
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DYNA-MIND: LEARNING TO SIMULATE FROM
EXPERIENCE FOR BETTER AI AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reasoning models have recently shown remarkable progress in domains such as
math and coding. However, their expert-level abilities in math and coding contrast
sharply with their performance in long-horizon, interactive tasks such as web
navigation and computer/phone-use. Inspired by literature on human cognition,
we argue that current AI agents need “vicarious trial and error”—the capacity
to mentally simulate alternative futures before acting—in order to enhance their
understanding and performance in complex interactive environments. We introduce
Dyna-Mind, a two-stage training framework that explicitly teaches (V)LM agents to
integrate such simulation into their reasoning. In stage 1, we introduce Reasoning
with Simulations (RESIM), which trains the agent to generate structured reasoning
traces from expanded search trees built from real experience gathered through
environment interactions. RESIM thus grounds the agent’s reasoning in faithful
world dynamics and equips it with the ability to anticipate future states in its
reasoning. In stage 2, we propose Dyna-GRPO, an online reinforcement learning
method to further strengthen the agent’s simulation and decision-making ability
by using both outcome rewards and intermediate states as feedback from real
rollouts. Experiments on two synthetic benchmarks (Sokoban and ALFWorld) and
one realistic benchmark (AndroidWorld) demonstrate that (1) RESIM effectively
infuses simulation ability into AI agents, and (2) Dyna-GRPO leverages outcome
and interaction-level signals to learn better policies for long-horizon, planning-
intensive tasks. Together, these results highlight the central role of simulation
in enabling AI agents to reason, plan, and act more effectively in the ever more
challenging environments.

1 INTRODUCTION

Recent advances in language models have unlocked impressive reasoning capabilities in domains
such as mathematics and programming (Shao et al., 2024; Jimenez et al., 2024). However, many
emerging applications unfold in complex environments that require multi-step reasoning, such as
web navigation (Zhou et al., 2024b; Deng et al., 2023), deep research (Gou et al., 2025a; Du et al.,
2025), and computer/phone-use tasks (Xie et al., 2024; Rawles et al., 2025). Success in these domains
depends not only on the ability to decompose goals and reflect on past progress, but also on AI agents’
ability to construct accurate world models that capture the structure and dynamics of increasingly
complex environments (Shao et al., 2024; Jimenez et al., 2024).

Insights from human cognition indicate why such ability to model and simulate complex environments
is critical. Neuroscience research (Tolman, 1948; Daw et al., 2005; Daw & Dayan, 2014; Bennett,
2023) highlights the emergence of the neocortex as a turning point in intelligence, enabling early
mammals to engage in “vicarious trial and error”: mentally simulating possible futures, evaluating
their consequences, and selecting advantageous actions without directly experiencing each option.
This ability greatly enhanced adaptability and decision-making, which we argue is equally essential
for reasoning in long-horizon AI agent tasks.

Empirical evidence supports this view. In Figure 1a, we observe that while strong reasoning models
such as DeepSeek-R1 can simulate and solve structured environments like Sokoban, their performance
drops sharply in more complex domains such as ALFWorld—both in simulation accuracy and overall
task success (also see Section 4.1.2). Initial attempts to address this limitation, such as Dyna-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Simulation Score Success Rate0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ul
at

io
n

Sc
or

e
(0

-1
)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(0
-1

00
%

)

DeepSeek-R1 performance
Sokoban
ALFWorld

(a) Simulation ability v.s. performance

Acting

simulation improvement

policy improvement

V=

V=...
...

Let's do next!

V=

V=...
...

...

Stage 1: ReSim Training Stage 2: Dyna-GRPO

(b) Dyna-Mind

Figure 1: We find the performance of strong reasoning models is heavily affected by its ability to
simulate in different environments (left). We introduce Dyna-Mind, a two-stage training framework
to integrate and improve simulation ability of AI agents (right).

Think (Yu et al., 2025b), integrate simulation into reasoning through distilling simplified traces and
adding auxiliary next-state prediction tasks. However, these methods rely on the strong capability of
reasoning models to directly generate synthetic simulation data, which can embed errors and biases.

To overcome this limitation, we present Dyna-Mind, an improved two-stage training framework
to teach (V)LM agents to simulate the environment by directly learning from real experiences. In
stage 1 training, we propose Reasoning with Simulations (RESIM) to algorithmically construct
reasoning traces using expanded search trees obtained from real environment interactions, and train
a policy model using these reasoning traces. In stage 2 training, we further improve the policy and
its simulation ability using online reinforcement learning (RL). We introduce Dyna-GRPO, a novel
algorithm that utilizes both outcome rewards and intermediate states from rollouts to improve the
simulation ability of the policy. Extensive experiments on two widely used synthetic benchmarks
(Sokoban and ALFWorld) and one realistic benchmark (AndroidWorld) show the effectiveness of
each stage of the framework. Our results indicate that (1) RESIM’s reasoning traces effectively teach
AI agents to simulate; and (2) Dyna-GRPO, by leveraging both outcome rewards and intermediate
interactions, learns better policies for long-horizon, planning-intensive tasks. These findings highlight
the importance of world simulation ability for reasoning in long-horizon tasks.

2 RELATED WORK

(V)LM as decision making agents The use of (visual) language models as autonomous agents
has been explored in a wide range of applications such as interactive game playing (Wang et al.,
2023; Feng et al., 2025), computer, phone, and browser uses (Xie et al., 2024; Zhou et al., 2024b;
Rawles et al., 2025), software engineering (Jimenez et al., 2024; Yang et al., 2024), and more. Early
works include reactive agents (Yao et al., 2023b) that directly prompts an (V)LM to make decisions
on immediate observations without simulation or planning approaches, hindering performance on
complex long-horizon tasks. Recent advances include: (1) search-based methods (Yao et al., 2023a;
Zhou et al., 2024a; Koh et al., 2024; Yu et al., 2023; 2025a) that augments (V)LM agents with
algorithms such as BFS, DFS, and MCTS; and (2) hierarchical, multi-agent methods (Zheng et al.,
2024; Agashe et al., 2024; 2025; Liu et al., 2025; Gou et al., 2025b) that orchestrate multiple
specialized agents to complete long-horizon tasks. While these methods show improvements, they
often introduce substantial overheads during inference, such as requiring additional interactions
with the environments or designing complex heuristics to orchestrate multiple agents. We focus on
enhancing a single (V)LM agent by integrating simulation into its reasoning via training.

Training (V)LM agents Early methods in training (V)LM agents mostly rely on supervised
learning (SFT) with human annotations or data synthesized by state-of-the-art (reasoning) models
(Zeng et al., 2023; Chen et al., 2024; Zhang et al., 2024; Xu et al., 2025). Recently, many methods
such as Feng et al. (2025); Wang et al. (2025b); Wei et al. (2025a;b) leverage reinforcement learning
(RL) with verifiable rewards to directly train agents to complete tasks by prompting them to reason
before taking actions, following the success of DeepSeek-R1 (DeepSeek-AI et al., 2025a). However,
it remains unclear whether extensive reasoning is necessary for all scenarios (Shojaee et al., 2025),
and what aspects of such reasoning is essential for long-horizon tasks (Yu et al., 2025b). In this work,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

we specialize in integrating and improving the simulation ability of (V)LM agents during reasoning,
and show that planning with world simulation is crucial for long-horizon tasks.

World models and Dyna algorithms Beyond task completion, real-world interaction data contains
rich information that can be used to help decision making. Early examples include Dyna algorithms
(Sutton, 1991), which combine model-based and model-free methods to efficiently learn optimal
policies. Given a set of real-world rollout data, Dyna (1) separately train a world model using
these rollouts; (2) perform additional simulated rollouts with the world model; and (3) update the
policy using both real and simulated rollouts. Applications of world model training have been
explored in work such as Chae et al. (2025); Gu et al. (2025), facilitating search algorithms such
as MCTS to improve performance; and applications of Dyna include Deep Dyna-Q (Peng et al.,
2018), Switch-DDQ (Wu et al., 2018), and more (Zou et al., 2020; Yu et al., 2025b). However, these
approaches either result in modular systems (a separate policy and world model) or require accessing
state-of-the-art reasoning models (e.g., DeepSeek-R1). Our work does not rely on strong reasoning
models, and focuses on integrating and improving simulation as part of an agent’s reasoning process.

3 DYNA-MIND

Research in human cognition (Daw et al., 2005; Daw & Dayan, 2014; Bennett, 2023) as well as in
games like chess, go, and othello (Schrittwieser et al., 2020; Li et al., 2024; Nanda et al., 2023; Chae
et al., 2025) suggests that strong agents implicitly store and use a (compressed) representation of the
world to enhance their decision-making. This perspective highlights two key questions in existing
approaches to improve (V)LM agents for long-horizon tasks: (1) how to synergize world simulations
with reasoning; and (2) how to improve the simulation ability to help improve the policy.

To address these questions, we introduce Dyna-Mind, a two-stage training framework to teach (V)LM
agents to plan with simulations during their reasoning and improve their task performance. We detail
these two training stages next in Section 3.2 and Section 3.3, respectively.

3.1 NOTATION

Completing tasks in complex, realistic environments is typically formulated as a Markov Decision
Process of (S,A, T ,R). In the generic setting of multi-step tasks, an agent πθ receives an instruction
and observation1 from the environment st ∼ S at time step t, generates an action at ∼ πθ(·|st), and
transitions to the next state st+1 ∼ T (st, at). This process is repeated until the task is completed
or until reaching a maximum number of steps, upon which a terminal reward rT ∼ R(sT , aT) is
provided based on whether the task is completed successfully or not. In the context of simple text
games such as Sokoban Schrader (2018), a state st can represent the complete game state, and an
action at is one of “left”, “right”, “up”, “down” (after some reasoning process). In more complex
environments such as AndroidWorld (Rawles et al., 2025), a state st is the current screenshot of the
android device, and an action at can be “tapping on a coordinate (x,y)”, “swiping up”, “swiping
down”, etc. We note that since we aim to train agents to generate simulations within their reasoning
process, any text that represents simulation is always part of the response at.2 Any variant of the
symbol s represents real states from environment interactions, unless explicitly stated otherwise.

3.2 REASONING WITH SIMULATIONS (RESIM)

To enable an agent to simulate during its reasoning, we first construct imitation learning data where
the reasoning process consists of explicitly planning with simulations. Different from prior work
such as Yu et al. (2025b) that leverages superior LLMs such as DeepSeek-R1 which already shows
world modeling capability in its reasoning traces (see Section 4.1.1 for more details), we construct
simulation-guided reasoning traces using search trees built from real environment interactions.

1Technically, any input to the agent from our environments is an observation (as in POMDP) instead of a
state. However, to simplify notation we used s to generally denote the agent’s input from the environment.

2As action plan/final action are always extracted from model response, we use a (by slight abuse of notation)
to denote either the full response or the extracted executable action. Distinctions are made clear in context.
Example model response for each benchmark is provided in Table A3, Table A4, and Figure A1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

......

<think>Currently, we are at . Let's plan:

- Maybe we can try ? Let's think. This will
lead to . After that, maybe ... Value:
- Maybe we can try ? Let's think. This will
lead to . After that, perhaps ...Value:
- Alternatively, maybe ? Value:

So, the best plan is because...
<plan> </plan>
<action> </action>

low value

high value

.........

1 rollout
3 combine all info as a single response using an (V)LM

2 estimate value

...
ReSim Data Collection/inference Distill(ReSim)

...

...

trajectoriessearch tree simulation-guided reasoning

Figure 2: RESIM integrates simulation into reasoning (aReSim
t) by using expanded search trees built

through real environment interactions (left). RESIM then trains an agent to directly generate such
simulation-guided reasoning trace aReSim

t without any algorithm support (right).

RESIM Data Collection To construct reasoning data with rich simulations, we leverage algorithms
such as depth first search (DFS) to construct search trees based on environment interactions, and then
use an (V)LM to aggregate the entire search tree into a single reasoning response aReSim for later
training. Specifically, given a state s, RESIM first uses a rollout model πθ to generate b rollouts from
s up to depth d. This rollout model can be a specialized/finetuned LLM (see Section 4.1) or simply
prompting a generic LLM (see Section 4.2). Then, RESIM uses a value function Vν to provide an
estimate of the quality of each of the partial rollouts, where the Vν can be implemented as either a
finetuned value model (see Section 4.1) or using LLM-as-a-judge (see Section 4.2). Finally, we use
a generic (V)LM to aggregate all these rollouts and their values into a single response aReSim by
prompting the (V)LM to 1) first independently summarize each partial rollout, which contains ground-
truth future states information from the environment; and 2) then aggregate all these summaries into a
coherent response conditioned on the current state s and previous h actions and states, and choose the
best plan and the next immediate action for execution. The final chosen action from aReSim is then
executed in the environment, and this process is repeated until the task is solved or until a maximum
number of steps is reached. We illustrate this process in Figure 2 Left and Algorithm 3. We note that
since RESIM essentially converts real search trees into a single reasoning trace, it is not limited to (1)
agent-environment interactions; (2) specific search algorithms used in this work. We believe other
domains such as agent-user-environment interactions or other algorithms such as MCTS are also
applicable, which we leave for future work.

RESIM Distillation Since each response aReSim encapsulates an entire search tree in its reasoning,
we directly use aReSim as the training target given an input s to teach the model to perform simulation-
guided reasoning without any algorithm support. We illustrate this in Figure 2 Right. Specifically,
given a collection of trajectories τ = {s0, aReSim

0 , s1, a
ReSim
1 , · · · , sT , aReSim

T } produced by RESIM

inference, we use SFT to train the model to directly generate each aReSim
t given the current state st

as well as a maximum history of h previous actions and states in the trajectory (i.e., the same input
used by other inference methods such as REACT).

3.3 DYNA-GRPO

While RESIM provides a principled way to synergize simulation with reasoning, it is computationally
expensive and relies on multiple modules (a rollout model, a value function, and a (V)LM to aggregate
the search tree into a single response) to construct training data. Additionally, such offline training
may limit models’ generalization ability to new tasks. To address this, we propose DYNA-GRPO, a
modification of GRPO (Shao et al., 2024) to further improve the model’s simulation ability during
online RL without using any search or additional modules. The standard GRPO objective JGRPO is:

Eτ∼πθold

[
1

GT

G∑
i=1

T∑
t=1

min
(
ρθ(a

(i)
t)A(a

(i)
t), clip(ρθ(a

(i)
t), 1± ϵ)A(a

(i)
t)

)
− βDKL(πθ||πθref)

]
,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Group
Comp.

SimRoll.
Group
Comp.

Group
Comp.

Policy Improvement Simulation Improvement

re
m

ov
e

...

...

state future info.action rollout trajectory
Legend:

SimRollout trajectory

mean()
...
...
...

...

...

...

...
...

re
m

ov
e

Figure 3: DYNA-GRPO iterates between policy improvement (left) and world model improvement
(right), optimized by GRPO. During policy improvement, we perform grouped policy rollouts with
GRPO. During simulation improvement, we perform both policy rollouts and simulation refinement
rollouts (see Figure 4), and trains the model to directly generate an improved policy as well as to
better perform simulation refinement when provided with future-states information.

where ρθ(a) =
πθ(a|s)

πθref
(a|s) is the importance sampling ratio, β is the KL regularization coefficient, and

A = AGRPO is the episode-level advantage function (Wang et al., 2025b; Feng et al., 2025):

A(a
(i)
t) = AGRPO(τ

(i)) =
R(τ (i))−mean({R(τ (j))}Gj=1)

std({R(τ (j))}Gj=1)
, R(τ (i)) =

T∑
t=1

R(st, at),

where G is the group size, R(·) is the reward provided by the environment, with R(st, at) = −0.1
for non-terminal steps and R(sT , aT) = 10.0 or R(sT , aT) = 0.0 for terminal steps when task
succeeded or failed, respectively.

However, RL algorithms such as GRPO aim to optimize a policy only using scalar rewards RT but
do not provide any direct training signal on refining the reasoning process or world model simulations.
We propose DYNA-GRPO to address this, by additionally incorporating future state(s) information
st+1, st+2, · · · as textual signals to help improve the model’s response a ∼ πθ(·|st) during RL
training. Since textual signals cannot be directly “optimized”, we propose SIMROLLOUT to instead
prompt the underlying model to refine its simulation in a ∼ πθ(·|st) utilizing real future state(s)
st+1, st+2, · · · during RL rollouts. Then, during optimization we train the policy to both directly
generate the refined action and also to improve its “simulation refinement” ability (DYNA-GRPO).
We detail these two modifications below.

...
add back
to prompt1

2

3inference

execute plan in

...

4 refine

Figure 4: SIMROLLOUT generates refined action
per state st using real environment interactions

SIMROLLOUT In simulation refinement rollout
(SIMROLLOUT), at each state st we first sample
a response a ∼ πθ(·|st); then extract the final
chosen plan {â1, â2, · · · , âd} up to depth d from
a and execute them in the environment to obtain
ground truth next-states {s′t+1, s

′
t+2, · · · , s′t+d};

and finally prompt πθ again to refine its re-
sponse a given these real future states arefine ∼
πθ(·|srefine

t), srefine
t ≡ {st⊕ a⊕ s′t+1⊕ â2⊕ · · · ⊕

s′t+d}. We illustrate this rollout process in Fig-
ure 4 and provide the pseudo-code in Algorithm 2.
We note that this is different from methods such
as Reflexion (Shinn et al., 2023), which performs reflection at the end of the episode utilizing suc-
cess/failure information, and is also not intended for any training purposes. Empirically, we find the
resulting arefine indeed improves the policy’s simulation and performance (see Appendix D.3).

DYNA-GRPO Training To utilize refined trajectories from SIMROLLOUT during RL, we follow
Dyna algorithms to improve the model’s policy and simulation ability iteratively. Specifically, DYNA-
GRPO iterates between (1) simulation improvement where models learn from refined policies that use
future states information from SIMROLLOUT to improve its simulation ability; and (2) direct policy
improvement where models are trained on standard rollouts without future-state access, allowing it
to better integrate simulation ability into decision-making. We illustrate both training processes in
Figure 3, and detail the overall algorithm in Algorithm 1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 DYNA-GRPO

Require: policy πθ, environment T , group size G
Require: hyperparameters G,N, nT , nπ

1: for N training iterations do
2: // simulation improvement
3: for nT steps do
4: // see Algorithm 2
5: {τ ′}, {τ ′refine} ← SimRollout(πθ, T , G/2)
6: {τ} ← Rollout(πθ, T , G/2)
7: Update πθ with GRPO({τ} ∪ {τ ′})
8: Update πθ with GRPO({τ ′refine}) using Arefine

9: end for
10: // policy improvement
11: for nπ steps do
12: {τ} ← Rollout(πθ, T , G)
13: Update πθ with GRPO({τ})
14: end for
15: end for
16: return πθ

During simulation improvement, for each task
we (1) first perform SIMROLLOUT with a group
size of G/2, collecting refined trajectories with
and without future-state information removed:
τ ′ = {s0, arefine

0 , s1, a
refine
1 , · · · } and τ ′refine =

{srefine
0 , arefine

0 , srefine
1 , arefine

1 , · · · }; (2) then per-
form standard rollouts with group size of G/2;
(3) combine these standard rollouts τ with re-
fined trajectories τ ′ into a single group of size G
and perform GRPO on this combined group; (4)
finally utilize τ ′refine to also improve the model’s
simulation refinement ability, using the follow-
ing modified advantage to reward refinements
that both correctly solves the task and improves
upon (the mean reward of) standard policy roll-
outs which does not access future states:

Arefine(τ
(i)
refine) =

{
1.0, if τ (i)refine is correct and R(τ

(i)
refine) > max(R̄, R̄refine)

0.0, otherwise
,

where R̄ = 1
G/2

∑G/2
i=1 R(τ (i)) is the mean reward of the standard policy rollouts (line 6 of Algo-

rithm 1); R̄refine = 1
G/2

∑G/2
i=1 R(τ

(i)
refine) is mean reward from SIMROLLOUT (line 5 of Algorithm 1).

During policy improvement, we perform standard policy rollouts without future state information,
optimized by GRPO using episode-level advantage (Feng et al., 2025; Wang et al., 2025b).

4 EXPERIMENTS

We first evaluate Dyna-Mind on two “synthetic” environments (Sokoban and ALFWorld) that require
efficient planning for successful task completion. These lightweight environments allow us to provide
detailed analysis of the different reasoning styles as well as different RL algorithms. Then, we extend
our methods to a more complex and realistic environment (AndroidWorld).

4.1 TEXT GAMES

Benchmarks Sokoban (Schrader, 2018) is a grid-world game where the agent needs to push
boxes to target destinations while avoiding obstacles, and successful task completion requires spatial
planning to avoid deadlock situations. ALFWorld (Shridhar et al., 2021) is a text-based embodied
environment where the agent needs to locate/interact with objects to complete household tasks using
natural language instructions. To evaluate the agent’s generalization ability, we construct training
set, an in-distribution (ID) test set, and an out-of-distribution (OOD) test set. For Sokoban, we use
training set with 6x6 room layouts with 1 box and 1 destination; ID test set with different 6x6 room
layouts than training; and OOD test set with 8x8 room layouts with 1 box and 1 destination. For
ALFWorld, we directly use the official training, ID, and OOD test splits from Shridhar et al. (2021).

Baselines setup To evaluate RESIM, we compare against (1) ReACT based prompting methods with
models such as GPT-4o (OpenAI, 2024), Claude-3.7 (Anthropic, 2025), DeepSeek-V3 (DeepSeek-AI
et al., 2025b), and DeepSeek-R1 (DeepSeek-AI et al., 2025a); and (2) training methods that distill the
reasoning traces from strong policy models such as DeepSeek-R1. To evaluate stage 2 DYNA-GRPO
training, we compare against other popular group-based RL algorithms such as RLOO (Kool et al.,
2019) and GRPO (Shao et al., 2024). Overall, we also compare against Dyna-Think (Yu et al., 2025b),
which similarly uses two-stage training (DIT and DDT) to improve model’s simulation ability.

Dyna-Mind setup To instantiate RESIM, we use Qwen2.5-32B-Instruct (Qwen et al., 2025) as
rollout and value function models, finetuned on rollouts obtained by using DeepSeek-V3 (see
Appendix D.2 for more details) and use DeepSeek-V3 as the LLM to aggregate the search tree
into a single response. For Sokoban, we use d = 5, b = 16, btrain = 2; for ALFWorld, we use
d = 2, b = 24, btrain = 4. We note that all models used by RESIM are by themselves much weaker

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance on text game environments such as Sokoban and ALFWorld. “Gen. Token”
denotes the average number of tokens generated per turn. All training in stage-1 and stage-2 are based
on Qwen2.5-7B-Instruct. All results are averaged over 3 runs. Our methods are highlighted in gray.

Method Gen. Token Sokoban ALFWorld

ID OOD AVG ID OOD AVG

REACT(Qwen2.5-7B-Instruct) 1.0x 25.8±1.8 - - 35.4±1.9 - -
REACT(Qwen2.5-32B-Instruct) 2.7x 36.7±4.2 - - 36.2±3.3 - -
REACT(GPT-4o) 1.5x 37.8±1.0 - - 51.3±2.1 - -
REACT(Claude-3.7-Sonnet) 2.3x 70.3±1.2 - - 46.1±1.0 - -
REACT(DeepSeek-V3) 2.5x 57.0±1.6 - - 55.2±1.0 - -
REACT(DeepSeek-R1) 14.5x 96.6±0.2 - - 62.5±0.5 - -
RESIM 2.0x 96.4±0.2 - - 87.7±1.1 - -

Dyna-Think
DIT(R1)+DDT(T̂) 24.2x 74.0±1.4 57.5±1.2 65.8±1.9 63.2±1.5 56.7±2.8 58.9±2.3

Dyna-Mind Stage 1 (SFT)
DISTILL(V3) 2.1x 49.2±1.1 34.4±1.3 41.8±1.1 58.9±1.1 56.7±1.0 57.8±1.2

DISTILL(R1) 24.0x 72.5±2.9 57.0±1.9 64.8±2.5 59.4±1.5 54.2±3.9 56.8±3.5

DISTILL(RESIM) 2.0x 71.9±1.5 55.5±1.6 63.7±1.9 78.9±2.1 69.3±1.3 74.1±1.8

Dyna-Mind Stage 2 (RL)
DISTILL(RESIM) + RLOO 2.2x 78.1±1.8 65.1±1.3 71.3±0.9 85.9±1.3 85.4±2.0 85.5±2.0

DISTILL(RESIM) + GRPO 2.1x 79.1±1.3 67.8±0.6 73.1±1.4 87.0±3.2 87.1±1.1 87.0±1.8

DISTILL(RESIM) + DYNA-GRPO 1.9x 82.5±1.5 70.1±1.6 77.1±1.7 92.5±0.8 89.1±1.3 90.8±0.9

than other models such as DeepSeek-R1 as well as RESIM itself. Since DeepSeek-R1 and RESIM
have a higher success rate than DeepSeek-V3, to isolate improvement from better reasoning from
simply training with more (diverse) data, we thus only used trajectories where all methods correctly
solved the task for stage 1 training. This results in a total of 207 trajectories in Sokoban and 200
trajectories in ALFWorld from each method (DeepSeek-R1, DeepSeek-V3, and RESIM) in the
subsequent stage 1 training.

To instantiate DYNA-GRPO, we continue training the best model from stage 1 distillation. To
ensure a fair comparison, we use identical hyperparameters for all methods (RLOO, GRPO, and
DYNA-GRPO), when applicable. For DYNA-GRPO, we use nT = 10 and nπ = 10 for Sokoban
and nT = 10 and nπ = 20 for ALFWorld. For more setup details, please see Appendix D.4.

4.1.1 MAIN RESULTS

In the upper section of Table 1, we first evaluate RESIM’s performance against other strong reasoning
models such as DeepSeek-R1. Then, we compare different training methods to integrate/improve
the simulation ability of the policy model. In Table 1, we first find that RESIM achieves near-perfect
performance on Sokoban (96.4% success) and a strong performance on ALFWorld (87.7% success),
significantly outperforming all other methods. On Sokoban, we find strong reasoning models such as
DeepSeek-R1 also achieves near-perfect performance, which we attribute to R1’s ability to correctly
simulate Sokoban game states (but not on ALFWorld) during its reasoning process (see Section 4.1.2
for empirical results). In contrast, RESIM utilizes ground-truth simulations from search trees, and
hence was able to achieve strong performance in both environments.

In stage 1 training, we find DISTILL(RESIM) achieves a similar performance to DISTILL(R1) on
Sokoban but significantly outperforms both DISTILL(V3) and DISTILL(R1) on ALFWorld. Addition-
ally, since RESIM constructs reasoning traces consists almost entirely of only planning via simulation
(see Figure 2 Left), DISTILL(RESIM) outputs 11x less tokens on average compared to DISTILL(R1).
These results indicate that that strong performance from RESIM can be learned by SFT, and that the
ability to model and simulate the environment is crucial for long-horizon, planning-intensive tasks.

In stage 2 training, we continue from the best model (DISTILL(RESIM)) with online RL. In Table 1,
we find that DYNA-GRPO improves upon both GRPO, RLOO, as well as Dyna-Think, while
maintaining a similar output token length compared to its base model DISTILL(RESIM). This
indicates that DYNA-GRPO is effective at improving the model’s simulation ability during online
RL training (also see Section 4.1.2 for empirical results), and that improving such simulation ability
helps improve task performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Measuring simulation ability of different models across different training stages. We report
the average success rate and the simulation ability (Sim Score ∈ [0, 1]) averaged across all trajectories.
We also report the correlation coefficient r between the success rate and the simulation score.

Method Sokoban ALFWorld

Success Sim Score Success Sim Score

REACT(Qwen2.5-7B-Instruct) 25.8±1.8 0.21(r =0.64) 35.4±1.9 0.18(r =0.46)

REACT(DeepSeek-V3) 57.0±1.6 0.54(r =0.81) 55.2±1.0 0.35(r =0.68)

REACT(DeepSeek-R1) 96.6±0.2 0.93(r =0.96) 62.5±0.5 0.36(r =0.70)

RESIM 96.4±0.2 1.00(-) 87.7±1.1 1.00(-)

Dyna-Think
DIT(R1)+DDT(T̂) 74.0±1.4 0.62(r =0.74) 63.2±1.5 0.36(r =0.76)

Dyna-Mind Stage 1 (SFT)
DISTILL(R1) 72.5±2.9 0.61(r =0.75) 59.4±1.5 0.34(r =0.77)

DISTILL(RESIM) 71.9±1.5 0.62(r =0.78) 78.9±2.1 0.37(r =0.74)

Dyna-Mind Stage 2 (RL)
DISTILL(RESIM) + GRPO 79.1±1.3 0.62(r =0.65) 87.0±3.2 0.38(ρ =0.48)

DISTILL(RESIM) + DYNA-GRPO 82.5±1.5 0.67(r =0.64) 92.5±0.8 0.43(r =0.55)

4.1.2 MEASURING SIMULATION ABILITY

Dyna-Mind aims to integrate and improve the simulation ability of agents. To measure this simulation
ability, we evaluate the Simulation Score (Sim Score) of different models and the Spearman
Correlation Coefficient (rs) between sim score and success rate. Given a state st and generated
response at ∼ πθ(·|st), we evaluate the simulation score of at by 1) first prompting an LLM to extract
the final action plan (â1, â2, · · · , âd) and the natural language description (i.e., simulation) of the
corresponding imagined next-states (ŝt+1, ŝt+2, · · · , ŝt+d) from the response at; 2) then execute the
action plan in the environment to obtain ground truth next-states {st+1, st+2, · · · , st+d}; 3) finally,
prompt an LLM to judge (Zheng et al., 2023) the correctness of these simulated next-states ŝi by
comparing them against the ground truth si, returning a score ∈ [0, 1]. Finally, we averaged the score
for each turn to obtain an overall simulation score for the trajectory. To ensure a fair judgment, we
used a different LLM from all of our experiments (Qwen3-235B-A22B-Instruct (Qwen Team, 2025)).
For judgment prompts, please see Appendix D.5.

We present the results in Table 2. In Table 2, we find that 1) RESIM maintains its strong success rates
across both Sokoban and ALFWorld due to its perfect simulation ability (by construction), whereas
DeepSeek-R1 struggled in ALFWorld as it struggles to model the environment layout; and 2) both
DISTILL(RESIM) and DYNA-GRPO improve the simulation ability alongside task performance
compared to their baselines. These results show that our methods helped improve the simulation
ability of the model beyond simply improving task performance.

4.2 ANDROIDWORLD

Next, we extend our Dyna-Mind to AndroidWorld (Rawles et al., 2025) - a highly challenging
benchmark that evaluates the agent’s ability control and complete tasks on a virtual Android device.

Benchmarks AndroidWorld (Rawles et al., 2025) provides a fully functional Android environment
that requires the agent to interact with Android’s GUI to complete tasks across 20 real-world Android
apps. Since tasks in AndroidWorld are parameterized by task types (116), we construct a training
set with 81 task types with in total 1946 tasks, an ID test set with 128 different tasks from the same
task types, and an OOD test set with 128 tasks from the remaining 35 held-out task types. We use a
maximum number of 15 steps and the screenshot-only modality as input. We provide an example
task and action in Appendix E.1.

Baselines setup Since our methods consider end-to-end training, we compare against models that
are capable of directly generating executable actions given an GUI screenshot, and exclude modular
systems such as Gou et al. (2025b); Agashe et al. (2025). We thus mainly compare against (1)
REACT based prompting method with Qwen2.5-VL-72B/7B (Bai et al., 2025), and GPT-4o; and (2)
distillation from Qwen2.5-VL-72B3. We exclude comparison against Dyna-Think in this experiment,

3We were unable to reproduce the reported performance of more recent GUI models such as UI-Tars1.5 (Qin
et al., 2025), and hence focus on using Qwen2.5-VL for simplicity. Please see Appendix E.3 for more details.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Performance on AndroidWorld. All training in stage-1 and stage-2 are based on Qwen2.5-
VL-7B-Instruct. We exclude Dyna-Think since (most) VLMs cannot predict images, as required by
DDT(T̂) training. All results are averaged over 3 runs. Our methods are highlighted in gray.

Method Gen. Token AndroidWorld

ID OOD AVG

REACT(GPT-4o) 1.0x 5.1±0.2 - -
REACT(Qwen2.5-VL-7B-Instruct) 1.0x 5.3±0.2 - -
REACT(Qwen2.5-VL-72B-Instruct) 1.1x 19.5±0.4 - -
RESIM 2.1x 34.4±0.4 - -

Dyna-Mind Stage 1 (SFT)
DISTILL(Qwen2.5-VL-72B-Instruct) 1.0x 13.1±0.4 8.6±0.2 10.8±0.6

DISTILL(RESIM) 2.1x 21.1±0.4 10.2±0.6 15.7±0.8

Dyna-Mind Stage 2 (RL)
DISTILL(RESIM) + DYNA-GRPO 2.2x 25.2±0.6 15.6±0.8 20.4±1.3

because DDT(T̂) trains the model to predict next-state (in this case, screenshot images), which cannot
be implemented using most VLMs as they can only generate text.

Dyna-Mind setup Since AndroidWorld is a highly challenging and compute-intensive environment
(each episode on average takes 15-20 minutes to complete), we do not perform any rollout/value
function training for RESIM. Instead, we directly prompt Qwen2.5-VL-72B as the rollout model,
prompt GPT-4o as a judge to approximate the value function, and also use GPT-4o as the VLM to
aggregate the rollouts into a single response in RESIM. We use d = 1, b = 16, btrain = 4 for RESIM,
and a total of 128 trajectories for distillation/stage 1 training. To instantiate DYNA-GRPO, we
generally followed the same recipe as Section 4.1, but used less training steps (60) as AndroidWorld
is highly compute-intensive and time-consuming. For more details, please see Appendix E.2.

4.2.1 MAIN RESULTS

Results We present the results in Table 3. In general, we observe similar results compared to
Section 4.1.1. First, we find that RESIM inference significantly improves performance, and that the
improvement performance can be transferred to Qwen2.5-VL-7B via DISTILL(RESIM). Next, in
both training stages of Dyna-Mind, we find improved performance in both ID and OOD test sets
compared to baselines, including Qwen2.5-VL-72B. These results highlight the effectiveness of our
method to improve agent’s performance in complex environments.

Error Analysis Compared to synthetic text games (Section 4.1.1) where RESIM achieves near-
perfect performance, we find RESIM struggles in AndroidWorld despite improvements compared to
baselines. After analyzing trajectories produced by RESIM, we find performance is bottlenecked by
the rollout model (Qwen2.5-VL-72B), mainly due to: (1) incomplete understanding of some GUI
interfaces and certain button functions, and (2) inability to recover after making multiple mistakes.
We believe methods to improve the foundation model’s capability could mitigate these problems
(Wang et al., 2025a; Qin et al., 2025), which we leave for future work.

5 CONCLUSION

In this work, we propose Dyna-Mind to synergize reasoning with simulations for autonomous AI
agents. We empirically show that an agent’s ability to model and simulate the environment strongly
correlates with its ability to correctly reason and complete long-horizon, planing-intensive tasks. We
introduce Dyna-Mind, a two-stage training method to explicitly teach (V)LM agents to integrate and
improve such simulation a part of their reasoning. In stage 1 training, we propose RESIM to train a
model to simulate future states by learning to predict an expanded search tree in their reasoning. In
stage 2 training, we propose DYNA-GRPO to further refine the agent’s reasoning and simulation
ability using online RL. Empirical results on three benchmarks show that (1) RESIM effectively
teaches AI agents to simulate; and (2) DYNA-GRPO, by leveraging both outcome rewards and
intermediate interactions, learns better policies for long-horizon, planning-intensive tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s: An
open agentic framework that uses computers like a human, 2024. URL https://arxiv.org/
abs/2410.08164.

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s2:
A compositional generalist-specialist framework for computer use agents, 2025. URL https:
//arxiv.org/abs/2504.00906.

Anthropic. Claude 3.7 Sonnet and Claude Code. https://www.anthropic.com/news/
claude-3-7-sonnet, 2025. Accessed: 2025-05-13.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025. URL
https://arxiv.org/abs/2502.13923.

M.S. Bennett. A Brief History of Intelligence: Evolution, AI, and the Five Breakthroughs That Made
Our Brains. HarperCollins, 2023. ISBN 9780063286368. URL https://books.google.
com/books?id=tymCEAAAQBAJ.

Hyungjoo Chae, Namyoung Kim, Kai Tzu iunn Ong, Minju Gwak, Gwanwoo Song, Jihoon Kim,
Sunghwan Kim, Dongha Lee, and Jinyoung Yeo. Web agents with world models: Learning and
leveraging environment dynamics in web navigation, 2025. URL https://arxiv.org/abs/
2410.13232.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and
Feng Zhao. Agent-flan: Designing data and methods of effective agent tuning for large language
models, 2024. URL https://arxiv.org/abs/2403.12881.

Nathaniel D Daw and Peter Dayan. The algorithmic anatomy of model-based evaluation. Philosophi-
cal Transactions of the Royal Society B: Biological Sciences, 369(1655):20130478, 2014.

Nathaniel D. Daw, Yael Niv, and Peter Dayan. Uncertainty-based competition between prefrontal
and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8:1704–1711, 2005.
URL https://api.semanticscholar.org/CorpusID:16385268.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin,
Ruyi Chen, and et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning, 2025a. URL https://arxiv.org/abs/2501.12948.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli
Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen,
Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi
Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song,
Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan

10

https://arxiv.org/abs/2410.08164
https://arxiv.org/abs/2410.08164
https://arxiv.org/abs/2504.00906
https://arxiv.org/abs/2504.00906
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://arxiv.org/abs/2502.13923
https://books.google.com/books?id=tymCEAAAQBAJ
https://books.google.com/books?id=tymCEAAAQBAJ
https://arxiv.org/abs/2410.13232
https://arxiv.org/abs/2410.13232
https://arxiv.org/abs/2403.12881
https://api.semanticscholar.org/CorpusID:16385268
https://arxiv.org/abs/2501.12948

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi
Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, and et al. Deepseek-v3 technical report,
2025b. URL https://arxiv.org/abs/2412.19437.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web, 2023. URL https://arxiv.org/
abs/2306.06070.

Mingxuan Du, Benfeng Xu, Chiwei Zhu, Xiaorui Wang, and Zhendong Mao. Deepresearch bench: A
comprehensive benchmark for deep research agents, 2025. URL https://arxiv.org/abs/
2506.11763.

Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
agent training, 2025. URL https://arxiv.org/abs/2505.10978.

Boyu Gou, Zanming Huang, Yuting Ning, Yu Gu, Michael Lin, Weijian Qi, Andrei Kopanev,
Botao Yu, Bernal Jiménez Gutiérrez, Yiheng Shu, Chan Hee Song, Jiaman Wu, Shijie Chen,
Hanane Nour Moussa, Tianshu Zhang, Jian Xie, Yifei Li, Tianci Xue, Zeyi Liao, Kai Zhang,
Boyuan Zheng, Zhaowei Cai, Viktor Rozgic, Morteza Ziyadi, Huan Sun, and Yu Su. Mind2web 2:
Evaluating agentic search with agent-as-a-judge, 2025a. URL https://arxiv.org/abs/
2506.21506.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents,
2025b. URL https://arxiv.org/abs/2410.05243.

Yu Gu, Kai Zhang, Yuting Ning, Boyuan Zheng, Boyu Gou, Tianci Xue, Cheng Chang, Sanjari
Srivastava, Yanan Xie, Peng Qi, Huan Sun, and Yu Su. Is your llm secretly a world model of
the internet? model-based planning for web agents, 2025. URL https://arxiv.org/abs/
2411.06559.

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao, Michael
Tontchev, Qing Hu, Brian Fuller, Davide Testuggine, and Madian Khabsa. Llama guard: Llm-based
input-output safeguard for human-ai conversations, 2023. URL https://arxiv.org/abs/
2312.06674.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Jing Yu Koh, Stephen McAleer, Daniel Fried, and Ruslan Salakhutdinov. Tree search for language
model agents, 2024. URL https://arxiv.org/abs/2407.01476.

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 REINFORCE samples, get a baseline for
free!, 2019. URL https://openreview.net/forum?id=r1lgTGL5DE.

Kenneth Li, Aspen K. Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin Watten-
berg. Emergent world representations: Exploring a sequence model trained on a synthetic task,
2024. URL https://arxiv.org/abs/2210.13382.

Haowei Liu, Xi Zhang, Haiyang Xu, Yuyang Wanyan, Junyang Wang, Ming Yan, Ji Zhang, Chunfeng
Yuan, Changsheng Xu, Weiming Hu, and Fei Huang. Pc-agent: A hierarchical multi-agent
collaboration framework for complex task automation on pc, 2025. URL https://arxiv.
org/abs/2502.14282.

Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in world models
of self-supervised sequence models, 2023. URL https://arxiv.org/abs/2309.00941.

OpenAI. New and improved content moderation tooling. https://openai.com/index/
new-and-improved-content-moderation-tooling/, 2022. Accessed: 2025-05-13.

OpenAI. Hello GPT-4o. https://openai.com/index/hello-gpt-4o/, 2024. Accessed:
2024-09-28.

11

https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2306.06070
https://arxiv.org/abs/2306.06070
https://arxiv.org/abs/2506.11763
https://arxiv.org/abs/2506.11763
https://arxiv.org/abs/2505.10978
https://arxiv.org/abs/2506.21506
https://arxiv.org/abs/2506.21506
https://arxiv.org/abs/2410.05243
https://arxiv.org/abs/2411.06559
https://arxiv.org/abs/2411.06559
https://arxiv.org/abs/2312.06674
https://arxiv.org/abs/2312.06674
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2407.01476
https://openreview.net/forum?id=r1lgTGL5DE
https://arxiv.org/abs/2210.13382
https://arxiv.org/abs/2502.14282
https://arxiv.org/abs/2502.14282
https://arxiv.org/abs/2309.00941
https://openai.com/index/new-and-improved-content-moderation-tooling/
https://openai.com/index/new-and-improved-content-moderation-tooling/
https://openai.com/index/hello-gpt-4o/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

OpenAI. Introducing GPT-4.1 in the api. https://openai.com/index/gpt-4-1/, 2025.
Accessed: 2025-09-17.

Baolin Peng, Xiujun Li, Jianfeng Gao, Jingjing Liu, Kam-Fai Wong, and Shang-Yu Su. Deep
dyna-q: Integrating planning for task-completion dialogue policy learning, 2018. URL https:
//arxiv.org/abs/1801.06176.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang,
Jiahao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu Lin,
Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei Zheng,
Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua Yang, Haifeng
Liu, Feng Lin, Tao Peng, Xin Liu, and Guang Shi. Ui-tars: Pioneering automated gui interaction
with native agents, 2025. URL https://arxiv.org/abs/2501.12326.

Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Toyama, Robert Berry,
Divya Tyamagundlu, Timothy Lillicrap, and Oriana Riva. Androidworld: A dynamic benchmarking
environment for autonomous agents, 2025. URL https://arxiv.org/abs/2405.14573.

Max-Philipp B. Schrader. gym-sokoban. https://github.com/mpSchrader/
gym-sokoban, 2018.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, and
David Silver. Mastering atari, go, chess and shogi by planning with a learned model. Nature, 588
(7839):604–609, December 2020. ISSN 1476-4687. doi: 10.1038/s41586-020-03051-4. URL
http://dx.doi.org/10.1038/s41586-020-03051-4.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366.

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning
models via the lens of problem complexity, 2025. URL https://arxiv.org/abs/2506.
06941.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning, 2021.
URL https://arxiv.org/abs/2010.03768.

Richard S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. SIGART
Bull., 2(4):160–163, July 1991. ISSN 0163-5719. doi: 10.1145/122344.122377. URL https:
//doi.org/10.1145/122344.122377.

Edward C Tolman. Cognitive maps in rats and men. Psychological review, 55(4):189, 1948.

12

https://openai.com/index/gpt-4-1/
https://arxiv.org/abs/1801.06176
https://arxiv.org/abs/1801.06176
https://arxiv.org/abs/2501.12326
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2405.14573
https://github.com/mpSchrader/gym-sokoban
https://github.com/mpSchrader/gym-sokoban
http://dx.doi.org/10.1038/s41586-020-03051-4
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2506.06941
https://arxiv.org/abs/2506.06941
https://arxiv.org/abs/2010.03768
https://doi.org/10.1145/122344.122377
https://doi.org/10.1145/122344.122377

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models, 2023.
URL https://arxiv.org/abs/2305.16291.

Xinyuan Wang, Bowen Wang, Dunjie Lu, Junlin Yang, Tianbao Xie, Junli Wang, Jiaqi Deng, Xiaole
Guo, Yiheng Xu, Chen Henry Wu, Zhennan Shen, Zhuokai Li, Ryan Li, Xiaochuan Li, Junda Chen,
Boyuan Zheng, Peihang Li, Fangyu Lei, Ruisheng Cao, Yeqiao Fu, Dongchan Shin, Martin Shin,
Jiarui Hu, Yuyan Wang, Jixuan Chen, Yuxiao Ye, Danyang Zhang, Dikang Du, Hao Hu, Huarong
Chen, Zaida Zhou, Haotian Yao, Ziwei Chen, Qizheng Gu, Yipu Wang, Heng Wang, Diyi Yang,
Victor Zhong, Flood Sung, Y. Charles, Zhilin Yang, and Tao Yu. Opencua: Open foundations for
computer-use agents, 2025a. URL https://arxiv.org/abs/2508.09123.

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing Jin,
Kefan Yu, Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb, Yiping Lu, Kyunghyun Cho, Jiajun Wu,
Li Fei-Fei, Lijuan Wang, Yejin Choi, and Manling Li. Ragen: Understanding self-evolution in
llm agents via multi-turn reinforcement learning, 2025b. URL https://arxiv.org/abs/
2504.20073.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I. Wang. Swe-rl: Advancing llm reasoning via
reinforcement learning on open software evolution, 2025a. URL https://arxiv.org/abs/
2502.18449.

Zhepei Wei, Wenlin Yao, Yao Liu, Weizhi Zhang, Qin Lu, Liang Qiu, Changlong Yu, Puyang Xu,
Chao Zhang, Bing Yin, Hyokun Yun, and Lihong Li. Webagent-r1: Training web agents via end-
to-end multi-turn reinforcement learning, 2025b. URL https://arxiv.org/abs/2505.
16421.

Yuexin Wu, Xiujun Li, Jingjing Liu, Jianfeng Gao, and Yiming Yang. Switch-based active deep
dyna-q: Efficient adaptive planning for task-completion dialogue policy learning, 2018. URL
https://arxiv.org/abs/1811.07550.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments, 2024. URL https://arxiv.org/abs/
2404.07972.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction, 2025.
URL https://arxiv.org/abs/2412.04454.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024. URL https://arxiv.org/abs/2405.15793.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023a.
URL https://arxiv.org/abs/2305.10601.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023b. URL https://arxiv.
org/abs/2210.03629.

Xiao Yu, Maximillian Chen, and Zhou Yu. Prompt-based monte-carlo tree search for goal-oriented
dialogue policy planning, 2023. URL https://arxiv.org/abs/2305.13660.

Xiao Yu, Baolin Peng, Vineeth Vajipey, Hao Cheng, Michel Galley, Jianfeng Gao, and Zhou Yu.
Exact: Teaching ai agents to explore with reflective-mcts and exploratory learning, 2025a. URL
https://arxiv.org/abs/2410.02052.

Xiao Yu, Baolin Peng, Ruize Xu, Michel Galley, Hao Cheng, Suman Nath, Jianfeng Gao, and Zhou
Yu. Dyna-think: Synergizing reasoning, acting, and world model simulation in ai agents, 2025b.
URL https://arxiv.org/abs/2506.00320.

13

https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2508.09123
https://arxiv.org/abs/2504.20073
https://arxiv.org/abs/2504.20073
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2505.16421
https://arxiv.org/abs/2505.16421
https://arxiv.org/abs/1811.07550
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2412.04454
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2305.13660
https://arxiv.org/abs/2410.02052
https://arxiv.org/abs/2506.00320

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttuning:
Enabling generalized agent abilities for llms, 2023. URL https://arxiv.org/abs/2310.
12823.

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Hoang, Shirley Kokane, Weiran Yao, Juntao
Tan, Akshara Prabhakar, Haolin Chen, Zhiwei Liu, Yihao Feng, Tulika Awalgaonkar, Rithesh
Murthy, Eric Hu, Zeyuan Chen, Ran Xu, Juan Carlos Niebles, Shelby Heinecke, Huan Wang,
Silvio Savarese, and Caiming Xiong. xlam: A family of large action models to empower ai agent
systems, 2024. URL https://arxiv.org/abs/2409.03215.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist web
agent, if grounded, 2024. URL https://arxiv.org/abs/2401.01614.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. URL https://arxiv.org/
abs/2306.05685.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models, 2024a. URL https:
//arxiv.org/abs/2310.04406.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents, 2024b. URL https://arxiv.org/abs/
2307.13854.

Lixin Zou, Long Xia, Pan Du, Zhuo Zhang, Ting Bai, Weidong Liu, Jian-Yun Nie, and Dawei
Yin. Pseudo dyna-q: A reinforcement learning framework for interactive recommendation. In
Proceedings of the 13th International Conference on Web Search and Data Mining, WSDM
’20, pp. 816–824, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450368223. doi: 10.1145/3336191.3371801. URL https://doi.org/10.1145/
3336191.3371801.

14

https://arxiv.org/abs/2310.12823
https://arxiv.org/abs/2310.12823
https://arxiv.org/abs/2409.03215
https://arxiv.org/abs/2401.01614
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2310.04406
https://arxiv.org/abs/2310.04406
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854
https://doi.org/10.1145/3336191.3371801
https://doi.org/10.1145/3336191.3371801

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A LLM USAGE

This work used LLMs as general-purpose writing assistants to improve the grammar and clarity of the
paper. We did not use LLMs to generate any research ideas, automate experiments, or analyze results.

B ETHICS STATEMENT

Generally, while most methods and models are not designed for unethical usage, there is often
potential for abuse in their applications. Autonomous AI agents can be used for a variety of tasks
such as automating information gathering, software development, computer/phone-use and more.
In this work, we proposed our Dyna-Mind framework to enhance the simulation ability and hence
performance of AI agents. However, since AI agents are fundamentally task-agnostic, it is possible to
use them for unethical tasks such as scamming or disseminating false information on the internet.
We believe developing guardrails such as safety filters (OpenAI, 2022; Inan et al., 2023) are highly
valuable for AI agent research. We do not condone the Dyna-Mind or its constituent methods for any
unlawful or morally unjust purposes.

C ADDITIONAL ALGORITHMIC DETAILS

In Algorithm 2, we provide the pseudo-code for SIMROLLOUT. On a high level, SIMROLLOUT aims
to generate a refined response at a given state st with better simulation content compared to that
of the original response. Specifically, SIMROLLOUT first performs normal inference at ∼ πθ(·|st)
to generate a response; extracts the plan (â1, â2, · · · , âd) from at using the “<plan></plan>” tags
(see Table A3 for example response with such tags); executes the extracted plan in the environment
and obtain the actual next-states {st+1, st+2, · · · , st+d}; and finally, prompts an LLM to refine
the original response based on the actual next-states, using the prompt in Table A2. The resulting
refined response arefine

t is then used as the next action at, and this process is repeated until the task is
completed or a maximum number of steps is reached.

Algorithm 2 Simulation Refinement Rollout (SIMROLLOUT)

Require: policy πθ, environment T , group size G
1: repeat the following G times:
2: τ ′ ← {}, τ ′refine ← {}, t = 0, s0 ← T
3: while not done and t < tmax do
4: a← πθ(st)
5: {â1, · · · , ân} ← extract_plan(a)
6: // improve action a using next-state information
7: {st+1, · · · , st+n} ← {T (st, â1), · · · , T (st+n−1, ân)}
8: srefine

t ← refinement prompt(a|st, a, {st+1, â1, · · · , st+n}) // see Table A2
9: arefine ← πθ(s

refine
t)

10: // update episode buffer
11: τ ′ ← τ ′ ∪ {st, arefine} // learn improved policy
12: τ ′refine ← τ ′refine ∪ {srefine

t , arefine} // learn to refine simulations
13: st+1 ← T (st, arefine)
14: t← t+ 1
15: end while
16: return τ ′, τ ′refine

D ADDITIONAL DETAILS ON TEXT GAMES

D.1 EXAMPLE TASKS AND ACTIONS

Sokoban (Schrader, 2018) is a grid-world game where the agent needs to push boxes to their
destinations while avoiding obstacles. Valid actions in Sokoban are up, down, left, and right. As an
example, we provide an example input state and generated action in Table A3. ALFWorld (Shridhar

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table A1: SIMROLLOUT performance on Sokoban and ALFWorld. We show that when provided with
ground-truth next-state information (SIMROLLOUT), models achieve better performance compared
to direct prompting (REACT).

Base Model Method Sokoban ALFWorld

Qwen2.5-7B-Instruct REACT 25.8±1.8 35.4±1.9

SIMROLLOUT 30.0±1.4 39.1±1.6

GPT-4o-2024-11-20 REACT 37.8±1.0 51.3±2.1

SIMROLLOUT 41.4±1.2 64.8±2.5

GPT-4.1 REACT 67.9±1.0 54.4±2.1

SIMROLLOUT 71.1±1.3 67.9±2.0

et al., 2021) is a text-based embodied environment where the agent needs to locate/interact with
objects to complete embodied household tasks using natural language instructions. Valid actions in
ALFWorld are dependent on what’s available in the current state. We provide an example input state
and generated action in Table A4.

D.2 RESIM IMPLEMENTATION DETAILS

We provide a pseudo-code for RESIM in Algorithm 3. For text games, we finetune Qwen2.5-32B-
Instruct as rollout and value function models using DeepSeek-V3’s rollouts. Specifically, we first use
DeepSeek-V3 to generate 256 rollouts using tasks from the training set. Then, to train the rollout
model, we simply perform SFT training on one correct rollout for each task. To train the value
function, we use the trained policy model to generate the same 256 rollouts, repeated over 3 times, and
compute V (st) as the probability of successfully completing the task from st across all trajectories
that contains st, discounted by the number of remaining steps needed in the current trajectory:

V (st) = γtmax−t 1

|T|
∑
τ∈T

1[τ is successful], where T ≡ {τ1, τ2, · · · |st ∈ τi}

where γ is the discount factor and tmax is the maximum number of steps in a trajectory. In both
environments, we used γ = 0.95. Finally, we finetune a separate Qwen2.5-32B-Instruct as the value
function by adding a linear value head to the model architecture, and perform MSE loss training on
the computed V (st) across all states from all trajectories.

Since Sokoban and ALFWorld environments are fast, these rollouts were completed within 1 hour.
For complex environments such as AndroidWorld, we directly prompt pretrained VLMs such as
Qwen2.5-VL-72B and GPT-4o as rollout and value function models (Section 4.2).

D.3 SIMULATION REFINEMENT PERFORMANCE

To empirically show that (V)LMs are capable of leveraging next-state information to improve their
action, we evaluate the performance of SIMROLLOUT compared to direct prompting (REACT). We
report the result in Table A1.

In general, we find that 1) all models showed improved task success rate when provided with next-
state information; and 2) stronger models such as GPT-4o and GPT-4.1 (OpenAI, 2024; 2025) shows
larger improvement compared to weaker models such as Qwen2.5-7B-Instruct. We believe this is
because correcting its own mistakes is requires non-trivial reasoning ability, which is more difficult
for weaker models such as Qwen2.5-7B-Instruct to achieve. Overall, this result indicates that world
modeling error (e.g., especially for tasks such as ALFWorld) remains a significant bottleneck for
(V)LM agents reasoning ability in long-horizon tasks.

D.4 ADDITIONAL TRAINING DETAILS

To instantiate DYNA-GRPO, we continue training the best model from stage 1 distillation. To ensure
a fair comparison, we use identical hyperparameters for all methods (RLOO, GRPO, and DYNA-
GRPO), when applicable. We use a batch size of 8 tasks per batch, group size of G = 8, learning
rate of 1e-6, and 300 training steps in total for both Sokoban and ALFWorld. For DYNA-GRPO, we

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 3 RESIM

Require: policy πθ, value function Vν , environment T , (V)LM M
Require: hyperparameters b, d, tmax, btrain

1: τ ← {}, t = 0, s0 ← T
2: while not done and t < tmax do
3: {τ i}bi=1 ← sample b rollouts using πθ starting from st for max d steps
4: {τ i}b′i=1 ← deduplicate {τ i}bi=1

5: {vi}b′i=1 ← estimate value {Vν(s
i
t+d)}bi=1

6: // subsample rollouts
7: τ∗ ← τargmaxi v

i

8: {τ i}btrain
i=1 ← {τ∗}∪ subsample btrain − 1 rollouts from the rest of {τ i}b′i=1

9: // aggregate rollouts into a single reasoning response
10: {plani}btrain

i=1 ← summarize {M(τ i, vi)}btrain
i=1

11: aRESIM ← aggregate M(st, {plani}btrain
i=1)

12: // next step
13: st+1 ← T (st, aRESIM)
14: τ ← τ ∪ {st, aRESIM}
15: t← t+ 1
16: end while
17: return τ

use nT = 10 and nπ = 10 for Sokoban and nT = 10 and nπ = 20 for ALFWorld. All training are
performed on top of Qwen2.5-7B (Qwen et al., 2025) using 8xH100.

D.5 SIMULATION SCORE PROMPTS

To evaluate the simulation ability of a model πθ, we use LLM-as-a-judge (Zheng et al., 2023) to
measure the correctness and quality of the simulation generated by πθ at each turn in a given tra-
jectory. Specifically, for each at ∼ πθ(·|st), we first prompt an LLM to extract the final action
plan (â1, â2, · · · , âd) from at and the corresponding natural language description of the next-states
(ŝt+1, ŝt+2, · · · , ŝt+d) from the response at. We present the prompts used for Sokoban and ALF-
World in Tables A5 and A7, respectively. Then, we execute the action plan in the environment to
obtain ground truth next-states {st+1, st+2, · · · , st+d}. Finally, we prompt an LLM to judge the
quality of the plan by comparing “imagined” next-states generated by πθ against the ground truth
next-states, using prompts in Tables A6 and A8. This results in a score ∈ [0, 1] for each turn in the
trajectory, which is then averaged across all turns to obtain an overall simulation score for the entire
trajectory.

E ADDITIONAL DETAILS ON ANDROIDWORLD

E.1 EXAMPLE TASK AND ACTIONS IN ANDROIDWORLD

In this work, we use the dockerized environment provided by AndroidWorld to evaluate and train
all methods. We use the screenshot-only modality. In Figure A1, we present an example task, input
screenshot st from AndroidWorld, as well as an example output at generated by models trained using
Dyna-Mind. For more details on AndroidWorld, please refer to Rawles et al. (2025).

E.2 ADDITIONAL TRAINING DETAILS

To standardize training and evaluation, we use the dockerized version of AndroidWorld and adapt the
action space provided by Rawles et al. (2025).

To instantiate DYNA-GRPO, we continue training the best model from stage 1 distillation. We
followed Section 4.1 and used a batch size of 8 tasks per batch, group size of G = 8, learning rate of
1e-6. Since AndroidWorld is highly compute-intensive and time-consuming to run, we perform a

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

<observation>
The screen displays the schedule for October 26 (Thursday), showing one event: "Call with Bob"
from 09:59 to 10:59, with the note "We will finalize annual budget." The schedule for October 28
is not visible on this screen.
</observation>

<think>
Okay, let me look at the current situation. Previously, I clicked on October 28 in the calendar view
to check the specific events scheduled for that date and time. However, the current screen is
showing the schedule for October 26 instead of October 28. I need to navigate to October 28 to
find the events scheduled for 21:45.

Let's think about a few possible plans:

- Maybe we can try clicking on the forward arrow icon at the top right corner of the screen. Let's
think. This action may lead to the screen displaying the schedule for October 27 (Friday), which
is closer to October 28. Estimating success rate if continued further: medium.
- Maybe we can try clicking on the schedule entry for October 26. Let's think. This action may
lead to the screen displaying the schedule for October 26, which is not moving closer to October
28. Estimating success rate if continued further: low.

Based on these simulations, clicking on the forward arrow icon at the top right corner of the
screen is the best action for the current step. This is because it will navigate closer to October
28, which is the target date, making it the most efficient option.
</think>

<tool_call>
{"name": "mobile_use", "arguments": {"action": "click", "coordinate": [1023, 387]}}
</tool_call>

<conclusion>
I clicked on the forward arrow icon at the top right corner of the screen to navigate closer to
October 28 in the schedule view.
</conclusion>

Task: What is on my schedule for October 28 at 21:45 in Simple Calendar Pro? Answer with the titles only.

…

…

Figure A1: Example task, input screenshot, and output generated by model trained using Dyna-Mind.
For clarity, we directly rendered the proposed action in at+1 (click at 1023,387) in green on st.

total of 60 training steps for RL training, using nT = 3 and nπ = 7. All training are performed on
top of Qwen2.5-VL-7B (Bai et al., 2025) using 8xH100.

E.3 OTHER IMPLEMENTATION/EVALUATION DETAILS

In this work, we focus on end-to-end training (SFT + RL), and hence selected VLMs capable of
directly interacting with android’s GUI interface. This include models such as Qwen2.5-VL (Bai
et al., 2025) and UI-Tars (Qin et al., 2025). While these models have undergone specific finetuning
on mobile control tasks, at the time of the work we were unable to find evaluation scripts that
supports using these models on AndroidWorld. To our best effort, we utilized the official mobile-use
prompts provided by the respective repositories, as well as prompts from recent work such as (Gou
et al., 2025b). However, we were unable to fully reproduce the reported performance, especially for
UI-Tars 1.5. At the time of this work, we find similar concerns has also been raised publicly
(e.g., https://github.com/bytedance/UI-TARS/issues/83, https://github.
com/UI-Tars/UI-Tars/issues/155, https://github.com/UI-Tars/UI-Tars/
issues/121). To this end, we focus on using Qwen2.5-VL for consistency with other experiments
conducted in the rest of the paper.

18

https://github.com/bytedance/UI-TARS/issues/83
https://github.com/UI-Tars/UI-Tars/issues/155
https://github.com/UI-Tars/UI-Tars/issues/155
https://github.com/UI-Tars/UI-Tars/issues/121
https://github.com/UI-Tars/UI-Tars/issues/121

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table A2: Prompt used by SIMROLLOUT to refine the agent’s original response given actual next-state
information. The next-state information is obtained by 1) extracting the final chosen plan from the
agent’s response (e.g., left, left, up in Sokoban), and 2) executing the plan in the environment to
obtain the actual next states.

Prompt

// ...omitting some text
Current observation
{current_observation}

Example response and feedback
To help you reason and plan better, we have explored some plans for the current step and obtained
the following feedback from the environment:
Example response
{agent_original_response}
Ground truth feedback
{actual_next_observations_after_executing_agent’s_plan}

Back to the current step
Now, the environment has been reset back to the current observation/current step. It’s your turn to
refine the example response based on the ground truth feedback. You should think about:
- Correctness: is the example response aligned with the feedback? did the feedback reveal some
incorrect/ineffective actions in the example response?
- Progress: did the the environment feedback show positive progress towards solving the task?
Note: the example response may hallucinate incorrect outcomes different from the ground truth
feedback. You should avoid coming up with similar hallucinations in your response.

If you think the example response is correct and has made progress, no revision is needed and
your should **directly output the example response verbatim**.
Otherwise, you should modify the example response’s thinking process/plan/action to be
consistent with the environment feedback. Specifically, you should:
1. **Incorporate all relevant details from the feedback** into the example response and then
improve its accuracy and progress. Be detailed when adding information from the feedback
into the response.
2. The final refined response should **read as a standalone answer, without saying its a revision
or referencing the feedback section**. The output should look like the final authoritative response
that faithfully incorporated relevant details from the feedback.

Now, refine the example response. Keep the same tone and format as the example response.
Ensure the final plan/action is logically consistent with your (refined) thinking process. DO NOT
generate anything else.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table A3: Example state in Sokoban and our model’s generated action

Type Content

Input // ...omitting some text about sokoban game rules
Current Step
Your current observation is:
Col 0 Col 1 Col 2 Col 3 Col 4 Col 5
Row 0 # # # # # #
Row 1 # _ _ # # #
Row 2 # _ P # # #
Row 3 # _ X _ _ #
Row 4 # _ _ O _ #
Row 5 # # # # # #

Currently, the player is at (2, 2); boxes are at (3, 2); unsolved targets are at (4, 3).
Next to the player, there is a floor above the player at (1, 2), a box below the player
at (3, 2), a floor left of the player at (2, 1), a wall right of the player at (2, 3).
Your admissible actions are ["up", "down", "left", "right"].

Now it’s your turn to make a move (choose ONE action only for the current step).
You should first reason step-by-step about the current situation — observe the posi-
tions of boxes and targets, plan a path to push a box toward a target, and avoid traps
like corners or walls. This reasoning process MUST be enclosed within <think>
</think> tags.
Once you’ve finished your reasoning, you should choose a plan as well as an
admissible action for current step. The plan needs to be presented as a se-
quence of admissible actions within <plan> </plan> tags (e.g., <plan>up, right,
up</plan>). The action needs to be presented within <action> </action> tags (e.g.,
<action>up</action>).

Output <think>Okay, let me look at the current situation. The player is at (2, 2), with
a box at (3, 2) and an unsolved target at (4, 3). Let’s think about a few possible plans.

Maybe we can try moving "down". This action will lead to the state where the
player is at (3, 2), pushing the box to (4, 2). Is this a good next step? Let’s think:
- After "down", maybe do "left". This results in the player moving to (3, 1), with
the box remaining at (4, 2) and the target at (4, 3). After that, maybe "down", which
leads to the player moving to (4, 1), with the box still at (4, 2) and the target at (4,
3). The player now has a box to the right and a floor above. Discounted success
rate if continued further: around 80%.
- After "down", maybe do "left". This results in the player moving to (3, 1) with the
box still at (4, 2). After that, maybe "down", which leads to the player moving to
(4, 1) with the box and target unchanged. Next, try "right", which moves the player
to (4, 2) and pushes the box onto the target at (4, 3), solving it. Discounted success
rate if continued further: around 100%.

Based on these simulations, "down" is the best action for the current step. This
is because the second plan (down -> left -> down -> right) achieves a discounted
success rate of 100% in 4 steps.
</think>

<plan>down, left, down, right</plan>
<action>down</action>

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table A4: Example state in ALFWorld and our model’s generated action

Type Content

Input // ...omitting some text about alfworld rules
Your task is to: put some book on sidetable.
Your admissible actions of the current situation are: [’go to bed 1’ ’go to diningtable
1’ ’go to drawer 1’ ’go to drawer 2’ ’go to drawer 3’ ’go to drawer 4’ ’go to
garbagecan 1’ ’go to sidetable 1’ ’go to sidetable 2’ ’inventory’ ’look’].

Now it’s your turn to take an action.
You should first reason step-by-step about the current situation, and think about
plans to explore/solve the task. To plan well, you should think about the plan’s
future outcomes and whether it is making progress or not. This reasoning process
MUST be enclosed within <think> </think> tags.
Once you’ve finished your reasoning, you should choose a plan as well as an
admissible action for current step. The plan needs to be presented as a sequence of
admissible actions within <plan> </plan> tags (e.g., <plan>go to desk 1, take mug
1 from desk 1</plan>). The action needs to be presented within <action> </action>
tags (e.g., <action>go to desk 1</action>).

Output <think>Okay, let me look at the current situation. Currently, I am in the middle of a
room with several objects around me, including two sidetables (sidetable 1 and
sidetable 2), where my task is to put a book on one of them. Let’s think about a few
possible plans.

Maybe we can try Go to diningtable 1. This action may lead to arriving at
diningtable 1, where I see a creditcard 1, a book 3, a cdplayer 2, a laptop, a pencil,
three pens, a nutshell, and a vase. Is this a good next step? Let’s think:
- After Go to diningtable 1, maybe I can take book 3. This results in picking up the
book 3 from the diningtable. Discounted success rate if continued further: around
80%.
- After Go to diningtable 1, maybe I can inventory myself. This may reveal that
nothing is being carried, so taking anything is impossible. Discounted success rate
if continued further: around 10%.

Alternatively, maybe we can try Open drawer 1. This action may lead to opening
drawer 1 and seeing nothing inside. Is this a good next step? Let’s think:
- After Open drawer 1, maybe "examine drawer 2" reveals a combination lock and a
keychain inside. Discounted success rate if continued further: around 40%.

Based on these simulations, going to the diningtable has the highest discounted
success rate (80%) as book 3 may be found. This achieves the highest success if
followed by "take book 3", achieving a 80% success rate.
</think>

<plan>go to diningtable 1, take book 3</plan>
<action>go to diningtable 1</action>

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table A5: Sokoban prompt to extract plan and imagined observation from an agent’s response

Prompt

// ...omitting some text about sokoban game rules
Extraction/parsing rules
Your task is to parse the response and extract the following information, IF present.
1) simulation branches
- definition: one sequence of actions the agent planned to solve the puzzle
- example: // ...omitting some text 2) discounted success rates
- definition: the (discounted) success rate of the simulation branch, or some numeric evaluation of
how much progress that branch makes towards the goal.
- example: // ...omitting some text
3) final chosen branch
- definition: the simulation branch/plan that caused the agent’s final decision for the current step.
- example: Based on these simulations, "up" is the best action for the current step. This is because
after "up", the player can proceed with "left" and "up" again, which achieves a discounted success
rate of around 90% in 3 steps.
- example output: ["up", "left", "up"]
- note: The agent chose "up" as the next action. However, we need to find the ENTIRE branch/plan
that caused the agent’s current decision, which is ["up", "right", "down"] in this case.
- note: if the agent did not explicitly mention which branch is chosen, you should choose the
branch in the response with the highest discounted success rate.
4) final imagined observation
- definition: the imagined observation after executing the final chosen branch.
- example: After "up", "left", "up", the player pushed the box to (4,4). Now, the player is at (4, 3),
with the box on target below at (4, 4). The player has a floor above at (2, 4)... The target is ... This
is the best branch according to the discounted success rate. So the next action should be "up".
- example output: The player pushed the box to (4,4). Now, the player is at (4, 3), with the box on
target below at (4, 4). The player has a floor above at (2, 4)... The target is ...
- note: DO NOT include the action sequence in this field. Only keep the description of the
player/boxes/targets/walls position AFTER the last action in the final chosen branch.
- note: // ...omitting some text

Your task
Your task is to output a JSON object in the following format:
<json>
{
"extracted_branches": [...// ...omitting some text],
"extracted_final_chosen_branch": {
"actions": ["action 1", "action 2", ..., "action n"], # the ENTIRE branch/plan that caused the
agent’s current decision
"last_observation": "detailed, comprehensive description of the imagined observation AFTER
executing the entire action sequence above.",
"discounted_success_rate": ...(a number between 0 to 100. -1 if the agent did not mention the
discounted success rate)
}
}
</json>

Input response
{input_agent_response}

Your task
Now, parse the response and output the JSON object enclosed by <json> and </json> tags. DO
NOT generate anything else.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table A6: Sokoban prompt to evaluate the quality of the next-states imagined by an agent in its
reasoning process, using the actual next-states as references.

Prompt

// ...omitting some text about sokoban game rules
Evaluation rules
Provide an overall score between 0.0 and 1.0 based on the following two dimensions. Start with a
score of 0.0, and add points to the score if the criteria are satisfied. Add 0.0 if a criteria is not
satified. DO NOT deduct points if a criteria is not satified.
1) correctness (max 0.3 points. if exceeds 0.3, cap it at 0.3)
- in the imagination description, the coordinates of the player are correct; add 0.1 point
- in the imagination description, some of the mentioned boxes and targets have correct coordinates;
add 0.05 point
- in the imagination description, all mentioned boxes and targets have correct coordinates; add 0.1
point
- in the imagination description, all mentioned walls and empty spaces have correct coordinates;
add 0.05 point
2) progress (max 0.7 points. if exceeds 0.7, cap it at 0.7)
- in the reference observation, if the task is completely solved (all boxes are on targets); add 0.7
point
- relative to the current observation, if the reference observation shows major progress (unsolved
boxes are moved much closer to targets, task close to be solved); add 0.5 point
- relative to the current observation, if the reference observation shows minor progress (unsolved
boxes are moved a bit closer to targets); add 0.1-0.3 point, depending on how much progress is
shown
- relative to the current observation, if the reference observation shows no meaningful progress;
assign 0.0 point for this dimension
- in the reference observation, if the task is no longer solvable (e.g., one of the boxes is pushed
into a corner and cannot be moved anymore); assign 0.0 point for this dimension
// ...omitting some text

Your output format
Your task is to output a JSON object in the following format:
<json>
{
"correctness analysis": "which correctness criteria in the evaluation rules are satisfied, and which
are not.", # no more than 50 words
"correctness score": 0.0-0.3, # score for the correctness dimension
"progress analysis": "which progress criteria in the evaluation rules are satisfied, and which are
not.", # no more than 50 words
"progress score": 0.0-0.7, # score for the progress dimension
"score": 0.0-1.0 # total score; add the correctness score and progress score
}
</json>

Current observation
{current_obs}
Agent imagined observation after some actions
{agent_imagined_next_actions_and_obs}
Reference observation after some actions
{actual_next_obs}

Your task
Now, provide an evaluation analysis and score according to the evaluation rules above. Output the
JSON object enclosed by <json> and </json> tags. DO NOT generate anything else.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table A7: ALFWorld prompt to extract plan and imagined observation from an agent’s response

Prompt

// ...omitting some text about sokoban game rules
Extraction/parsing rules
Your task is to parse the response and extract the following information, IF present. // ...omitting
some text
3) final chosen branch
- definition: the simulation branch/plan that caused the agent’s final decision for the current step.
- example: Based on these simulations, "go to countertop 1" is the best action for the current step.
This is because this followed by "go to countertop 2" leads to a high chance of finding a mug.
Therefore, the next action for the current step should be "go to countertop 1".
- example output: ["go to countertop 1", "go to countertop 2"]
- note: The agent chose "go to countertop 1" as the next action. However, we need to find the
ENTIRE branch/plan that caused the agent’s current decision, which is ["go to countertop 1", "go
to countertop 2"] in this case.
- note: if the agent did not explicitly mention which branch is chosen, you should choose the
branch in the response with the highest discounted success rate.
4) final imagined observation
- definition: the imagined observation after executing the final chosen branch.
- example: After "go to shelf 1", "take pencil 2 from shelf 1" results in successfully picking up a
pencil. This is the best branch according to the discounted success rate. So the next action should
be "go to shelf 1".
- example output: The agent successfully picks up a pencil.
- note: DO NOT include the action sequence in this field. Only keep the description of the
imagined observation AFTER the last action in the final chosen branch.
- note: In general, you should gather the most comprehensive and detailed description found in the
response (i.e., especially try to include any mention of what objects is present). If this description
is scattered across multiple places in the response, MERGE them into a single, continuous
description.

Your task
Your task is to output a JSON object in the following format: <json>
{
"extracted_branches": [...// ...omitting some text],
"extracted_final_chosen_branch": {
"actions": ["action 1", "action 2", ..., "action n"], # the ENTIRE branch/plan that caused the
agent’s current decision
"last_observation": "detailed, comprehensive description of the imagined observation AFTER
executing the entire action sequence above.",
"discounted_success_rate": ...(a number between 0 to 100. -1 if the agent did not mention the
discounted success rate)
} }
</json>

Input response
{input_agent_response}

Your task
Now, parse the response and output the JSON object enclosed by <json> and </json> tags. DO
NOT generate anything else.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table A8: ALFWorld prompt to evaluate the quality of the next-states imagined by an agent in its
reasoning process, using the actual next-states as references.

Prompt

// ...omitting some text about sokoban game rules
Evaluation rules
Provide an overall score between 0.0 and 1.0 based on the following two dimensions.
1) correctness (max 0.3 points. if exceeds 0.3, cap it at 0.3)
- in the imagined observation, it is near identical to the reference observation; add 0.3 point
- in the imagined observation, key object(s) required by the goal are found, and they are also
present in the reference observation; add 0.2 point
- in the imagined observation, relevant location(s) required by the goal are visited, and the
description is somewhat aligned with the reference observation; add 0.1-0.2 point, depending on
how much the description is aligned with the reference observation.
- in the imagined observation, key object(s) required by the goal are found, but these key object(s)
are *NOT* present in the reference observation; assign 0.0 point
- in the reference observation, it shows nothing happened; directly assign 0.0 point for this
dimension
2) progress (max 0.7 points. if exceeds 0.7, cap it at 0.7)
- in the reference observation, if the goal is completely solved (all required items are
found/moved/heated/etc to or at the correct location, goal is achieved); add 0.7 point
- relative to the current observation and action history, if the reference observation shows major
progress (i.e., objects required by the goal are found); add 0.5 point
- relative to the current observation and action history, if the reference observation shows minor
progress (i.e., objects related to the goal are found, or locations relevant to the goal are visited);
add 0.1-0.3 point, depending on *how useful this information is, beyond what was already known
in the current state and action history*.
- relative to the current observation and action history, if the reference observation shows no
meaningful progress (nothing happened); assign 0.0 point for this dimension
// ...omitting some text

Your output format
Your task is to output a JSON object in the following format: <json>
{
"correctness analysis": "...", # no more than 50 words
"correctness score": 0.0-0.3, # score for the correctness dimension
"progress analysis": "...", # no more than 50 words
"progress score": 0.0-0.7, # score for the progress dimension
"score": 0.0-1.0 # total score; add the correctness score and progress score
}
</json>

Action history
The current goal is to: {task_description}
{action_history}
Current observation
{current_obs}
Agent imagined observation after some actions
{agent_imagined_next_actions_and_obs}
Reference observation after some actions
{actual_next_obs}

Your task
Now, provide an evaluation analysis and score according to the evaluation rules above. Output the
JSON object enclosed by <json> and </json> tags. DO NOT generate anything else.

25

	Introduction
	Related Work
	Dyna-Mind
	Notation
	Reasoning with Simulations (ReSim)
	Dyna-GRPO

	Experiments
	Text Games
	Main Results
	Measuring Simulation Ability

	AndroidWorld
	Main Results

	Conclusion
	LLM Usage
	Ethics Statement
	Additional Algorithmic Details
	Additional Details on Text Games
	Example Tasks and Actions
	ReSim Implementation Details
	Simulation Refinement Performance
	Additional Training Details
	Simulation Score Prompts

	Additional Details on AndroidWorld
	Example Task and Actions in AndroidWorld
	Additional Training Details
	Other Implementation/Evaluation Details

