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Abstract In the AutoML domain, test accuracy is heralded as the quintessential metric for evaluating

model efficacy, underpinning a wide array of applications from neural architecture search

to hyperparameter optimization. However, the reliability of test accuracy as the primary

performance metric has been called into question, notably through research highlighting

how label noise can obscure the true ranking of state-of-the-art models. We venture be-

yond, along another perspective where the existence of hard samples within datasets casts

further doubt on the generalization capabilities inferred from test accuracy alone. Our

investigation reveals that the distribution of hard samples between training and test sets

affects the difficulty levels of those sets, thereby influencing the perceived generalization

capability of models. We unveil two distinct generalization pathways—toward easy and

hard samples—highlighting the complexity of achieving balanced model evaluation. Finally,

we propose a benchmarking procedure for comparing hard sample identification methods,

facilitating the advancement of more nuanced approaches in this area. Our primary goal

is not to propose a definitive solution but to highlight the limitations of relying primarily

on test accuracy as an evaluation metric, even when working with balanced datasets, by

introducing the in-class data imbalance problem. By doing so, we aim to stimulate a critical

discussion within the research community and open new avenues for research that con-

sider a broader spectrum of model evaluation criteria. The anonymous code is available at

https://github.com/PawPuk/CurvBIM blueunder the GPL-3.0 license.

1 Introduction

The pivotal role of test set performance in machine learning is undeniable. In AutoML the accuracy

on test sets guides the automated selection (Lim et al., 2019; Kerssies, 2023), tuning (Makarova

et al., 2022), and evaluation of models (Ericsson et al., 2023), ensuring that the systems developed

are both robust and capable of adapting to new, unseen challenges. Yet, this evaluation method is

not immune to the challenges posed by data problems, such as dataset imbalance and label noise.

Traditional concerns of imbalance refer to disproportionate representation of classes within the

data, where one class significantly outnumbers others, which can cause models to perform well on

majority classes while neglecting minority ones, misleadingly inflating perceived generalization

capabilities (Li et al., 2021; Chawla et al., 2002). Label noise, as highlighted by Northcutt et al.

(2021), introduces additional uncertainty, corrupting the test data with incorrect labels, which can

significantly affect the perceived model performance (see Figure 1a). In this paper, we shed light on

an overlooked aspect that further complicates the reliability of test set performance: the distribution
of hard and easy samples across training and test sets.

The manifold hypothesis, which states that high-dimensional data tend to occupy lower-

dimensional manifolds (Fefferman et al., 2016), provides a framework for distinguishing between

easy and hard samples in machine learning contexts. In this context, inference involves disen-

tangling class manifolds (Naitzat et al., 2020), and learning aims at finding the appropriate space

transformations for this task. Consequently properties such as intrinsic dimension (Ansuini et al.,

2019; Pope et al., 2021), persistent homology (Birdal et al., 2021), curvature (Kienitz et al., 2022) and
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Figure 1: Let’s consider a hypothetical binary classification scenario (a) featuring two distinct class

manifolds. The real-world equivalent of this scenario would involve a point cloud non-

uniformly sampled from the class manifolds, with some added label noise (stars in b). In this

work, we propose that the difficulty of training is derived from the geometrical and topological

properties of the class manifolds, leading to areas with higher/lower sample complexity

(red/green respectively), due to factors like curvature and homology. Consequently, we

observe the emergence of the in-class data imbalance problem (d), which stems from the fact

that, although it is more challenging to learn from hard samples because of their sample

complexity, the datasets are predominantly composed of easy, not hard, samples.

entanglement (Kaufman and Azencot, 2023) of these manifolds serve as complexity measures. The

fact that those characteristics are often local rather than global, implies that the sample complexity

differs across each class manifold, resulting in areas that are easier and harder to learn (see Figure

1c). Throughout this work, we conceptualize class manifolds as topological structures populated by

samples of a specific class, encompassing both observed samples in the dataset and hypothetical,

unobserved ones. Furthermore, drawing inspiration from Narayanan and Niyogi (2009), we define

sample complexity as the number of random samples from a given neighborhood within a class

manifold needed to reliably classify a new data sample from the same neighborhood into one of

the predefined classes with high probability.

Building on this geometric foundation, our work reveals an intriguing observation: the localised
property of sample complexity paired with non-uniform sampling prevalent in real-world scenarios
results in an in-class data imbalance within individual class manifolds (see Figure 1c). In our

examination of in-class data imbalance, we observe foundational similarities to classical, between-

class data imbalance problems, characterized by the existence of two distinct groups within a dataset:

one exhibiting high accuracy on the test set and the other showing poor accuracy. Additionally, we

find that there’s a notable discrepancy in sample quantities, with the easy group vastly outnumbering

the hard group by as much as 13 times on MNIST (Deng, 2012) and 6 times on FashionMNIST (Xiao

et al., 2017) and KMNIST (Clanuwat et al., 2018).

Delving deeper, we find that, unlike in the between-class data imbalance problem, the differences

in performance are not solely a matter of sample quantity but also reflect the differing complexities

between these groups. This is apparent in our experiments: adding 3,250 easy samples boosted

accuracy on easy samples in the test set from 47% to 80%, whereas incorporating 5,000 hard samples

improved the accuracy on hard samples in the test set from 17% to only 24%, when measured on

MNIST. Another distinction between in-class data imbalance and the between-class data imbalance

problem arises from the fact that both hard and easy samples originate from the same class, thereby

facilitating some level of information sharing between them. Yet, this sharing is uneven and not

dataset-consistent, as evidenced by our empirical results: training exclusively on hard samples led

to 50% accuracy on easy samples in the test set, whereas focusing solely on easy samples during

training resulted in a considerably lower accuracy on hard samples in the test set, at 15% on MNIST.

Furthermore, increasing the ratio of hard samples in the training set has a positive effect on the
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accuracy of easy samples from the test set on MNIST and KMNIST, but not on FashionMNIST,
suggesting dataset-dependent level of information sharing.

The existence of in-class data imbalance indicates the need for a more thoughtful strategy in

our data practices, from augmentation to dataset compilation and sample division into training and

test sets, challenging the status quo of random splitting.

In this regard, our contributions are three-fold:

• Impact of In-class Data Imbalance: Through empirical analysis, we demonstrate the existence of

two distinct groups within the class manifold, highlighting how the distribution of hard samples

between training and test sets impacts model training difficulty and the perceived generalization

performance.

• Identifying Hard Samples: We adapt the stragglers concept from Ciceri et al. (2024)—samples

misclassified at the inversion point, where classmanifolds transition from expanding to contracting,

indicating a shift from learning easy to harder samples—to the multiclass classification setting.

This extension provides a nuanced approach to identifying and learning from hard samples,

enriching our understanding of sample complexity within diverse classification contexts.

• Benchmarking Procedure for Hard/Easy Sample Segregation: We introduce a benchmarking pro-

cedure for evaluating methods that segregate hard from easy samples, facilitating a standardized

assessment of strategies aimed at addressing in-class data imbalance.

2 Relevant Literature

In machine learning, hardness is contextually defined. In SVMs, hardness is attributed to samples

that lie close to the decision boundary, critical for defining the optimal separating hyperplane. As

such they utilize geometric margins as a direct measure of sample difficulty (Cortes and Vapnik,

1995). Active learning defines hard samples as those that offer a balance between high uncertainty

and representativeness, maximizing learning efficiency and distribution coverage (Budd et al., 2021;

Ren et al., 2021).

Curriculum learning and active learning both often rely on uncertainty-based metric to asses the

hardness, but due to the different usage of the hardness notion their techniques developed in different

directions. Curriculum learning, first introduced by Bengio et al. (2009), employs a structured

approach, progressively increasing task difficulty based on the model’s current confidence, often

utilizing competence-based metrics not typically found in active learning (Wang et al., 2021;

Soviany et al., 2022). Active learning, in contrast, selects samples based on expected model change,

a metric unique to its methodology, aiming to label those that most improve the model (Settles,

2009; Zhou and Wu, 2023). In hard negative mining, hardness is defined by samples that are

incorrectly classified as positive, focusing on misclassification rate and loss values to identify the

most challenging examples (Canévet and Fleuret, 2015; Shrivastava et al., 2016). This emphasizes

the selection of negatives that contribute most to learning, diverging from the uncertainty-based

metrics commonly used in other domains.

In the literature, adversarial examples and anomalies are frequently identified as hard samples

(Ho and Nvasconcelos, 2020; Yang et al., 2023). This classification stems from the inherent challenges

these samples present in model training and generalization. Adversarial examples, intentionally

engineered to exploit model weaknesses, underscore the limitations in current learning algorithms’

ability to withstand malicious inputs (Goodfellow et al., 2014; Brendel et al., 2017; Serban et al.,

2020). Conversely, anomalies represent outliers within the data distribution, which are naturally

occurring yet difficult for models to accurately classify due to their rarity or deviation from the

norm (Hodge and Austin, 2004; Chandola et al., 2009; Goldstein and Uchida, 2016).

Our work is inspired by Ciceri et al. (2024), who introduced the notion of stragglers in binary

classification contexts. They defined stragglers as points misclassified by a model at a specific
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phase—when it shifts from decreasing intra-class variability (while increasing inter-class variability)

to doing the opposite. Their focus was on establishing the presence of stragglers and demonstrating

their effect on generalization. We extend their methodology to multiclass classification settings

(Section 3). However, our work diverges significantly from Ciceri et al. (2024) beyond this point, as

we focus on studying the in-class imbalance (Section 4), and propose a benchmarking procedure

for hard sample identifiers (Section 5).

Our work also bears a close resemblance to research on small disjuncts (Holte et al., 1989;

Japkowicz, 2001; Jo and Japkowicz, 2004). These studies suggest that the problem of between-

class imbalance is not an issue in itself, but rather that it is accompanied by the problem of small

disjuncts. Each disjunct can be considered a submanifold of the class manifold, with small disjuncts

corresponding to submanifolds (or neighborhoods) that are sparsely sampled. The sparse sampling

often means they are harder to learn, although this depends on their sample complexity. We

argue that there is significant merit in rekindling interest in this topic through the lens of sample

complexity introduced in our paper. This is because the majority of works on within-class imbalance

address the imbalance issues using density-related variables (Anwar et al., 2014; Li et al., 2024).

We contend that this approach oversimplifies the problem, and that sample complexity offers a

more thorough and robust perspective. We hope this insight will generate increased interest in this

under-researched area (Leevy et al., 2018).

3 Towards Objective Identifiers of Hard Samples
Reflecting on the diverse interpretations of hardness examined in Sec. 2, it becomes clear that most

definitions are tailored to specific contexts within machine learning. This observation underscores

an absence of a hardness measure that is objective, rooted in the data itself, and transferable across

different learning contexts. To bridge this gap, we extend and refine the methodology introduced

by Ciceri et al. (2024), shifting our focus towards a detailed examination of hard regions within

datasets that inherently challenge learning algorithms.

Background: Ciceri et al. (2024) document non-monotonous development of the radii of class

manifolds in binary classification setting see Appendix A for description of the radii metric).

Initially, these manifolds diverge, enhancing intra-class variability while concurrently reducing

their radii, effectively minimizing inter-class variability. This phase transitions at a critical juncture

that the authors call the inversion point, beyond which the trend reverses. This inversion point

serves as a marker for identifying stragglers, a unique subset of data samples characterized by their

misclassification by the model at this pivotal moment. Crucially, Ciceri et al. (2024) also demonstrate

that stragglers are nearly universal, showing a substantial overlap between sets identified under

different models or optimisation settings. In conjunction with the research of Arpit et al. (2017),

which identifies distinct learning paces for easy and hard examples in real datasets, these results

support a conjecture of a two-stage learning process: initially concentrating on easy samples before

transitioning to a focus on the harder ones.

Multiclass scenario: While Ciceri et al. (2024) laid the groundwork with their analysis, it is crucial

to acknowledge that they focused on binary classification. This raises an intriguing question about

the applicability and generalization of their findings to the more complex scenario of multiclass

classification tasks. To address this gap, we generalize the methodology established by Ciceri et al.

(2024) to datasets in their original, multiclass setting. We focus on the radii metric, as calculating it

is less computationally intensive than calculating inter-class distances in multiclass setting. We

trained an ensemble of 100 Fully Connected Neural Networks (FC NN), using the same experimental

set-up as Ciceri et al. (2024), with the critical distinction of utilizing the entire dataset for both

training and testing. This approach was deliberately chosen to ensure comprehensive identification

of stragglers across the whole dataset rather than a subset. While this method inherently increases

the likelihood of overfitting, we maintain that this aspect does not detract from our findings. We

posit that the difficulty attributed to hard samples is linked to their data-derived characteristics, a
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Figure 2: By generalizing the method introduced by Ciceri et al. (2024) to multiclass MNIST, distinct

inversion points emerge for each class. This observation signifies that the dynamics of

manifolds segmentation are class-specific—a nuance not captured by before due to previous

focus on the binary classification setting. The results on other datasets are available in

Appendix C.

factor that remains unaffected by the degree of fit between the model and the data.In Appendix B

we present a pseudocode and experimental setup.

Analysis: A detailed examination of our results (Figure 2) reveals patterns that corroborate the

presence of an inversion point across all class manifolds during training. We find a global mini-

mum for all classes, confirming that the inversion point is a recurring feature in the multiclass

classification context. However, this inversion point is not uniform across classes. For instance, in

the MNIST dataset, the class manifold for digit 1 reaches this inflection point sooner than others,

indicating a class-dependent onset of phase two in the training. We hypothesize that this happens

due to the distinct geometrical and topological properties of class manifolds, such as entanglement

and intrinsic dimension.

We also notice that the contrast between the radii at the start of training and at the inversion

point is markedly greater than what was reported in the binary classification scenarios, and also

seems to be class-dependent. This suggests that the process of intra-class contraction and inter-class

divergence is more pronounced when dealing with a full spectrum of class labels.

Lastly, while most classes exhibit an inversion point, it is noteworthy that in some instances

an inversion point is not evident. Although such cases are rare, they present an important caveat

to the universality of the inversion phenomenon and hint at the potential for certain classes to

follow alternative learning dynamics that do not conform to the expected pattern. These findings

highlight the complexity of learning dynamics at play and reinforces the notion that a one-size-fits-
all approach may not be sufficient when dealing with multiclass datasets (Cheung and Yeung, 2021;

Balestriero et al., 2022).

4 In-class Data Imbalance

Experimental setup: In this section we use stragglers to identify hard samples, an intuitive method

now empirically proven to effectively mark complex cases. To obtain a straggler set, we train a

model until 𝑘 inversion points are found, one for each class. These result in 𝑘 class-level straggler

sets, which we later aggregate to form a dataset-level straggler set. We then distribute stragglers

across training and test sets in proportions reflecting train-to-test ratios. For each ratio, we create

three unique sets of stragglers. We then train three models with distinct initializations for each

straggler set. To explore the impact of the quantity of hard and easy samples on the perceived
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Figure 3: Increasing the proportion of hard samples in the training set improves accuracy on the entire

test set (Row 1), but the difference comes mostly from improved accuracy on other hard

samples (Row 2), rather than easy samples (Row 3).

generalization of the models, we conduct the experiments multiple times, each time removing a

certain percentage of hard (see Fig. 3) or easy (see Fig. 4) samples from the training set. In other

words we start with the full dataset, and gradually remove hard (see Fig. 3) or easy (see Fig. 4)

samples from the training set. In Appendix D we present a pseudocode and experimental setup.

Similarities to between-class data imbalance: The observed ratios of stragglers to non-stragglers

in our datasets—1:6 for FashionMNIST and KMNIST, and a more extreme 1:13 for MNIST—reflect

an in-class data imbalance reminiscent of the classical majority:minority dynamic. This similarity

extends to the performance on the test set, with hard samples consistently showing lower accuracy

(18-28% on MNIST) compared to easy samples (97-98% on MNIST), akin to the disparity seen

between majority and minority classes. Moreover, the way to counteract this imbalance appears

similar to class imbalance strategies: introducing more samples from the specific group one wishes

to improve accuracy on—be it hard or easy—yields the most significant gains. This suggests that in
scenarios where data augmentation is employed, prioritizing the inclusion of hard samples might yield
more substantial improvements. This insight opens avenues for future exploration, particularly in

integrating such considerations into Automatic Data Augmentation (Cubuk et al., 2018; Lim et al.,

2019).

Nuances emerging from in-class data imbalance: The similarities between in-class and between-

class data imbalance problems lead to an inevitable question: Are the approaches commonly used

to address between-class data imbalance applicable to the in-class data imbalance problem? As
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Figure 4: Increasing the proportion of easy samples in the training set improves accuracy on easy

samples in the test set (Row 3), resulting in increased overall accuracy (Row 1), while

decreasing the accuracy on hard samples in the test set (Row 2), which resembles results we

would get when adding samples from the majority class in between-class data imbalance

problem.

an example, let’s consider the F1 score, which is arguably the most popular metric used when

working with multiclass imbalanced datasets. The F1 score primarily evaluates the balance between

precision and recall, effectively addressing between-class imbalances by penalizing models that

overly favor one class over the others. However, this metric assumes uniform difficulty within

classes, a presumption that overlooks the nuanced reality of in-class data imbalances where samples

vary significantly in complexity. The F1 score, while indicating overall balance in datasets like

MNIST, fails to capture these subtleties. This observation is supported by our results, which we

detail in Appendix E.

The initial distinction between in-class and between-class data imbalance arises from the

fact that both hard and easy samples originate from the same class, inherently sharing a level of

information. However, our experiments show that this information is unevenly shared. We notice

that training solely on hard samples considerably boosts accuracy on easy samples (50-61% on

MNIST). Conversely, training with only easy samples yields markedly lower accuracy on hard

samples (14-19% on MNIST). These results become even more surprising when we consider that

hard samples constitute a minority within the dataset.

The second significant observation from our experiments underscores the role of sample

complexity in learning performance. Remarkably, a modest pool of merely 3,000 easy samples

is sufficient to elevate the accuracy on easy samples, from 50-61% to 90-93% on MNIST. This
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enhancement starkly contrasts with the marginal gains observed when incorporating all 5,000

hard samples on MNIST (improvement from 14-19% to 18-28%). The impact of sample complexity

becomes even more apparent when we study the curves in Figure 3c, with the function being the

most smooth for FashionMNIST, which is the most complex of the tested datasets.

We also find that the impact of adding hard samples on the accuracy on easy samples varies

across datasets, suggesting that the level of information that hard samples have on easy samples

might differ from dataset to dataset. We see that while MNIST and KMNIST benefit from the

inclusion of hard samples, FashionMNIST exhibits a decline in the performance, possibly due to

its higher complexity or more prevalent label errors. Interestingly, the train:test ratio has no

impact on our results. This suggests that hard and easy samples exhibit distinct generalization

capabilities, with a certain amount of shared information between these groups that appears to be

dataset-dependent.

Finally, we investigated the distribution of hard samples across classes, our findings (Figure

8) reveal a non-uniform distribution strongly correlated with class-level accuracies. In fact, the

Pearson correlation coefficient between the class-level error rates and the class-level distribution of

hard samples is above 0.9 for all hard sample identifiers and datasets used in our paper (see Appendix

E for more information). Furthermore, variations in observed in-class data imbalance, based on

the choice of hard sample identifier, are attributed to the significant overlap among hard samples.

Specifically, there is an 87.42% ± 1.09 overlap between the hard samples identified by confidence-

and energy-based methods. This overlap reduces to 45.67% ± 3.07 when comparing straggler- and

energy-based methods, and to 49.48%±3.04 between straggler- and confidence-based methods. This

explains the similarities between the results obtained via energy- and confidence-based methods,

and the stark differences from the results obtained via straggler-based method.

5 Benchmarking Procedure for Hard Sample Identification Methods
Motivation: After identifying the existence of the in-class data imbalance our objective shifts to

introducing a benchmarking procedure for the methods that identify hard samples. The knowledge

from the between-class data imbalance suggests that the better the technique for identifying hard

samples the larger the observed in-class data imbalance. This is because hard samples are harder to

learn than easy samples, and we should see lower accuracy on hard samples than easy samples.

To verify if this theory-based scenario happens in practise we explore both confidence-based and

energy-based approaches as hard sample identifiers, as they are widely recognized for estimating

sample difficulty in curriculum learning and for detecting anomalies. Our objective is to contrast

these approaches with the more objective, dataset-level, straggler-based approach.

Benchmarking setup: Both confidence-based and energy-based methods employ a predetermined

threshold to identify hard samples, clearly differentiating them from the straggler-based approach,

which does not require such a threshold and thus avoids the bias introduced by it. However, to

make the results more comparable, we need to establish this threshold using the straggler count.

After determining the threshold, we train neural networks following the setup described in Sections

3 and 4, and extract the most uncertain data samples using either confidence or energy as the metric

of uncertainty. These 3 sets of hard and easy samples are then used to re-evaluate the degree of

in-class data imbalance on MNIST, as illustrated in Fig. 5.

Strengths of straggler-based method: After combining the results of the performance on easy

samples with those on hard test samples in Figure 5, the characteristics of in-class data imbalance

become even more apparent. Across all identification methods used, we notice that: 1) models

perform better on easy than on hard samples; and 2) to achieve the largest accuracy improvement

for either easy or hard samples, we need to incorporate more of the corresponding samples into the

training set. Both observations closely resemble the between-class data imbalance as thoroughly

described in the previous section. However, we find that the degree of this in-class data imbalance

can become less or more pronounced, depending on how we identify hard samples. For example,

8



0.00 0.25 0.50 0.75 1.00
Proportion of Hard Samples Remaining in Training Set

20

40

60

80

100

Ac
cu

ra
cy

Accuracy

Accuracy on:
Hard samples
Easy samples

Identifying Hard Samples with:
Energy-based
Confidence-based
Straggler-based

(a) Increasing the number of hard samples in the

training set

0.00 0.05 0.10 0.15 0.20 0.25 0.50 0.75 1.00
Proportion of Easy Samples Remaining in Training Set

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

Accuracy

Accuracy on:
Hard samples
Easy samples

Identifying Hard Samples with:
Energy-based
Confidence-based
Straggler-based

(b) Increasing the number of easy samples in the

training set

Figure 5: The in-class data imbalance becomes bigger when we combine the results of the performance

on easy samples with those on hard samples in a single figure. It becomes clear that models

achieve significantly better accuracy on easy samples than on hard samples, a discrepancy

also observed in the between-class data imbalance between majority and minority classes.

This in-class data imbalance can become either less or more pronounced depending on

how successfully we manage to divide the dataset into hard and easy samples. The overlap

between hard and easy sample sets, due to less precise identification, leads to a lower in-class

data imbalance, as observed when comparing the accuracies of straggler-based methods with

those of confidence-based or energy-based methods. At the top, green (confidence-based)

and blue (energy-based) lines overlap each other at this scale.

using confidence-based and energy-based approaches to identify hard samples makes the gap

between the accuracy on easy and hard samples appear smaller than what the straggler-based

method suggests. This implies that hard samples identified by the confidence-based and energy-

based methods contain a high percentage of easy samples, making them appear to perform better on

hard samples. Furthermore, using these methods makes it seem like training on hard samples alone

allows the model to generalize to over 70% onto easy samples. However, the clearest indication

that confidence-based and energy-based methods are poor at identifying hard samples is the fact

that they make it seem like adding easy samples to the training set, which constitute the majority

of class manifolds, has a negligible effect on performance on hard samples, a conclusion completely

contradictory to common knowledge from between-class data imbalance. Consequently, we posit

that this variation in the degree of in-class data imbalance is crucial information that can be used

to benchmark methods that identify hard samples. This idea stems from the resemblance of the

in-class data imbalance to the between-class data imbalance thoroughly described in Sec. 4. The

better we identify hard and easy samples, the more pronounced we can expect the in-class data

imbalance to be.

Distinction between hard samples and anomalies: In our analysis, the expected performance

disparity between confidence- and energy-based methods, well-documented in the context of

out-of-distribution and anomaly detection (Liu et al., 2020), does not manifest in the realm of hard

sample identification. This observation underscores that residing in a low-density region does not

inherently make a sample difficult to classify, nor does presence in a high-density area guarantee

ease of classification. The essence of this insight lies in the divergence between anomaly detection,

which often equates low density with being an anomaly, and the geometric complexities involved

in learning from class manifolds. Samples located in geometrically simpler, yet sparsely populated

areas of the manifold, may not present significant classification challenges, prompting us to

reevaluate our understanding of what constitutes a hard sample in machine learning. This revelation
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underscores the necessity of distinguishing between anomalies and hard samples, advocating for

methodologies that are attuned to the nuanced geometry of data distributions.

6 Broader Impact Statement

Our methodology emphasizes the importance of recognizing and addressing in-class data imbalance,

fostering the development of AI systems that are more accurate and equitable. By enhancing model

sensitivity to hard samples, we aim to reduce bias in AI predictions, underscoring that not all data

are created equal. Focusing on hard samples for tasks such as fine-tuning and data augmentation

could not only improve performance but also decrease computational complexity due to the reduced

data size needed, thereby contributing to a reduction in the environmental impact associated with

these tasks.

7 Future Work

Our work suggests directions for future research:

• Expanding to Imbalanced Datasets: Generalizing our methods to imbalanced datasets is crucial,

as accuracy is less informative there.

• Clarifying Sample Hardness: We posit that hard samples are in complex class manifold regions.

A deeper investigation into the nature and origins of sample complexity is needed.

• Leveraging Between-Class Tools: Considering between-class imbalance as an unsupervised

variant of in-class imbalance, adapting existing imbalance correction tools for in-class challenges

warrants exploration.

8 Conclusion and Limitations

This study extends the foundational work of Ciceri et al. (2024), illustrating that the dynamic

radii changes of class manifolds, indicative of non-monotonous learning progression, persist in

multiclass classification scenarios albeit with increased instability. Through the segmentation of

MNIST, FashionMNIST, and KMNIST datasets into easy and hard samples, we reveal the pivotal

role of hard sample distribution in modulating training and testing difficulty, thereby challenging

the conventional reliance on test accuracy as a primary indicator of model generalization. Our

investigation underscores the distinction between performance on easy versus hard samples. Finally,

we introduce novel and intuitive benchmarking procedure for evaluating the effectiveness of various

methods in identifying hard samples.

While our findings shed light on important aspects of sample difficulty and generalization,

we acknowledge several limitations. The theoretical basis of our analysis heavily leans on the

manifold hypothesis, which may not fully encompass the intricacies of data geometry in complex

datasets. The simplicity of the models and datasets employed in our study, while facilitating a clearer

understanding of foundational dynamics, may not accurately reflect the challenges present in more

sophisticated machine learning tasks. Furthermore, the benchmarking procedure we introduce is

not a comprehensive benchmark, but rather a set of guidelines that enable the comparison of hard

sample identifiers.

In conclusion, this paper does not advocate for a specific solution but rather sheds light on the

limitations of the widely utilized metric of test accuracy in ML and AutoML. It is our hope that

subsequent research will be directed towards uncovering more effective methods for detecting hard

samples and gaining a clearer insight into the disparate generalization types, ultimately leading to

the development of models tailored to address these challenges.
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A Radii of Class Manifolds

Throughout our paper, we have utilized the squared gyration radii of the class manifolds to identify

the inversion points. We have adapted the formula from Ciceri et al. (2024) for the multiclass setting

as follows:

𝑅2

𝑖 (𝑡) =
1

2𝑛2
𝑖

∑︁
𝑥,𝑦∈M𝑖 (𝑡 )

∥𝑥 − 𝑦∥2,

whereM𝑖 (𝑡) is the internal representation of the manifold of class 𝑖 at epoch 𝑡 , and 𝑛𝑖 = |M𝑖 (𝑡) | is
the number of elements from class 𝑖 (for all 𝑘 labels in the dataset). This metric effectively captures

the essence of intra-class variability by summing the distances between all point pairs in the feature

space, with a larger squared gyration radius indicating more dispersed points.

B Delving into Experiment from Section 3

For training, we use FC ReLU NN with a configuration 784 − 20 − 20 − 10, where 784 is the input

dimensionality for MNIST, KMNIST, and FashionMNIST datasets. The radii of class manifolds are

computed using their latent representations from the first hidden layer. For training, we employ

the Adam optimizer with a learning rate of 0.001 and weight decay of 0.01, alongside cross-entropy

loss. The training is conducted over 500 epochs. When performing experiments on the entire

dataset, we combine the train and test sets, shuffle the obtained full dataset, and normalize it before

training. For subset analyses, we extract a subset after shuffling and then normalize this subset. We

have added a compute_radii flag to expedite training when radii computation is not required (see

line 8 of the pseudocode below for reference). Radii computation starts after epoch 20, as results

prior to that are highly chaotic, a phenomenon also observed by Ciceri et al. (2024). Figures 2 and 6

represent the mean and standard deviation over 100 runs. Our implementation is based on PyTorch

(Paszke et al., 2019). The experiments were run on a 12-core CPU of a MacBook Pro, taking 3 − 4

hours on each dataset.

Algorithm 1 Replicate Inversion Results on Multiple Classes

1: Input: model, loader, optimizer, compute_radii

2: Output: epoch_radii
3: Initialize epoch_radii as an empty list

4: for each epoch from 1 to 500 do
5: for each batch (data, target) in loader do
6: Perform forward and backpropagation

7: end for
8: if compute_radii is true AND epoch > 20 then
9: Compute current_radii of each for the class manifolds

10: Append tuple (epoch, current_radii) to epoch_radii

11: end if
12: end for
13: return epoch_radii

C Generalization of Stragglers to Multiclass Classification on Other Datasets

We repeated the experiments from Section 3 on FashionMNIST and KMNIST to validate whether

the inversion point observed in our previous studies also appears when working with other

datasets (see Figure 6). The results confirm that the phenomena observed in Section 3 are not

exclusive to the MNIST dataset. An interesting difference, however, is observed upon inspecting

the results on FashionMNIST: we noticed that the radii start to behave chaotically after a certain
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Figure 6: We see the same phenomena on KMNIST (a), and FashionMNIST (b), as we did in Sec. 3,

with the radii behaving very chaotically during the later stages of learning on FashionMNIST

(most likely due to it’s increased complexity in comparison to MNIST and KMNIST).

period of training. We hypothesize that this behavior stems from the increased complexity of the

FashionMNIST dataset; however, further experiments are required to conclusively determine the

cause of this trend.

In their work, Ciceri et al. (2024) presented evidence of the inversion point phenomenon

using both epoch and test error as variables. However, unlike their approach, we conducted

our experiments across the entirety of the datasets. Our aim was not to discover the inversion

point phenomenon but rather to utilize it for identifying all hard samples within the datasets.

Consequently, we report our results using only epoch as a variable.

D Delving into Experiment from Section 4

We employ the same experimental setup as described in Appendix B. Our aim is to ensure that our

results are invariant to model initialization and the obtained straggler set. Therefore, we generate

three straggler sets, and for each of these sets, we measure the generalization with three networks,

each with a distinct initialization. We then compute the mean and standard deviation over these

nine runs to obtain Figures 3 and 4. To identify a straggler set, we train a model and compute

the radii of class manifolds after every epoch. Upon detecting an inversion point for a specific

class, we save the parameters into a dictionary. This process results in 𝑘 models, one for each

class (see pseudocode below), that define 𝑘 class-level straggler sets. These are later aggregated to

form dataset-level stragglers. If an inversion point is not found within 500 epochs, we rerun the

train_stop_at_inversion with a new model initialization. The experiments were conducted on

NVIDIA A100 GPUs and took between 4 − 8 hours when working on subsets consisting of 20, 000

samples and performing 25 runs - 5 straggler sets; 5 initializations per straggler set (Figures 5, 7 and
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8). The computation time increases to approximately 8 − 16 hours when running the experiments

on all 70, 000 samples, but with only 9 runs - 3 straggler sets; 3 initializations per straggler set

(Figures 3 and 4).

Algorithm 2 Train Stop at Inversion

1: Input: model, loader, optimizer

2: Output: models, inversion_points

3: Initialize prev_radii with infinity for each class index

4: Initialize models as an empty dictionary

5: Initialize found_classes as an empty set

6: Initialize inversion_points as an empty dictionary

7: for each epoch from 1 to 500 do
8: for each batch (data, target) in loader do
9: Perform forward and backpropagation

10: end for
11: if epoch modulo 5 is 0 then
12: Compute current_radii of each for the class manifolds

13: for each class index key in current_radii do
14: if key not in models AND current_radii[key] > prev_radii[key] AND epoch > 20

then
15: Save current model state to models at key

16: Add key to found_classes

17: Record epoch as inversion point for key

18: end if
19: end for
20: Update prev_radii with current_radii

21: end if
22: if all class manifolds have found models then
23: Break the loop

24: end if
25: end for
26: return models, inversion_points

E Investigating Other Metrics and Hard Samples

In this Section we attach the results of further experiments that didn’t make it to the main text due

to the page limit.

As described in Section 4, we first measure the value of the additional information obtained by

switching from accuracy to precision, recall and F1-score. Due to the balanced nature of the used

datasets we do not see any additional valuable information, as all the metrics are closely correlated

to each other. We can see that when looking at Figure 7. However, this would definitely not be

the case if we moved to class-imbalanced datasets. Over there we expect that accuracy would

no longer grant us enough information to be able to apply our benchmarking procedure without

incorporating F1-score.

We also measure the distribution of hard samples across the classes. We find that the distribution

of hard samples between classes is not uniform (as we show in Figure 8). We suspect that the

main reason behind it is the fact that not all classes are equally easy to learn. Running simple

experiments on MNIST, KMNIST and FashionMNIST, in which we train 100 networks (using the

same training configuration and hyperparameters as in previous experiments), shows that there
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Figure 7: We reran the experiments from Section 4, this time also computing precision, recall, and F1

Score. We discovered that the metrics typically used to address between-class data imbalance

are ineffective for investigating in-class data imbalance. We observed that both asymptotic

precision and recall exhibit similar values. Figures a-d (e-h) display the results of modifying

the ratio of easy (hard) samples in the training set.

exists a very strong correlation between the class-level number of hard samples and class-level

error rate. Performing the Pearson correlation analysis backs those visual observations. We find a

correlation of 0.9507 for straggler-based methods, 0.9381 for confidence-based methods, and 0.9075

for energy-based methods for the MNIST dataset. For KMNIST and FashionMNIST the correlation

is 0.9577 and 0.9856, respectively.

Finally, we also investigate how largely the hard samples identified by different methods overlap.

We find that there is an 87.42% ± 1.09 overlap between the hard samples identified by confidence-

and energy-based methods. This overlap reduces to 45.67% ± 3.07 when comparing straggler- and

energy-based methods, and to 49.48% ± 3.04 between straggler- and confidence-based methods.

This explains the variations in observed in-class data imbalance. This also explains why Figures

8b and 8c are so closely correlated to each other, and why both of them differ so much from the

results in Figure 8a.
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(c) Distribution of hard samples
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energy-based method on

MNIST
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Figure 8: Examining Figures 2 and 6 leads us to the natural conclusion that the dynamics of class

manifolds vary from one class to another. As a result, we can anticipate that, even though the

datasets we have studied are balanced (meaning there is no between-class data imbalance),

the distribution of hard samples among the classes is not uniform. This phenomenon occurs

regardless of the method used for identifying hard samples (a-c). However, we find that

confidence-based (b) and energy-based (c) methods yield a very similar distribution of hard

samples, which diverges from that obtained via the straggler-based approach. The close

resemblance between methods (b) and (c) arises from an 87.42% ± 1.09 overlap between

the hard samples identified by confidence- and energy-based approaches (averaged over 15

runs). This overlap decreases to 45.67% ± 3.07 for straggler- vs energy-based approaches

and 49.48% ± 3.04 for straggler- vs confidence-based approaches. One reason behind the

non-uniform distribution of hard samples among classes is that not all classes are equally

easy to learn. To demonstrate this, we conducted a simple experiment where we trained a

network (using the same hyperparameters as in previous experiments) 100 times on MNIST

and reported the class-level accuracies in (d). We also present the distribution of hard samples

obtained with the straggler-based approach, and the distribution of class-level accuracies on

KMNIST (e-f) and FashionMNIST (g-h). Performing the Pearson correlation analysis reveals

a correlation of over 0.9 between the class-level error rates and class-level distribution of

hard samples.

20


	Introduction
	Relevant Literature
	Towards Objective Identifiers of Hard Samples
	In-class Data Imbalance
	Benchmarking Procedure for Hard Sample Identification Methods
	Broader Impact Statement
	Future Work
	Conclusion and Limitations
	Radii of Class Manifolds
	Delving into Experiment from Section 3
	Generalization of Stragglers to Multiclass Classification on Other Datasets
	Delving into Experiment from Section 4
	Investigating Other Metrics and Hard Samples

