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KEY FINDINGS

n Neural networks can approximate solutions to credit risk models, precisely capturing 
the relationship between model inputs and credit spreads.

n Compared to standard techniques, the approximate solutions are more computationally 
efficient.

n Neural networks can be used to accurately calibrate structural and reduced-form models 
of credit risk.

ABSTRACT

This article demonstrates how deep learning can be used to price and calibrate models of 
credit risk. Deep neural networks can learn structural and reduced-form models with high 
degrees of accuracy. For complex credit risk models with no closed-form solutions available, 
deep learning offers a conceptually simple and more efficient alternative solution. This 
article proposes an approach that combines deep learning with the unscented Kalman filter 
to calibrate credit risk models based on historical data; this strategy attains an in-sample 
R-squared of 98.5% for the reduced-form model and 95% for the structural model.

The increasing size and complexity of credit derivatives markets1 pose a serious 
challenge for researchers seeking to accurately quantify credit risk (i.e., the risk 
that an issuer of a debt obligation defaults). The recent proliferation of complex 

credit risk models reflects the sophistication of the markets as well as the need for 
accurately capturing the risk of default. This complexity leads to more computationally 
intensive solutions, often involving numerical methods. In this article, we apply deep 
learning, or deep neural networks, to credit risk modeling. Deep learning models can 
accurately learn sophisticated credit risk models and then can be used for calibration 
to historical data.

Deep neural networks represent an important machine learning technique that 
is widely known for its strong predictive power and broad applications. Such deep 
learning has been successfully applied to speech recognition, natural language pro-
cessing, computer vision, and other areas. Its use in economics and finance is 
attracting more interest among researchers. Our main contribution in this article is 
introducing deep learning to the credit risk literature.

1 As of September 2019, the International Swap and Derivatives Association (ISDA) reports that 
market activity in the credit default swap (CDS) market averaged about $700 billion per quarter over 
the past 13 quarters (to June 2019). More important, the activity in the CDS indexes, mainly the CDX 
and iTraxx indexes, jumped from $4 trillion in 2017 to $5.8 trillion in 2019.
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We start with an overview of the main credit risk models, which can be categorized 
into structural models and reduced-form models. Structural models provide a direct 
link between the default event and the capital structure of a firm. The seminal work 
of Merton (1974) sets the foundation for this category. In Merton (1974), the asset 
growth of a firm follows a stochastic process with normally distributed shocks. A firm 
defaults when its asset value falls below the debt face value at maturity. We then 
review Merton (1976) and Kou (2002), two models designed to capture the empiri-
cal observation that asset returns are fat-tailed. These models add stochastic jump 
risk to the Merton (1974) model: Merton (1976) includes log-normal jumps whereas 
Kou (2002) institutes double stochastic jumps. These three models are all charac-
terized by static parameters governing the asset growth process. Stochastic state 
variables could be introduced for further generalization. We review a more general 
structural model that accommodates multiple stochastic volatilities and stochastic 
jumps, building on the findings of Duan (1999), Yan (2011), and Du, Elkamhi, and 
Ericsson (2019), among others. Our general credit risk model subsumes several pop-
ular models, including Heston (1993), one stochastic jump, two stochastic volatilities, 
one stochastic volatility and one stochastic jump, and two stochastic volatilities and 
one stochastic jump.

In reduced-form models, default risk is modeled as a statistical process. These 
models allow the researcher to price credit risk for entities with capital structures that 
cannot be easily defined, such as a country’s default risk. In this article, we focus 
on the reduced-form model of Pan and Singleton (2008), with default intensity that 
follows a log-normal stochastic process.

After a review of credit risk models, we overview neural networks. We first describe 
a simple neural network with a single hidden layer and discuss its relationship to 
the familiar ordinary least squares regression. We then explain deep learning, which 
extends the neural networks approach to incorporate multiple hidden layers. We 
discuss the empirical choices that researchers must make when working with neural 
networks, including the model architecture, training and validation sets, activation 
function, batch size, and number of epochs. By using a simple but detailed explana-
tion of practical implementation issues, we hope to facilitate the application of deep 
learning to economics and finance research.

How does deep learning relate to credit risk modeling? A credit risk model cap-
tures the relationship between model parameters and credit spreads in a pricing 
function. If we view model parameters as the inputs and credit spreads as the out-
puts, the pricing function computes the outputs given a set of inputs. Deep learning 
can be used to accurately approximate the function that maps inputs to outputs.

Thus, we can teach deep learning models the relationship between model 
parameters and credit spreads, replicating the complex credit risk models. We use 
simulations to generate artificial data for each credit risk model. We draw 50,000 
combinations of model parameters. For each parameter combination, we consider 
credit instruments at five maturities: 1 year, 3 years, 5 years, 7 years, and 10 
years. We then compute the credit spreads associated with each set of parameters  
and maturity. Our simulated data are composed of 250,000 pairs of parameters and 
credit spreads for each model. We employ these artificial observations to train and 
evaluate deep learning models.

For each model, we randomly split the simulated data into observations used 
for training and testing: 95% of the 250,000 observations for the training set and 
the remaining 5% for the test set. The deep learning models have either two or three 
hidden layers of 100 nodes, depending on the complexity of the credit risk models. 
We use the rectified linear unit (ReLU) as the activation function, a batch size of 1,024 
observations, and 500 epochs to train. We provide a more detailed discussion of 
those practical choices later in this article.
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Deep learning can accurately capture the pricing relationship between model 
parameters and credit spreads. We evaluate the performance of deep learning 
models on the test set, finding that the predicted spreads from deep learning 
approximate the actual spreads very closely; R-squared for the test set is close 
to 100% for all models. For example, for the Heston (1993) model, R-squared is 
99.98% for the 1-year maturity and 99.99% for the 10-year maturity. Similarly, for 
the Pan and Singleton (2008) model, R-squared is 99.97% for both the 1-year and 
10-year maturities. A high R-squared indicates that the deep learning models are 
approximating the relationship between model parameters and credit spreads with 
a high degree of accuracy.

Solutions to credit risk models can be computationally intensive. Aside from the 
Merton (1974) model, the more complex structural models do not have closed-form 
solutions. Therefore, pricing credit risk in a structural model requires numerical 
integration. Furthermore, the assumption of a log-normal default intensity in the 
reduced-form model of Pan and Singleton (2008) makes default probability calcu-
lations computationally expensive. Our proposed approach—using deep learning 
to price credit risk—offers an alternative to these numerically expensive meth-
ods. After learning the relationship embedded in each credit risk model, the deep 
learning models can quickly calculate credit spreads for an arbitrary set of model 
parameters.

To compare the speed of deep learning models against the pricing functions, 
we measure the time required to build a full term structure of credit spreads.  
We observe a tradeoff between precision and speed for the pricing functions: for 
more precise calculations, the numerical procedures take longer. For high precision,  
the pricing functions can take three to four seconds to build a full term structure, but 
for lower precision, the pricing functions need only 0.02 seconds. In comparison, our 
deep learning approach produces a full term structure in just 0.001 seconds, inde-
pendent of the complexity of the underlying model, effectively resolving the tradeoff 
between precision and speed. In relative terms, our deep learning approach generates 
spreads about 100 to 240 times faster than the actual pricing function.

Deep learning can accurately and efficiently produce credit spreads for specified 
model parameters. An important goal of credit risk modeling is to capture and explain 
the observed time series and cross-maturity variations in credit spreads. In the 
final part of the article, we investigate whether we can apply deep learning models 
to calibration. In a typical calibration, the researcher chooses a set of parameters 
that minimize the pricing errors between historical spreads and model spreads. We 
propose combining deep neural networks with the unscented Kalman filter (UKF), an 
approach we call NN-UKF. We conclude that this approach is effective in recovering 
optimized model parameters. We calibrate the structural Heston (1993) model with 
book value and with market value of leverage and the reduced-form model of Pan 
and Singleton (2008); the in-sample R-squared values are 89%, 95%, and 98.5%, 
respectively.

Our results demonstrate that deep neural networks can accurately learn pricing 
functions and efficiently calibrate models to historical data for both structural and 
reduced-form models of credit risk. Importantly, the deep learning approach does 
not rely on the numerically intensive pricing techniques commonly used in the credit 
risk literature. Once the deep neural network is trained, it can repeatedly and quickly 
generate new term structures of credit spreads for different input parameters. In this 
sense, our deep learning approach can save significant time and computing resources 
compared to traditional pricing functions, which becomes particularly relevant in real-
time calibrations to historical data.
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LITERATURE REVIEW AND CONTRIBUTION

Our primary contribution is introducing deep learning to the credit risk literature. 
By proposing deep neural networks as highly accurate approximations for complex 
credit risk models, we give academics and practitioners a new tool that simplifies 
the testing and calibration of sophisticated models of default risk.

Our application of deep learning to structural credit models follows the recent 
growing literature that applies neural networks to options pricing. Over the past 
decade, an extensive body of literature developed around the application of machine 
learning to options pricing. Ruf and Wang (2019) comprehensively review nonpara-
metric methods for options pricing. Liu, Oosterlee, and Bohte (2019) propose an 
artificial neural network to approximate the Black and Scholes (1973) model and the 
stochastic volatility model of Heston (1993). Our approach is also based on artificial 
neural networks, but we consider a much broader set of models in the credit risk 
space, with different levels of complexity. Liu et al. (2019) and Horvath, Muguruza, 
and Tomas (2019) introduce a method for performing calibration by using neural 
networks, and they calibrate the Heston model, the Bates model, and the Bergomi 
model. We advance their approach, substituting the complex pricing functions with 
trained neural networks, but we also propose a calibration of the full panel of historical 
data rather than fitting the model each day to the cross-section. Of course, fitting a 
model of credit risk cross-sectionally is not the same as fitting the options surface. 
Usually, only a few data points in the term structure are available because of liquidity, 
and credit spreads do not include a moneyness dimension. Compared to options 
prices, the cross-sectional dimension of credit risk is much smaller. Our approach 
holds the model parameters static while allowing stochastic state variables—and thus 
also serves as an additional test of the capability of deep learning pricing models to 
calibrate the time variation as well as the cross-maturity variation. We are the first to 
apply deep learning to both structural models and reduced-form models of credit risk.

Our calibration exercise provides an additional contribution to the literature that 
centers not only on the modeling aspect but also on the application of the models 
to historical data.

Researchers often try to understand historical credit risk dynamics and then 
extrapolate default predictions as part of a trading or risk management system. The 
proposed NN-UKF approach facilitates such applications. After training the appropri-
ate deep learning model, a researcher can perform multiple calibrations, using the 
trained model in a faster and more computationally efficient manner. When analyzing 
complex credit risk models without closed-form solutions, our approach can reduce 
both the time and computing resources expended for calibration.

More generally, our work fits into the literature on applying machine learning to 
empirical finance. Early work by Hutchinson, Lo, and Poggio (1994) employs a non-
parametric method to estimate the pricing formula for derivatives. More recently, Gu, 
Kelly, and Xiu (2020) explore a comprehensive set of machine learning techniques for 
cross-sectional asset pricing. Feng, Polson, and Xu (2019) describe a deep learning 
approach to build portfolios from firm-specific characteristics. Along the same lines, 
Gu, Kelly, and Xiu (2019) model factor exposures as a flexible nonlinear function of 
characteristics, using autoencoder neural networks. Feng, Giglio, and Xiu (2020) 
propose a model selection method to evaluate new factors. We contribute to this 
broadening body of literature by applying deep learning to credit risk models.

The article is structured as follows. In the next section, we summarize some of the 
important credit risk models. We then briefly review neural networks and discuss our 
empirical choices. We demonstrate that deep learning can accurately predict credit 
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spreads and show how deep learning can be used in calibrating credit risk models. 
In the last section, we offer several conclusions.

CREDIT RISK MODELING

A credit risk model captures the probability of default over a prespecified time 
horizon. Consider a firm i that issues a $1 risky zero-coupon bond due in T years. The 
bond price at time t, Pi,t (T), therefore is the probability-weighted discounted cash-
flow at maturity. The bondholder either receives the full face value if the issuer does 
not default or collects the recovery amount RR, $0 ≤ RR ≤ $1 if the issuer defaults 
before maturity, as expressed by 

 
P T D CQDF RR CQDF

D LGD CQDF
i t i t i t

i t

( ) [1$ (1 ) ]

[1 ]
, , ,

,

= × × − + ×
= × − ×  (1)

where D e r Tt= −  is the continuous discount function with risk-free rate rt, LGD = (1 - RR) 
is the loss given default, and CQDFi,t is the cumulative default probability in T years. 
Assuming a constant probability of default PDi,t, the cumulative default probability is 
then computed as CQDFi,t = 1 - (1 - PDi,t)

T.2 
Many researchers and practitioners commonly assume a constant LGD between 

45% and 75%, depending on issuer (e.g., a company or a country) and on issue-specific 
characteristics such as firm size, seniority, duration, sector, and rating.3  In our analy-
sis, we set the LGD at 55%. Our approach can easily accommodate other LGD values 
or a more complex setting where the LGD is directly modeled.

If we rewrite P T ei t
y Ti t( ),

,= −  where yt represents the risky-bond yield, the credit 
spread si,t = yi,t - rt can be obtained by rearranging Equation 1 as 

 s
T

LGD CQDFi t i t

1
ln[1 ], ,= − − ×  (2)

The credit risk literature addresses two main types of models: structural and 
reduced-form. Structural models, first introduced by Merton (1974), link the probability 
of default to the capital structure of a firm. This probability is modeled as a function 
of the issuing firm’s economic fundamentals and is derived from the insight that a 
firm’s equity value is functionally a call option on its asset value. Therefore, the risky 
debt embeds a (short) put option.

In reduced-form models, the default event is modeled as a statistical process. 
The most common specification includes a Poisson process defining the intensity 
and timing of the default. Structural models are primarily designed for a single firm 
(more recently by Du, Elkamhi, and Ericsson 2019, among others) or adapted to a 
panel of firms (as by Kelly, Manzo, and Palhares 2020). In contrast, reduced-form 
models prove particularly useful when defining the capital structure of an entity is 
difficult, as in the case of sovereign default risk (Pan and Singleton 2008, Longstaff 
et al. 2011, and Manzo and Veronesi 2016).

2 If PDi,t represents the 1-year probability of default, then T is expressed in years. For example, if 
PDi,t = 2.5%, the probability of defaulting over the next five years is CQDFi,t = 1 − (1 − 2.5%)5 = 11.89%.

3 Some evidence exists that LGD is not constant as recovery rates tend to correlate negatively with 
default rates over the business cycles (e.g., Altman et al. 2005). This effect is mainly relevant for cor-
porate defaults; it is less applicable to sovereign defaults where the expected recovery is a function of 
the size of the country and the size and distribution of its external debt. However, separately identifying 
PD and LGD is difficult in practice because the identification depends on the parameters governing PD 
(Pan and Singleton 2008).
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STRUCTURAL MODELS OF CREDIT RISK

Merton (1974) provides the foundational work for structural models by introducing 
a link between the credit and options markets. In structural models of credit risk, the 
credit spread is computed from the put option price. This link will help us construct 
more complex models by exploiting the modeling techniques developed in the options 
literature (Carr and Madan 1999).

In the following sections, we review the Merton (1974) model, discuss the Merton 
(1976) and Kou (2002) models that introduce jump risk, and then present a gen-
eral model with three stochastic state variables that subsumes several others. We 
subsequently present a more detailed overview of the options pricing based on the 
characteristic function.

Merton Model (1974)

Consider a company with outstanding debt at face value D and maturity T. Under 
the assumption that default can only occur at T, the shareholder faces two possible 
scenarios. First, if the company’s asset value is sufficiently high to repay the debt, 
AT > D, then the creditor is paid in full, and the shareholder can claim the difference 
AT - D. Second, if the company’s asset value lies below the debt face value, AT < 
D, the creditor claims the full value of the company’s asset—that is, the firm goes 
bankrupt, and the shareholder receives nothing. The shareholder payoff is basically 
the same as a call option on the asset value of the firm with strike price D, that is, 
ET = max (AT - D, 0) := (AT - D)+.

To formalize this concept, Merton (1974) assumes that the asset value of the 
company evolves as a geometric Brown motion described by 

 
dA

A
r q dt dWt

t
t( )= − + σ  (3)

where r is the risk-free rate, q is the dividend yield, and σ is the asset volatility.4  
Leverage is defined as the present value of the debt divided by the asset, L = De-rT ⁄A0. 
We can express the present value of equity as the current price of the call option 

 E A N d L N d[ ( ) ( )]0 0 1 2= + ×  (4)

 
d

L
T

T d d T
log 1

2
;1 2 1=

−
σ

+ σ = − σ  (5)

where N(·) represents the cumulative distribution function of a standard normal dis-
tribution.

The bondholder’s payoff at maturity T thus is expressed as 

 
min A D A A D

D D A
T T T

T

( , ) ( )

( )

= − −

= − −

+

+
 (6)

 D ET= −  (7)

4 This process is defined under the risk-neutral Q probability measure, so the drift is the risk-free 
rate. The market price of risk is f = (μ − r)/σ where μ is the mean rate of asset return.
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The price of a defaultable bond can then be computed as

 D e e PutyT rT
0 0≡ = −− −  (8)

where y is the yield of the risky bond and Put0 is the price of a put option with strike 
price D. The credit spread s can be calculated as 

 

s y r
T

Put L

T
N d L N d

1
log(1 / )

1
log( ( ) / ( ))

0

1 2

≡ − = − −

= − − +
 

(9)

Equation 8 highlights an important and general feature of structural models: the 
credit spread s is a function of a put price.

Adding Jump Risk

Despite the elegance of the Merton (1974) model, its assumption of Gaussian 
shocks in the asset growth dynamics does not make it a good candidate model 
to explain observed credit spreads, especially of highly rated companies,5 in part 
because Gaussian shocks do not generate enough tail variation in the asset growth 
distribution. To capture this empirical behavior, Merton (1976) and Kou (2002) intro-
duce tail risk in the form of a jump process in the asset dynamics. They modify the 
asset growth process in Equation 3 to produce 

 

dA

A
r q dt dW J dp

dp
dt

dt

t

t
t( ) ( 1)

0 with prob. 1

1 with prob.

= − − λξ + σ + −

=
− λ

λ





  
(10)

where dp is a Poisson process, independent of dWt, with constant jump intensity l; 
J is a random variable that captures the jump size; and x = E[J - 1] is the Poisson 
compensator that adjusts the drift of the asset growth to guarantee risk neutrality. 
When dp = 1, the asset value jumps by JA.

Merton (1976) and Kou (2002) differ in their definition of the jump process. 
Merton (1976) specifies log-normal distributed jumps, J N J j~ ( , )2−µ σ , with constant 
Poisson intensity l and expected jump size of e J J 1.5 2

ξ = −−µ + σ . Kou (2002) proposes 
an asymmetric double-exponential jump with density, expressed as 

 
v p e p e( ) 1 (1 ) 10 0{ }ξ = λ α + − α+

−α ξ
ξ≥ −

−α ξ
ξ<

+ −

 (11)

where p is the probability of a positive jump and a+ and a- are the positive and nega-
tive jump sizes, respectively. The idea behind asymmetric jumps is motivated by the 
empirical observation that financial asset returns are left-skewed.

To compute the credit spreads for these models, we must solve for the options 
prices. We describe each model’s characteristic function associated with the probabil-
ity of the option finishing in the money (ITM). This probability determines the price of  

5 While empirical specifics are outside of the scope of this article, it is worth noticing that mixed 
evidence exists on the ability of the classical Merton (1974) model to match historical spreads. Huang, 
Shi, and Zhou (2020) conduct a specification analysis of five structural models and strongly reject the 
Merton (1974) model and two diffusion-based models with a flat default boundary; however, they do find 
that models with jump risk improve the fit of observed credit spreads. In contrast, Feldhütter and Schae-
fer (2018) argue that a proper calibration to individual firms leans in favor of the Merton (1974) model.
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an option. Carr and Madan (1999), among others, show that when this characteristic 
function is available in closed form, the option price can be obtained by applying the 
fast Fourier transform. We use this approach to price more complex models.

The closed-form characteristic function of the Merton (1976) model is stated as 

 
u u u i e iu eT

iu uJ J J J( ) exp
1
2

( ) ( 1) ( 1)2 .5 .52 2 2{ }φ = − + σ − λ − + − 
− µ − σ −µ + σ  (12)

The characteristic function of the Kou (2002) model is expressed as 
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−
−

α −






+ −

+ −

 (13)

In the next section, we introduce models with time-varying volatility and jump risks. 
For these models, the advantage of the characteristic function approach becomes 
more obvious.

Stochastic Volatility and Stochastic Jumps

Constant volatility and constant jump risks characterize all of the credit risk mod-
els discussed so far. However, these models exhibit a pricing bias (Duan 1999). In 
fact, the empirical findings of higher implied volatility in the out-of-the-money region 
(called the volatility smile) is a direct violation of constant volatility and tail risk. Du, 
Elkamhi, and Ericsson (2019) conclude that the inclusion of time-varying volatility and 
jump risk can improve the ability of the model to capture time variation in volatility as 
well as variation in the term structure of default spreads. Similarly, Kelly, Manzo, and 
Palhares (2020) demonstrate that systematic volatility and jump risk are needed to 
match a panel of credit spreads.

Motivated by the empirical findings, we consider a credit risk model that incor-
porates more complex time-varying dynamics. We allow two volatility processes and 
a jump process, with intensity driven by both volatility shocks and an independent 
stochastic component.6 We modify the asset growth dynamics in Equation 3 to include 
additional stochastic processes so that 
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 (14)

6 Carr and Wu (2007) document an empirical relation between the currency option-implied volatility 
and the sovereign CDS spreads, and they model the default intensity as a function of this stochastic 
volatility. Kelly, Manzo, and Palhares (2020) employ a similar approach to tie the systematic stochastic 
volatility of the aggregate asset growth to the jump intensity for pricing the risk of safe companies at 
short maturities.
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where the volatilities v1,t and v2,t and the independent component of jump intensity zt all 
follow mean reverting processes with mean reversion speed ki, mean reversion level 
qi, and volatility σi with i ∈ {v1, v2, z}. The correlation parameters r1 and r2 capture the 
interaction between volatility and asset growth. We allow volatility variation to drive 
the default intensity through the loading a and the independent variation governed 
by mean reverting process zt.

The general specification of the model in Equation 14 incorporates the following 
models, with v1,t, v2,t, lt, and x defined in Equation 14:

§	Heston (1993) model (SV), noted as 

 

dA

A
r q dt v dWt

t
t t( ) 1, 1,= − +  (15)

§	Stochastic volatility and stochastic jump (1SV1SJ), expressed as 

 

dA

A
r q dt v dW e dJt

t
t t t

q
t

J( ) ( 1) ( )1, 1,= − − λ ξ + + − λ−  (16)

§	Two stochastic volatilities and stochastic jump (2SV1SJ), specified as 

 

dA

A
r q dt v dW v dW e dJt

t
t t t t t

q
t

J( ) ( 1) ( )1, 1, 2, 2,= − − λ ξ + + + − λ−  (17)

§	Stochastic jump only (0SV1SJ), expressed as 

 

dA

A
r q dt e dJt

t
t

q
t

J( ) ( 1) ( )= − − λ ξ + − λ−  (18)

§	Two stochastic volatilities (2SV), noted as 

 

dA

A
r q dt v dW v dWt

t
t t t t( ) 1, 1, 2, 2,= − + +  (19)

Empirical research indicates that the credit term structure of single-name entities 
is primarily driven by one factor that captures parallel shifts in the term structure—a 
level factor (Pan and Singleton 2008, Manzo 2013). The more complex multifactor 
structure introduced in this section enables researchers to better understand richer 
dynamics, such as systematic components in credit risk.

Option Pricing Based on the Characteristic Function

In this section, we review a common options pricing technique. To price an option, 
we must compute the probability of the option finishing in the money. For a European 
call option on a firm’s asset A with debt maturity T and face value D, the current price 
is expressed as 

 c A De rT
1 2= Π − Π−  (20)
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with
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where Π2 is the risk-neutral probability of finishing in the money and Π1 is the delta, 
both defined on the set of real number R(·). fT(u) is the characteristic function of aT 
= ln(AT), that is, fT(u) = E[eiuaT].

Given a closed-form characteristic function fT(u), Carr and Madan (1999) propose 
using the fast Fourier transform to convert the characteristic function into a prob-
ability. Carr and Madan (1999) provide a numerical tool to calculate the integral in 
Π1 and Π2, and they introduce a modified call price that makes the pricing function 
square-integrable. The integral requires a user-defined upper bound that is typically a 
power of the number 2. The modified call price is based on an additional parameter 
a that can be either optimized or set at a rule-of-thumb value of 0.75. Both the upper 
bound and a govern the approximation error of the numerical pricing function. The 
higher the precision (e.g., an upper bound of 214), the slower the pricing function. 
If we pair high precision with an optimization routine for a, we can further slow the 
computation of options prices. If we want to accelerate the pricing function, we have 
to accept lower precision.

This tradeoff between speed and precision constitutes a central feature in numer-
ical methods. We demonstrate that our deep learning approach offers an alternative 
technique for computing credit spreads, potentially bypassing this tradeoff. Once the 
deep learning models are trained, they can quickly and accurately calculate credit 
spreads for new parameters under models of varying complexity.

Reduced-Form Models of Credit Risk

Although the link between the default probability and the capital structure offers 
an attractive economic intuition, structural models may not easily apply when the 
capital structure is complex (e.g., when the issuer is a country or a municipal govern-
ment). Reduced-form models overcome this issue by defining a statistical process for 
the default event, with arrival governed by an intensity-based or hazard rate process.

The seminal work of Jarrow and Turnbull (1995) introduces the first reduced-
form model of credit risk, and an extensive body of literature develops around this 
approach. In this article, we focus on the Pan and Singleton (2008) model, which 
describes default risk by a stochastic log-normal intensity that can generate fatter 
tails than a Gaussian process. The default probability does not have a closed-form 
solution. Calculating this probability requires a numerical method that can be com-
putationally intensive.

Unlike the structural models that explicitly price the payoff of a bond, the Pan 
and Singleton (2008) model is designed for credit default swap (CDS) spreads. Given 
its swap structure, a CDS contract is priced differently than a bond. For a CDS, 
two parties are involved: the seller and the buyer. The buyer commits to quarterly 
payments of the premium CDSi,t(T) to hedge the default risk of entity i over T years 
(i could be a single firm, a portfolio of firms, or a country). The discounted value of 
these payments is then 
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where the second row follows from the assumed independence between the interest 
rate rt and the default rate lt and where Dt,j is the risk-free discount function.

The seller commits to pay the loss given default. The default leg is expressed as 

 

LGD E e du

LGD D E e du

tt

t T

u

r ds

t ut

t T

t u

ds

s s
t

u

s
t

u

Default Leg

,





∫

∫

= × λ ∫





= × λ ∫





( )+ − +λ

+ − λ
 (23)

where LGD is the loss given default and E et u
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ability.
The par spread is defined as the spread where the default leg equals the premium 

leg at the inception of the contract, and it can be obtained by making the calculation7 
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Pan and Singleton (2008) assume a log-normal mean reverting process for the 
default intensity, as noted in 

 d k dt dBt t tln ( ln )λ = θ − λ + σλ  (25)

where k is the mean reversion speed, q is the long-term average intensity, and σl is 
the volatility. Although the log-normal assumption offers the advantage of generating 
fatter tails compared to a normal distribution—thus making the default event more 
likely—the probability of default is not available in a closed-form solution. In fact, Pan 
and Singleton (2008) employ a fully implicit finite-difference method to approximate 
this probability on a grid. Like the options pricing based on the characteristic function 
(described in the previous section), this method can be computationally intensive.

DEEP NEURAL NETWORKS

We use neural networks to approximate the nonlinear relationship between model 
parameters and credit spreads. In this section, we provide an overview of neural 
networks and discuss our empirical choices.

Neural networks developed separately in statistics and artificial intelligence 
(Hastie, Tibshirani, and Friedman 2009). Within statistics, neural networks research 
grew from the areas of semiparametric statistics and smoothing. In artificial intelli-
gence, neural networks seek to model biological neural networks with individual arti-
ficial neurons (nodes). Neural networks have evolved into one of the most important 

7 In 2009, the ISDA issued the “Big Bang” protocol that incorporated fixed coupons in the CDS 
contract. For North American contracts, this coupon is either 100 basis points or 500 basis points. In 
this article, we do not take into account the coupon structure and the pricing of the so-called par spread.
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machine learning algorithms, with broad applications in many areas, including speech 
recognition, machine translation, and computer vision.8

Single-Layer Neural Network

A neural network is a system of nodes that can learn the relationship between 
any sets of inputs and outputs. A simple neural network contains only a single hidden 
layer. Suppose that we are trying to predict a continuous variable Y with N-dimen-
sional input X. In an ordinary least squares regression, the model predicts Y as a 
linear function of X. A single-layer neural network introduces an intermediate step 
that involves a nonlinear transformation σ(·) of a linear function of X, Xm m0

�α + α . The 
final prediction for Y is then a linear function of this transformation, expressed as 

 = σ α + α =Z X m Mm m m( ), 1, ...,0
�  (26)

 Y Zk0
�= β + β  (27)

where Zm represents the M nodes in the hidden layer. The nonlinear transformation σ(·) 
is called the activation function. Commonly used nonlinear activation functions include 
the hyperbolic tangent function, sigmoid functions, and rectified linear unit (ReLU). 9 If 
the activation function σ(·) were linear, we recover a linear relationship between X and 
Y that can be captured by an ordinary least squares regression. Although each node in 
the neural network embeds a simple nonlinear transformation, the network combines 
many nodes to accommodate a much more complex relationship between X and Y.

When modeling credit risk, input X represents the set of model parameters while 
output Y specifies the credit spread for a single maturity. For example, in the Heston 
(1993) model, X includes the parameters associated with the stochastic volatility 
process:

 (1) mean reversion speed k,
 (2) relative volatility of volatility σ,
 (3) mean reversion level q,
 (4) correlation between asset growth and volatility r,
 (5) initial level of stochastic volatility v0,
 (6) leverage, and
 (7) maturity.

The model parameters in a neural network are called weights. Each hidden node 
Zm depends on all the inputs X and weights a, and the output is a function of Zm and 
weights β. To operationalize the neural network, we estimate the model’s weights 
in a training phase. During training, the optimal weights result from an optimization 
procedure that minimizes a cost function. We use the common mean squared error 
approach as the cost function for predicting continuous variables. This choice also 
aligns with the way pricing models are typically calibrated to actual data.

Deep Learning

Neural networks represent a flexible methodology for function approximation. 
Cybenko (1989) demonstrates that a single hidden layer containing a finite number 
of nodes can approximate arbitrary continuous functions—a result known as the 

8 Goodfellow, Bengio, and Courville (2016) offer a more in-depth treatment.
9 The hyperbolic tangent function is tanh (x) = (ex – e-x)/(ex + e-x); the sigmoid function is σ(x) = 1/

(1 + e-x); and the ReLU is σ(x) = max (0, x).
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universal approximation theorem. In practice, with one hidden layer, the number of 
nodes needed to approximate complex functions could be quite large.

We can generalize single-layer neural networks by increasing the number of hid-
den layers to further enlarge the set of possible models, allowing for more complex 
nonlinearities. Rather than using one hidden layer with a large number of nodes, we 
could incorporate multiple hidden layers, each with fewer nodes, and achieve the 
same level of complexity.

In the field of artificial intelligence, the history of neural networks extends at least 
back to the 1950s, when Rosenblatt (1958) introduces a single-layer neural network 
to learn a linear decision boundary. For decades, scientists believe that sophisticated 
neural networks are very difficult to train. As the computer infrastructure for deep 
learning (both hardware and software) improves over time, interest in neural networks 
resurges over the past two decades. In addition, neural networks also become more 
powerful as the quantity of training data expands. Researchers begin to train deeper 
neural networks than ever before, and the term “deep learning” emerges to refer to 
neural networks with multiple hidden layers (Goodfellow, Bengio, and Courville 2016). 
Deep learning now constitutes a highly active research area, and some researchers 
have trained models with more than 1,000 hidden layers.

In our application to credit risk modeling, we consider multilayer neural networks 
to approximate the pricing function (i.e., the relationship between the model parame-
ters and the credit spreads). In this sense, our deep learning models replace complex 
solutions to credit risk models.

Empirical Choices

In the practical implementation of neural networks, the researcher must make a 
number of empirical choices that can greatly impact the efficacy of neural networks 
for approximating functions. In this section, we note the main considerations in the 
practical implementation of a deep learning model. In particular, we discuss choices 
relevant to the model architecture, training and test sets, activation function, batch 
size, and number of epochs. We also address predictive accuracy and the software 
that we use to implement deep learning.

The architecture of the deep learning model refers to the arrangement of nodes 
into layers. Although the universal approximation theorem states that a single-layer 
neural network can approximate any continuous function, the theorem does not 
specify the number of nodes needed to do so. For complex functions, the number of 
nodes required in a single hidden layer could be very large. Researchers often employ 
multiple hidden layers, so the number of nodes per layer can be greatly reduced. In 
our implementation, we vary the number of hidden layers, depending on the complex-
ity of the credit risk model, and we fix the number of nodes at 100.10  The activation 
function governs the nonlinearity embedded in each node; we use the ReLU.

Deep learning models must be trained to learn the relationship between inputs 
and outputs. The training set, a collection of observations, is used to fit and optimize 
the deep learning model. Learning is achieved by minimizing the cost function on the 
training set. The fit on the training set is defined as an in-sample fit, similar to an 
in-sample R-squared in a linear regression. Because the model uses the training set 
to optimize weights, the value of the cost function on the training set is likely to exhibit 
a downward bias relative to an out-of-sample fit. In our setting, we try to approximate 
known model structures, so well-trained deep learning models should capture the 

10 In unreported results, we compute the out-of-sample R-squared of trained neural networks with 
10, 20, and as many as 150 nodes per hidden layer for one of the structural models (2SV0SJ) and for the 
reduced-form model. We observe an increase in the out-of-sample R-squared for neural networks with more 
than 60 nodes. However, after the network exceeds 100 nodes, we do not see significant improvement.
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complete relationship between model parameters and credit spreads. Therefore, we 
expect the deep learning models to achieve a high R-squared, close to 100%.

We train the deep learning models on simulated data, with 95% of the simulated 
observations used for training and the remaining 5% reserved as the test set for 
evaluating model performance. The test set is a collection of observations that the 
neural network weights are not optimized on, so it serves as an out-of-sample test 
for the model. A strong model shows accurate predictions on the test set as well as 
the training set.

In the training phase, we need to learn the optimal weights of the neural network. 
We use the Adam algorithm, a stochastic gradient descent method that employs 
discrete steps to search for optimal parameters.11 Given the prediction error, weights 
are updated by using a back-propagation algorithm. The researcher can choose the 
number of samples to use at each iteration (i.e., the batch size), which we set to 
1,024 observations. The batch size regulates the noise in the update. If the batch 
size is too small, then the gradient calculation is subject to noisy sampling variation, 
but frequent optimization updates could lead to faster learning. If the batch size is 
too large, then computing the gradient entails less noise, but the model updates 
could be very slow for a large data set.

The number of epochs defines how many times the deep learning model will 
execute the entire training set to optimize model weights. For one epoch, the deep 
learning model uses each observation once to update the model weights. We follow 
the typical practice, which allows many epochs so that the deep learning algorithm 
can run until the training error is sufficiently small. We set the number of epochs at 
500 when training the deep learning models.

For the practical construction and implementation of deep learning models, we 
use the Keras package in Python. The high-level Keras package implements deep 
learning models without handling low-level operations such as tensor products or 
numerical optimization schemes, enabling researchers to focus on modeling choices 
rather than computational options.

USE OF NEURAL NETWORKS TO PREDICT CREDIT SPREADS 

A credit risk model can be used as a pricing function: for a given set of param-
eters, the model generates a credit spread. In this section, we demonstrate that 
deep learning can approximate this relationship between model parameters and 
credit spreads. Similar to a pricing function, a deep learning model can produce 
credit spreads for a given set of parameters, thus capturing the complexity of  
the credit risk model.

We train deep learning models in two main steps. First, we simulate various 
combinations of model parameters and credit spreads. Second, we train the deep 
learning models on the simulated data so that they learn the pricing relationships 
between model inputs and credit spreads. We thereby demonstrate that deep learning 
models can accurately capture these relationships.

Simulated Data

Let fM(QM) be the pricing function for model M and model parameters QM where 
M is one of the previously reviewed credit risk models. Our goal is using deep learn-
ing to approximate the pricing function fM. We generate simulated data of the form  
{QM, fM(QM)} that we then use to train the deep learning models. We consider five 

11 According to Kingma and Ba (2014), the Adam algorithm is “computationally efficient, has little 
memory requirement, invariant to diagonal rescaling of gradients, and is well suited for problems that 
are large in terms of data/parameters.”
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maturities: 1 year (1Y), 3 years (3Y), 5 years (5Y), 7 years (7Y), and 10 years (10Y). 
For each model, we simulate 50,000 different combinations of model parameters 
QM, using the Latin hypercube sampling (LHS) approach, which generates random 
samples on a grid in a multivariate distribution, resulting in a more representative 
sample from the parameter space than that derived from the same number of sam-
ples on a grid (Liu, Oosterlee, and Bohte 2019). As the dimension of the parameter 
space increases, the number of data points required in a grid to cover the parameter 
space expands exponentially, and the approach quickly becomes computationally 
intensive. Latin hypercube sampling generates near-random samples of parameter 
values even when the dimension of the parameter space is high. For each set of 
parameter combinations, we use one of the identified credit risk models to compute 
the credit spreads. For the structural models, credit spreads in the Merton (1974) 
model are calculated in a closed-form solution; all other models employ the char-
acteristic function approach to compute the credit spreads. We follow the Pan and 
Singleton (2008) model approach, applying a fully implicit finite-difference method 
to numerically calculate the probability of default. For each model, with five different 
maturities and 50,000 sets of parameter combinations, we produce an artificial data 
set of 250,000 observations that we use to train the deep neural networks.

Exhibit 1 reports the upper and lower bounds for our parameter space. We set 
the parameter bounds based on the empirical calibration exercises of, among oth-
ers, Pan and Singleton (2008) and Du, Elhamhi, and Ericsson (2019). For all of the 
structural models, we set leverage between 0.01 and 0.99, thus including a range 
of companies (from low-leverage to high-leverage firms).

Training and Evaluation

Using the simulated datasets, we train the deep neural networks. For each 
model, we randomly divide the 250,000 simulated observations into training and 

EXHIBIT 1
Simulated Set of Model Parameters

NOTES: This exhibit reports the parameter ranges used in our Latin hypercube sampling algorithm to draw 50,000 combinations.  
For each model, the exhibit reports the range of parameter values as [lower bound, upper bound]. The 2SV1SJ model subsumes the 
1SV1SJ, 0SV1SJ, and 2SV0SJ models. For the structural models, the leverage range is set to [0.01, 0.99]. Each set of simulated 
parameter values is paired with five maturities: 1Y, 3Y, 5Y, 7Y, and 10Y.
aPlease refer to the models section for details on model specification and parameters.
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test samples, assigning 95% of the observations to training and 5% to the test set 
to evaluate the deep learning models. We standardize the simulated credit spreads 
so that they have zero mean and unit standard deviation (by subtracting the mean 
and dividing by the standard deviation). We follow the example of Horvath, Muguruza, 
and Tomas (2019) and normalize the input parameters in the range -1 to 1, using 
the upper and lower bounds in Exhibit 1, as defined in 

 max min

max min

2 ( )
1,1[ ]θ − θ + θ

θ − θ
∈ −  (28)

where qmax is the upper bound, qmin is the lower bound, and q is the raw parameter 
value. Normalizing inputs and outputs is common in deep learning because it acceler-
ates learning and enables faster convergence while potentially avoiding local optima.

Exhibit 2 depicts a schematic of a deep neural network that we build to learn the 
pricing function of the Heston (1993) model. The Heston model is described by four 
parameters governing the stochastic volatility (kv, qv, σv, and rvA), by the initial value 

EXHIBIT 2
Deep Neural Network Used for the Heston Model

NOTES: This exhibit illustrates the deep learning architecture used to learn the pricing function of the Heston model. (1) The green layer 
represents the inputs: four parameters describing the stochastic volatility process (kv, qv, σv, and rvA), the initial volatility, v0, and the 
leverage Lev. (2) The middle blue panels represent three fully connected hidden layers with 100 nodes each. (3) The final red layer rep-
resents the outputs—a term structure of credit spreads for five maturities.

10Y

Input
Layer

Output
Layer

1st
Hidden
Layer
(100 nodes)

2nd
Hidden
Layer
(100 nodes)

3rd
Hidden
Layer
(100 nodes)

1Y

k
v

θ
v

σ
v

ρ
vA

v
0

Lev

3Y

5Y

7Y



The Journal of Fixed Income | 117Fall 2021

of stochastic volatility v0, and by leverage Lev. We use three hidden layers, each with 
100 nodes. Each set of parameter combinations is passed to the first hidden layer 
and then transformed using the ReLU activation function, which feeds sequentially 
into the second and third layers. The output layer provides a term structure of credit 
spreads for each combination of parameters. In the training phase, we obtain the 
optimal weights that minimize the error between the simulated spreads and the 
spreads calculated by the deep neural network.

In Exhibit 3, Panel 3A reports the common specification that applies to all the 
deep neural networks. In particular, we split 250,000 simulated credit spreads into 
95% training set and 5% test set, with a batch size of 1,024 observations, 500 
epochs, and 100 nodes per hidden layer (Liu, Oosterlee, and Bohte 2019). ReLU 
serves as the activation function.

Panel 3B (Exhibit 3) lists the specific architecture used for each model. We employ 
three hidden layers for most of the models, except for the simplest structural mod-
els of Merton (1974, 1976) and Kou (2002); for these, we utilize two hidden layers. 
This choice reflects differences in model complexity. Unlike the SVSJ models, the 
three simplest structural models are all characterized by static parameters and no 
time-varying state variables.

In addition, Panel 3C (Exhibit 3) notes the R-squared for each model and each 
maturity computed on the test set. We compare the predicted credit spreads from 
the deep learning models against the actual spreads. Across models and maturities, 
we observe a high level of accuracy, close to 100% R-squared. The deep learning 

EXHIBIT 3
Model Architectures and Test Set Performance

NOTES: This exhibit notes the architecture of the deep neural networks. Panel 3A reports the size of the simulated data, training 
set, test set, and batch size. For each model, Panel 3B lists the number of hidden layers and the units per layer. Panel 3C notes the 
R-squared on the test set for each time period.
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models can accurately capture the relationship between the model parameters and 
the credit spreads for the 10 models that we consider.

Therein lies the first main contribution of our article: deep neural networks can 
learn both structural models and reduced-form models of credit risk, even when the 
underlying design is complex (e.g., the 2SV1SJ model).

Computational Efficiency of Deep Neural Networks

How efficient are deep neural networks in pricing credit risk? We measure effi-
ciency as the speed of the model in generating credit spreads. This metric is particu-
larly relevant when (1) a complex model is used for calibration to historical data and (2) 
the researcher must execute the pricing function many times to calculate the spreads. 
We compute the average time, across five simulations, that each model requires to 
produce a term structure of credit spreads. We then compare that time metric with 
the time it takes for the trained deep neural networks to perform the same task.

Exhibit 4 reports the average time in seconds. Columns 1 through 5 note the time 
recorded by each pricing function to build a term structure of spreads from a given 
set of model parameters. Because numerical integrals are required, we must select 
the degree of precision for computing the integrals. For structural models, we vary 
the upper bound for the integral of the probability of finishing in the money in Equa-
tion 21 from 210 to 218 (210 discretizations give a less precise integral than 218). For 
210 discretizations, the pricing function computes the credit spreads in about 0.025 
seconds. However, when we aim for higher precision, the time to generate spreads 
can range up to three seconds to four seconds. These few seconds may not seem 
like a lot of time, but when credit term structures are computed for many different 
input parameter combinations (e.g., during a calibration), thousands of iterations may 
be needed to identify the optimal model parameters. The total time required would 
differ greatly for 218 and 210.

For the reduced-form model, we vary the number of grid points (from 100 to 
500) to approximate the intensity of default in Equation 22. More grid points would 
lead to improved precision. For this model, we observe small differences across 
precision levels, with the speed ranging from 0.10 seconds with 100 steps to 0.12 

EXHIBIT 4
Efficiency of Deep Neural Networks

NOTES: This exhibit reports the average time in seconds that a model takes to generate a full term structure of credit spreads. Col-
umns 1 through 5 list the average speed of the pricing functions, from the least numerically precise to the most numerically precise. 
The precision of structural models is given by the upper bound of the integral in Equation 21 that defines the probability of the option 
finishing in the money. For the reduced-form model, precision is defined by the number of grid points of the default intensity. Column 6 
notes the average speed for the deep neural networks. Column 7 lists the ratio of Column 3 to Column 6 as the relative efficiency.
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seconds with 500 steps.12  However, when compared to the time that a deep neural 
network takes to compute the term structure of credit spreads (Exhibit 4, Column 
6), we observe significant differences. Deep neural networks generate the full term 
structure in approximately 0.001 seconds, regardless of the complexity of the model 
and regardless of whether the model is structural or reduced-form.

In Column 7 of Exhibit 4, we report the relative speed of deep neural networks 
and traditional pricing functions. We compare the middle value for numerical precision 
(Column 3) to the deep neural networks (Column 6). For the structural models, the 
trained neural networks are about 150 to 200 times faster—the more complex the 
underlying model, the greater the time savings from using a deep neural network. 
For the reduced-form Pan and Singleton (2008) model, the deep neural network is 
about 100 times faster.13

In our comparison, we must also take into account the training time for the deep 
learning models. However, the training time for our deep neural networks is not pro-
hibitively long; on a standard personal computer with 16 gigabytes of RAM and four 
cores, the most complex models require just over one hour to train. Once the deep 
learning models are trained, they can save many hours of the researcher’s time in 
calibration or other applications (when compared to numerical methods).

Deep neural networks can efficiently and accurately approximate the pricing func-
tion of a credit risk model. The natural follow-up question is whether trained neural 
networks can replace the pricing function to calibrate the model to historical data. 
We provide our answer in the next section.

DEEP LEARNING CALIBRATION

We demonstrate in the previous section how deep learning models can be used 
to approximate the pricing function of credit risk models, accurately and efficiently 
mapping the set of model parameters into credit spreads. A natural next step is 
assessing whether we can use the trained deep neural networks to calibrate the 
model to historical data.

For calibration, we select the structural (Heston 1993) stochastic volatility model 
and the reduced-form model of Pan and Singleton (2008). In these one-factor models, 
a single stochastic state variable drives the model dynamics. Empirically, the first 
principal component on the term structure of single-name entities explains more 
than 95% of the panel variation (Manzo and Veronesi 2016). Therefore, the one-fac-
tor structure in the Heston (1993) and Pan and Singleton (2008) models should be 
sufficient to capture time series and cross-maturity variation in credit spreads.14

The goal of calibration is to choose a set of parameters that optimizes a specific 
objective function. The most common objective function is derived from the assump-
tion that the credit risk model can price observed credit spreads, with a pricing error 
that is assumed to have a known distribution. If we let CDSt(T) be the observed credit 
spread at time t for the maturity T, then we can write it as 

 CDS T f T St M M t t( ) ( , , ) ε= Θ +  (29)

12 The step, 1/m, defines how refined the grid is. As an example, if we assume a range for the 
default intensity l between 0.000001 and 1, a step of 100 (500) will space l by 0.0099 (0.0019).

13 We run our models on a commercial Windows 10 machine with an Intel Xeon Silver 4110 CPU 
(2.10GHz) with 32GB of memory.

14 We do not calibrate nonstochastic models because their static parameters are known violations 
of time-varying volatility and jump risk.
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where fM (⋅) is the pricing function, QM is the set of static model parameters, T is 
the time to maturity, and St is the vector of state variables. As an example, for the 
Heston (1993) model, QM is the set of parameters governing the stochastic volatility 
process QM = {kv, qv, σv, rAv}, and the stochastic volatility is the sole state variable 
St = vt. The pricing error term et is assumed to be normally distributed with a mean 
of 0 and a constant variance 2

εσ  (homoskedastic errors). Although a simplifying 
assumption, homoskedastic errors help contain the number of parameters to esti-
mate M M, 2

ε{ }Θ = Θ σ+ . If we consider five maturities, for each time t, Equation 29 
fits the full term structure—it relates the 5×1 vector of observed spreads CDSt(T) to 
the 5×1 vector of model spreads fM (QM, T, St), for a given set of parameters and a 
state variable. Note that for structural models, Equation 29 is also a function of the 
“observed” leverage Lt, fM (QM, T, Lt, St).

The calibration provides us with the set of parameters MΘ̂ +  associated with the 
smallest pricing errors. This goal can be achieved by either minimizing the (weighted) 
sum of squared errors or by maximizing the model’s log-likelihood.

We propose replacing the pricing function fM(⋅) with the trained deep neural net-
works NNM(⋅) and assuming the same linear error term as in Equation 29 to yield 

 CDS T NN T St M M t t( ) ( , , ) ε= Θ +  (30)

We previously conclude that deep neural networks can accurately approximate the 
pricing functions. By replacing pricing functions with deep learning models, we can 
take advantage of the computational efficiency of the deep neural network without 
sacrificing pricing accuracy.

We calibrate the models using the unscented Kalman filter. We cast the model 
into a state-space representation, with the state equation represented by the sto-
chastic state variable. For the Heston (1993) model, the stochastic volatility is the 
state variable. Its first and second moments are expressed as 
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For the Pan and Singleton (2008) model, the stochastic default intensity is the 
state variable, with first and second moments defined as 
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where Dt = 1/52. The measurement equation is specified by Equation 30. Because the 
measurement equation is nonlinear, the unscented Kalman filter accrues an advan-
tage over the extended Kalman filter: no need to derive analytical approximations 
because the unscented Kalman filter approximates any equations in the distribution 
space via sigma points (Wan and Van Der Merwe 2000). We call our approach, which 
combines the unscented Kalman filter with deep neural networks, NN-UKF (the appen-
dix includes further technical details).

The deep neural networks are trained on standardized data. Therefore, in the 
practical implementation, we standardize both the state equation and the parameters 
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QM by using Equation 28 before feeding them into the 
trained NNM(QM, T, St).

15 The deep learning models then 
produce standardized credit spreads, which we trans-
form using the mean and variance of the observed 
spreads. The final NN-UKF output is the model’s total 
log-likelihood, which we aim to maximize to find the 
optimal set of parameters QM+.

We choose American Express (AXP) as a random 
name in the North American CDS universe, and we 
collect weekly data from January 2001 to Septem-
ber 2014 for the five maturities (1Y, 3Y, 5Y, 7Y, and 
10Y). Our initial sample is limited by the availability 
of the CDS universe, which developed in the early 
2000s. In the calibration exercise, our goal is to stress 
the approximating pricing function in the presence of 
relevant observable inputs, such as leverage for the 
structural model, as well as a multiyear period that 
spans normal and distressed periods, including the 
Great Recession. We collect annual accounting data 
from Google Finance and measure leverage as the 
ratio of total liabilities over the book value of asset. 
We assume that leverage is constant within each year 
and that it is consistently high, ranging between a 
maximum of 0.93 in 2009 to a minimum of 0.87 in 
2014. We also calibrate a model where leverage is 
constructed using the asset, that is, the sum of total 

liabilities and market capitalization. Compared to the book value, the market value 
of asset adds time variation to the observed leverage. Consequently, we expect the 
market value to improve the model fit to historical data.

In our calibration, we assume a risk-free rate of zero, an assumption that does 
not materially affect our results because CDS spreads display low sensitivity to inter-
est rates (Duffie 1999). We calibrate both models under the risk-neutral probability 
measure, but our proposed NN-UKF approach is flexible, accommodating the inclusion 
of a market price of risk in the volatility and intensity dynamics.

Exhibit 5 notes the calibrated parameters, with their numerical standard errors 
in parentheses. In both the structural models and the reduced-form models, the 
underlying state dynamics show (1) persistent variation in volatility, with low mean 
reverting speeds of 0.001; and (2) less persistence for the default intensity, with a 
coefficient of 0.048 for the reduced-form model. However, the large standard errors 
for both models highlight the empirical challenge in identifying the mean reversion 
speed. The long-run volatility is 13.4% for the Heston (1993) model with a leverage 
effect where the correlation between asset value and volatility is -93.6%. In the Pan 
and Singleton (2008) model, the volatility of the default process is about 36%, and 
the long-run default intensity is 56.6% (exp(-0.569)), implying an average default 
jump approximately every two years (1 / ˆ 1.8)θ =λ .

Exhibit 5 also reports the goodness of the fit as measured by the in-sample 
R-squared. The high R-squared reflects small pricing errors with low volatility. For 
the Heston (1993) model, the definition of leverage matters. Using the market value 
of leverage, we observe an in-sample R-squared of 95%, higher than the calibration 
under the book value of leverage (88.6%). The R-squared is even higher for the Pan 
and Singleton (2008) model, reaching 98.5%. Evidently, deep neural networks not 

15For structural models, we also scale the observed leverage.

EXHIBIT 5
Estimated Parameters and In-Sample R-Squared for 
Model Calibration

NOTES: This exhibit lists the calibrated parameters, with the 
numerical standard errors in parentheses, for the structural 
Heston (1993) model and the reduced-form Pan and Singleton 
(2008) model on the term structure of CDS spreads of Amer-
ican Express (AXP). The data are weekly, from January 2001 
to September 2014. The Heston (1993) model is calibrated 
using leverage constructed with the book value as well as the 
market value of asset. Calibrations use the neural network–
based unscented Kalman filter (NN-UKF) implemented under the 
risk-neutral probability measure. The parameter σe is the  
standard deviation of the pricing error. R2 is the in-sample  
goodness of fit. Please see the models section for model speci-
fication and parameters.

Model

Heston SV

Pan and
 Singleton
 (2008)

Calibrated
Parameters

kv

0.001

kλ

0.037

θv

0.135

θλ

0.375

−

ρAv

−0.977

σv

0.136

σλ

0.393

σ

σ

0.0000

0.0009

In-Sample
R2 (%) 

89.3

96.9



122 | Deep Learning Credit Risk Modeling Fall 2021

only can learn complex models of credit risk but also can be effectively employed for 
model calibration to historical data.

In Panels 6A, 6B, and 6C, we plot the relation between the fitted CDS and the 
actual CDS spreads. Because the R-squared measures are so high, we display the 
scatter plots in log-log form to better visualize any mispricing. For each scatter plot, 
we include a 45-degree line where data points would lie if the fitted spreads perfectly 
matched the actual spreads. Overall, few deviations from the 45-degree line occur 
across the five maturities for both the reduced-form model and the structural model 
with market leverage. Across models, the largest pricing errors are evident for short-
term spreads. Furthermore, by combining a properly designed deep neural network 
with the appropriate inputs (such as market leverage instead of book leverage), 
the Heston (1993) model can achieve performance similar to that of the statistical 
reduced-form model of Pan and Singleton (2008).

In Panels 6D, 6E, and 6F (Exhibit 6), we plot the state variables. Our proposed 
NN-UKF approach generates endogenous state variables that capture relevant time 
variations. The state variables experience meaningful variation across peaceful and 
turbulent times; both the stochastic volatility of the Heston (1993) model and the 

EXHIBIT 6
Graphical Representation of Model Calibration

NOTES: This exhibit plots the fit of the Pan and Singleton (2008) model, Heston (1993) model with the book value of leverage, and 
Heston (1993) model with the market value of leverage. Panels 6A, 6B, and 6C are scatter plots for the fit of the full term structure 
(in logarithms). The black 45-degree lines represent a perfect fit. Panels 6D, 6E, and 6F plot the endogenous state variables: the sto-
chastic volatility in the Heston (1993) model and the stochastic default intensity in the Pan and Singleton (2008) model. Both models 
are calibrated to weekly data using the NN-UKF approach on the term structure of CDS spreads of American Express (AXP) from  
January 2004 to September 2014.
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stochastic default intensity of the Pan and Singleton (2008) model are particularly 
high in the Great Recession of 2008.

CONCLUSION

In this article, we introduce deep learning into the credit risk modeling literature. 
We demonstrate that deep neural networks can learn complex models of credit risk 
with a high degree of accuracy. Using simulated data, we train deep learning models 
to capture the pricing relationship that maps model parameters into credit spreads. 
Applied on 10 different models of credit risk, our deep learning approach achieves 
predictive sample R-squared of more than 99%. Moreover, our deep learning approach 
provides a more computationally efficient alternative to traditional pricing functions: 
deep neural networks can build a full term structure of credit spreads about 100 to 
240 times faster than the pricing functions.

We apply our deep learning approach to model calibration. We combine trained 
deep neural networks with the unscented Kalman filter to calibrate both structural  
and reduced-form credit risk models. Our NN-UKF approach attains in-sample 
R-squared of 88.6% and 95% for the structural model of Heston (1993) using book 
leverage and market leverage, and 98.5% for the reduced-form model of Pan and 
Singleton (2008).

Our findings represent an advancement in the credit risk modeling literature. Our 
results suggest that researchers can approximate complex models of credit risk in 
offline training and use them in an online calibration. This approximation can spare 
the researcher from computationally expensive numerical techniques when the model 
does not allow closed-form solutions. Although some initial computational cost is 
incurred in training the deep learning models, these trained models can save signif-
icant time and computing resources in subsequent applications.

Our deep learning approach can be extended in several directions. Interest rate 
models also employ (affine) reduced-form models to price, for example, the term struc-
ture of Treasury rates (Duffie and Kan 1996). Moreover, an extensive body of literature 
addresses modeling baskets of CDSs, or CDS indexes such as the CDX and iTraxx 
indexes (Brigo, Pallavicini, and Torresetti 2010). From a modeling perspective, one 
challenge is properly capturing the default correlation, usually described by a normal 
copula. Numerical precision becomes more relevant when the researcher is model-
ing the risk embedded in tranches of the index, such as collateral debt obligations. 
Precision is usually achieved at the expense of intensive numerical procedures, such 
as the systemic expected loss in Manzo and Picca (2020) that requires importance 
sampling to generate enough rare events. Future research can adapt our approach 
to approximate these complex functions.

Given the flexibility of deep learning models and their strong predictive power, 
we are confident that appropriately specified deep learning models can be applied to 
broader settings in economics and finance research. For example, the deep learning 
approach may be used to approximate other models with time-varying asset volatility 
(Du, Elkamhi, and Ericsson 2019), first passage time (Black and Cox 1976), optimal 
capital structure (Leland and Toft 1996), and multifactor approaches (e.g., Kelly, 
Manzo, and Palhares 2020).

APPENDIX

NEURAL NETWORK–BASED UNSCENTED KALMAN FILTER

The approach we propose for the model’s calibration to historical data is the unscented 
Kalman filter (Wan and Van Der Merwe 2000) where the pricing equation is replaced by the 
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trained neural networks, an approach we call NN-UKF. We choose this approach because 
it is flexible to the inclusion of the market price of risk in the dynamics of the state vari-
ables. However, our calibration exercise is under the risk-neutral probability measure. 

We cast the models with stochastic factors into a state-space representation where 
each process is a state variable and where the pricing function is the measurement 
equation. In particular, we assume that the measurement equation is 

 y NN St j t t|( )= Θ + η  
(A1)

where yt is the vector of observed credit spreads; NNj(⋅) is the trained neural network for 
model j, parametrized by the set Q; St is the vector of state processes; and η ~ N(0, ση) 
assumes homoskedastic pricing errors. For the Heston (1993) model (SV) and the Pan 
and Singleton (2008) model, we use discretized versions of the volatility and default 
intensity dynamics, respectively. The actual state equations are then their respective 
means and variances, conditional on the (t - 1) information set It-1.

We compute the log-likelihood using the unscented transformation (UT) that employs 
a set of sigma points to calculate the first two moments of the state and measurement 
equations. In formulas, given initial states mt-1 = St-1 and covariance Pt-1, we form a matrix 
Xt-1 of 2L + 1 sigma vectors, χi,t-1, with corresponding weights Wi, such that 
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where W is a set of weights determined by the scaling parameters l = a2(L + k) - L, 
a = 1e-3, k = 0, and β = 2 and where the latter captures information on the Gaussian 
distribution of the states.

By propagating these sigma points through the state equation, we obtain the time 
(t - 1) ex ante forecast of time t states and measurements, expressed as 
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where the sample mean and covariance are the weighted sample mean and covariance 
of the posterior sigma points, that is 

 

∑

∑

∑

∑

=

= −  − 
′

µ =

= − µ  − µ 
′

=
−

=
− −

=
−

=
− −

W

W

W

W

t i
m

i

L

i t t

t i
c

i

L

i t t t i t t t

t i
m

i

L

i t t

S t i
c

i

L

i t t t i t t t

( )

0

2

, | 1

,
( )

0

2

, | 1 , | 1

( )

0

2

, | 1

,
( )

0

2

, | 1 , | 1

y

P y y

P

y

Y

Y Y

S

S S  
(A4)



The Journal of Fixed Income | 125Fall 2021

Given these estimated moments, the time t log-likelihood llkt(Q) is
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and the state update is 
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where CSt
obs  is the time t observed term structure (1, 3, 5, 7, and 10 years), P Py yt S t t, ,

1K = × −  
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the states and the measurement equation. Then, by replacing mt and PS,t as initial values, 
we can compute new sigma points and obtain the likelihood at t + 1.

As the last step, we estimate the parameters by maximizing the sum of llkt, expressed 
as 
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In the practical implementation, we follow Kelly, Manzo, and Palhares (2020) and 
employ a parallel unscented Kalman filter. The goal is further accelerating the calibration. 
For each time t, we run isolated unscented Kalman filters that function as follows: given 
the initial states, we obtain the pricing errors, update the states, and recompute the 
pricing errors. We repeat this process about five times and then select the log-likelihood 
that corresponds to the minimum sum of squared errors. Usually, a few iterations are 
enough to observe a significant (exponential) reduction in the pricing errors.
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