGrad
all lying in Hazan (2019). We adapt those proofs using Lemmas 2.2 and 2.4. Proofs concerning the dy-
namic cumulative risk (resp. Thms. 3.2, 3.4 and 3.6) lie in Appendix D and use the same kind of argument
incorporated within the SOCO framework of Wintenberger (2024) described in Appendix D.1.

3.1 Optimistically tempered OGD

Our variation of the OGD, called Optimistically Tempered OGD (OT-OGD), is presented in algorithm 4, it
exploits an additional information (νt)t at each time step. Its associated theoretical guarantee for D-Regret
is stated in Thm. 3.1.

Algorithm 4: Projected OT-OGD onto a closed convex space K.
Parameters : Horizon T , step-sizes (ηt)
Initialisation: Initial point µ1 ∈ K, additional information (ν1) ∈ K

1 For t in {1, . . . , T}:
2 Update µ̂temp,t+1 = µ̂t − ηt∇`t(µ̂t)
3 Observe νt+1,
4 µ̂t+1 = Adjust(t, Id, (νi)i=1..t+1, µ̂temp,t+1)
5 Return µ̂ = (µ̂t)t=0..T

6



Under review as submission to TMLR

Note that Algorithm 4 is a GB-OL algorithm with judge Adjust. This judge aims to be moderated (thus
fitting the OT-OL framework) in the sense that it chooses whether the additional knowledge is used given
the supplementary information it involves with the information provided by the gradient step.
Theorem 3.1. Denote by µ∗t = argminµ∈K `t(µ). We assume that our predictors µ̂ are obtained using OT-
OGD (Algorithm 4) with steps η = ( D

G
√
t
)t=1..T . We also assume our additional knowledge ν to be the output

of Construct (Algorithm 3) used at time t with steps η′ = ( 1
λj )j=1..K and K = d

√
T e. Then, dynamic

regret of OT-OGD with regards to µ∗ = (µ∗t )t=0..T the true minimisers satisfy :

T∑
t=1

`t(µ̂t)−
T∑
t=1

`t(µ∗t ) ≤ GPT (ν)− λST (ν) + 3
2GD

√
T + G2

λ
(1 + log(1 + T ))

√
T .

Furthermore, this result remains for any additional knowlege ν such that for any t, `t(νt+1) − `t(µ∗t ) =
O(log(t)/

√
t).

Proof is deferred to Appendix C. Thm. 3.1 provides a worst-case guarantee for the dynamic regret of OT-
OGD. An interesting point is that our bound decoupled the influence of the path lengths from the horizon
T , which is not usual in the literature (Zinkevich, 2003 proposed a bound of O(

√
T (1 + PT )) later improved

in Zhang et al. (2018a) in a O(
√
T (1 + PT )).

Time complexity. Algorithm 4 can be thought independently of Construct when experts are given
in advance and satisfy the condition `t(νt+1) − `t(µ∗t ) = O(log(t)/

√
t). In this case, OT-OGD has a O(T )

complexity. The use of Construct within Algorithm 4 allows to obtain a ready-to-use algorithm, but comes
at the cost of an additional time complexity determined by the number of iterations K of Algorithm 3. Here,
K = d

√
T e is similar to the time complexity of the subroutine appearing in the OMGD algorithm of Zhang

et al. (2017) with step-size η = 1/
√
T . While K depends on the horizon T , we can apply Construct at

each time t with the evolutive number of iterations Kt = d
√
te. This leads to a D-Regret bound with the

same order of magnitude.
Comparison with literature. If the true minimiser µ∗t is revealed to the learner at time t + 1, then
taking νt+1 = µ∗t yields PT (ν) = PT−1(µ∗) + ||µ∗1 − ν1||. This allows us to compare in this case, our results
with those of Zhang et al. (2017). Then, our convergence rate is worse than their O(min(PT (µ∗), ST (µ∗)))
while holding with a single strongly convex assumption (no smoothness is required). Our result also holds
with different assumptions than the improved rates of Zhao and Zhang (2021) which requires convexity and
smoothness. Note however that in the GB-OL framework, this deteriorated rate is not surprising as we pay
the shift of an O-OL algorithm (OMGD with judge trusting only the ν provided by Construct, and not
the gradient descent step) to an OT-OL algorithm which does not require the optimistic assumption that
experts always provide relevant advice. This goes beyond the Optimistic OL framework and highlights the
interest of Algorithm 4.
Role of the path length. PT (ν) Thm. 3.1 does not directly appear in the literature. However in Rakhlin
and Sridharan (2013a, Lemma 3), a similar term appears, involving a sum of the distances in the dual space
between experts and Nature, Jadbabaie et al. (2015) involves a similar term in the context of dynamic OL.
Those terms translate the expert’s impact on the training as well as the interplays between experts and the
environment. In our study, we decoupled the evolution of PT and its interplays with the environment. Indeed,
in our proofs, we used the following regret decomposition: , if R =

∑T
t=1 `t(µ̂t) −

∑T
t=1 `t(µ∗t ), then R =

T∑
t=1

`t(µ̂t)−
T∑
t=1

`t(νt)︸ ︷︷ ︸
=(A)

−
T∑
t=1

`t(νt)−
T∑
t=1

`t(νt+1)︸ ︷︷ ︸
=(B)

+
T∑
t=1

`t(νt+1)−
T∑
t=1

`t(µ∗t )︸ ︷︷ ︸
=(C)

. (A) is dealt via ADJUST and we

choose to separate the terms (B) and (C). Note however, that if we apply directly convexity and bounded
gradients on the sum (B)+ (C), we recover a O (‖νt − µ∗t ‖) which captures the environment dynamics.
However, assuming directly that νt is closed from µ∗t is optimistic, we then relaxed this assumption to
`t(νt+1) − `t(µ∗t ) is small (which is more realistic as νt+1 is Ft measurable) at the cost of decoupling the
evolution of the expert sequence (B) with the performance of νt+1 wrt the past minimizer.
Theorem 3.2. We assume that our predictors µ̂ are obtained using OT-OGD(Algorithm 4) with steps
η = ( D

G
√
t
)t=1..T . We also assume our additional knowledge ν to be the output of Construct (Algorithm 3)

7
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used at time t with steps η′ = ( 1
λj )j=1..K and K = d

√
T e. Then, dynamic cumulative risk satisfies with

probability 1− 3δ, for any T ≥ 1, for any sequence (µt)t=1..T such that µt is Ft−1-measurable:

T∑
t=1

Lt(µ̂t)−
T∑
t=1

Lt(µt) ≤ GPT (ν)− λST (ν) + Õ(
√
T )

where the Õ hides a log factor. Furthermore, this result remains for any additional knowlege ν such that for
any t, `t(νt+1)− `t(µ∗t ) = O(log(t)/

√
t).

Proof is deferred to Appendix D. Thm. 3.2 hold for any predictable sequence of comparators µ which are not
involved on the upper bound. This maintains a fully empirical upper bound as predictable sequences are often
unknown due to their dependency on the conditional distribution of data. OT-OGD nearly maintains the
same convergence rate as Thm. 3.1 while shifting D-Regret for D-C-Regret. As long as paths are sublinear,
Thm. 3.2 ensure that the generalization ability of the output of OT-OGD is increasing through time. This
is informative on the robustness to the intrinsic randomness of the learning problem. Note that our result
holds for any sequence µ such that µt is Ft−1-measurable. We present in Sec. 4.2 a toy experiment that
exploits this additional flexibility by showing not only that it may not be relevant to compare ourselves to
the true minimizers µ∗, but also that the OT-OL approach outperforms both OGD and OMGD.

3.2 Optimistically tempered Online Newton Step

Algorithm 5 details the OT-ONS algorithm, which is an optimistically tempered version of ONS (Hazan
et al., 2007). We present in Thm. 3.3 its associated D-Regret bound.

Algorithm 5: OT-ONS onto a closed convex space K.
Parameters : Horizon T , step γ, ε > 0.
Initialisation: convex set K, initial point µ1 ∈ K ⊆ Rd,additional information ν1 ∈ K,A0 = εId

1 For t in {1, . . . , T}:
2 Update At = At−1 +∇t∇>t
3 Set µ̂temp,t+1 = µ̂t − 1

γA
−1
t ∇t

4 Observe νt+1
5 µ̂t+1 = Adjust(t, At, ν, µ̂temp,t+1)
6 Return µ̂ = (µ̂t)t=0..T

Theorem 3.3. Denote by µ∗t = argminµ∈K `t(µ). We assume that our predictors µ̂ are obtained using
OT-ONS (Algorithm 5 ) with γ = 1

2 min
{ 1
GD , α

}
, ε = 1

γ2D2 . We also assume our additional knowledge ν
to be the output of Construct (Algorithm 3) used at time t with steps η′ = ( 1

λj )j=1..K and K = T . Then,
dynamic regret of OT-ONS with regards to µ∗ = (µ∗t )t=0..T the true minimisers satisfy :

T∑
t=1

`t(µ̂t)−
T∑
t=1

`t(µ∗t ) ≤ GPT (ν)− λST (ν) + 2
(
G2

λ
(d+ 1) + dGD

)
(1 + log(T )).

Furthermore, this result remains for any additional knowlege ν such that for any t, `t(νt+1)−`t(µ∗t ) = O(1/t).

Thm. 3.3 can be linked to the Online Multiple Newton Update (OMNU) when νt+1 is the output of multiple
Newton steps to approximate µ∗t , one then can consider OT-ONS as an optimistically tempered version of
OMNU. Zhang et al. (2017) proposed a competitive rate of O(min(PT , ST )) for OMNU. While our rate is
weaker than theirs, our results hold with the single assumption of strong convexity. Indeed, Zhang et al.
(2017, Thm 11.) holds under a set of technical assumptions Zhang et al. (2017, Assumption 10) involving
among others, the strict convexity of the losses and holding for problems having small variations of their
successive minima. Our result requires fewer assumptions at the cost of K = T iterations of Construct at
each time step. As OT-ONS is an OT-OL algorithm it is expected to recover a deteriorated rate compared

8
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to OMNU which deals optimistically with experts. Finally, taking Kt = t at each time step allows us to not
know in advance the stopping time of OT-ONS and recovers a slightly deteriorated rate of O(d log(T )2).
Theorem 3.4. We assume that our predictors µ̂ are obtained using OT-ONS(Algorithm 5) with γ =
1
2 min

{ 1
GD ,

α
4
}
, ε = 1

γ2D2 . We also assume our additional knowledge ν to be the output of Construct
(Algorithm 3) used at time t with steps η′ = ( 1

λj )j=1..K and K = T . Then, the dynamic cumulative risk
satisfies with probability 1− 2δ, for any T ≥ 1,for any sequence (µt)t=1..T such that µt is Ft−1-measurable:

T∑
t=1

Lt(µ̂t)−
T∑
t=1

Lt(µt) ≤ GPT (ν) + 2G2ST (ν) + O(d log(T ) + log(1/δ)),

where Lt = Et−1[`t]. This result remains for any additional knowledge ν s.t. ∀t, `t(νt+1)− `t(µ∗t ) = O(1/t).

3.3 Optimistically tempered AdaGrad

Algorithm 6 details the OT-Adagrad algorithm, an optimistically tempered version of AdaGrad (Duchi et al.,
2011) and we present in Thm. 3.5 its associated D-Regret bound. We use the notation A •B to denote the
element-wise multiplication between the matrices A and B.

Algorithm 6: OT-AdaGrad onto a closed convex space K.
Parameters : Horizon T, step η, parameter ε.
Initialisation: Initial point µ1 ∈ K,additional information (ν1) ∈ K, G0 = εId, H0 = G

1/2
0

1 For t in {1, . . . , T}:
2 Update Gt = Gt−1 +∇t∇>t
3 Update Ht = arg min

H�0

{
Gt •H−1 + Tr(H)

}
= G

1/2
t

4 Set µ̂temp,t+1 = µ̂t − ηH−1
t ∇t

5 Observe νt+1
6 µ̂t+1 = Adjust(t,Ht, ν, µ̂temp,t+1)
7 Return µ̂ = (µ̂t)t=0..T

Theorem 3.5. Denote by µ∗t = argminµ∈K `t(µ). We assume that our predictors µ̂ are obtained using OT-
Adagrad (Algorithm 6 ) with with ε = 2

D2 , η = D√
2 . We also assume our additional knowledge ν to be the

output of Construct (Algorithm 3) used at time t with steps η′ = ( 1
λj )j=1..K and K = T . Then, dynamic

regret of OT-Adagrad with regards to µ∗ = (µ∗t )t=0..T the true minimisers satisfy :

T∑
t=1

`t(µ̂t) −
T∑
t=1

`t(µ∗t ) ≤ GPT (ν) − λST (ν) +
√

2D

1 +
√

min
H∈H

∑
t

‖∇t‖∗2H

 + G2

λ
(1 + log(T )).

Furthermore, this result remains for any additional knowlege ν such that for any t, `t(νt+1)−`t(µ∗t ) = O(1/t).

Thm. 3.5 nearly recovers the convergence rate of AdaGrad for static regret at the cost of an extra path
length and O(log(T )) factor. Note that, as in Thm. 3.3, the evolutive iteration number Kt = t can be chosen
instead of K = T to make the procedure valid for any horizon T (not necessarily fixed in advance) at the
cost of an extra log factor.
Furthermore, Thm. 3.5 goes beyond the scope of Zhang et al. (2017); Zhao and Zhang (2021), as they do not
consider AdaGrad. Note that our approach is not the first to propose a dynamic regret bound for AdaGrad
(see the recent work of Nazari and Khorram, 2022) however, our approach is, to our knowledge, the first to
propose bounds on the D-C-Risk (Thm. 3.6), informing us on the generalization ability of OT-Adagrad.
Theorem 3.6. We assume that our predictors µ̂ are obtained using OT-Adagrad (Algorithm 6 ) with with
ε = 2

D2 , η = D√
2 . We also assume our additional knowledge ν to be the output of Construct (Algorithm 3)

9
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used at time t with steps η′ = ( 1
λj )j=1..K and K = T . Then, dynamic cumulative risk satisfies with probability

1− 2δ, for any T ≥ 1, for any sequence (µt)t=1..T such that µt is Ft−1-measurable:

T∑
t=1

Lt(µ̂t)−
T∑
t=1

Lt(µt) ≤ GPT (ν) + O

√min
H∈H

∑
t

‖∇t‖∗2H + log T
δ

 .

Note that this result still holds for any additional knowlege ν such that for any t, `t(νt+1)− `t(µ∗t ) = O(1/t).

4 Experiments

This section aims to compare the efficiency of our OT-OL algorithms compared to classical methods. We
show here that not being too optimistic w.r.t. expert advices leads to comparable or enhanced numerical
results. We propose two sets of experiments. The first one gathers 4 classical datasets two regression and two
classification problems. Its goal is to assess our algorithm’s efficiency by plotting the averaged cumulative
losses

∑t
i=1 ` (hi, zi) /t at any time t. The second experiment is a toy example designed to show that D-

C-Risk is a relevant tool to handle learning processes on noisy problems. For those two experiments, we
compute three algorithms: the celebrated Online Gradient Descent (Zinkevich, 2003, Alg. 1), the OT-OGD
algorithm (Algorithm 4) and a variant of the Online Multiple Gradient Descent (OMGD) algorithm with
decreasing steps (Zhang et al., 2017, Alg. 1).
The reason we computed OMGD is that Construct (Algorithm 3) is following the same idea as OMGD
(i.e., performing a gradient descent at each time step for more accurate predictors). An interesting question
is whether OT-OGD provides similar or better results than OMGD. We address this below. Furthermore,
we would expect that using the output of Construct as additional knowledge instead of predictor would
provide us additional flexibility in our learning process, is it the case in practice?

4.1 Experiments on real-life datasets

We conduct experiments on a few real-life datasets, in classification and regression. Our objective is twofold:
check the convergence of our learning methods and compare their efficiencies with classical algorithms.
Binary Classification. At each round t the learner receives a data point xt ∈ Rd and predicts its label
yt ∈ {−1,+1} using 〈xt, ht〉, with ht being the predictor given by the online algorithm of interest. The
adversary reveals the true value yt, then the learner suffers the loss `(ht, zt) =

(
1− ythTt xt

)
+ with zt = (xt, yt)

and a+ = a if a > 0 and a+ = 0 otherwise.
Linear Regression. At each round t, the learner receives a set of features xt ∈ Rd and predicts yt ∈ R
using 〈xt, ht〉 with ht being the predictor given by the online algorithm of interest. Then the adversary
reveals the true value yt and the learner suffers the loss `(ht, zt) =

(
yt − hTt xt

)2 with zt = (xt, yt).
Datasets. We consider four real-world datasets: two for classification (Breast Cancer and Pima Indians),
and two for regression (Boston Housing and California Housing). All datasets except the Pima Indians have
been directly extracted from sklearn (Pedregosa et al., 2011). Breast Cancer dataset (Street et al., 1993)
is available here and comes from the UCI ML repository as well as the Boston Housing dataset (Belsley
et al., 2005) which can be obtained here. California Housing dataset (Pace and Barry, 1997) comes from
the StatLib repository and is available here. Finally, Pima Indians dataset (Smith et al., 1988) has been
recovered from this Kaggle repository. Note that we randomly permuted the observations to avoid learning
irrelevant human ordering of data (such as date or label).
Parameter settings. We ran our experiments on a 2021 MacBookPro with an M1 chip and 16 Gb RAM.
For OGD, the initialisation point is 0Rd and the values of the learning rates are set to η = 1/2

√
m. where

m is the size of the considered dataset. For OMGD, we ran the procedure while, at time t, performing a
gradient descent with K = 100 iterations. This auxiliary gradient descent has been performed with steps
(λ/2
√
j)j=1..K . λ ,being an empirical stabiliser set to 0.1/

√
m. For OT-OGD, we ran the procedure with

a constant step η = 0.1/
√
m. We ran Construct to generate our additional knowledge with the iteration

number K = 100 and steps (η′j)j=1..K = (λ/2
√
j)j=1..K , λ ,being an empirical stabiliser set to 0.1/

√
m.
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Figure 2: Averaged cumulative losses for all four considered datasets. The x-axis is the time. DOGD
represents OT-OGD.

Quantity of interest. For each dataset, we plot the evolution of the averaged cumulative loss∑t
i=1 ` (hi, zi) /t as a function of the step t = 1, ...,m, where m is the dataset size and hi is the decision

made by the learner hi at step i. The results are gathered in Fig. 2.

Empirical findings. On those datasets, OMGD with adaptive steps and OT-OGD seem to perform rather
equivalently, except on the PIMA Indians dataset where OT-OGD outperforms OMGD. On two datasets
(Breast Cancer and California Housing), OT-OGD performs better than OGD, otherwise, both methods
perform similarly. A reason that could explain the efficiency of our method compared to OMGD in the
PIMA Indians dataset is that because this problem is difficult (i.e., noisy), the technical condition stated in
(Zhang et al., 2017, Corollary 4) may not be satisfied. This would impeach OMGD to attain competitive
results. Furthermore, note that in any case, OT-OGD is at least as good as OGD or OMGD. The take-home
message is that the OT-OL approach is comparably efficient on those datasets.

4.2 A toy experiment: the Online Quadratic Problem

Theoretical framework. Our problem is set as follows: at each time step t, a random variable θt is drawn.
For all t, θt is such that

Pt = L(θt | Ft−1) = N(moyt, σ
2
t ).

We assume that there exists Dm, Dσ positive values such that for all t, (moyt, σt) ∈ [−Dm/2, Dm/2]× [0;Dσ].
Finally, we consider the losses `t(θ) = (θt−θ)2. We refer to this framework as the Online Quadratic Problem.

Quantity of interest. We study the D-C-Risk w.r.t. the sequence µt = moyt. We cannot compare ourselves
to the true minimizer µ∗t = θt because this quantity is not Ft−1 measurable. However, we show below that
there exists another meaningful comparator. Indeed, in our setup, we note that moyt was assumed to be
Ft−1-measurable so let us see what gives the dynamic cumulative risk for any sequence of predictors (µ̂t)t≥0:∑T
t=1 Lt(µ̂t)−

∑T
t=1 Lt(moyt) =

∑T
t=1 Et−1[(θt − µ̂t)2]−

∑T
t=1 Et−1[(θt − moyt)2] =

∑T
t=1(µ̂t − moyt)2.

The last line holding thanks to a bias-variance tradeoff, this basic calculation shows that for this learning
problem, using (moyt)t as comparators instead of the true minimizers leads to a meaningful regret. Yet,
we can derive from the general notion of dynamic regret a comparison between our prediction and the true
mean of the data. One will see in the experiments that OT-OGD can approximate the means better than
classical OGD at high times.

Parameter settings. All our algorithms are using a projection on the ball centered in 0 of diameter D = 10.
For OGD, the initialisation point is 0Rd and the values of the learning rates are set to ηt = 1/2

√
t. For OMGD,
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we ran the procedure while, at time t, performing a gradient descent with K = 100 iterations. This auxiliary
gradient descent has been performed at time t with steps (λt/2

√
j)j=1..K , λt being an empirical stabiliser

set to 1/2
√
t. For OT-OGD, we ran two variants: the first uses Construct to generate our additional

knowledge. We run algorithm 4 with steps ηt = 1/2
√
t at time t. We run Construct with, at each time

t, the iteration number K = 100 and steps (η′j)j=1..K = (λt/2
√
j)j=1..K , λt being an empirical stabiliser set

to 1/2
√
t. The second does not use Construct and instead defines at each time t νt+1 ∼ N(µ̂t, σ2

1) with
σ1 = 0.4. Similarly, we run algorithm 4 with steps ηt = 1/2

√
t at time t.

Experimental framework. We take for any t, moyt = sin
(
t
ω

)
with ω = 200, yet the means are a

deterministic sequence fixed before our study. Then our θt are drawn independently. We also fix for any
t, σt = σ = 4. We chose K (the number of iterations to acquire our additional knowledge) equal to 100.
Results are gathered in Fig. 3.
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Figure 3: On the left, cumulative risks of OT-OGD (purple,blue), OMGD (red), OGD (green). On the
right, plot of OT-OGD and its associated paths. The x-axis s the time. sq_path is St(ν), path is Pt(ν),
upper_path is GPt(ν)− λSt(ν).

Empirical findings. First, OGD fails on this example as the problem is too noisy: OGD fails to detect
any statistical pattern between the successive points. Second, OMGD performs better than OGD but is
significantly worse than OT-OGD (the difference of the dynamic cumulative risks is of magnitude 104). This
shows that our method, which only uses the output of the auxiliary gradient descent as additional knowledge
(and not as predictors as in OMGD) provides flexibility that translates into a greater performance for
extremely noisy problems. A reason that could explain the efficiency of our method compared to OMGD is
again that the intrinsic noise is so high that the technical condition stated in (Zhang et al., 2017, Cor. 4)
may not be satisfied, which impeaches OMGD to attain a competitive dynamic regret in O(min(P ∗T , S∗T )).
Finally, note that interestingly, our variant of OT-OGD (the curve ’DOGD Gauss’ which uses an alternative
source of additional information) provides better results here while we have no theoretical guarantee of its
efficiency. This opens the way to a broader reflection on the choice of additional knowledge within OT-
OGD. In conclusion, this experiment shows that the OT-OL approach outperforms both OGD and OMGD:
exhibiting the interest of treating expert advice with caution instead and granting them full trust.

5 Conclusion

We introduced the novel Optimistically Tempered Online Learning framework as well as a novel OT judge
ADJUST. This judge is flexible enough to provide three optimistically tempered adaptations of classical
online methods. To obtain sound D-Regret bounds, we required expert advice to be a good approximation
of the local minima. To do so, we exploited Construct, however, it is not the only possible choice as we
could use, e.g., the Newton algorithm instead. This may be a more suited choice for learning problems in
small dimensions as Newton methods are known to converge quickly. This leverages an experimental tradeoff
between accuracy and time complexity involving the dimension as a hyperparameter of the problem.
Another promising lead lies in the flexibility of the OT-OL framework when choosing expert advice, as we
can confidently propose novel types of advice knowing they will be ignored by Adjust if useless. More
precisely, in this work, ν focuses on being a good approximation of the minima sequence while our bounds
involve a broader tradeoff between path lengths (i.e., only small shifts are recommended through time) and
being a good approximation of the past minimizers.
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A Technical background

A.1 Azuma-Hoeffding’s inequality

One recalls the celebrated Azuma- Hoeffding inequality
Proposition A.1. Let {X0, X1, · · · } be a martingale with respect to filtration {F0,F1, · · · }. Assume there
are predictable processes {A0, A1, · · · } and {B0, B1, . . .} with respect to {F0,F1, · · · }, i.e. for all t, At, Bt are
Ft−1-measurable, and constants 0 < c1, c2, · · · <∞ such that

At ≤ Xt −Xt−1 ≤ Bt and Bt −At ≤ ct

almost surely. Then for all ε > 0,

P (|Xn −X0| ≥ ε) ≤ 2 exp
(
− 2ε2∑n

t=1 c
2
t

)

In this work we use Azuma-Hoeffding’s bound in the particular case where At, Bt are constants almost surely.

B Inspiration for our notion of performance

Let η = (ηt)t=1..T ) be a positive step sequence.

We denote by µ̂t, t ≥ 1 the sequence of predictors defined by the classical projected OGD:

µ̂t+1 = ΠK (µ̂t −∇`t(µ̂t))

Theorem B.1. Dynamic regret of projected OGD on a closed convex K for convex losses with steps η =
(ηt)t=1..T ) with regards to µ = (µt)t=0..T ∈ KT satisfies :

T∑
t=1

`t(µ̂t)−
T∑
t=1

`t(µt) ≤
T∑
t=1
〈∇(`t), µ̂t − µt〉

≤ D2

2ηT
+ G2

2

T∑
t=1

ηt −
T∑
t=1

Perf(t, µ̂, µ)
ηt

.

Proof. First, convexity of the losses gives us :

T∑
t=1

`t (µ̂t)−
T∑
t=1

`t (µt) 6
T∑
t=1
〈∇`t (µ̂t) , µ̂t − µt〉

To control the right hand side of this bound we use:

‖µ̂t+1 − µt‖2 6 ‖µ̂t − ηt∇`t (µ̂t)− µt‖2

= ‖µ̂t − µt‖2 − 2ηt 〈∇`t (µ̂t) , µ̂t − µt〉+ η2
t ‖∇`t (µ̂t)‖2

Hence:
‖µ̂t+1 − µt+1‖2 6 ‖µ̂t − µt‖2 − 2ηt 〈∇`t (µ̂t) , µ̂t − µt〉+ η2

tG
2 − 2Perf (t, µ̂, µ)

So:

〈∇`t (µ̂t) , µ̂t − µt〉 6
‖µ̂t − µt‖2 − ‖µ̂t+1 − µt+1‖2

2ηt
+ ηtG

2

2 − Perf(t, µ̂, µ)
ηt

15
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Summing on t gives (assuming 1/η0 = 0):

T∑
t=1
〈∇`t (µ̂t) , µ̂t − µt〉 ≤

T∑
t=1
||µ̂t − µt||2

(
1

2ηt
− 1

2ηt−1

)
+ G2

2

T∑
t=1

ηt −
T∑
t=1

Perf(t, µ̂, µ)
ηt

≤ D2
T∑
t=1

(
1

2ηt
− 1

2ηt−1

)
+ G2

2

T∑
t=1

ηt −
T∑
t=1

Perf(t, µ̂, µ)
ηt

≤ D2

ηT
+ G2

2

T∑
t=1

ηt −
T∑
t=1

Perf(t, µ̂, µ)
ηt

One can also have a stronger result for λ-strongly convex functions with the following additional assumption:

We assume that our steps ηt are such that:

1
ηt
− λ ≤ 1

ηt−1

Theorem B.2. Dynamic regret of projected OGD on a closed convex K with steps η = (ηt)t=1..T ) with
regards to µ = (µt)t=0..T ∈ KT satisfies :

T∑
t=1

`t(µ̂t)−
T∑
t=1

`t(µt) ≤
G2

2

T∑
t=1

ηt −
T∑
t=1

Perf(t, µ̂, µ)
ηt

.

Proof. The proof is roughly the same than the one for the previous bound. We remark that thanks to strong
convexity, one now has :

T∑
t=1

`t (µ̂t)−
T∑
t=1

`t (µt) 6
T∑
t=1
〈∇`t (µ̂t) , µ̂t − µt〉 − λ||µ̂t − µt||2

So the arguments of the previous proof provide us:

T∑
t=1

`t(µ̂t)−
T∑
t=1

`t(µt) ≤
1
2

T∑
t=1

(
1
ηt
− λ
)
‖µ̂t − µt‖2 − ‖µ̂t+1 − µ̂t+1‖2

ηt

+
T∑
t=1

ηt ‖∇`t (µ̂t)‖2

2 − Perf(t, µ̂, µ)
ηt

≤ 1
2

T∑
t=1

‖µ̂t − µt‖2

ηt−1
− ‖µ̂t+1 − µ̂t+1‖2

ηt

+
T∑
t=1

ηt ‖∇`t (µ̂t)‖2

2 − Perf(t, µ̂, µ)
ηt

A telescopic argument and bound over the gradients provides us the final result.

Remark B.3. We focus in three specific cases where performance can be linked to classical quantities:
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• First is just a remark : we totally recover the classical OGD bound for static regret when one has
µt+1 = µt for any t.

• Second, if our OGD predicts well the minimiser µ∗ after a certain time, i.e. for t ≥ t0, µ̂t+1 ≈ µ∗t+1.
Then one has

T∑
t=1

Perf(t, µ̂, µ) ≈ −1
2

T∑
t=1

||µ∗t+1 − µ∗t ||2

ηt
≤ − 1

η1
S∗T .

so our result ensures that in this case, OGD has been able to tame the geometry induced by the `ts
to generate a momentum greater than S∗T /η1

• Finally let us consider the overfitting case i.e, for each t, µ̂t+1 ≈ µ∗t . Then:
T∑
t=1

Perf(t, µ̂, µ) ≈ −1
2

T∑
t=1

||µ∗t+1 − µ∗t ||2

ηt
≤ 1
ηT
S∗T .

So overfitting will penalise our OGD with at most a factor ST /ηT

However, even if our bounds gives us an intuition on how is the OGD interacting with its environment. One
cannot control it directly. If we assume having additional information at each time steps, this notion of
performance can help us to enhance OGD.

C Proofs of deterministic results

In this section we use the shortcut ∇t := ∇`t(µ̂t).

C.1 Proof of Lemma 2.4

Proof. Let t ≥ 0. Recall that νt+1 is defined as the Polyak averaging νt+1 := 1
K

∑K
j=1 xj . First, we remark

that by convexity of `t:

`t(νt+1)− `t(µ∗t ) = `t

 1
K

K∑
j=1

xj

− `t(µ∗t ) ≤ 1
K

K∑
j=1

`t(xj)− `t(µ∗t ).

Because Construct is a gradient descent with steps (η′j)j=1..K on the λ-strongly convex function `t, one
has for any j, the classical route of proof for static regret bound for strongly convex functions described in
(Hazan, 2019, Theorem 3.3). One then has the following, which concludes the proof:

K∑
j=0

(`t(xj)− `t(µ∗t )) ≤ G2
K∑
j=1

η′j .

C.2 A general route of proof

We exhibit in Eq. (1) a general pattern of proof we use several times in this work to bound the dynamic
regret. This pattern also structures this document.

T∑
t=1

`t(µ̂t)−
T∑
t=1

`t(µ∗t ) =
T∑
t=1

`t(µ̂t)−
T∑
t=1

`t(νt)︸ ︷︷ ︸
=(A)

+
T∑
t=1

`t(νt)−
T∑
t=1

`t(νt+1)︸ ︷︷ ︸
=(B)

+
T∑
t=1

`t(νt+1)−
T∑
t=1

`t(µ∗t )︸ ︷︷ ︸
=(C)

. (1)
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Those terms are dealt as follows.

• (A) is controlled by the effect of Adjust on OGD,ONS,Adagrad. It allows to transform the static
guarantees of those algorithms (as stated in Hazan, 2019) into dynamic ones.

• (B) is controlled by the convexity assumptions made on the `ts and involve terms like PT , ST .

• (C) is handled by the way we designed ν.

Our proofs in the rest of this section are based on this general scheme.

Note that we used the sequence µ∗ = (µ∗t )t≥1 as comparators here in order to control (C) via the Construct
algorithm. This has two implications: (i) our results then holds when using any comparator sequence as we
control the worst case dynamic regret and (ii) we can also involve directly any other comparator sequence µ
within the proof, at the cost of letting (C) unconstrained. We would then need an algorithm different from
Construct in order to make νt+1 close to µt.

C.3 Proof of Thm 3.1

Proposition C.1. The sequence of predictors (µ̂t)t≥0 obtained through DOGD on a closed convex K with
steps η = (ηt)t=1..T ) with regards to the additional informations ν = (νt)t=0..T ∈ KT satisfies :

T∑
t=1

`t(µ̂t)−
T∑
t=1

`t(νt) ≤
D2

2ηT
+ G2

2

T∑
t=1

ηt.

Proof. We fix t ≥ 0. For the sake of clarity, we rename µ̂temp := µ̂temp,t+1 = µ̂t−ηt∇`t(µ̂t) (where µ̂temp,t+1
is defined in algorithm 4).

Thanks to convexity of the losses, one has:

T∑
t=1

`t(µ̂t)−
T∑
t=1

`t(νt) ≤
T∑
t=1
〈∇`t(µ̂t), µ̂t − νt〉.

To control this last sum, our intermediary goal is now to control ||µ̂t+1 − νt+1||2 in function of ‖µ̂t − νt‖2.
To do so, we first exploit Lemma 2.2 which stipulates that ||µ̂t+1− νt+1||2 ≤ ‖µ̂temp− νt‖2. Then we control
〈∇`t (µ̂t) , µ̂t − νt〉.

One has:

||µ̂t+1 − νt+1||2 ≤ ‖µ̂temp − νt‖2

= ‖µ̂t − ηt∇`t (µ̂t)− νt‖2

= ‖µ̂t − νt‖2 − 2ηt 〈∇`t (µ̂t) , µ̂t − νt〉+ η2
t ‖∇`t (µ̂t)‖2

Hence:
‖µ̂t+1 − νt+1‖2 6 ‖µ̂t − νt‖2 − 2ηt 〈∇`t (µ̂t) , µ̂t − νt〉+ η2

tG
2.

So:

〈∇`t (µ̂t) , µ̂t − νt〉 6
‖µ̂t − νt‖2 − ‖µ̂t+1 − νt+1‖2

2ηt
+ ηtG

2

2 .

Summing on t, gives

18
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T∑
t=1

`t(µ̂t)−
T∑
t=1

`t(νt) ≤
T∑
t=1
‖µ̂t − νt‖2

(
1

2ηt
− 1

2ηt−1

)
+ ηtG

2

2

≤ D2

2ηT
+ G2

2

T∑
t=1

ηt.

Hence the final result.

Now we are able to prove our result:

Proof of Thm. 3.1

Proof. We control the terms presented in Eq. (1). proposition C.1 ensures us that:

(A) ≤ D2

2ηT
+ G2

2

T∑
t=1

ηt

≤ 3
2GD

√
T ,

The last line holding thanks to the definition of η and that
∑T
t=1

1√
t
≤ 2
√
T .

We now have to deal with (B) and (C) of Eq. (1).

(B) is handled using the strong convexity of `t for any t :

`t(νt)− `t(νt+1) ≤ ∇`t(νt)>(νt − νt+1)− λ||νt+1 − νt||2

≤ ||∇`t(νt)||.||νt+1 − νt|| − λ||νt+1 − νt||2 Cauchy-Schwarz
≤ G||νt+1 − νt|| − λ||νt+1 − νt||2.

Summing over all t gives us :

(B) ≤ GPT (ν)− λST (ν).

To deal with (C), we exploit Lemma 2.4. Indeed, our choice of steps ensure us that at each step j: 1
η′
j
− λ =

λ (j − 1) = 1
η′
j−1

. We have at each time t:

`t(νt+1)− `t(µ∗t ) ≤
G2

K

K∑
j=1

η′j = G2

λK

∑
j=1

1
j

≤ G2(1 + log(K))
λK

.

Finally:

(C) ≤ T G
2(1 + log(K)

λK

≤ G2

λ

√
T (1 + log(1 + T ))
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The last line holding because K = d
√
T e.

Combining the bounds of (A),(B),(C) concludes the proof.

C.4 Proof of Thm 3.3

We need first to introduce on exp-concave funtion.
Definition C.2. A function f : Rn → R is α exp-concave over a convex K if the function g = exp(−αf) is
concave on K.

One also recalls the following lemma coming from (Hazan, 2019, Lemma 4.3)
Lemma C.3. Let f : K→ R be an α-exp-concave function, and D,G denote the diameter of K and a bound
on the (sub)gradients of f respectively. The following holds for all γ ≤ 1

2 min
{ 1

4GD , α
}
and all x,y ∈ K :

f(x) ≥ f(y) +∇f(y)>(x− y) + γ

2 (x− y)>∇f(y)∇f(y)>(x− y).

One now states a key preliminary result of this section (proposition C.4) whoch exploits the exp-concavity
property.
Proposition C.4. We assume our loss functions `t to be α exp-concave. Let {µ̂t} being the output of D-ONS
(algorithm 5) with γ = 1

2 min
{ 1
GD , α

}
, ε = 1

γ2D2 . We then have, for T > 4 and any additional knowledge
ν:

T∑
t=1

`t(µ̂t)− `t(νt) ≤ 2
(

1
α

+GD

)
d log(T ).

Proof. The proof is similar to the one of (Hazan, 2019, Thm 4.5) which holds for static regret. We prove
Lemma C.5 which is an adaptation of (Hazan, 2019, Lemma 4.6).

Lemma C.5. Let {µ̂t} being the output of algorithm 5 with γ = 1
2 min

{ 1
GD , α

}
, ε = 1

γ2D2 . We then have,
for T > 4 and any additional knowledge ν:

T∑
t=1

`t(µ̂t)− `t(νt) ≤
(

1
α

+GD

)(
1 +

T∑
t=1
∇tA−1

t ∇>t

)
.

Proof. We fix t ≥ 1 and we first apply Lemma C.3:

`t(µ̂t)− `t(νt) ≤ ∇>t (µ̂t − νt)−
γ

2 (µ̂t − νt)>∇t∇>t (µ̂t − νt)

Recalling the definition of µ̂temp,t+1, substracting by νt and multiplying by At gives us:

µ̂temp,t+1 − νt = µ̂t − νt −
1
γ
A−1
t ∇t (2)

and:

At (µ̂temp,t+1 − νt) = At (µ̂t − νt)−
1
γ
∇t (3)
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Multiplying the transpose of Eq. (2) by Eq. (3) gives us:

(µ̂temp,t+1 − νt)>At (µ̂temp,t+1 − νt) = (µ̂t − νt)>At (µ̂t − νt)−
2
γ
∇>t (µ̂t − νt) + 1

γ2∇
>
t A
−1
t ∇t. (4)

Our goal is to lower bound the term on left hand-side of this equality. To do so, we first remark

(µ̂temp,t+1 − νt)>At (µ̂temp,t+1 − νt) = ‖µ̂temp,t+1 − νt‖2
At

Because At is a positive definite matrix, Lemma 2.2 holds, which allows us to say that ‖µ̂temp,t+1 − νt‖2
At
≥

‖µ̂t+1 − νt+1‖2
At
. Thus:

(µ̂temp,t+1 − νt)>At (µ̂temp,t+1 − νt) ≥ ‖µ̂t+1 − νt+1‖2
At

= (µ̂t+1 − νt+1)>At (µ̂t+1 − νt+1)

This fact together with Eq. (4) gives:

∇>t (µ̂t − νt) ≤
1

2γ∇
>
t A
−1
t ∇t + γ

2 (µ̂t − νt)>At (µ̂t − νt)

− γ

2 (µ̂t+1 − νt+1)>At (µ̂t+1 − νt+1) .

Now, summing up over t = 1 to T we get that
T∑
t=1
∇>t (µ̂t − νt) ≤

1
2γ

T∑
t=1
∇>t A−1

t ∇t + γ

2 (µ1 − ν1)>A1 (µ1 − ν1)

+ γ

2

T∑
t=2

(µ̂t − νt)> (At −At−1) (µ̂t − νt)

− γ

2 (µ̂T+1 − νT+1)>AT (µ̂T+1 − νT+1)

≤ 1
2γ

T∑
t=1
∇>t A−1

t ∇t + γ

2

T∑
t=1

(µ̂t − νt)>∇t∇>t (µ̂t − νt)

+ γ

2 (µ1 − ν1)>
(
A1 −∇1∇>1

)
(µ1 − ν1)

In the last inequality we use the fact that At − At−1 = ∇t∇>t , and the fact that the matrix AT is PSD to
bound the last term before the inequality by 0. Thus,

T∑
t=1

`t(µ̂t)− `t(νt) ≤
1

2γ

T∑
t=1
∇>t A−1

t ∇t + γ

2 (µ1 − ν1)>
(
A1 −∇1∇>1

)
(µ1 − ν1)

Using that A1 −∇1∇>1 = εIn, ε = 1
γ2D2 and that K has a finite diameter D gives us :

T∑
t=1

`t(µ̂t)− `t(νt) ≤
1

2γ

T∑
t=1
∇>t A−1

t ∇t + γ

2D
2ε

≤ 1
2γ

T∑
t=1
∇>t A−1

t ∇t + 1
2γ

Since γ = 1
2 min

{ 1
GD , α

}
, we have 1

γ ≤ 2
( 1
α +GD

)
. This gives the lemma.
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The rest of the proof now follows the exact same route than (Hazan, 2019, Thm 4.5).

Proof of proposition C.4 First we show that the term
∑T
t=1∇>t A

−1
t ∇t is upper bounded by a telescoping

sum. Notice that
∇>t A−1

t ∇t = A−1
t • ∇t∇>t = A−1

t • (At −At−1)

where for matrices A,B ∈ Rn×n we denote by A •B =
∑n
i=1
∑n
j=1 AijBij = Tr

(
AB>

)
, which is equivalent

to the inner product of these matrices as vectors in Rn2 .

For real numbers a, b ∈ R+, the first order Taylor expansion of the logarithm of b at a implies a−1(a− b) ≤
log a

b . An analogous fact holds for positive semidefinite matrices, i.e., A−1 • (A − B) ≤ log |A||B| , where |A|
denotes the determinant of the matrix A (this is proved in Hazan, 2019, Lemma 4.7). Using this fact we
have

T∑
t=1
∇>t A−1

t ∇t =
T∑
t=1

A−1
t • ∇t∇>t

=
T∑
t=1

A−1
t • (At −At−1)

≤
T∑
t=1

log |At|
|At−1|

= log |AT |
|A0|

Since AT =
∑T
t=1∇t∇>t + εIn and ‖∇t‖ ≤ G, the largest eigenvalue of AT is at most TG2 + ε. Hence

the determinant of AT can be bounded by |AT | ≤
(
TG2 + ε

)d. Hence recalling that ε = 1
γ2D2 and γ =

1
2 min

{ 1
GD , α

}
, for T > 4

T∑
t=1
∇>t A−1

t ∇t ≤ log
(
TG2 + ε

ε

)d
≤ d log

(
TG2γ2D2 + 1

)
≤ d log T

Plugging into Lemma C.5 we obtain

T∑
t=1

`t(µ̂t)− `t(νt) ≤
(

1
α

+GD

)
(d log T + 1)

which implies the theorem for d > 1, T ≥ 4.

We now can prove Thm. 3.3.

Proof of Thm. 3.3.

Proof. We control the terms presented in Eq. (1). To deal with (A), we exploit proposition C.4 knowing
that a λ-strongly convex function with its gradient bounded by G is λ/G2 exp-concave:

(A) ≤ 2
(
G2

λ
+GD

)
d(1 + log(T ))

We now have to deal with (B) and (C) of Eq. (1).

(B) is handled using the strong convexity of `t for any t :
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`t(νt)− `t(νt+1) ≤ ∇`t(νt)>(νt − νt+1)− λ||νt+1 − νt||2

≤ ||∇`t(νt)||.||νt+1 − νt|| − λ||νt+1 − νt||2 Cauchy-Schwarz
≤ G||νt+1 − νt|| − λ||νt+1 − νt||2.

Summing over all t gives us :

(B) ≤ GPT (ν)− λST (ν).

To deal with (C), we exploit Lemma 2.4. Indeed, our choice of steps ensure us that at each step j: 1
η′
j
− λ =

λ (j − 1) = 1
η′
j−1

. We have at each time t:

`t(νt+1)− `t(µ∗t ) ≤
G2

K

K∑
j=1

η′j = G2

λK

K∑
j=1

1
j

≤ G2(1 + log(K))
λK

.

Finally:

(C) ≤ T G
2(1 + log(K))

λK

= G2

λ
(1 + log(T ))

The last line holding because K = T .

Combining the bounds on (A),(B),(C) concludes the proof.

C.5 Proof of Thm 3.5

We first start with a key result for our study of dynamic Adagrad.
Proposition C.6. We assume our loss functions `t to be convex. Let {µ̂t} being the output of D-Adagrad
(algorithm 6) with ε = 2

D2 , η = D√
2 . We then have, for any additional knowledge ν:

T∑
t=1

`t(µ̂t)− `t(νt) ≤
√

2D

1 +
√

min
H∈H

∑
t

‖∇t‖∗2H


where H := {X ∈ Rn×n | Tr(X) ≤ 1, X � 0} and for a fixed H, ||µ||∗2H = µTH−1µ where H−1 refers to the
Moore-Penrose pseudoinverse.

Proof. The proof follows the route of (Hazan, 2019, Thm 5.12) for the full-matrix version of Adagrad. As for
dynamic ONS, our only work consists in modifying a lemma of Hazan’s proof (Hazan, 2019, Lemma 5.13),
the rest holding similarly.

For the sake of completeness, we state all the lemma of interest in this proof, most of them are directly
extracted from (Hazan, 2019, Sec.5.6). We start with (Hazan, 2019, Lemma 11).
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Lemma C.7. For HT the last output of Adagrad, we have

√
min
H∈H

∑
t

‖∇t‖∗2H = Tr(HT )

We present now our lemma of interest (Hazan, 2019, Lemma 5.13)

Lemma C.8.
T∑
t=1

`t(µ̂t)− `t(νt) ≤ 2D + η

2
(
GT •H−1

T + Tr(HT )
)

+ 1
2η

T∑
t=1

(µ̂t − ν̂t)> (Ht −Ht−1) (µ̂t − νt) .

Proof. First, recall that
∑T
t=1 `t(µ̂t)− `t(νt) ≤

∑T
t=1∇>t (µ̂t − νt).

By the definition of µ̂temp,t+1 :

µ̂temp,t+1 − νt = µ̂t − νt − ηH−1
t ∇t (5)

and multipying by Ht gives:

Ht (µ̂temp,t+1 − νt) = Ht (µ̂t − νt)− η∇t. (6)

Multiplying the transpose of Eq. (5) by Eq. (6) we get

(µ̂temp,t+1 − νt)>Ht (µ̂temp,t+1 − νt)
= (µ̂t − νt)>Ht (µ̂t − νt)− 2η∇>t (µ̂t − νt) + η2∇>t H−1

t ∇t. (7)

Focusing on the left-hand side of the equality, one remarks that:

(µ̂temp,t+1 − νt)>Ht (µ̂temp,t+1 − νt) = ‖µ̂temp,t+1 − νt‖2
Ht

Since Ht is a PD matrix, one can apply Lemma 2.2 to obtain that ‖µ̂t+1 − νt+1‖2
Ht
≤ ‖µ̂temp,t+1 − νt‖2

Ht
.

Applying this result gives:

(µ̂temp,t+1 − νt)>Ht (µ̂temp,t+1 − νt) ≥ ‖µ̂t+1 − νt+1‖2
Ht

This fact together with Eq. (7) gives

∇>t (µ̂t − νt) ≤
η

2∇
>
t H
−1
t ∇t + 1

2η

(
‖µ̂t − νt‖2

Ht
− ‖µ̂t+1 − νt+1‖2

Ht

)
Now, summing up over t = 1 to T we get that

T∑
t=1
∇>t (µ̂t − νt) ≤

η

2

T∑
t=1
∇>t H−1

t ∇t + 1
2η ‖µ1 − ν1‖2

H0
+ 1

2η

T∑
t=1

(
‖µ̂t − νt‖2

Ht
− ‖µ̂t − νt‖2

Ht−1

)
− 1

2η ‖µ̂t+1 − νt+1‖2
HT

≤ η

2

T∑
t=1
∇>t H−1

t ∇t +
√

2D + 1
2η

T∑
t=1

(µ̂t − νt)> (Ht −Ht−1) (µ̂t − νt) .
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In the last inequality we used the fact that ε = 2
D2 and bounded ‖ µ1 − ν1‖ by D2 .

We now prove that
∑T
t=1∇>t H

−1
t ∇t ≤

(
GT •H−1

T + Tr(HT )
)
. To this end, define the functions

Ψt(H) = ∇t∇>t •H−1,Ψ0(H) = Tr(H).

By definition, Ht is the minimizer of
∑t
i=0 Ψi over H which can be related to a FTL strategy. Thus, using

(Hazan, 2019, Lemma 5.4), we have that

T∑
t=1
∇>t H−1

t ∇t =
T∑
t=1

Ψt (Ht)

≤
T∑
t=1

Ψt (HT ) + Ψ0 (HT )−Ψ0 (H0)

= GT •H−1
T + Tr (HT )

This concludes the proof

Lemma C.8 gives us two terms to be bounded. To do so, we use (Hazan, 2019, Lemmas 5.14,5.15) to conclude
the proof. Those lemmas are gathered below.

Lemma C.9. For algorithm 6, the following holds

GT •H−1
T ≤ Tr (HT ) .

Lemma C.10. Recall that D the Euclidean diameter of K. Then the following bound holds,∑T
t=1 ‖xt − x?‖2

Ht−Ht−1
≤ D2 Tr (HT ).

Now combining Lemma C.8 with the above two lemmas, and using η = D√
2 appropriately, we obtain the

theorem.

We now can prove Thm. 3.5.

Proof of Thm. 3.5.

Proof. We control the terms presented in Eq. (1). To deal with (A), we exploit proposition C.6:

(A) ≤
√

2D

1 +
√

min
H∈H

∑
t

‖∇t‖∗2H


We now have to deal with (B) and (C) of Eq. (1).

(B) is handled using the strong convexity of `t for any t :

`t(νt)− `t(νt+1) ≤ ∇`t(νt)>(νt − νt+1)− λ||νt+1 − νt||2

≤ ||∇`t(νt)||.||νt+1 − νt|| − λ||νt+1 − νt||2 Cauchy-Schwarz
≤ G||νt+1 − νt|| − λ||νt+1 − νt||2.
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Summing over all t gives us :

(B) ≤ GPT (ν)− λST (ν).

To deal with (C), we exploit Lemma 2.4. Indeed, our choice of steps ensure us that at each step j: 1
η′
j
− λ =

λ (j − 1) = 1
η′
j−1

. We have at each time t:

`t(νt+1)− `t(µ∗t ) ≤
G2

K

K∑
j=1

η′j = G2

λK

∑
j=1

1
j

≤ G2(1 + log(K))
λK

.

Finally:

(C) ≤ T G
2(1 + log(K))

λK

= G2

λ
(1 + log(T ))

The last line holding because K = T .

Combining the bounds on (A),(B),(C) concludes the proof.

D Proofs of probabilistic results

D.1 The SOCO framework

In what follows, for a certain filtration (Ft)t≥1, we denote by Et−1[.] := E[. | Ft−1]. SOCO’s framework has
been introduced in Wintenberger (2024). It focuses on a more general notion of regret presented below.
Definition D.1. For loss function `t, we denote by (Ft)t a filtration s.t. `t is Ft-measurable. For some
predictors (µ̂t)t=1..T ∈ K we define the dynamic averaged regret with regards to (µt)t=1..T ∈ KT as follows:

D-Av-RegretT :=
T∑
t=1

Et−1[`t(µ̂t)]−
T∑
t=1

Et−1[`t(µt)].

We use SOCO here with the two following assumptions:

(H1) The diameter of K is D < ∞ so that ‖x − y‖ ≤ D,x, y ∈ K, and the functions `t are continuously
differentiable over K a.s. and the gradients are bounded by G <∞ : supx∈K ‖∇`t(x)‖ ≤ G a.s.,t ≥ 1

(H2) The random loss functions (`t) are stochastically exp-concave i.e. it exists α > 0 such that, for any
µ1, µ2 ∈ K:

Et−1[`t(µ2)] ≤ Et−1[`t(µ1)] + Et−1[∇`t(µ2)T (µ2 − µ1)]− α

2Et−1

[(
∇`t(µ2)T (µ2 − µ1)

)2]
, x, y ∈ K.

Remark D.2. A λ-strongly convex function with its gradients bounded by G in absolute value is α stochas-
tically exp-concave with α = λ/G2

Note that Prop 3 of SOCO is valid for dynamic regret:
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Lemma D.3 ((Wintenberger 2021, Proposition 3)). For any decision sequence (µ̂t)t ∈ KT , (µt)t ∈ (KT )2,
under (H1) and (H2), with probability 1− δ, it holds for any β > 0 and any T ≥ 1

T∑
t=1

Et−1[`t(µ̂t)]−
T∑
t=1

Et−1[`t(µt)] ≤
T∑
t=1
∇`t (µ̂t)T (µ̂t − µt)

+ β

2

T∑
t=1

(
∇`t (µ̂t)T (µ̂t − µt)

)2
+ 2
β

log
(
δ−1)

+ β − α
2

T∑
t=1

Et−1

[(
∇`t (µ̂t)T (µ̂t − µt)

)2
]

D.2 Proof of Thm. 3.2

Our goal is now to combine this property with our dynamic OGD. To do so, we want to control the quadratic
terms in Lemma D.3. This is the goal of proposition D.4.

Proposition D.4. For any decision sequence (µ̂t)t, any sequence (µt)t such that for any t; (µ̂t, µt) is Ft−1-
measurable, with probability 1− 2δ, it holds for any T ≥ 1

T∑
t=1

Et−1[`t(µ̂t)]−
T∑
t=1

Et−1[`t(µt)] ≤
T∑
t=1
∇`t (µ̂t)T (µ̂t − µt) +

(
2(GD)2 + 6G

2

λ

)
log
(
δ−1)

Proof. We define α = λ/G2 and Yt = ∇`t (µ̂t)T (µ̂t − µt) remark that |Yt| ≤ GD a.s, we then exploit a
corollary of a Poissonian inequality stated in (Wintenberger, 2024, Eq. (7)). With probability 1− δ we have:

T∑
t=1

Y 2
t ≤ 2

T∑
t=1

Et−1[Y 2
t ] + 2(GD)2 log(1/δ)

Thus, taking an union bound to make hold this inequality simultaneously with the one of Lemma D.3 and
taking β such that 3β − α = 0 gives us with probability 1− 2δ:

T∑
t=1

Et−1[`t(µ̂t)]−
T∑
t=1

Et−1[`t(µt)] ≤
T∑
t=1
∇`t (µ̂t)T (µ̂t − µt) +

(
2(GD)2 + 6G

2

λ

)
log
(
δ−1)

This concludes the proof.

We are now able to prove Thm. 3.2:

Proof of Thm. 3.2.

Proof. We first state that for any (µ̂t, µt):
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T∑
t=1

Et−1[`t(µ̂t)]−
T∑
t=1

Et−1[`t(µt)] =
T∑
t=1

Et−1 [`t(µ̂t)− `t(µt)]

≤
T∑
t=1

Et−1 [`t(µ̂t)− `t(µ∗t )] with µ∗t = argminµ∈K `t(µ)

=
T∑
t=1

Et−1 [`t(µ̂t)− `t(νt)]︸ ︷︷ ︸
:=S1

+
T∑
t=1

Et−1 [`t(νt)− `t(νt+1)]︸ ︷︷ ︸
:=S2

+
T∑
t=1

Et−1 [`t(νt+1)− `t(µ∗t )]︸ ︷︷ ︸
:=S3

The sum S1 is controlled by applying proposition D.4. Then the sum
∑T
t=1∇`t(µ̂t)T (µ̂t − νt) is handled by

proposition C.1. We then obtain with our specific choice of steps:

S1 ≤
3
2GD

√
T +

(
2(GD)2 + 6G

2

λ

)
log
(
δ−1) = O(

√
T ).

To control the two last sums, we exploit some arguments provided in Thm. 3.1. More precisely we use the
bounds designed to control the sum (B) and (C) in the Thm. 3.1’s’ proof. We then have for any t ≥ 0, by
strong convexity of the losses:

`t(νt)− `t(νt+1) ≤ G||νt+1 − νt|| − λ||νt+1 − νt||2.

Also, our choice of steps gives for any j: 1
η′
j
− λ = λ (j − 1) = 1

η′
j−1

. Then, using Lemma 2.4 gives:

`t(νt+1)− `t(µ∗t ) ≤
G2

K

K∑
j=1

η′j = G2

λK

K∑
j=1

1
j

≤ G2(1 + log(K))
λK

.

Then, applying our conditional expectations, recalling that K = d
√
T e and summing over t gives us.

S2 ≤
T∑
t=1

Et−1
[
G‖νt+1 − νt‖ − λ‖νt+1 − νt‖2] ,

S3 ≤
G2

λ

√
T (1 + log(1 + T )) = Õ(

√
T ).

To conclude the proof, one remarks that if one defines

MT :=
T∑
t=1

Et−1
[
G‖νt+1 − νt‖ − λ‖νt+1 − νt‖2]− (GPT (ν)− λST (ν))
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Then:

S2 ≤
T∑
t=1

Et−1
[
G‖νt+1 − νt‖ − λ‖νt+1 − νt‖2] = MT +GPT (ν)− λST (ν)

(Mt)t≥0 is a martingale and furthermore for any t ≥ 0, −λD2 ≤ G‖νt+1 − νt‖ − λ‖νt+1 − νt‖2︸ ︷︷ ︸
=Mt−Mt−1

≤ GD.

Thus, applying Azuma-Hoeffding’s inequality gives us, with probability 1− δ that MT ≤ O(
√
T )

So with probability 1− δ, one has S2 ≤ GPT (ν)− λST (ν) +O(
√
T ).

Applying an union bound on the bounds of S1, S2 and summing the bound of S1, S2, S3 concludes the proof.

D.3 Proof of Thm. 3.4

Proof. We first state that for any (µ̂t, µt):

T∑
t=1

Et−1[`t(µ̂t)]−
T∑
t=1

Et−1[`t(µt)] =
T∑
t=1

Et−1 [`t(µ̂t)− `t(µt)]

≤
T∑
t=1

Et−1 [`t(µ̂t)− `t(µ∗t )] with µ∗t = argminµ∈K `t(µ)

=
T∑
t=1

Et−1 [`t(µ̂t)− `t(νt+1)]︸ ︷︷ ︸
:=S1

+
T∑
t=1

Et−1 [`t(νt+1)− `t(µ∗t )]︸ ︷︷ ︸
:=S2

The sum S1 is controlled by applying Lemma D.3. We then obtain with Yt = 〈∇t, µ̂t−νt+1〉 with probability
1− δ :

S1 ≤
T∑
t=1

Yt + β

2

T∑
t=1

Y 2
t + β − α

2 Et−1[Y 2
t ] + 2

β
log(1/δ).

The first sum is controlled by an intermediary result given in Lemma C.5, the second by Cauchy-Schwarz,
we then have:

T∑
t=1

Yt =
T∑
t=1
〈µ̂t −∇t, ν̂t〉+ 〈∇t, ν̂t − νt+1〉

≤ 1
2γ

T∑
t=1
∇>t A−1

t ∇t + γ

2

T∑
t=1

(µ̂t − νt)>∇t∇>t (µ̂t − νt) + 1
2γ +GPT (ν)

Recall that, because γ = 1
2 min( 1

GD , α/4), 1
γ ≤ 2

( 4
α +GD

)
, one has

∑T
t=1∇>t A

−1
t ∇t ≤ 2

( 8
α +GD

)
d log(T ).

Finally, one has:

T∑
t=1

Yt ≤ 2
(

1 + 8
α

+GD

)
d log(T ) + α

16

T∑
t=1

(
∇>t (µ̂t − νt)

)2 +GPT (ν)
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Plus, remarking that:

(
∇>t (µ̂t − νt)

)2 =
(
∇>t (µ̂t − νt+1) +∇>t (νt+1 − νt)

)2 ≤ 2Y 2
t + 2

(
∇>t (νt+1 − νt)

)2

≤ 2Y 2
t + 2G2‖νt+1 − νt‖2

Summing on t and reorganising the previous bounds finally gives:

S1 ≤ GPT (ν) + 2G2ST (ν) + β + α/4
2

T∑
t=1

Y 2
t + β − α

2 Et−1[Y 2
t ] + 2

β
log(1/δ) +O(d log(T ))

Finally, because |Yt| ≤ GD a.s, we exploit a corollary of a Poissonian inequality stated in (Wintenberger,
2024, Eq. (7)). With probability 1− δ we have:

T∑
t=1

Y 2
t ≤ 2

T∑
t=1

Et−1[Y 2
t ] + 2(GD)2 log(1/δ) (8)

Thus, taking an union bound and β such that 3β − α/2 = 0 gives us with probability 1− 2δ:

S1 ≤ O(d log(T )) +GPT (ν) +G2ST (ν) +
(

12
α

+ 10α
24 (GD)2

)
log(1/δ)

Finally, to control S2, we reuse the arguments provided in Thm. 3.3. More precisely, we use that the step
size of Construct allow us to use Lemma 2.4 to claim that for any t ≥ 0:

`t(νt+1)− `t(µ∗t ) ≤
G2

K

K∑
j=1

η′j

≤ G2(1 + log(K))
λK

Then, because K = T , applying our conditional expectations and summing over t gives us.

S2 ≤
G2

λ
(1 + log(T )) = O(log(T )).

Summing S1 and S2 concludes the proof.

D.4 Proof of Thm. 3.6

Proof. We first state that for any (µ̂t, µt):
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T∑
t=1

Et−1[`t(µ̂t)]−
T∑
t=1

Et−1[`t(µt)] =
T∑
t=1

Et−1 [`t(µ̂t)− `t(µt)]

≤
T∑
t=1

Et−1 [`t(µ̂t)− `t(µ∗t )] with µ∗t = argminµ∈K `t(µ)

=
T∑
t=1

Et−1 [`t(µ̂t)− `t(νt+1)]︸ ︷︷ ︸
:=S1

+
T∑
t=1

Et−1 [`t(νt+1)− `t(µ∗t )]︸ ︷︷ ︸
:=S2

The sum S1 is controlled by applying Lemma D.3. We then obtain with Yt = 〈∇t, µ̂t−νt+1〉 with probability
1− δ :

S1 ≤
T∑
t=1

Yt + β

2

T∑
t=1

Y 2
t + β − α

2 Et−1[Y 2
t ] + 2

β
log(1/δ).

The first sum is controlled by an intermediary result given in proposition C.6, the second by Cauchy-Schwarz,
we then have:

T∑
t=1

Yt =
T∑
t=1
〈µ̂t −∇t, ν̂t〉+ 〈∇t, ν̂t − νt+1〉

≤
√

2D

1 +
√

min
H∈H

∑
t

‖∇t‖∗2H

+GPT (ν)

Reorganising the previous bounds finally gives:

S1 ≤ GPT (ν) + β

2

T∑
t=1

Y 2
t + β − α

2 Et−1[Y 2
t ] + 2

β
log(1/δ)

Finally, because |Yt| ≤ GD a.s, we exploit a corollary of a Poissonian inequality stated in (Wintenberger,
2024, Eq. (7)). With probability 1− δ we have:

T∑
t=1

Y 2
t ≤ 2

T∑
t=1

Et−1[Y 2
t ] + 2(GD)2 log(1/δ) (9)

Thus, taking an union bound and β such that 3β − α = 0 gives us with probability 1− 2δ:

S1 ≤
√

2D

1 +
√

min
H∈H

∑
t

‖∇t‖∗2H

+GPT (ν) +
(

2
α

+ 2α
3 (GD)2

)
log(1/δ)
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Finally, to control S2, we reuse the arguments provided in Thm. 3.3. More precisely, we use that the step
size of Construct allow us to use Lemma 2.4 to claim that for any t ≥ 0:

`t(νt+1)− `t(µ∗t ) ≤
G2

K

K∑
j=1

η′j

≤ G2(1 + log(K))
λK

Then, because K = T , applying our conditional expectations and summing over t gives us.

S2 ≤
G2

λ
(1 + log(T )) = O(log(T )).

Summing S1 and S2 concludes the proof.
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