Under review as a conference paper at ICLR 2026

DYNA-MIND: LEARNING TO SIMULATE FROM
EXPERIENCE FOR BETTER AI AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reasoning models have recently shown remarkable progress in domains such as
math and coding. However, their expert-level abilities in math and coding contrast
sharply with their performance in long-horizon, interactive tasks such as web
navigation and computer/phone-use. Inspired by literature on human cognition,
we argue that current Al agents need “vicarious trial and error”—the capacity
to mentally simulate alternative futures before acting—in order to enhance their
understanding and performance in complex interactive environments. We introduce
Dyna-Mind, a two-stage training framework that explicitly teaches (V)LM agents to
integrate such simulation into their reasoning. In stage 1, we introduce Reasoning
with Simulations (RESIM), which trains the agent to generate structured reasoning
traces from expanded search trees built from real experience gathered through
environment interactions. RESIM thus grounds the agent’s reasoning in faithful
world dynamics and equips it with the ability to anticipate future states in its
reasoning. In stage 2, we propose Dyna-GRPO, an online reinforcement learning
method to further strengthen the agent’s simulation and decision-making ability
by using both outcome rewards and intermediate states as feedback from real
rollouts. Experiments on two synthetic benchmarks (Sokoban and ALFWorld) and
one realistic benchmark (AndroidWorld) demonstrate that (1) RESIM effectively
infuses simulation ability into Al agents, and (2) Dyna-GRPO leverages outcome
and interaction-level signals to learn better policies for long-horizon, planning-
intensive tasks. Together, these results highlight the central role of simulation
in enabling Al agents to reason, plan, and act more effectively in the ever more
challenging environments.

1 INTRODUCTION

Recent advances in language models have unlocked impressive reasoning capabilities in domains
such as mathematics and programming (Shao et al.| [2024; Jimenez et al., 2024). However, many
emerging applications unfold in complex environments that require multi-step reasoning, such as
web navigation (Zhou et al., [2024b}, [Deng et al.| 2023)), deep research (Gou et al.,[2025a; |Du et al.,
2025)), and computer/phone-use tasks (Xie et al.,[2024; Rawles et al.,|2025). Success in these domains
depends not only on the ability to decompose goals and reflect on past progress, but also on Al agents’
ability to construct accurate world models that capture the structure and dynamics of increasingly
complex environments (Shao et al., 2024} Jimenez et al., | 2024)).

Insights from human cognition indicate why such ability to model and simulate complex environments
is critical. Neuroscience research (Tolman, |1948; Daw et al.,|2005; |Daw & Dayan, |2014; |Bennett,
2023) highlights the emergence of the neocortex as a turning point in intelligence, enabling early
mammals to engage in “vicarious trial and error”’: mentally simulating possible futures, evaluating
their consequences, and selecting advantageous actions without directly experiencing each option.
This ability greatly enhanced adaptability and decision-making, which we argue is equally essential
for reasoning in long-horizon Al agent tasks.

Empirical evidence supports this view. In we observe that while strong reasoning models
such as DeepSeek-R1 can simulate and solve structured environments like Sokoban, their performance
drops sharply in more complex domains such as ALFWorld—both in simulation accuracy and overall
task success (also see [Section 4.1.2). Initial attempts to address this limitation, such as Dyna-

Under review as a conference paper at ICLR 2026

DeepSeek-R1 performance

Iy
S

100

Sokoban ri‘, '_’i rv=q
772 ALFWorld - ” "
80 X af al

t—» i r V=dy

60 S

@ simulation improvement

39 e ewilm r

o
©

I
o

40

Simulation Score (0-1)

Success Rate (0-100%

o Acting

4 FEl Lo

° o Let's do a; next!

\\

%0 Simulation Score Success Rate Stage 1: ReSim Training Stage 2: Dyna-GRPO

(a) Simulation ability v.s. performance (b) Dyna-Mind

Figure 1: We find the performance of strong reasoning models is heavily affected by its ability to
simulate in different environments (left). We introduce Dyna-Mind, a two-stage training framework
to integrate and improve simulation ability of Al agents (right).

Think (Yu et al.}2025b), integrate simulation into reasoning through distilling simplified traces and
adding auxiliary next-state prediction tasks. However, these methods rely on the strong capability of
reasoning models to directly generate synthetic simulation data, which can embed errors and biases.

To overcome this limitation, we present Dyna-Mind, an improved two-stage training framework
to teach (V)LM agents to simulate the environment by directly learning from real experiences. In
stage 1 training, we propose Reasoning with Simulations (RESIM) to algorithmically construct
reasoning traces using expanded search trees obtained from real environment interactions, and train
a policy model using these reasoning traces. In stage 2 training, we further improve the policy and
its simulation ability using online reinforcement learning (RL). We introduce Dyna-GRPO, a novel
algorithm that utilizes both outcome rewards and intermediate states from rollouts to improve the
simulation ability of the policy. Extensive experiments on two widely used synthetic benchmarks
(Sokoban and ALFWorld) and one realistic benchmark (AndroidWorld) show the effectiveness of
each stage of the framework. Our results indicate that (1) RESIM’s reasoning traces effectively teach
Al agents to simulate; and (2) Dyna-GRPO, by leveraging both outcome rewards and intermediate
interactions, learns better policies for long-horizon, planning-intensive tasks. These findings highlight
the importance of world simulation ability for reasoning in long-horizon tasks.

2 RELATED WORK

(V)LM as decision making agents The use of (visual) language models as autonomous agents
has been explored in a wide range of applications such as interactive game playing (Wang et al.|
2023}; Feng et al., 2025)), computer, phone, and browser uses (Xie et al.,|2024; Zhou et al., |2024b;
Rawles et al.l 2025), software engineering (Jimenez et al.,[2024;|Yang et al.| 2024)), and more. Early
works include reactive agents (Yao et al.,[2023b) that directly prompts an (V)LM to make decisions
on immediate observations without simulation or planning approaches, hindering performance on
complex long-horizon tasks. Recent advances include: (1) search-based methods (Yao et al.,|2023aj;
Zhou et al.| [2024a; Koh et al., 2024} [Yu et al., [2023; 2025a)) that augments (V)LM agents with
algorithms such as BFS, DFS, and MCTS; and (2) hierarchical, multi-agent methods (Zheng et al.}
2024; |Agashe et al.l [2024; [2025} [Liu et al.| 2025} (Gou et al., [2025b) that orchestrate multiple
specialized agents to complete long-horizon tasks. While these methods show improvements, they
often introduce substantial overheads during inference, such as requiring additional interactions
with the environments or designing complex heuristics to orchestrate multiple agents. We focus on
enhancing a single (V)LM agent by integrating simulation into its reasoning via training.

Training (V)LM agents Early methods in training (V)LM agents mostly rely on supervised
learning (SFT) with human annotations or data synthesized by state-of-the-art (reasoning) models
(Zeng et al.,|2023; |Chen et al.| 2024; Zhang et al., [2024; Xu et al., 2025). Recently, many methods
such as [Feng et al.| (2025)); Wang et al.|(2025b); [Wei et al.| (2025ajb) leverage reinforcement learning
(RL) with verifiable rewards to directly train agents to complete tasks by prompting them to reason
before taking actions, following the success of DeepSeek-R1 (DeepSeek-Al et al., 2025a). However,
it remains unclear whether extensive reasoning is necessary for all scenarios (Shojaee et al.|[2025)),
and what aspects of such reasoning is essential for long-horizon tasks (Yu et al.,[2025b)). In this work,

Under review as a conference paper at ICLR 2026

we specialize in integrating and improving the simulation ability of (V)LM agents during reasoning,
and show that planning with world simulation is crucial for long-horizon tasks.

World models and Dyna algorithms Beyond task completion, real-world interaction data contains
rich information that can be used to help decision making. Early examples include Dyna algorithms
(Sutton, (1991)), which combine model-based and model-free methods to efficiently learn optimal
policies. Given a set of real-world rollout data, Dyna (1) separately train a world model using
these rollouts; (2) perform additional simulated rollouts with the world model; and (3) update the
policy using both real and simulated rollouts. Applications of world model training have been
explored in work such as (Chae et al.|(2025); |Gu et al.|(2025), facilitating search algorithms such
as MCTS to improve performance; and applications of Dyna include Deep Dyna-Q (Peng et al.
2018), Switch-DDQ (Wu et al.| 2018)), and more (Zou et al., 2020; 'Yu et al., [2025b). However, these
approaches either result in modular systems (a separate policy and world model) or require accessing
state-of-the-art reasoning models (e.g., DeepSeek-R1). Our work does not rely on strong reasoning
models, and focuses on integrating and improving simulation as part of an agent’s reasoning process.

3 DYNA-MIND

Research in human cognition (Daw et al.l 2005;|Daw & Dayan| 2014; Bennett, [2023)) as well as in
games like chess, go, and othello (Schrittwieser et al., 2020; |L1 et al.| 2024} Nanda et al., |2023; |Chae
et al.| [2025) suggests that strong agents implicitly store and use a (compressed) representation of the
world to enhance their decision-making. This perspective highlights two key questions in existing
approaches to improve (V)LM agents for long-horizon tasks: (1) how to synergize world simulations
with reasoning; and (2) how to improve the simulation ability to help improve the policy.

To address these questions, we introduce Dyna-Mind, a two-stage training framework to teach (V)LM
agents to plan with simulations during their reasoning and improve their task performance. We detail
these two training stages next in[Section 3.2|and[Section 3.3| respectively.

3.1 NOTATION

Completing tasks in complex, realistic environments is typically formulated as a Markov Decision
Process of (S,.A, 7, R). In the generic setting of multi-step tasks, an agent 7y receives an instruction
and observation'|from the environment s; ~ S at time step ¢, generates an action a; ~ mg(-|s¢), and
transitions to the next state s;11 ~ 7 (s¢,a¢). This process is repeated until the task is completed
or until reaching a maximum number of steps, upon which a terminal reward r7 ~ R(s,ar) is
provided based on whether the task is completed successfully or not. In the context of simple text
games such as Sokoban [Schrader| (2018]), a state s; can represent the complete game state, and an
action a; is one of “left”, “right”, “up”, “down” (after some reasoning process). In more complex
environments such as AndroidWorld (Rawles et al.,[2025)), a state s; is the current screenshot of the
android device, and an action a; can be “tapping on a coordinate (x,y)”, “swiping up”, “swiping
down”, etc. We note that since we aim to train agents to generate simulations within their reasoning
process, any text that represents simulation is always part of the response atE] Any variant of the

symbol s represents real states from environment interactions, unless explicitly stated otherwise.

3.2 REASONING WITH SIMULATIONS (RESIM)

To enable an agent to simulate during its reasoning, we first construct imitation learning data where
the reasoning process consists of explicitly planning with simulations. Different from prior work
such as|Yu et al.| (2025b)) that leverages superior LLMs such as DeepSeek-R1 which already shows
world modeling capability in its reasoning traces (see [Section 4.1.1| for more details), we construct
simulation-guided reasoning traces using search trees built from real environment interactions.

'Technically, any input to the agent from our environments is an observation (as in POMDP) instead of a
state. However, to simplify notation we used s to generally denote the agent’s input from the environment.

?As action plan/final action are always extracted from model response, we use a (by slight abuse of notation)
to denote either the full response or the extracted executable action. Distinctions are made clear in context.

Example model response for each benchmark is provided in [Table KZI} Table Kgl and[Figure A l

Under review as a conference paper at ICLR 2026

ReSim Data Collection/inference Distill(ReSim)
aReSim ReSim
s 0 a; ORI)
0 S1 0 0 So
L R S Ut * ReSim _ ReSim ReSim
E Orallout x combine all info as a single response using an (V)LM aO aO aO
1 . !
' hlgh_value <think>Currently, we are at . Let's plan: ,
' : 1 2
: s B s N Hoosl 8P sV
' - Maybe we can try @, ? Let's think. This will ' 1
lead to 3' . After that, maybe ¢ ... Value: fu’ H . . .
! " m 1 H
Sy S9 Sy - Maybe we can try ag? Let's think. This will ! a{{eSIm al}eSlm al{{eSun

E F leadto 5'1' . After that, perhaps a'f ...Value: ’U”
: - Alternatively, maybe /2 ... Value: ¢ :

' ! " "
' Sa Sa Sd So, the best plan is aj, af, . . . because...
1 n "
’ o <plan>ag, ay, . .. </plan> . (1) (3) (N)
] o @ B <action> a{ </action> aReSlm H i Gir Sip
E low value gesﬁmate value —J 0 ' C - J
——— / N trajectories

Figure 2: RESIM integrates simulation into reasoning (a£*5'™) by using expanded search trees built
through real environment interactions (left). RESIM then trains an agent to directly generate such

simulation-guided reasoning trace a}°>™ without any algorithm support (right).

RESIM Data Collection To construct reasoning data with rich simulations, we leverage algorithms
such as depth first search (DFS) to construct search trees based on environment interactions, and then
use an (V)LM to aggregate the entire search tree into a single reasoning response a%°>"™ for later
training. Specifically, given a state s, RESIM first uses a rollout model 7y to generate b rollouts from
s up to depth d. This rollout model can be a specialized/finetuned LLM (see or simply
prompting a generic LLM (see [Section 4.2)). Then, RESIM uses a value function V,, to provide an
estimate of the quality of each of the partial rollouts, where the V,, can be implemented as either a
finetuned value model (see or using LLM-as-a-judge (see[Section 4.2). Finally, we use
a generic (V)LM to aggregate all these rollouts and their values into a single response a°5™ by
prompting the (V)LM to 1) first independently summarize each partial rollout, which contains ground-
truth future states information from the environment; and 2) then aggregate all these summaries into a
coherent response conditioned on the current state s and previous & actions and states, and choose the
best plan and the next immediate action for execution. The final chosen action from a®¢S'™ is then
executed in the environment, and this process is repeated until the task is solved or until a maximum
number of steps is reached. We illustrate this process in|[Figure 2| Left and We note that
since RESIM essentially converts real search trees into a single reasoning trace, it is not limited to (1)
agent-environment interactions; (2) specific search algorithms used in this work. We believe other
domains such as agent-user-environment interactions or other algorithms such as MCTSﬂ are also
applicable, which we leave for future work.

RESIM Distillation Since each response a?°5™ encapsulates an entire search tree in its reasoning,

we directly use 5™ as the training target given an input s to teach the model to perform simulation-
guided reasoning without any algorithm support. We illustrate this in Right. Specifically,

given a collection of trajectories 7 = {sg, af°>™, 51, a5 ... s aReSMY produced by RESIM
inference, we use SFT to train the model to directly generate each aX°5'™ given the current state s;

as well as a maximum history of & previous actions and states in the trajectory (i.e., the same input
used by other inference methods such as REACT).

3.3 DyYNA-GRPO

While RESIM provides a principled way to synergize simulation with reasoning, it is computationally
expensive and relies on multiple modules (a rollout model, a value function, and a (V)LM to aggregate
the search tree into a single response) to construct training data. Additionally, such offline training
may limit models’ generalization ability to new tasks. To address this, we propose DYNA-GRPO, a
modification of GRPO (Shao et al.,[2024) to further improve the model’s simulation ability during

3In[Appendix D.1| we experimented with using BES instead of DFS for RESIM. The results were very
similar, indicating that RESIM is not sensitive to the specific search algorithm used, but rather depends on the
content of the resulting search trees.

Under review as a conference paper at ICLR 2026

Policy Improvement Simulation Improvement
t=1 t=2 t=3 t=1 t=2 t=3
A=l t=0
Group N
s
! Comp. S0 . """" .. """"""" : mean(R)Group
gi‘ __________________________________ Comp.
§ SimRoll.
. Group
R N Comp.
Legend: ' | :
state action future info. rollout trajectory S]r’nﬁo’"’o’u’t};a’]é(;t’o’r

Figure 3: DYNA-GRPO iterates between policy improvement (left) and world model improvement
(right), optimized by GRPO. During policy improvement, we perform grouped policy rollouts with
GRPO. During simulation improvement, we perform both policy rollouts and simulation refinement
rollouts (see [Figure 4, and trains the model to directly generate an improved policy as well as to
better perform simulation refinement when provided with future-states information.

online RL without using any search or additional modules. The standard GRPO objective Jgrpo is:

TTO01a

G T
% > min (po(af”) Alaf”), clip(po(ay”), 1 £) Alaf”)) — BDxr(ml m)mf)l :

i=1 t=1

where pg(a) = % is the importance sampling ratio, 3 is the KL regularization coefficient, and

A = Agrpo is the episode-level advantage function (Wang et al,[2025b} [Feng et al.,[2025):

- . R(7) — mean({ R(T G .
A6l?) = Acrrolr) = Zm({R(Té{))}(f_l)) S R = 3 R

where G is the group size, R(-) is the reward provided by the environment, with R(s¢, a;) = —0.1
for non-terminal steps and R(st,ar) = 10.0 or R(st,ar) = 0.0 for terminal steps when task
succeeded or failed, respectively.

However, RL algorithms such as GRPO aim to optimize a policy only using scalar rewards R but
do not provide any direct training signal on refining the reasoning process or world model simulations.
We propose DYNA-GRPO to address this, by additionally incorporating future state(s) information
Sti41,St+2,- -+ as fextual signals to help improve the model’s response a ~ my(-|s) during RL
training. Since textual signals cannot be directly “optimized”, we propose SIMROLLOUT to instead
prompt the underlying model to refine its simulation in a ~ mg(+|s;) utilizing real future state(s)
St+41, St+2, - - during RL rollouts. Then, during optimization we train the policy to both directly
generate the refined action and also to improve its “simulation refinement” ability (DYNA-GRPO).
We detail these two modifications below.

Rollout
. . ao a
SIMROLLOUT In simulation refinement rollout S0 il
(SIMROLLOUT), at each state s; we first sample
a response a ~ p(+[s;); then extract the final P SimRollout
chosen plan {a1, g, - -, aq} up to depth d from grefine grefine
a and execute them in the environment to obtain S0 L s1 L
/ / ! .
ground truth next-states {s; L1 St Sty abs T etggrge;ncll;t
and finally prompt 7 again to refine its re- ao “ay o
. 2
sponse a given these real future states a“’ﬁ"e ~ -> sh -> shdl 54 —3>
79(|srehne) S;ehne — {St Dad st+1 Bhas® - ® Qexecute plan in ag

s/ We illustrate this rollout process in |[Fig . .
}ﬂ d provide the pseudo-code Ii)n Figure 4: SIMROLLOUT generates refined action
We note that this is different from methods such P State s¢ using real environment interactions
as Reflexion (Shinn et al., 2023)), which performs reflection at the end of the episode utilizing suc-

cess/failure information, and is also not intended for any training purposes. Empirically, we find the
resulting ™" indeed improves the policy’s simulation and performance (see |Appendix D.4).

*Since d is determined dynamically by the model, we capped it at 5 to ensure training stability.

Under review as a conference paper at ICLR 2026

DYNA-GRPO Training To utilize refined tra-
jectories from SIMROLLOUT during RL, we fol-
low Dyna algorithms to improve the model’s

Algorithm 1 DYNA-GRPO

Require: policy 7y, environment 7, group size G
Require: hyperparameters G, N, ny,n

policy and simulation ability iteratively. Specif- ! for V training iterations do

: . . 2: //simulation improveme
ically, DYNA-GRPO iterates between (1) sim- 3, fo;'f,';; (s/g;é do yovement
ulation improvement where models learn from 4. // seelgorithm 2]
refined policies that use future states information ~ 5: }T '}L {Tretne } T Sin;_Rgl/OH)t(We, T,G/2)
from SIMROLLOUT to improve its simulation ¢ 7} < Rollout(my, T, G /2
bql' S q 02 d(.)U tol. prove its stmu altlo 7: Update 75 with GRPO({7} U {r'})
ability; and () irect policy improvement where g Update g with GRPO({7.. }) using Asefine
models are trained on standard rollouts without 9. end for
future-state access, allowing it to better integrate ~ 10: //policy improvement
simulation ability into decision-making. We il- 111 for nr steps do
.. . 12: {7} < Rollout(my, T, G)
lustrate both training processes in and 3 Update 7y with GRPO({r})
detail the overall algorithm in 14: end for
. . . . 15: end for
During simulation improvement, for each task 6. return

we (1) first perform SIMROLLOUT with a group
size of G/2, collecting refined trajectories with and without future-state information removed: 7/ =
{s0,af™e s, af™e ...} and 7/, = {siine, giefine grefine grefine ... 4. (2) then perform standard
rollouts with group size of G/2; (3) combine these standard rollouts 7 with refined trajectories 7’
into a single group of size G and perform GRPO on this combined group; (4) finally utilize 7/ 4,
to also improve the model’s simulation refinement ability, using the following modified advantage
to reward refinements that both correctly solves the task and improves upon (the mean reward of)

standard policy rollouts which does not access future states:

(@)

A (T(i))= 1.0, if 7.5, is correct and R(Tr((ff)"mc) > max(R, R")
refine\ " refine OO’ otherwise ’

where R = GL/2 S22 R(r™) is the mean reward of the standard policy rollouts (line 6 of

; Rrefine — %ﬂ ZZG:/f R(Tr(eif)ine) is mean reward from SIMROLLOUT (line 5 of |Algorithm 1)
During policy improvement, we perform standard policy rollouts without future state information,
optimized by GRPO using episode-level advantage (Feng et al., 2025; |Wang et al., 2025b)).

4 EXPERIMENTS

We first evaluate Dyna-Mind on two “synthetic” environments (Sokoban and ALFWorld) that require
efficient planning for successful task completion. These lightweight environments allow us to provide
detailed analysis of the different reasoning styles as well as different RL algorithms. Then, we extend
our methods to a more complex and realistic environment (AndroidWorld).

4.1 TEXT GAMES

Benchmarks Sokoban (Schrader, 2018) is a grid-world game where the agent needs to push
boxes to target destinations while avoiding obstacles, and successful task completion requires spatial
planning to avoid deadlock situations. ALFWorld (Shridhar et al.,[2021) is a text-based embodied
environment where the agent needs to locate/interact with objects to complete household tasks using
natural language instructions. To evaluate the agent’s generalization ability, we construct training
set, an in-distribution (ID) test set, and an out-of-distribution (OOD) test set. For Sokoban, we use
training set with 6x6 room layouts with 1 box and 1 destination; ID test set with different 6x6 room
layouts than training; and OOD test set with 8x8 room layouts with 1 box and 1 destination. For
ALFWorld, we directly use the official training, ID, and OOD test splits from |Shridhar et al.|(2021)).

Baselines setup To evaluate RESIM, we compare against (1) ReACT based prompting methods with
models such as GPT-40 (OpenAl, 2024), Claude-3.7 (Anthropic, [2025), DeepSeek-V3 (DeepSeek-Al
et al.,2025b)), and DeepSeek-R1 (DeepSeek-Al et al.|[2025a); and (2) training methods that distill the
reasoning traces from strong policy models such as DeepSeek-R1. To evaluate stage 2 DYNA-GRPO
training, we compare against other popular group-based RL algorithms such as RLOO (Kool et al.,

Under review as a conference paper at ICLR 2026

Table 1: Performance on text game environments such as Sokoban and ALFWorld. “Gen. Token”
denotes the average number of tokens generated per turn relative to that of Qwen2.5-7B-Instruct. All
training in stage-1 and stage-2 are based on Qwen2.5-7B-Instruct. All results are averaged over 3
runs. Our methods are highlighted in gray.

Method Gen. Token Sokoban ALFWorld

ID 00D AVG ID 00D AVG
REACT(Qwen2.5-7B-Instruct) 1.0x 25.8+18 - - 354419 - -
REACT(Qwen2.5-32B-Instruct) 2.7x 36.7+42 - - 36.2+33 - -
REACT(GPT-40) 1.5x 37.8+10 - - 51.3+21 - -
REACT(Claude-3.7-Sonnet) 2.3x 703+12 - - 46.1+10 - -
REACT(DeepSeek-V3) 2.5x 57.0+16 - - 55.2+10 - -
REACT(DeepSeek-R1) 14.5x 96.6+0> - - 62.5+05 - -
RESIM 2.0x 96.4+02 - - 87. 7411 - -
Dyna-Think
DIT(R1)+DDT(7') 24.2x 74.0414 575512 658419 632415 56.7+28 589123
Dyna-Mind Stage 1 (SFT)
DiISTILL(V3) 2.1x 492411 344413 41811 589x11 56.7x10 57.8+12
DisTILL(R]1) 24.0x 725129 57.0+19 64.8+25 594115 542139 56.8+35
DISTILL(RESIM) 2.0x 719415 555416 63.7+19 789+21 69.3+113 T41+i1s
Dyna-Mind Stage 2 (RL)
DISTILL(RESIM) + RLOO 2.2x 78.1+18 65.1+13 71.3x09 859413 854420 85.5+20
DISTILL(RESIM) + GRPO 2.1x 79.1+13 67.8+06 73.1+14 87.0+32 87.1+11 87.0+18
DISTILL(RESIM) + DYNA-GRPO 1.9x 825415 701+16 77d+17 92.5+08 89.1+13 90.8+09

2019) and GRPO (Shao et al.l|2024). Overall, we also compare against Dyna-Think (Yu et al.| 2025b)),
which similarly uses two-stage training (DIT and DDT) to improve model’s simulation ability.

Dyna-Mind setup To instantiate RESIM, we use Qwen2.5-32B-Instruct (Qwen et al.| [2025) as
rollout and value function models, finetuned on rollouts obtained by using DeepSeek-V3 (see
for more details) and use DeepSeek-V3 as the LLM to aggregate the search tree
into a single response. For Sokoban, we use d = 5,b = 16, by,in = 2; for ALFWorld, we use
d = 2,b= 24, by,n = 4. We note that all models used by RESIM are by themselves much weaker
than other models such as DeepSeek-R1 as well as RESIM itself. Since DeepSeek-R1 and RESIM
have a higher success rate than DeepSeek-V3, to isolate improvement from better reasoning from
simply training with more (diverse) data, we thus only used trajectories where all methods correctly
solved the task for stage 1 training. This results in a total of 207 trajectories in Sokoban and 200
trajectories in ALFWorld from each method (DeepSeek-R1, DeepSeek-V3, and RESIM) in the
subsequent stage 1 training.

To instantiate DYNA-GRPO, we continue training the best model from stage 1 distillation. To
ensure a fair comparison, we use identical hyperparameters for all methods (RLOO, GRPO, and
DYNA-GRPO), when applicable. For DYNA-GRPO, we use n = 10 and n, = 10 for Sokoban

and n = 10 and n, = 20 for ALFWorld. For more setup details, please see[Appendix D.3]

4.1.1 MAIN RESULTS

In the upper section of we first evaluate RESIM’s performance against other strong reasoning
models such as DeepSeek-R1. Then, we compare different training methods to integrate/improve
the simulation ability of the policy model. In[Table 1] we first find that RESIM achieves near-perfect
performance on Sokoban (96.4% success) and a strong performance on ALFWorld (87.7% success),
significantly outperforming all other methods. On Sokoban, we find strong reasoning models such as
DeepSeek-R1 also achieves near-perfect performance, which we attribute to R1’s ability to correctly
simulate Sokoban game states (but not on ALFWorld) during its reasoning process (see
for empirical results). In contrast, RESIM utilizes ground-truth simulations from search trees, and
hence was able to achieve strong performance in both environments.

In stage 1 training, we find DISTILL(RESIM) achieves a similar performance to DISTILL(R1) on
Sokoban but significantly outperforms both DISTILL(V3) and DISTILL(R1) on ALFWorld. Addition-
ally, since RESIM constructs reasoning traces consists almost entirely of only planning via simulation
(see [Figure 2| Left), DISTILL(RESIM) outputs Ix less tokens on average compared to DISTILL(R1).

Under review as a conference paper at ICLR 2026

Table 2: Measuring simulation ability of different models across different training stages. We report
the average success rate and the simulation ability (Sim Score € [0, 1]) averaged across all trajectories.
We also report the correlation coefficient r between the success rate and the simulation score.

Sokoban ALFWorld
Success Sim Score Success Sim Score
REACT(Qwen2.5-7B-Instruct) 25.8+18 0.21¢ =064 35.4+19 0.18¢ =0.46)

Method

REACT (DeepSeek-V3) 57.0+16 0.54¢ =08 552410 0.35¢ =068
REACT (DeepSeek-R1) 96.6+02 0.93¢- =096 62.5+05 0.36¢- =0.70)
RESIM 96.4102 1.00() 87. 7111 1.00
Dyna-Think

DIT(R1)+DDT(7—) 74.0+14 0.62¢- =079 63.2+15 0.36¢- =0.76)
Dyna-Mind Stage 1 (SFT)

DisTILL(R1) 725429 0.6l =075y 59.4x15 0.34¢ =07
DISTILL(RESIM) 719415 0.62¢- =078y 78.9+21 0.37¢ =074
Dyna-Mind Stage 2 (RL)

DisTILL(RESIM) + GRPO 79.1+13 0.62¢- =065y 87.0+32 0.38(p =043

DISTILL(RESIM) + DYNA-GRPO 82.5+15 0.67¢ =064 92.5+0s 0.43¢- =055)

These results indicate that that strong performance from RESIM can be learned by SFT, and that the
ability to model and simulate the environment is crucial for long-horizon, planning-intensive tasks.

In stage 2 training, we continue from the best model (DISTILL(RESIM)) with online RL. In[Table T}
we find that DYNA-GRPO improves upon both GRPO, RLOO, as well as Dyna-Think, while
maintaining a similar output token length compared to its base model DISTILL(RESIM). This
indicates that DYNA-GRPO is effective at improving the model’s simulation ability during online
RL training (also see for empirical results), and that improving such simulation ability
helps improve task performance. For a more detailed ablation study comparing the effect of search
algorithm used by RESIM as well as DYNA-GRPO, please see[Table Al]and [Appendix D.T}

4.1.2 MEASURING SIMULATION ABILITY

Dyna-Mind aims to integrate and improve the simulation ability of agents. To measure this simulation
ability, we evaluate the Simulation Score (Sim Score) of different models and the Spearman
Correlation Coefficient (75) between sim score and success rate. Given a state s; and generated
response a; ~ 7y (-|s;), we evaluate the simulation score of a; by 1) first prompting an LLM to extract
the final action plan (a1, dsa, - -+ , Gq) and the natural language description (i.e., simulation) of the
corresponding imagined next-states (S;41, S¢12, -+ , S¢4+4) from the response a;; 2) then execute the
action plan in the environment to obtain ground truth next-states {s¢11, St42, - , St4+a}; 3) finally,
prompt an LLM to judge (Zheng et al.| 2023)) the correctness of these simulated next-states 5; by
comparing them against the ground truth s;, returning a score € [0, 1]. Finally, we averaged the score
for each turn to obtain an overall simulation score for the trajectory. To ensure a fair judgment, we
used a different LLM from all of our experiments (Qwen3-235B-A22B-Instruct (Qwen Team| [2025)).

For judgment prompts, please see[Appendix D.6]

We present the results in[Table 2] In[Table 2] we find that 1) RESIM maintains its strong success rates
across both Sokoban and ALFWorld due to its perfect simulation ability (by construction), whereas
DeepSeek-R1 struggled in ALFWorld as it struggles to model the environment layout; and 2) both
Di1STILL(RESIM) and DYNA-GRPO improve the simulation ability alongside task performance
compared to their baselines. These results show that our methods helped improve the simulation
ability of the model beyond simply improving task performance.

4.2 ANDROIDWORLD

Next, we extend our Dyna-Mind to AndroidWorld (Rawles et al., [2025) - a highly challenging
benchmark that evaluates the agent’s ability control and complete tasks on a virtual Android device.

Benchmarks AndroidWorld (Rawles et al.|[2025)) provides a fully functional Android environment
that requires the agent to interact with Android’s GUI to complete tasks across 20 real-world Android
apps. Since tasks in AndroidWorld are parameterized by task types (116), we construct a training

Under review as a conference paper at ICLR 2026

Table 3: Performance on AndroidWorld. All training in stage-1 and stage-2 are based on Qwen2.5-
VL-7B/32B-Instruct. We exclude Dyna-Think since (most) VLMs cannot predict images, as required
by DDT(T) training. “Gen. Token” denotes the average number of tokens generated per turn relative
to that of Qwen2.5-7B-Instruct. All results are averaged over 3 runs. Our methods are highlighted in

gray.

Method Gen. Token AndroidWorld

ID OOD AVG
REACT(GPT-40) 1.0x 5.1402 - -
REACT(Qwen2.5-VL-7B-Instruct) 1.0x 5.3+02 - -
REACT(Qwen2.5-VL-72B-Instruct) 1.1x 19.5+04 - -
RESIM 2.1x 344104 - -
Dyna-Mind Stage 1 (SFT)
DiSTILL-7B(Qwen2.5-VL-72B-Instruct) 1.0x 13.1404 8.6+02 10.8+06
DiISTILL-7B(RESIM) 2.1x 21.1+04 10.2+06 15.7+08
DISTILL-32B(RESIM) 2.0x 32.8+04 15.6+07 24.2+06
Dyna-Mind Stage 2 (RL)
DisTILL-32B(RESIM) + GRPO 2.1x 353404 203406 27.8+04
DisTILL-32B(RESIM) + DYNA-GRPO 1.9x 40.7+£10 229+10 31.8+10

set with 81 task types with in total 1946 tasks, an ID test set with 128 different tasks from the same
task types, and an OOD test set with 128 tasks from the remaining 35 held-out task types. We use a
maximum number of 15 steps and the screenshot-only modality as input. We provide an example

task and action in

Baselines setup Since our methods consider end-to-end training, we compare against models that
are capable of directly generating executable actions given an GUI screenshot, and exclude modular
systems such as |Gou et al.| (2025b); |Agashe et al.| (2025). We thus mainly compare against (1)
REACT based prompting method with Qwen2.5-VL-72B/7B (Bai et al., 2025), and GPT-40; and (2)
distillation from Qwen2.5-VL-72Bﬂ To evaluate stage 2 DYNA-GRPO, we compare against GRPO
following We exclude comparison against Dyna-Think in this experiment, because
DDT(T) trains the model to predict next-state (in this case, screenshot images), which cannot be
implemented using most VLMs as they can only generate text.

Dyna-Mind setup Since AndroidWorld is a highly challenging and compute-intensive environment
(each episode on average takes 15-20 minutes to complete), we do not perform any rollout/value
function training for RESIM. Instead, we directly prompt Qwen2.5-VL-72B as the rollout model,
prompt GPT-40 as a judge to approximate the value function, and also use GPT-40 as the VLM to
aggregate the rollouts into a single response in RESIM. We use d = 1,b = 16, byain = 4 for RESIM,
and a total of 128 trajectories for distillation/stage 1 training. To instantiate DYNA-GRPO, we
generally followed the same recipe as but used less training steps (60) as AndroidWorld

is highly compute-intensive and time-consuming. For more details, please see[Appendix E.2]

4.2.1 MAIN RESULTS

Results We present the results in In general, we observe similar results compared to
First, we find that RESIM inference significantly improves performance, and that the
improved performance can be transferred to Qwen2.5-VL-7B and 32B via DISTILL(RESIM). Next,
in both training stages of Dyna-Mind, we find improved performance in both ID and OOD test sets
compared to baselines, including Qwen2.5-VL-72B and even RESIM. These results highlight the
effectiveness of our method to improve agent’s performance in complex environments.

Error Analysis Compared to synthetic text games (Section 4.1.1) where RESIM achieves near-
perfect performance, we find RESIM struggles in AndroidWorld despite improvements compared to
baselines. After analyzing trajectories produced by RESIM, we find performance is bottlenecked by

SWe were unable to reproduce the reported performance of more recent GUI models such as UI-Tars1.5 (Qin
et al.| [2025), and hence focus on using Qwen2.5-VL for simplicity. Please see for more details.

Under review as a conference paper at ICLR 2026

the rollout model (Qwen2.5-VL-72B), mainly due to: (1) incomplete understanding of some GUI
interfaces and certain button functions, and (2) inability to recover after making multiple mistakes.
We believe methods to improve the foundation model’s capability could mitigate these problems
(Wang et al.| 2025a; |Qin et al., |2025)), which we leave for future work.

5 CONCLUSION

In this work, we propose Dyna-Mind to synergize reasoning with simulations for autonomous Al
agents. We empirically show that an agent’s ability to model and simulate the environment strongly
correlates with its ability to correctly reason and complete long-horizon, planning-intensive tasks.
We introduce Dyna-Mind, a two-stage training method to explicitly teach (V)LM agents to integrate
and improve such simulation a part of their reasoning. In stage 1 training, we propose RESIM to train
a model to simulate future states by learning to predict an expanded search tree in their reasoning. In
stage 2 training, we propose DYNA-GRPO to further refine the agent’s reasoning and simulation
ability using online RL. Empirical results on three benchmarks show that (1) RESIM effectively
teaches Al agents to simulate; and (2) DYNA-GRPO, by leveraging both outcome rewards and
intermediate interactions, learns better policies for long-horizon, planning-intensive tasks.

REFERENCES

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s: An
open agentic framework that uses computers like a human, 2024. URL https://arxiv.org/
abs/2410.08164.

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s2:
A compositional generalist-specialist framework for computer use agents, 2025. URL |https:
//arxiv.org/abs/2504.00906.

Anthropic. Claude 3.7 Sonnet and Claude Code. https://www.anthropic.com/news/
claude—-3-7-sonnet) 2025. Accessed: 2025-05-13.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025. URL
https://arxiv.org/abs/2502.13923l

M.S. Bennett. A Brief History of Intelligence: Evolution, Al, and the Five Breakthroughs That Made
Our Brains. HarperCollins, 2023. ISBN 9780063286368. URL https://books.google.
com/books?id=tymCEAAAQBAJ.

Hyungjoo Chae, Namyoung Kim, Kai Tzu iunn Ong, Minju Gwak, Gwanwoo Song, Jihoon Kim,
Sunghwan Kim, Dongha Lee, and Jinyoung Yeo. Web agents with world models: Learning and
leveraging environment dynamics in web navigation, 2025. URL |https://arxiv.org/abs/
2410.13232.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and
Feng Zhao. Agent-flan: Designing data and methods of effective agent tuning for large language
models, 2024. URL https://arxiv.org/abs/2403.12881.

Nathaniel D Daw and Peter Dayan. The algorithmic anatomy of model-based evaluation. Philosophi-
cal Transactions of the Royal Society B: Biological Sciences, 369(1655):20130478, 2014.

Nathaniel D. Daw, Yael Niv, and Peter Dayan. Uncertainty-based competition between prefrontal
and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8:1704—1711, 2005.
URLhttps://api.semanticscholar.org/CorpusID:16385268.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,

Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao

10

https://arxiv.org/abs/2410.08164
https://arxiv.org/abs/2410.08164
https://arxiv.org/abs/2504.00906
https://arxiv.org/abs/2504.00906
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://arxiv.org/abs/2502.13923
https://books.google.com/books?id=tymCEAAAQBAJ
https://books.google.com/books?id=tymCEAAAQBAJ
https://arxiv.org/abs/2410.13232
https://arxiv.org/abs/2410.13232
https://arxiv.org/abs/2403.12881
https://api.semanticscholar.org/CorpusID:16385268

Under review as a conference paper at ICLR 2026

Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiagi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin,
Ruyi Chen, and et al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement
learning, 2025a. URL https://arxiv.org/abs/2501.12948.

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli
Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen,
Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi
Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song,
Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi
Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, and et al. Deepseek-v3 technical report,
2025b. URL |https://arxiv.org/abs/2412.19437.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web, 2023. URL https://arxiv.org/
abs/2306.06070.

Mingxuan Du, Benfeng Xu, Chiwei Zhu, Xiaorui Wang, and Zhendong Mao. Deepresearch bench: A
comprehensive benchmark for deep research agents, 2025. URL https://arxiv.org/abs/
2506.11763.

Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
agent training, 2025. URL https://arxiv.org/abs/2505.10978.

Boyu Gou, Zanming Huang, Yuting Ning, Yu Gu, Michael Lin, Weijian Qi, Andrei Kopanev,
Botao Yu, Bernal Jiménez Gutiérrez, Yiheng Shu, Chan Hee Song, Jiaman Wu, Shijie Chen,
Hanane Nour Moussa, Tianshu Zhang, Jian Xie, Yifei Li, Tianci Xue, Zeyi Liao, Kai Zhang,
Boyuan Zheng, Zhaowei Cai, Viktor Rozgic, Morteza Ziyadi, Huan Sun, and Yu Su. Mind2web 2:
Evaluating agentic search with agent-as-a-judge, 2025a. URL |https://arxiv.org/abs/
2506.21506.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents,
2025b. URL https://arxiv.org/abs/2410.05243.

Yu Gu, Kai Zhang, Yuting Ning, Boyuan Zheng, Boyu Gou, Tianci Xue, Cheng Chang, Sanjari
Srivastava, Yanan Xie, Peng Qi, Huan Sun, and Yu Su. Is your llm secretly a world model of
the internet? model-based planning for web agents, 2025. URL |https://arxiv.org/abs/
2411.065509.

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao, Michael
Tontchev, Qing Hu, Brian Fuller, Davide Testuggine, and Madian Khabsa. Llama guard: Llm-based
input-output safeguard for human-ai conversations, 2023. URL https://arxiv.org/abs/
2312.06674.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik

Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

11

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2306.06070
https://arxiv.org/abs/2306.06070
https://arxiv.org/abs/2506.11763
https://arxiv.org/abs/2506.11763
https://arxiv.org/abs/2505.10978
https://arxiv.org/abs/2506.21506
https://arxiv.org/abs/2506.21506
https://arxiv.org/abs/2410.05243
https://arxiv.org/abs/2411.06559
https://arxiv.org/abs/2411.06559
https://arxiv.org/abs/2312.06674
https://arxiv.org/abs/2312.06674
https://arxiv.org/abs/2310.06770

Under review as a conference paper at ICLR 2026

Jing Yu Koh, Stephen McAleer, Daniel Fried, and Ruslan Salakhutdinov. Tree search for language
model agents, 2024. URL https://arxiv.org/abs/2407.01476.

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 REINFORCE samples, get a baseline for
free!, 2019. URL https://openreview.net/forum?id=rl11gTGL5DE.

Kenneth Li, Aspen K. Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin Watten-
berg. Emergent world representations: Exploring a sequence model trained on a synthetic task,
2024. URL https://arxiv.org/abs/2210.13382.

Haowei Liu, Xi Zhang, Haiyang Xu, Yuyang Wanyan, Junyang Wang, Ming Yan, Ji Zhang, Chunfeng
Yuan, Changsheng Xu, Weiming Hu, and Fei Huang. Pc-agent: A hierarchical multi-agent
collaboration framework for complex task automation on pc, 2025. URL https://arxiv.
org/abs/2502.14282.

Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in world models
of self-supervised sequence models, 2023. URL https://arxiv.org/abs/2309.00941.

OpenAl. New and improved content moderation tooling. https://openai.com/index/
new—and-improved-content-moderation-tooling/}, 2022. Accessed: 2025-05-13.

OpenAl. Hello GPT-40. https://openai.com/index/hello-gpt-40/} 2024. Accessed:
2024-09-28.

OpenAl Introducing GPT-4.1 in the api. https://openai.com/index/gpt-4-1/, 2025.
Accessed: 2025-09-17.

Baolin Peng, Xiujun Li, Jianfeng Gao, Jingjing Liu, Kam-Fai Wong, and Shang-Yu Su. Deep
dyna-q: Integrating planning for task-completion dialogue policy learning, 2018. URL https:
//arxiv.org/abs/1801.06176.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang,
Jiahao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu Lin,
Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei Zheng,
Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua Yang, Haifeng
Liu, Feng Lin, Tao Peng, Xin Liu, and Guang Shi. Ui-tars: Pioneering automated gui interaction
with native agents, 2025. URL https://arxiv.org/abs/2501.12326.

Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388\

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Toyama, Robert Berry,
Divya Tyamagundlu, Timothy Lillicrap, and Oriana Riva. Androidworld: A dynamic benchmarking
environment for autonomous agents, 2025. URL https://arxiv.org/abs/2405.14573.

Max-Philipp B. Schrader. gym-sokoban. https://github.com/mpSchrader/
gym—-sokoban, 2018.

Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, and
David Silver. Mastering atari, go, chess and shogi by planning with a learned model. Nature, 588
(7839):604—609, December 2020. ISSN 1476-4687. doi: 10.1038/s41586-020-03051-4. URL
http://dx.doi.org/10.1038/s41586-020-03051-4!

12

https://arxiv.org/abs/2407.01476
https://openreview.net/forum?id=r1lgTGL5DE
https://arxiv.org/abs/2210.13382
https://arxiv.org/abs/2502.14282
https://arxiv.org/abs/2502.14282
https://arxiv.org/abs/2309.00941
https://openai.com/index/new-and-improved-content-moderation-tooling/
https://openai.com/index/new-and-improved-content-moderation-tooling/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/gpt-4-1/
https://arxiv.org/abs/1801.06176
https://arxiv.org/abs/1801.06176
https://arxiv.org/abs/2501.12326
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2405.14573
https://github.com/mpSchrader/gym-sokoban
https://github.com/mpSchrader/gym-sokoban
http://dx.doi.org/10.1038/s41586-020-03051-4

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.orqg/abs/2303.11366.

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning
models via the lens of problem complexity, 2025. URL https://arxiv.org/abs/2506.
06941.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre C6té, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning, 2021.
URL https://arxiv.org/abs/2010.03768.

Richard S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. SIGART
Bull., 2(4):160-163, July 1991. ISSN 0163-5719. doi: 10.1145/122344.122377. URL https:
//doi.org/10.1145/122344.122377.

Edward C Tolman. Cognitive maps in rats and men. Psychological review, 55(4):189, 1948.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models, 2023.
URLhttps://arxiv.org/abs/2305.16291.

Xinyuan Wang, Bowen Wang, Dunjie Lu, Junlin Yang, Tianbao Xie, Junli Wang, Jiaqi Deng, Xiaole
Guo, Yiheng Xu, Chen Henry Wu, Zhennan Shen, Zhuokai Li, Ryan Li, Xiaochuan Li, Junda Chen,
Boyuan Zheng, Peihang Li, Fangyu Lei, Ruisheng Cao, Yeqiao Fu, Dongchan Shin, Martin Shin,
Jiarui Hu, Yuyan Wang, Jixuan Chen, Yuxiao Ye, Danyang Zhang, Dikang Du, Hao Hu, Huarong
Chen, Zaida Zhou, Haotian Yao, Ziwei Chen, Qizheng Gu, Yipu Wang, Heng Wang, Diyi Yang,
Victor Zhong, Flood Sung, Y. Charles, Zhilin Yang, and Tao Yu. Opencua: Open foundations for
computer-use agents, 2025a. URL |https://arxiv.org/abs/2508.09123.

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing Jin,
Kefan Yu, Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb, Yiping Lu, Kyunghyun Cho, Jiajun Wu,
Li Fei-Fei, Lijuan Wang, Yejin Choi, and Manling Li. Ragen: Understanding self-evolution in
Ilm agents via multi-turn reinforcement learning, 2025b. URL https://arxiv.org/abs/
2504.20073.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I. Wang. Swe-rl: Advancing 1lm reasoning via
reinforcement learning on open software evolution, 2025a. URL https://arxiv.org/abs/
2502.18449.

Zhepei Wei, Wenlin Yao, Yao Liu, Weizhi Zhang, Qin Lu, Liang Qiu, Changlong Yu, Puyang Xu,
Chao Zhang, Bing Yin, Hyokun Yun, and Lihong Li. Webagent-r1: Training web agents via end-
to-end multi-turn reinforcement learning, 2025b. URL https://arxiv.org/abs/2505|
160421.

Yuexin Wu, Xiujun Li, Jingjing Liu, Jianfeng Gao, and Yiming Yang. Switch-based active deep
dyna-q: Efficient adaptive planning for task-completion dialogue policy learning, 2018. URL
https://arxiv.org/abs/1811.07550L.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments, 2024. URL https://arxiv.org/abs/
2404.07972.

13

https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2506.06941
https://arxiv.org/abs/2506.06941
https://arxiv.org/abs/2010.03768
https://doi.org/10.1145/122344.122377
https://doi.org/10.1145/122344.122377
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2508.09123
https://arxiv.org/abs/2504.20073
https://arxiv.org/abs/2504.20073
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2505.16421
https://arxiv.org/abs/2505.16421
https://arxiv.org/abs/1811.07550
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972

Under review as a conference paper at ICLR 2026

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction, 2025.
URL https://arxiv.org/abs/2412.04454.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024. URL https://arxiv.org/abs/2405.15793.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023a.
URLhttps://arxiv.org/abs/2305.10601.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023b. URL https://arxiv,
org/abs/2210.03629.

Xiao Yu, Maximillian Chen, and Zhou Yu. Prompt-based monte-carlo tree search for goal-oriented
dialogue policy planning, 2023. URL https://arxiv.org/abs/2305.13660,

Xiao Yu, Baolin Peng, Vineeth Vajipey, Hao Cheng, Michel Galley, Jianfeng Gao, and Zhou Yu.
Exact: Teaching ai agents to explore with reflective-mcts and exploratory learning, 2025a. URL
https://arxiv.org/abs/2410.02052.

Xiao Yu, Baolin Peng, Ruize Xu, Michel Galley, Hao Cheng, Suman Nath, Jianfeng Gao, and Zhou
Yu. Dyna-think: Synergizing reasoning, acting, and world model simulation in ai agents, 2025b.
URLhttps://arxiv.org/abs/2506.00320.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttuning:
Enabling generalized agent abilities for 1lms, 2023. URL https://arxiv.org/abs/2310,
12823

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Hoang, Shirley Kokane, Weiran Yao, Juntao
Tan, Akshara Prabhakar, Haolin Chen, Zhiwei Liu, Yihao Feng, Tulika Awalgaonkar, Rithesh
Murthy, Eric Hu, Zeyuan Chen, Ran Xu, Juan Carlos Niebles, Shelby Heinecke, Huan Wang,
Silvio Savarese, and Caiming Xiong. xlam: A family of large action models to empower ai agent
systems, 2024. URL https://arxiv.org/abs/2409.03215.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist web
agent, if grounded, 2024. URL https://arxiv.org/abs/2401.01614,

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging 1lm-as-a-judge with mt-bench and chatbot arena, 2023. URL https://arxiv.org/
abs/2306.05685.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models, 2024a. URL https:
//arxiv.org/abs/2310.04406.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents, 2024b. URL https://arxiv.org/abs/
2307.13854.

Lixin Zou, Long Xia, Pan Du, Zhuo Zhang, Ting Bai, Weidong Liu, Jian-Yun Nie, and Dawei
Yin. Pseudo dyna-q: A reinforcement learning framework for interactive recommendation. In
Proceedings of the 13th International Conference on Web Search and Data Mining, WSDM
20, pp. 816-824, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450368223. doi: 10.1145/3336191.3371801. URL https://doi.org/10.1145/
3336191.3371801.

14

https://arxiv.org/abs/2412.04454
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2305.13660
https://arxiv.org/abs/2410.02052
https://arxiv.org/abs/2506.00320
https://arxiv.org/abs/2310.12823
https://arxiv.org/abs/2310.12823
https://arxiv.org/abs/2409.03215
https://arxiv.org/abs/2401.01614
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2310.04406
https://arxiv.org/abs/2310.04406
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854
https://doi.org/10.1145/3336191.3371801
https://doi.org/10.1145/3336191.3371801

Under review as a conference paper at ICLR 2026

A LLM USAGE

This work used LLMs as general-purpose writing assistants to improve the grammar and clarity of the
paper. We did not use LLMs to generate any research ideas, automate experiments, or analyze results.

B ETHICS STATEMENT

Generally, while most methods and models are not designed for unethical usage, there is often
potential for abuse in their applications. Autonomous Al agents can be used for a variety of tasks
such as automating information gathering, software development, computer/phone-use and more.
In this work, we proposed our Dyna-Mind framework to enhance the simulation ability and hence
performance of Al agents. However, since Al agents are fundamentally task-agnostic, it is possible to
use them for unethical tasks such as scamming or disseminating false information on the internet.
We believe developing guardrails such as safety filters (OpenAlL [2022; Inan et al.| 2023)) are highly
valuable for Al agent research. We do not condone the Dyna-Mind or its constituent methods for any
unlawful or morally unjust purposes.

C ADDITIONAL ALGORITHMIC DETAILS

In [ATgorithm 2} we provide the pseudo-code for SIMROLLOUT. On a high level, SIMROLLOUT aims
to generate a refined response at a given state s; with better simulation content compared to that
of the original response. Specifically, SIMROLLOUT first performs normal inference a; ~ 7y (+|s¢)
to generate a response; extracts the plan (ai, ds, - - - , G4) from a; using the “<plan></plan>" tags
(see[Table A4 for example response with such tags); executes the extracted plan in the environment
and obtain the actual next-states {s¢11, Sty2,- - , St+q}; and finally, prompts an LLM to refine
the original response based on the actual next-states, using the prompt in The resulting
refined response @' is then used as the next action a;, and this process is repeated until the task is

completed or a maximum number of steps is reached.

Algorithm 2 Simulation Refinement Rollout (SIMROLLOUT)

Require: policy 7y, environment 7, group size G
1: repeat the following G times:

20 7 A}, Thpne < {1t =0,80 T

3: while not done and ¢ < t,,,, do

a < mo(st)

{a1,-+- ,an} + extract_plan(a)

// improve action a using next-state information

{st41, Stqn} < {T(st,01), -, T (Stpm—1,0n)}

stefine « refinement prompt(als¢, a, {S¢41, a1, »Sean}) 7/ sec
9: areﬁne «— Ty (S;eﬁne)

10: // update episode buffer

A A

11: 7' 7' U {84, @™} // learn improved policy

. / / refine refine S ofine o ; .
12: Trefine < Trefine Y Est ,a } // learn to refine simulations
13: St41 T(St, a™ ne)

14: t+—t+1
15: end while

. / /
16: return 7', 7,4,

D ADDITIONAL DETAILS ON TEXT GAMES

D.1 MORE ABLATION STUDIES

In[Table AT] we provide a more detailed ablation study of Dyna-Mind for Sokoban and ALFWorld.
For the second-stage DYNA-GRPO training, we consider replacing Aefine With the standard GRPO
advantage (denoted as “- Afne”’) and removing DYNA-GRPO (denoted as “- DYNA-GRPO”). We

15

Under review as a conference paper at ICLR 2026

note that removing DYNA-GRPO reduces [Algorithm T]to standard GRPO. For the first-stage RESIM,
we consider replacing DFS with BFS (denoted as “- DFS+BFS”) as well as removing DFS entirely
(denoted as “- DFS”). We note that removing DFS entirely reduces DISTILL(RESIM) to simply
DISTILL(V3).

D.2 EXAMPLE TASKS AND ACTIONS

Sokoban (Schrader 2018)) is a grid-world game Table Al: Ablation study on Dyna-Mind
where the agent needs to push boxes to their des-
tinations while avoiding obstacles. Valid actions Method Sokoban ALFWorld
in Sokoban are up, down, left, and right. As an
. . Dyna-GRPO 82.5% 92.5%
1 1
example, we provide an example input state and A 20.8% 89.2%

generated action in ALFWorld (Shrid+)
har et al.| [2021) is a text-based embodied environ- — SimRollout 79.1% 87.0%

ment where the agent needs to locate/interact with DISTILL(RESIM) 71.9% 78.9%
objects to complete embodied household tasks us- — DFS+BFS 71.1% 78.9%
ing natural language instructions. Valid actions in - DFS 49.2% 58.9%

ALFWorld are dependent on what’s available in
the current state. We provide an example input state and generated action in

D.3 RESIM IMPLEMENTATION DETAILS

We provide a pseudo-code for RESIM in[Algorithm 3] For text games, we finetune Qwen2.5-32B-
Instruct as rollout and value function models using DeepSeek-V3’s rollouts. Specifically, we first use
DeepSeek-V3 to generate 256 rollouts using tasks from the training set. Then, to train the rollout
model, we simply perform SFT training on one correct rollout for each task. To train the value
function, we use the trained policy model to generate the same 256 rollouts, repeated over 3 times, and
compute V' (s;) as the probability of successfully completing the task from s; across all trajectories
that contains s;, discounted by the number of remaining steps needed in the current trajectory:

V(sy) = fyt"‘“"_tL Z 1[7 is successful], where T = {7y, 72, |s; € 7}
‘T| TeT
where 7 is the discount factor and ..« is the maximum number of steps in a trajectory. In both
environments, we used v = 0.95. Finally, we finetune a separate Qwen2.5-32B-Instruct as the value
function by adding a linear value head to the model architecture, and perform MSE loss training on
the computed V (s;) across all states from all trajectories.

Since Sokoban and ALFWorld environments are fast, these rollouts were completed within 1 hour.
For complex environments such as AndroidWorld, we directly prompt pretrained VLMs such as
Qwen2.5-VL-72B and GPT-4o as rollout and value function models (Section 4.2).

D.4 SIMULATION REFINEMENT PERFORMANCE

To empirically show that (V)LMs are capable of leveraging next-state information to improve their
action, we evaluate the performance of SIMROLLOUT compared to direct prompting (REACT). We

report the result in

In general, we find that 1) all models showed improved task success rate when provided with next-
state information; and 2) stronger models such as GPT-40 and GPT-4.1 (OpenAlL 2024; 2025)) shows
larger improvement compared to weaker models such as Qwen2.5-7B-Instruct. We believe this is
because correcting its own mistakes is requires non-trivial reasoning ability, which is more difficult
for weaker models such as Qwen2.5-7B-Instruct to achieve. Overall, this result indicates that world
modeling error (e.g., especially for tasks such as ALFWorld) remains a significant bottleneck for
(V)LM agents reasoning ability in long-horizon tasks.

D.5 ADDITIONAL TRAINING DETAILS
To instantiate DYNA-GRPO, we continue training the best model from stage 1 distillation. To ensure

a fair comparison, we use identical hyperparameters for all methods (RLOO, GRPO, and DYNA-
GRPO), when applicable. We use a batch size of 8 tasks per batch, group size of G = 8, learning

16

Under review as a conference paper at ICLR 2026

Table A2: SIMROLLOUT performance on Sokoban and ALFWorld. We show that when provided with
ground-truth next-state information (SIMROLLOUT), models achieve better performance compared
to direct prompting (REACT).

Base Model Method Sokoban ALFWorld
Qwen2.5-7B-Instruct REACT 25.8+18 35.4+19
SiIMRoLLOUT 30.0+14 39.1+t16
GPT-40-2024-11-20 REACT 378410 51.3+21
SIMROLLOUT 41.4+12 64.8+25
GPT-4.1 REACT 67.9+10 54.442.

SIMRoOLLOUT 71.1+13 67.9+20

Algorithm 3 RES1M

Require: policy 7y, value function V,,, environment 7, (V)LM M
Require: hyperparameters b, d, tax, Oain
Lr+{}t=0,50«T
2: while not done and ¢ < ¢, do
3: {7}%_, + sample b rollouts using 7y starting from s, for max d steps

Jis i ;

4: {7%}%_, < deduplicate {T}°_,
iz i .

s: {v'}_, < estimate value {V} (si, ;) }'_,

6: // subsample rollouts

7. T* — Targ max,; ’Ui
. X PR

8: {7#}bmin « {7*}U subsample bygin — 1 rollouts from the rest of {77}%_,

9: // aggregate rollouts into a single reasoning response

10: {plan’}b=n « summarize { M (77, v?) }orn

11: aRES™ agoregate M (s, {plan’}o=n)
12: // next step

13: St41 T(St, GRESIM)

14: T 7 U {54, aRESM}

15: t—t+1

16: end while

17: return 7

rate of le-6, and 300 training steps in total for both Sokoban and ALFWorld. For DYNA-GRPO, we
use n = 10 and n, = 10 for Sokoban and ny = 10 and n, = 20 for ALFWorld. All training are
performed on top of Qwen2.5-7B (Qwen et al., 2025) using 8xH100.

D.6 SIMULATION SCORE PROMPTS

To evaluate the simulation ability of a model 7y, we use LLM-as-a-judge (Zheng et al., 2023) to
measure the correctness and quality of the simulation generated by 7y at each turn in a given tra-
jectory. Specifically, for each a; ~ 7y(+|s;), we first prompt an LLM to extract the final action
plan (@1, dg,- - ,aq) from a; and the corresponding natural language description of the next-states
(841, 8t42, - , §1+q) from the response a;. We present the prompts used for Sokoban and ALF-
World in and [A8] respectively. Then, we execute the action plan in the environment to
obtain ground truth next-states {s;y1, St4+2, - - , St+d}. Finally, we prompt an LLM to judge the
quality of the plan by comparing “imagined” next-states generated by my against the ground truth
next-states, using prompts inand This results in a score € [0, 1] for each turn in the
trajectory, which is then averaged across all turns to obtain an overall simulation score for the entire
trajectory.

17

Under review as a conference paper at ICLR 2026

[Task: What is on my schedule for October 28 at 21:45 in Simple Calendar Pro? Answer with the titles only. }

[] R PY <observation>
x00 w0 Pmoo The screen displays the schedule for October 26 (Thursday), showing one event: "Call with Bob"
from 09:59 to 10:59, with the note "We will finalize annual budget." The schedule for October 28
is not visible on this screen.
</observation>

< October 26 (Thu) >
Call with Bob iy -
0 Okay, let me look at the current situation. Previously, | clicked on October 28 in the calendar view
' to check the specific events scheduled for that date and time. However, the current screen is
showing the schedule for October 26 instead of October 28. | need to navigate to October 28 to
find the events scheduled for 21:45.

Let's think about a few possible plans:

- Maybe we can try clicking on the forward arrow icon at the top right corner of the screen. Let's
think. This action may lead to the screen displaying the schedule for October 27 (Friday), which
is closer to October 28. Estimating success rate if continued further: medium.

- Maybe we can try clicking on the schedule entry for October 26. Let's think. This action may
lead to the screen displaying the schedule for October 26, which is not moving closer to October
28. Estimating success rate if continued further: low.

Based on these simulations, clicking on the forward arrow icon at the top right corner of the
screen is the best action for the current step. This is because it will navigate closer to October
28, which is the target date, making it the most efficient option.

</think>

<tool_call>
{"name": "mobile_use", "arguments™: {"action™: "click”, "coordinate": [1023, 387]}}
</tool_call>

<conclusion>
| clicked on the forward arrow icon at the top right corner of the screen to navigate closer to
October 28 in the schedule view.
— </conclusion>

S0 —» v —> S5t — Q41

Figure Al: Example task, input screenshot, and output generated by model trained using Dyna-Mind.
For clarity, we directly rendered the proposed action in a;1 (click at 1023,387) in green on s;.

E ADDITIONAL DETAILS ON ANDROIDWORLD

E.1 EXAMPLE TASK AND ACTIONS IN ANDROIDWORLD

In this work, we use the dockerized environment provided by AndroidWorld to evaluate and train
all methods. We use the screenshot-only modality. In[Figure AT] we present an example task, input
screenshot s; from AndroidWorld, as well as an example output a; generated by models trained using
Dyna-Mind. For more details on AndroidWorld, please refer toRawles et al.| (2025).

E.2 ADDITIONAL TRAINING DETAILS

To standardize training and evaluation, we use the dockerized version of AndroidWorld and adapt the
action space provided by Rawles et al.| (2025).

To instantiate DYNA-GRPO, we continue training the best model from stage 1 distillation. We
followed [Section 4.T]and used a batch size of 8 tasks per batch, group size of G = 8, learning rate of
le-6. Since AndroidWorld is highly compute-intensive and time-consuming to run, we perform a
total of 60 training steps for RL training, using ny = 2 and n, = 8. All training are performed on
top of Qwen2.5-VL-7B-Instruct and Qwen2.5-VL-32B-Instruct (Bai et al.| 2025) using 16xH100,
denoted as “DISTILL-7B” and “DISTILL-32B” in[Table 3| respectively.

E.3 OTHER IMPLEMENTATION/EVALUATION DETAILS

In this work, we focus on end-to-end training (SFT + RL), and hence selected VLMs capable of
directly interacting with android’s GUI interface. This include models such as Qwen2.5-VL (Bai
et al.,[2025)) and UI-Tars (Qin et al.,|[2025). While these models have undergone specific finetuning
on mobile control tasks, at the time of the work we were unable to find evaluation scripts that
supports using these models on AndroidWorld. To our best effort, we utilized the official mobile-use
prompts provided by the respective repositories, as well as prompts from recent work such as (Gou
et al., 2025b)). However, we were unable to fully reproduce the reported performance, especially for
Ul-Tars 1.5. At the time of this work, we find similar concerns has also been raised publicly
(e.g., https://github.com/bytedance/UI-TARS/issues/83, https://github,
com/UI-Tars/UI-Tars/issues/155, https://github.com/UI-Tars/UI-Tars/
issues/121). To this end, we focus on using Qwen2.5-VL for consistency with other experiments
conducted in the rest of the paper.

18

https://github.com/bytedance/UI-TARS/issues/83
https://github.com/UI-Tars/UI-Tars/issues/155
https://github.com/UI-Tars/UI-Tars/issues/155
https://github.com/UI-Tars/UI-Tars/issues/121
https://github.com/UI-Tars/UI-Tars/issues/121

Under review as a conference paper at ICLR 2026

Table A3: Prompt used by SIMROLLOUT to refine the agent’s original response given actual next-state
information. The next-state information is obtained by 1) extracting the final chosen plan from the
agent’s response (e.g., left, left, up in Sokoban), and 2) executing the plan in the environment to
obtain the actual next states.

Prompt

// ...omitting some text
Current observation
{current_observation }

Example response and feedback

To help you reason and plan better, we have explored some plans for the current step and obtained
the following feedback from the environment:

Example response

{agent_original_response}

Ground truth feedback

{actual_next_observations_after_executing_agent’s_plan}

Back to the current step

Now, the environment has been reset back to the current observation/current step. It’s your turn to
refine the example response based on the ground truth feedback. You should think about:

- Correctness: is the example response aligned with the feedback? did the feedback reveal some
incorrect/ineffective actions in the example response?

- Progress: did the the environment feedback show positive progress towards solving the task?
Note: the example response may hallucinate incorrect outcomes different from the ground truth
feedback. You should avoid coming up with similar hallucinations in your response.

If you think the example response is correct and has made progress, no revision is needed and
your should **directly output the example response verbatim**.

Otherwise, you should modify the example response’s thinking process/plan/action to be
consistent with the environment feedback. Specifically, you should:

1. **Incorporate all relevant details from the feedback** into the example response and then
improve its accuracy and progress. Be detailed when adding information from the feedback
into the response.

2. The final refined response should **read as a standalone answer, without saying its a revision
or referencing the feedback section**. The output should look like the final authoritative response
that faithfully incorporated relevant details from the feedback.

Now, refine the example response. Keep the same tone and format as the example response.
Ensure the final plan/action is logically consistent with your (refined) thinking process. DO NOT
generate anything else.

19

Under review as a conference paper at ICLR 2026

Table A4: Example state in Sokoban and our model’s generated action

Type Content

Input // ...omitting some text about sokoban game rules
Current Step
Your current observation is:
Col 0 Col 1 Col 2 Col 3 Col 4 Col 5
Row O######
Row 1 # _ _###
Row2# _P#H##
Row3#_X__#
Row4# O _#
Row S######
Currently, the player is at (2, 2); boxes are at (3, 2); unsolved targets are at (4, 3).
Next to the player, there is a floor above the player at (1, 2), a box below the player
at (3, 2), a floor left of the player at (2, 1), a wall right of the player at (2, 3).
Your admissible actions are ["up”, "down", "left", "right"].
Now it’s your turn to make a move (choose ONE action only for the current step).
You should first reason step-by-step about the current situation — observe the posi-
tions of boxes and targets, plan a path to push a box toward a target, and avoid traps
like corners or walls. This reasoning process MUST be enclosed within <think>
</think> tags.
Once you’ve finished your reasoning, you should choose a plan as well as an
admissible action for current step. The plan needs to be presented as a se-
quence of admissible actions within <plan> </plan> tags (e.g., <plan>up, right,
up</plan>). The action needs to be presented within <action> </action> tags (e.g.,
<action>up</action>).

Output <think>Okay, let me look at the current situation. The player is at (2, 2), with

abox at (3, 2) and an unsolved target at (4, 3). Let’s think about a few possible plans.

Maybe we can try moving "down". This action will lead to the state where the
player is at (3, 2), pushing the box to (4, 2). Is this a good next step? Let’s think:

- After "down", maybe do "left". This results in the player moving to (3, 1), with
the box remaining at (4, 2) and the target at (4, 3). After that, maybe "down", which
leads to the player moving to (4, 1), with the box still at (4, 2) and the target at (4,
3). The player now has a box to the right and a floor above. Discounted success
rate if continued further: around 80%.

- After "down", maybe do "left". This results in the player moving to (3, 1) with the
box still at (4, 2). After that, maybe "down", which leads to the player moving to
(4, 1) with the box and target unchanged. Next, try "right", which moves the player
to (4, 2) and pushes the box onto the target at (4, 3), solving it. Discounted success
rate if continued further: around 100%.

Based on these simulations, "down" is the best action for the current step. This
is because the second plan (down -> left -> down -> right) achieves a discounted
success rate of 100% in 4 steps.

</think>

<plan>down, left, down, right</plan>
<action>down</action>

20

Under review as a conference paper at ICLR 2026

Table A5: Example state in ALFWorld and our model’s generated action

Type

Content

Input

Output

// ...omitting some text about alfworld rules

Your task is to: put some book on sidetable.

Your admissible actions of the current situation are: [’go to bed 1’ *go to diningtable
1’ °go to drawer 1’ ’go to drawer 2’ ’go to drawer 3’ ’go to drawer 4’ ’go to
garbagecan 1’ ’go to sidetable 1’ *go to sidetable 2’ ’inventory’ "look’].

Now it’s your turn to take an action.

You should first reason step-by-step about the current situation, and think about
plans to explore/solve the task. To plan well, you should think about the plan’s
future outcomes and whether it is making progress or not. This reasoning process
MUST be enclosed within <think> </think> tags.

Once you’ve finished your reasoning, you should choose a plan as well as an
admissible action for current step. The plan needs to be presented as a sequence of
admissible actions within <plan> </plan> tags (e.g., <plan>go to desk 1, take mug
1 from desk 1</plan>). The action needs to be presented within <action> </action>
tags (e.g., <action>go to desk 1</action>).

<think>Okay, let me look at the current situation. Currently, I am in the middle of a
room with several objects around me, including two sidetables (sidetable 1 and
sidetable 2), where my task is to put a book on one of them. Let’s think about a few
possible plans.

Maybe we can try Go to diningtable 1. This action may lead to arriving at
diningtable 1, where I see a creditcard 1, a book 3, a cdplayer 2, a laptop, a pencil,
three pens, a nutshell, and a vase. Is this a good next step? Let’s think:

- After Go to diningtable 1, maybe I can take book 3. This results in picking up the
book 3 from the diningtable. Discounted success rate if continued further: around
80%.

- After Go to diningtable 1, maybe I can inventory myself. This may reveal that
nothing is being carried, so taking anything is impossible. Discounted success rate
if continued further: around 10%.

Alternatively, maybe we can try Open drawer 1. This action may lead to opening
drawer 1 and seeing nothing inside. Is this a good next step? Let’s think:

- After Open drawer 1, maybe "examine drawer 2" reveals a combination lock and a
keychain inside. Discounted success rate if continued further: around 40%.

Based on these simulations, going to the diningtable has the highest discounted
success rate (80%) as book 3 may be found. This achieves the highest success if
followed by "take book 3", achieving a 80% success rate.

</think>

<plan>go to diningtable 1, take book 3</plan>
<action>go to diningtable 1</action>

21

Under review as a conference paper at ICLR 2026

Table A6: Sokoban prompt to extract plan and imagined observation from an agent’s response

Prompt

// ...omitting some text about sokoban game rules

Extraction/parsing rules

Your task is to parse the response and extract the following information, IF present.

1) simulation branches

- definition: one sequence of actions the agent planned to solve the puzzle

- example: // ...omitting some text 2) discounted success rates

- definition: the (discounted) success rate of the simulation branch, or some numeric evaluation of
how much progress that branch makes towards the goal.

- example: // ...omitting some text

3) final chosen branch

- definition: the simulation branch/plan that caused the agent’s final decision for the current step.
- example: Based on these simulations, "up" is the best action for the current step. This is because
after "up", the player can proceed with "left" and "up" again, which achieves a discounted success
rate of around 90% in 3 steps.

- example output: ["up”, "left", "up"]

- note: The agent chose "up" as the next action. However, we need to find the ENTIRE branch/plan
that caused the agent’s current decision, which is ["up", "right", "down"] in this case.

- note: if the agent did not explicitly mention which branch is chosen, you should choose the
branch in the response with the highest discounted success rate.

4) final imagined observation

- definition: the imagined observation after executing the final chosen branch.

- example: After "up", "left", "up", the player pushed the box to (4,4). Now, the player is at (4, 3),
with the box on target below at (4, 4). The player has a floor above at (2, 4)... The target is ... This
is the best branch according to the discounted success rate. So the next action should be "up".

- example output: The player pushed the box to (4,4). Now, the player is at (4, 3), with the box on
target below at (4, 4). The player has a floor above at (2, 4)... The target is ...

- note: DO NOT include the action sequence in this field. Only keep the description of the
player/boxes/targets/walls position AFTER the last action in the final chosen branch.

- note: //...omitting some ftext

Your task

Your task is to output a JSON object in the following format:

<json>

{

"extracted_branches": [...//...omitting some text],

"extracted_final_chosen_branch": {

"actions": ["action 1", "action 2", ..., "action n"], # the ENTIRE branch/plan that caused the
agent’s current decision

"last_observation": "detailed, comprehensive description of the imagined observation AFTER
executing the entire action sequence above.",

"discounted_success_rate": ...(a number between 0 to 100. -1 if the agent did not mention the
discounted success rate)

}

}

</json>

Input response
{input_agent_response}

Your task
Now, parse the response and output the JSON object enclosed by <json> and </json> tags. DO
NOT generate anything else.

22

Under review as a conference paper at ICLR 2026

Table A7: Sokoban prompt to evaluate the quality of the next-states imagined by an agent in its
reasoning process, using the actual next-states as references.

Prompt

// ...omitting some text about sokoban game rules

Evaluation rules

Provide an overall score between 0.0 and 1.0 based on the following two dimensions. Start with a
score of 0.0, and add points to the score if the criteria are satisfied. Add 0.0 if a criteria is not
satified. DO NOT deduct points if a criteria is not satified.

1) correctness (max 0.3 points. if exceeds 0.3, cap it at 0.3)

- in the imagination description, the coordinates of the player are correct; add 0.1 point

- in the imagination description, some of the mentioned boxes and targets have correct coordinates;
add 0.05 point

- in the imagination description, all mentioned boxes and targets have correct coordinates; add 0.1
point

- in the imagination description, all mentioned walls and empty spaces have correct coordinates;
add 0.05 point

2) progress (max 0.7 points. if exceeds 0.7, cap it at 0.7)

- in the reference observation, if the task is completely solved (all boxes are on targets); add 0.7
point

- relative to the current observation, if the reference observation shows major progress (unsolved
boxes are moved much closer to targets, task close to be solved); add 0.5 point

- relative to the current observation, if the reference observation shows minor progress (unsolved
boxes are moved a bit closer to targets); add 0.1-0.3 point, depending on how much progress is
shown

- relative to the current observation, if the reference observation shows no meaningful progress;
assign 0.0 point for this dimension

- in the reference observation, if the task is no longer solvable (e.g., one of the boxes is pushed
into a corner and cannot be moved anymore); assign 0.0 point for this dimension

// ...omitting some text

Your output format

Your task is to output a JSON object in the following format:

<json>

{

"correctness analysis": "which correctness criteria in the evaluation rules are satisfied, and which
are not.", # no more than 50 words

"correctness score": 0.0-0.3, # score for the correctness dimension

"progress analysis": "which progress criteria in the evaluation rules are satisfied, and which are
not.", # no more than 50 words

"progress score": 0.0-0.7, # score for the progress dimension

"score": 0.0-1.0 # total score; add the correctness score and progress score

}

</json>

Current observation

{current_obs}

Agent imagined observation after some actions
{agent_imagined_next_actions_and_obs}

Reference observation after some actions
{actual_next_obs}

Your task
Now, provide an evaluation analysis and score according to the evaluation rules above. Output the
JSON object enclosed by <json> and </json> tags. DO NOT generate anything else.

23

Under review as a conference paper at ICLR 2026

Table A8: ALFWorld prompt to extract plan and imagined observation from an agent’s response

Prompt

// ...omitting some text about sokoban game rules

Extraction/parsing rules

Your task is to parse the response and extract the following information, IF present. //...omitting
some text

3) final chosen branch

- definition: the simulation branch/plan that caused the agent’s final decision for the current step.
- example: Based on these simulations, "go to countertop 1" is the best action for the current step.
This is because this followed by "go to countertop 2" leads to a high chance of finding a mug.
Therefore, the next action for the current step should be "go to countertop 1".

- example output: ["go to countertop 1", "go to countertop 2"]

- note: The agent chose "go to countertop 1" as the next action. However, we need to find the
ENTIRE branch/plan that caused the agent’s current decision, which is ["go to countertop 1", "go
to countertop 2"] in this case.

- note: if the agent did not explicitly mention which branch is chosen, you should choose the
branch in the response with the highest discounted success rate.

4) final imagined observation

- definition: the imagined observation after executing the final chosen branch.

- example: After "go to shelf 1", "take pencil 2 from shelf 1" results in successfully picking up a
pencil. This is the best branch according to the discounted success rate. So the next action should
be "go to shelf 1".

- example output: The agent successfully picks up a pencil.

- note: DO NOT include the action sequence in this field. Only keep the description of the
imagined observation AFTER the last action in the final chosen branch.

- note: In general, you should gather the most comprehensive and detailed description found in the
response (i.e., especially try to include any mention of what objects is present). If this description
is scattered across multiple places in the response, MERGE them into a single, continuous
description.

Your task

Your task is to output a JSON object in the following format: <json>

{

"extracted_branches": [...//...omitting some text],

"extracted_final_chosen_branch": {

"actions": ["action 1", "action 2", ..., "action n"], # the ENTIRE branch/plan that caused the
agent’s current decision

"last_observation": "detailed, comprehensive description of the imagined observation AFTER
executing the entire action sequence above.",

"discounted_success_rate": ...(a number between 0 to 100. -1 if the agent did not mention the
discounted success rate)

b

</json>

Input response
{input_agent_response }

Your task
Now, parse the response and output the JSON object enclosed by <json> and </json> tags. DO
NOT generate anything else.

24

Under review as a conference paper at ICLR 2026

Table A9: ALFWorld prompt to evaluate the quality of the next-states imagined by an agent in its
reasoning process, using the actual next-states as references.

Prompt

// ...omitting some text about sokoban game rules

Evaluation rules

Provide an overall score between 0.0 and 1.0 based on the following two dimensions.

1) correctness (max 0.3 points. if exceeds 0.3, cap it at 0.3)

- in the imagined observation, it is near identical to the reference observation; add 0.3 point

- in the imagined observation, key object(s) required by the goal are found, and they are also
present in the reference observation; add 0.2 point

- in the imagined observation, relevant location(s) required by the goal are visited, and the
description is somewhat aligned with the reference observation; add 0.1-0.2 point, depending on
how much the description is aligned with the reference observation.

- in the imagined observation, key object(s) required by the goal are found, but these key object(s)
are *NOT* present in the reference observation; assign 0.0 point

- in the reference observation, it shows nothing happened; directly assign 0.0 point for this
dimension

2) progress (max 0.7 points. if exceeds 0.7, cap it at 0.7)

- in the reference observation, if the goal is completely solved (all required items are
found/moved/heated/etc to or at the correct location, goal is achieved); add 0.7 point

- relative to the current observation and action history, if the reference observation shows major
progress (i.e., objects required by the goal are found); add 0.5 point

- relative to the current observation and action history, if the reference observation shows minor
progress (i.e., objects related to the goal are found, or locations relevant to the goal are visited);
add 0.1-0.3 point, depending on *how useful this information is, beyond what was already known
in the current state and action history*.

- relative to the current observation and action history, if the reference observation shows no
meaningful progress (nothing happened); assign 0.0 point for this dimension

// ...omitting some text

Your output format
Your task is to output a JSON object in the following format: <json>

"correctness analysis": "...", # no more than 50 words
"correctness score": 0.0-0.3, # score for the correctness dimension
"progress analysis": "...", # no more than 50 words

"progress score": 0.0-0.7, # score for the progress dimension
"score": 0.0-1.0 # total score; add the correctness score and progress score

}

</json>

Action history

The current goal is to: {task_description}
{action_history}

Current observation

{current_obs}

Agent imagined observation after some actions
{agent_imagined_next_actions_and_obs}

Reference observation after some actions
{actual_next_obs}

Your task
Now, provide an evaluation analysis and score according to the evaluation rules above. Output the
JSON object enclosed by <json> and </json> tags. DO NOT generate anything else.

25

	Introduction
	Related Work
	Dyna-Mind
	Notation
	Reasoning with Simulations (ReSim)
	Dyna-GRPO

	Experiments
	Text Games
	Main Results
	Measuring Simulation Ability

	AndroidWorld
	Main Results

	Conclusion
	LLM Usage
	Ethics Statement
	Additional Algorithmic Details
	Additional Details on Text Games
	More Ablation Studies
	Example Tasks and Actions
	ReSim Implementation Details
	Simulation Refinement Performance
	Additional Training Details
	Simulation Score Prompts

	Additional Details on AndroidWorld
	Example Task and Actions in AndroidWorld
	Additional Training Details
	Other Implementation/Evaluation Details

