
Deep Learning Credit Risk
Modeling
Gerardo Manzo and Xiao Qiao

KEY FINDINGS

n Neural networks can approximate solutions to credit risk models, precisely capturing
the relationship between model inputs and credit spreads.

n Compared to standard techniques, the approximate solutions are more computationally
efficient.

n Neural networks can be used to accurately calibrate structural and reduced-form models
of credit risk.

ABSTRACT

This article demonstrates how deep learning can be used to price and calibrate models of
credit risk. Deep neural networks can learn structural and reduced-form models with high
degrees of accuracy. For complex credit risk models with no closed-form solutions available,
deep learning offers a conceptually simple and more efficient alternative solution. This
article proposes an approach that combines deep learning with the unscented Kalman filter
to calibrate credit risk models based on historical data; this strategy attains an in-sample
R-squared of 98.5% for the reduced-form model and 95% for the structural model.

The increasing size and complexity of credit derivatives markets1 pose a serious
challenge for researchers seeking to accurately quantify credit risk (i.e., the risk
that an issuer of a debt obligation defaults). The recent proliferation of complex

credit risk models reflects the sophistication of the markets as well as the need for
accurately capturing the risk of default. This complexity leads to more computationally
intensive solutions, often involving numerical methods. In this article, we apply deep
learning, or deep neural networks, to credit risk modeling. Deep learning models can
accurately learn sophisticated credit risk models and then can be used for calibration
to historical data.

Deep neural networks represent an important machine learning technique that
is widely known for its strong predictive power and broad applications. Such deep
learning has been successfully applied to speech recognition, natural language pro-
cessing, computer vision, and other areas. Its use in economics and finance is
attracting more interest among researchers. Our main contribution in this article is
introducing deep learning to the credit risk literature.

1 As of September 2019, the International Swap and Derivatives Association (ISDA) reports that
market activity in the credit default swap (CDS) market averaged about $700 billion per quarter over
the past 13 quarters (to June 2019). More important, the activity in the CDS indexes, mainly the CDX
and iTraxx indexes, jumped from $4 trillion in 2017 to $5.8 trillion in 2019.

Gerardo Manzo
is a quantitative researcher
and portfolio manager
at Kepos Capital in
New York, NY.
gm.gerardomanzo@gmail
.com

Xiao Qiao
is an assistant professor at
the City University of Hong
Kong and a member of the
Hong Kong Institute for Data
Science in Kowloon Tong,
Hong Kong.
xiaoqiao@cityu.edu.hk

mailto:gm.gerardomanzo@gmail.com
mailto:gm.gerardomanzo@gmail.com
mailto:xiaoqiao@cityu.edu.hk

102 | Deep Learning Credit Risk Modeling Fall 2021

We start with an overview of the main credit risk models, which can be categorized
into structural models and reduced-form models. Structural models provide a direct
link between the default event and the capital structure of a firm. The seminal work
of Merton (1974) sets the foundation for this category. In Merton (1974), the asset
growth of a firm follows a stochastic process with normally distributed shocks. A firm
defaults when its asset value falls below the debt face value at maturity. We then
review Merton (1976) and Kou (2002), two models designed to capture the empiri-
cal observation that asset returns are fat-tailed. These models add stochastic jump
risk to the Merton (1974) model: Merton (1976) includes log-normal jumps whereas
Kou (2002) institutes double stochastic jumps. These three models are all charac-
terized by static parameters governing the asset growth process. Stochastic state
variables could be introduced for further generalization. We review a more general
structural model that accommodates multiple stochastic volatilities and stochastic
jumps, building on the findings of Duan (1999), Yan (2011), and Du, Elkamhi, and
Ericsson (2019), among others. Our general credit risk model subsumes several pop-
ular models, including Heston (1993), one stochastic jump, two stochastic volatilities,
one stochastic volatility and one stochastic jump, and two stochastic volatilities and
one stochastic jump.

In reduced-form models, default risk is modeled as a statistical process. These
models allow the researcher to price credit risk for entities with capital structures that
cannot be easily defined, such as a country’s default risk. In this article, we focus
on the reduced-form model of Pan and Singleton (2008), with default intensity that
follows a log-normal stochastic process.

After a review of credit risk models, we overview neural networks. We first describe
a simple neural network with a single hidden layer and discuss its relationship to
the familiar ordinary least squares regression. We then explain deep learning, which
extends the neural networks approach to incorporate multiple hidden layers. We
discuss the empirical choices that researchers must make when working with neural
networks, including the model architecture, training and validation sets, activation
function, batch size, and number of epochs. By using a simple but detailed explana-
tion of practical implementation issues, we hope to facilitate the application of deep
learning to economics and finance research.

How does deep learning relate to credit risk modeling? A credit risk model cap-
tures the relationship between model parameters and credit spreads in a pricing
function. If we view model parameters as the inputs and credit spreads as the out-
puts, the pricing function computes the outputs given a set of inputs. Deep learning
can be used to accurately approximate the function that maps inputs to outputs.

Thus, we can teach deep learning models the relationship between model
parameters and credit spreads, replicating the complex credit risk models. We use
simulations to generate artificial data for each credit risk model. We draw 50,000
combinations of model parameters. For each parameter combination, we consider
credit instruments at five maturities: 1 year, 3 years, 5 years, 7 years, and 10
years. We then compute the credit spreads associated with each set of parameters
and maturity. Our simulated data are composed of 250,000 pairs of parameters and
credit spreads for each model. We employ these artificial observations to train and
evaluate deep learning models.

For each model, we randomly split the simulated data into observations used
for training and testing: 95% of the 250,000 observations for the training set and
the remaining 5% for the test set. The deep learning models have either two or three
hidden layers of 100 nodes, depending on the complexity of the credit risk models.
We use the rectified linear unit (ReLU) as the activation function, a batch size of 1,024
observations, and 500 epochs to train. We provide a more detailed discussion of
those practical choices later in this article.

The Journal of Fixed Income | 103Fall 2021

Deep learning can accurately capture the pricing relationship between model
parameters and credit spreads. We evaluate the performance of deep learning
models on the test set, finding that the predicted spreads from deep learning
approximate the actual spreads very closely; R-squared for the test set is close
to 100% for all models. For example, for the Heston (1993) model, R-squared is
99.98% for the 1-year maturity and 99.99% for the 10-year maturity. Similarly, for
the Pan and Singleton (2008) model, R-squared is 99.97% for both the 1-year and
10-year maturities. A high R-squared indicates that the deep learning models are
approximating the relationship between model parameters and credit spreads with
a high degree of accuracy.

Solutions to credit risk models can be computationally intensive. Aside from the
Merton (1974) model, the more complex structural models do not have closed-form
solutions. Therefore, pricing credit risk in a structural model requires numerical
integration. Furthermore, the assumption of a log-normal default intensity in the
reduced-form model of Pan and Singleton (2008) makes default probability calcu-
lations computationally expensive. Our proposed approach—using deep learning
to price credit risk—offers an alternative to these numerically expensive meth-
ods. After learning the relationship embedded in each credit risk model, the deep
learning models can quickly calculate credit spreads for an arbitrary set of model
parameters.

To compare the speed of deep learning models against the pricing functions,
we measure the time required to build a full term structure of credit spreads.
We observe a tradeoff between precision and speed for the pricing functions: for
more precise calculations, the numerical procedures take longer. For high precision,
the pricing functions can take three to four seconds to build a full term structure, but
for lower precision, the pricing functions need only 0.02 seconds. In comparison, our
deep learning approach produces a full term structure in just 0.001 seconds, inde-
pendent of the complexity of the underlying model, effectively resolving the tradeoff
between precision and speed. In relative terms, our deep learning approach generates
spreads about 100 to 240 times faster than the actual pricing function.

Deep learning can accurately and efficiently produce credit spreads for specified
model parameters. An important goal of credit risk modeling is to capture and explain
the observed time series and cross-maturity variations in credit spreads. In the
final part of the article, we investigate whether we can apply deep learning models
to calibration. In a typical calibration, the researcher chooses a set of parameters
that minimize the pricing errors between historical spreads and model spreads. We
propose combining deep neural networks with the unscented Kalman filter (UKF), an
approach we call NN-UKF. We conclude that this approach is effective in recovering
optimized model parameters. We calibrate the structural Heston (1993) model with
book value and with market value of leverage and the reduced-form model of Pan
and Singleton (2008); the in-sample R-squared values are 89%, 95%, and 98.5%,
respectively.

Our results demonstrate that deep neural networks can accurately learn pricing
functions and efficiently calibrate models to historical data for both structural and
reduced-form models of credit risk. Importantly, the deep learning approach does
not rely on the numerically intensive pricing techniques commonly used in the credit
risk literature. Once the deep neural network is trained, it can repeatedly and quickly
generate new term structures of credit spreads for different input parameters. In this
sense, our deep learning approach can save significant time and computing resources
compared to traditional pricing functions, which becomes particularly relevant in real-
time calibrations to historical data.

104 | Deep Learning Credit Risk Modeling Fall 2021

LITERATURE REVIEW AND CONTRIBUTION

Our primary contribution is introducing deep learning to the credit risk literature.
By proposing deep neural networks as highly accurate approximations for complex
credit risk models, we give academics and practitioners a new tool that simplifies
the testing and calibration of sophisticated models of default risk.

Our application of deep learning to structural credit models follows the recent
growing literature that applies neural networks to options pricing. Over the past
decade, an extensive body of literature developed around the application of machine
learning to options pricing. Ruf and Wang (2019) comprehensively review nonpara-
metric methods for options pricing. Liu, Oosterlee, and Bohte (2019) propose an
artificial neural network to approximate the Black and Scholes (1973) model and the
stochastic volatility model of Heston (1993). Our approach is also based on artificial
neural networks, but we consider a much broader set of models in the credit risk
space, with different levels of complexity. Liu et al. (2019) and Horvath, Muguruza,
and Tomas (2019) introduce a method for performing calibration by using neural
networks, and they calibrate the Heston model, the Bates model, and the Bergomi
model. We advance their approach, substituting the complex pricing functions with
trained neural networks, but we also propose a calibration of the full panel of historical
data rather than fitting the model each day to the cross-section. Of course, fitting a
model of credit risk cross-sectionally is not the same as fitting the options surface.
Usually, only a few data points in the term structure are available because of liquidity,
and credit spreads do not include a moneyness dimension. Compared to options
prices, the cross-sectional dimension of credit risk is much smaller. Our approach
holds the model parameters static while allowing stochastic state variables—and thus
also serves as an additional test of the capability of deep learning pricing models to
calibrate the time variation as well as the cross-maturity variation. We are the first to
apply deep learning to both structural models and reduced-form models of credit risk.

Our calibration exercise provides an additional contribution to the literature that
centers not only on the modeling aspect but also on the application of the models
to historical data.

Researchers often try to understand historical credit risk dynamics and then
extrapolate default predictions as part of a trading or risk management system. The
proposed NN-UKF approach facilitates such applications. After training the appropri-
ate deep learning model, a researcher can perform multiple calibrations, using the
trained model in a faster and more computationally efficient manner. When analyzing
complex credit risk models without closed-form solutions, our approach can reduce
both the time and computing resources expended for calibration.

More generally, our work fits into the literature on applying machine learning to
empirical finance. Early work by Hutchinson, Lo, and Poggio (1994) employs a non-
parametric method to estimate the pricing formula for derivatives. More recently, Gu,
Kelly, and Xiu (2020) explore a comprehensive set of machine learning techniques for
cross-sectional asset pricing. Feng, Polson, and Xu (2019) describe a deep learning
approach to build portfolios from firm-specific characteristics. Along the same lines,
Gu, Kelly, and Xiu (2019) model factor exposures as a flexible nonlinear function of
characteristics, using autoencoder neural networks. Feng, Giglio, and Xiu (2020)
propose a model selection method to evaluate new factors. We contribute to this
broadening body of literature by applying deep learning to credit risk models.

The article is structured as follows. In the next section, we summarize some of the
important credit risk models. We then briefly review neural networks and discuss our
empirical choices. We demonstrate that deep learning can accurately predict credit

The Journal of Fixed Income | 105Fall 2021

spreads and show how deep learning can be used in calibrating credit risk models.
In the last section, we offer several conclusions.

CREDIT RISK MODELING

A credit risk model captures the probability of default over a prespecified time
horizon. Consider a firm i that issues a $1 risky zero-coupon bond due in T years. The
bond price at time t, Pi,t (T), therefore is the probability-weighted discounted cash-
flow at maturity. The bondholder either receives the full face value if the issuer does
not default or collects the recovery amount RR, $0 ≤ RR ≤ $1 if the issuer defaults
before maturity, as expressed by

P T D CQDF RR CQDF

D LGD CQDF
i t i t i t

i t

() [1$ (1)]

[1]
, , ,

,

= × × − + ×
= × − × (1)

where D e r Tt= − is the continuous discount function with risk-free rate rt, LGD = (1 - RR)
is the loss given default, and CQDFi,t is the cumulative default probability in T years.
Assuming a constant probability of default PDi,t, the cumulative default probability is
then computed as CQDFi,t = 1 - (1 - PDi,t)

T.2
Many researchers and practitioners commonly assume a constant LGD between

45% and 75%, depending on issuer (e.g., a company or a country) and on issue-specific
characteristics such as firm size, seniority, duration, sector, and rating.3 In our analy-
sis, we set the LGD at 55%. Our approach can easily accommodate other LGD values
or a more complex setting where the LGD is directly modeled.

If we rewrite P T ei t
y Ti t(),

,= − where yt represents the risky-bond yield, the credit
spread si,t = yi,t - rt can be obtained by rearranging Equation 1 as

 s
T

LGD CQDFi t i t

1
ln[1], ,= − − × (2)

The credit risk literature addresses two main types of models: structural and
reduced-form. Structural models, first introduced by Merton (1974), link the probability
of default to the capital structure of a firm. This probability is modeled as a function
of the issuing firm’s economic fundamentals and is derived from the insight that a
firm’s equity value is functionally a call option on its asset value. Therefore, the risky
debt embeds a (short) put option.

In reduced-form models, the default event is modeled as a statistical process.
The most common specification includes a Poisson process defining the intensity
and timing of the default. Structural models are primarily designed for a single firm
(more recently by Du, Elkamhi, and Ericsson 2019, among others) or adapted to a
panel of firms (as by Kelly, Manzo, and Palhares 2020). In contrast, reduced-form
models prove particularly useful when defining the capital structure of an entity is
difficult, as in the case of sovereign default risk (Pan and Singleton 2008, Longstaff
et al. 2011, and Manzo and Veronesi 2016).

2 If PDi,t represents the 1-year probability of default, then T is expressed in years. For example, if
PDi,t = 2.5%, the probability of defaulting over the next five years is CQDFi,t = 1 − (1 − 2.5%)5 = 11.89%.

3 Some evidence exists that LGD is not constant as recovery rates tend to correlate negatively with
default rates over the business cycles (e.g., Altman et al. 2005). This effect is mainly relevant for cor-
porate defaults; it is less applicable to sovereign defaults where the expected recovery is a function of
the size of the country and the size and distribution of its external debt. However, separately identifying
PD and LGD is difficult in practice because the identification depends on the parameters governing PD
(Pan and Singleton 2008).

106 | Deep Learning Credit Risk Modeling Fall 2021

STRUCTURAL MODELS OF CREDIT RISK

Merton (1974) provides the foundational work for structural models by introducing
a link between the credit and options markets. In structural models of credit risk, the
credit spread is computed from the put option price. This link will help us construct
more complex models by exploiting the modeling techniques developed in the options
literature (Carr and Madan 1999).

In the following sections, we review the Merton (1974) model, discuss the Merton
(1976) and Kou (2002) models that introduce jump risk, and then present a gen-
eral model with three stochastic state variables that subsumes several others. We
subsequently present a more detailed overview of the options pricing based on the
characteristic function.

Merton Model (1974)

Consider a company with outstanding debt at face value D and maturity T. Under
the assumption that default can only occur at T, the shareholder faces two possible
scenarios. First, if the company’s asset value is sufficiently high to repay the debt,
AT > D, then the creditor is paid in full, and the shareholder can claim the difference
AT - D. Second, if the company’s asset value lies below the debt face value, AT <
D, the creditor claims the full value of the company’s asset—that is, the firm goes
bankrupt, and the shareholder receives nothing. The shareholder payoff is basically
the same as a call option on the asset value of the firm with strike price D, that is,
ET = max (AT - D, 0) := (AT - D)+.

To formalize this concept, Merton (1974) assumes that the asset value of the
company evolves as a geometric Brown motion described by

dA

A
r q dt dWt

t
t()= − + σ (3)

where r is the risk-free rate, q is the dividend yield, and σ is the asset volatility.4
Leverage is defined as the present value of the debt divided by the asset, L = De-rT ⁄A0.
We can express the present value of equity as the current price of the call option

 E A N d L N d[() ()]0 0 1 2= + × (4)

d

L
T

T d d T
log 1

2
;1 2 1=

−
σ

+ σ = − σ (5)

where N(·) represents the cumulative distribution function of a standard normal dis-
tribution.

The bondholder’s payoff at maturity T thus is expressed as

min A D A A D

D D A
T T T

T

(,) ()

()

= − −

= − −

+

+
 (6)

 D ET= − (7)

4 This process is defined under the risk-neutral Q probability measure, so the drift is the risk-free
rate. The market price of risk is f = (μ − r)/σ where μ is the mean rate of asset return.

The Journal of Fixed Income | 107Fall 2021

The price of a defaultable bond can then be computed as

 D e e PutyT rT
0 0≡ = −− − (8)

where y is the yield of the risky bond and Put0 is the price of a put option with strike
price D. The credit spread s can be calculated as

s y r
T

Put L

T
N d L N d

1
log(1 /)

1
log(() / ())

0

1 2

≡ − = − −

= − − +

(9)

Equation 8 highlights an important and general feature of structural models: the
credit spread s is a function of a put price.

Adding Jump Risk

Despite the elegance of the Merton (1974) model, its assumption of Gaussian
shocks in the asset growth dynamics does not make it a good candidate model
to explain observed credit spreads, especially of highly rated companies,5 in part
because Gaussian shocks do not generate enough tail variation in the asset growth
distribution. To capture this empirical behavior, Merton (1976) and Kou (2002) intro-
duce tail risk in the form of a jump process in the asset dynamics. They modify the
asset growth process in Equation 3 to produce

dA

A
r q dt dW J dp

dp
dt

dt

t

t
t() (1)

0 with prob. 1

1 with prob.

= − − λξ + σ + −

=
− λ

λ

(10)

where dp is a Poisson process, independent of dWt, with constant jump intensity l;
J is a random variable that captures the jump size; and x = E[J - 1] is the Poisson
compensator that adjusts the drift of the asset growth to guarantee risk neutrality.
When dp = 1, the asset value jumps by JA.

Merton (1976) and Kou (2002) differ in their definition of the jump process.
Merton (1976) specifies log-normal distributed jumps, J N J j~ (,)2−µ σ , with constant
Poisson intensity l and expected jump size of e J J 1.5 2

ξ = −−µ + σ . Kou (2002) proposes
an asymmetric double-exponential jump with density, expressed as

v p e p e() 1 (1) 10 0{ }ξ = λ α + − α+

−α ξ
ξ≥ −

−α ξ
ξ<

+ −

 (11)

where p is the probability of a positive jump and a+ and a- are the positive and nega-
tive jump sizes, respectively. The idea behind asymmetric jumps is motivated by the
empirical observation that financial asset returns are left-skewed.

To compute the credit spreads for these models, we must solve for the options
prices. We describe each model’s characteristic function associated with the probabil-
ity of the option finishing in the money (ITM). This probability determines the price of

5 While empirical specifics are outside of the scope of this article, it is worth noticing that mixed
evidence exists on the ability of the classical Merton (1974) model to match historical spreads. Huang,
Shi, and Zhou (2020) conduct a specification analysis of five structural models and strongly reject the
Merton (1974) model and two diffusion-based models with a flat default boundary; however, they do find
that models with jump risk improve the fit of observed credit spreads. In contrast, Feldhütter and Schae-
fer (2018) argue that a proper calibration to individual firms leans in favor of the Merton (1974) model.

108 | Deep Learning Credit Risk Modeling Fall 2021

an option. Carr and Madan (1999), among others, show that when this characteristic
function is available in closed form, the option price can be obtained by applying the
fast Fourier transform. We use this approach to price more complex models.

The closed-form characteristic function of the Merton (1976) model is stated as

u u u i e iu eT

iu uJ J J J() exp
1
2

() (1) (1)2 .5 .52 2 2{ }φ = − + σ − λ − + −
− µ − σ −µ + σ (12)

The characteristic function of the Kou (2002) model is expressed as

u iu T u T T
p

iu
p
iu

p p

T () exp
1
2

1

1
2 1

1
1

2 2

2

φ = ω − σ + λ
α −

−
−

α +

ω = − α − λ
α +

−
−

α −

+ −

+ −

 (13)

In the next section, we introduce models with time-varying volatility and jump risks.
For these models, the advantage of the characteristic function approach becomes
more obvious.

Stochastic Volatility and Stochastic Jumps

Constant volatility and constant jump risks characterize all of the credit risk mod-
els discussed so far. However, these models exhibit a pricing bias (Duan 1999). In
fact, the empirical findings of higher implied volatility in the out-of-the-money region
(called the volatility smile) is a direct violation of constant volatility and tail risk. Du,
Elkamhi, and Ericsson (2019) conclude that the inclusion of time-varying volatility and
jump risk can improve the ability of the model to capture time variation in volatility as
well as variation in the term structure of default spreads. Similarly, Kelly, Manzo, and
Palhares (2020) demonstrate that systematic volatility and jump risk are needed to
match a panel of credit spreads.

Motivated by the empirical findings, we consider a credit risk model that incor-
porates more complex time-varying dynamics. We allow two volatility processes and
a jump process, with intensity driven by both volatility shocks and an independent
stochastic component.6 We modify the asset growth dynamics in Equation 3 to include
additional stochastic processes so that

dA

A
r q dt v dW v dW e dJ

dv k v v dW

dv k v v dW

a v v z

dz k z z dW

E Av

E Av

t

t
t t t t t

q
t

t v v t v t t
v

t v v t v t t
v

t t t t

t z z t z t t
z

J() (1) ()

()

()

()

()

[]

[]

1, 1, 2, 2,

1, 1, 1,

2, 2, 2,

1, 2,

1 1

2 2

1 1 1

1

2 2 2

2

= − − λ ξ + + + − λ

= θ − + σ

= θ − + σ

λ = × + +

= θ − + σ
= ρ
= ρ

−

 (14)

6 Carr and Wu (2007) document an empirical relation between the currency option-implied volatility
and the sovereign CDS spreads, and they model the default intensity as a function of this stochastic
volatility. Kelly, Manzo, and Palhares (2020) employ a similar approach to tie the systematic stochastic
volatility of the aggregate asset growth to the jump intensity for pricing the risk of safe companies at
short maturities.

The Journal of Fixed Income | 109Fall 2021

where the volatilities v1,t and v2,t and the independent component of jump intensity zt all
follow mean reverting processes with mean reversion speed ki, mean reversion level
qi, and volatility σi with i ∈ {v1, v2, z}. The correlation parameters r1 and r2 capture the
interaction between volatility and asset growth. We allow volatility variation to drive
the default intensity through the loading a and the independent variation governed
by mean reverting process zt.

The general specification of the model in Equation 14 incorporates the following
models, with v1,t, v2,t, lt, and x defined in Equation 14:

§	Heston (1993) model (SV), noted as

dA

A
r q dt v dWt

t
t t() 1, 1,= − + (15)

§	Stochastic volatility and stochastic jump (1SV1SJ), expressed as

dA

A
r q dt v dW e dJt

t
t t t

q
t

J() (1) ()1, 1,= − − λ ξ + + − λ− (16)

§	Two stochastic volatilities and stochastic jump (2SV1SJ), specified as

dA

A
r q dt v dW v dW e dJt

t
t t t t t

q
t

J() (1) ()1, 1, 2, 2,= − − λ ξ + + + − λ− (17)

§	Stochastic jump only (0SV1SJ), expressed as

dA

A
r q dt e dJt

t
t

q
t

J() (1) ()= − − λ ξ + − λ− (18)

§	Two stochastic volatilities (2SV), noted as

dA

A
r q dt v dW v dWt

t
t t t t() 1, 1, 2, 2,= − + + (19)

Empirical research indicates that the credit term structure of single-name entities
is primarily driven by one factor that captures parallel shifts in the term structure—a
level factor (Pan and Singleton 2008, Manzo 2013). The more complex multifactor
structure introduced in this section enables researchers to better understand richer
dynamics, such as systematic components in credit risk.

Option Pricing Based on the Characteristic Function

In this section, we review a common options pricing technique. To price an option,
we must compute the probability of the option finishing in the money. For a European
call option on a firm’s asset A with debt maturity T and face value D, the current price
is expressed as

 c A De rT
1 2= Π − Π− (20)

110 | Deep Learning Credit Risk Modeling Fall 2021

with

A D
e u

iu
du

e u i
iu i

du

T

iu D
T

iu D
T

T

Pr()
1
2

1 ()

1
2

1 ()
()

2 0

ln()

1 0

ln()

∫

∫

Π = > = +
π

ℜ
φ

Π = +
π

ℜ
φ −

φ −

∞ −

∞ −
 (21)

where Π2 is the risk-neutral probability of finishing in the money and Π1 is the delta,
both defined on the set of real number R(·). fT(u) is the characteristic function of aT
= ln(AT), that is, fT(u) = E[eiuaT].

Given a closed-form characteristic function fT(u), Carr and Madan (1999) propose
using the fast Fourier transform to convert the characteristic function into a prob-
ability. Carr and Madan (1999) provide a numerical tool to calculate the integral in
Π1 and Π2, and they introduce a modified call price that makes the pricing function
square-integrable. The integral requires a user-defined upper bound that is typically a
power of the number 2. The modified call price is based on an additional parameter
a that can be either optimized or set at a rule-of-thumb value of 0.75. Both the upper
bound and a govern the approximation error of the numerical pricing function. The
higher the precision (e.g., an upper bound of 214), the slower the pricing function.
If we pair high precision with an optimization routine for a, we can further slow the
computation of options prices. If we want to accelerate the pricing function, we have
to accept lower precision.

This tradeoff between speed and precision constitutes a central feature in numer-
ical methods. We demonstrate that our deep learning approach offers an alternative
technique for computing credit spreads, potentially bypassing this tradeoff. Once the
deep learning models are trained, they can quickly and accurately calculate credit
spreads for new parameters under models of varying complexity.

Reduced-Form Models of Credit Risk

Although the link between the default probability and the capital structure offers
an attractive economic intuition, structural models may not easily apply when the
capital structure is complex (e.g., when the issuer is a country or a municipal govern-
ment). Reduced-form models overcome this issue by defining a statistical process for
the default event, with arrival governed by an intensity-based or hazard rate process.

The seminal work of Jarrow and Turnbull (1995) introduces the first reduced-
form model of credit risk, and an extensive body of literature develops around this
approach. In this article, we focus on the Pan and Singleton (2008) model, which
describes default risk by a stochastic log-normal intensity that can generate fatter
tails than a Gaussian process. The default probability does not have a closed-form
solution. Calculating this probability requires a numerical method that can be com-
putationally intensive.

Unlike the structural models that explicitly price the payoff of a bond, the Pan
and Singleton (2008) model is designed for credit default swap (CDS) spreads. Given
its swap structure, a CDS contract is priced differently than a bond. For a CDS,
two parties are involved: the seller and the buyer. The buyer commits to quarterly
payments of the premium CDSi,t(T) to hedge the default risk of entity i over T years
(i could be a single firm, a portfolio of firms, or a country). The discounted value of
these payments is then

The Journal of Fixed Income | 111Fall 2021

E e D E et

j

T
r ds

t j
j

T

t

dss s
t

t j

s
t

t j

Premium Leg 4 4
1

4

,
1

4.25 .25

 ∑ ∑= × ∫

 = × ∫

()

=

− +λ

=

− λ
+ +

 (22)

where the second row follows from the assumed independence between the interest
rate rt and the default rate lt and where Dt,j is the risk-free discount function.

The seller commits to pay the loss given default. The default leg is expressed as

LGD E e du

LGD D E e du

tt

t T

u

r ds

t ut

t T

t u

ds

s s
t

u

s
t

u

Default Leg

,

∫

∫

= × λ ∫

= × λ ∫

()+ − +λ

+ − λ
 (23)

where LGD is the loss given default and E et u

dss
t

u

 λ ∫

− λ
 represents the default prob-

ability.
The par spread is defined as the spread where the default leg equals the premium

leg at the inception of the contract, and it can be obtained by making the calculation7

CDS T

LGD E e du

E e
i t

tt

t T

u

r ds

t
j

T
r ds

s s
t

u

s s
t

t j

4
,

1

4 .25

∫

∑
() =

× λ ∫

× ∫

()

()

+ − +λ

=

− +λ
+

 (24)

Pan and Singleton (2008) assume a log-normal mean reverting process for the
default intensity, as noted in

 d k dt dBt t tln (ln)λ = θ − λ + σλ (25)

where k is the mean reversion speed, q is the long-term average intensity, and σl is
the volatility. Although the log-normal assumption offers the advantage of generating
fatter tails compared to a normal distribution—thus making the default event more
likely—the probability of default is not available in a closed-form solution. In fact, Pan
and Singleton (2008) employ a fully implicit finite-difference method to approximate
this probability on a grid. Like the options pricing based on the characteristic function
(described in the previous section), this method can be computationally intensive.

DEEP NEURAL NETWORKS

We use neural networks to approximate the nonlinear relationship between model
parameters and credit spreads. In this section, we provide an overview of neural
networks and discuss our empirical choices.

Neural networks developed separately in statistics and artificial intelligence
(Hastie, Tibshirani, and Friedman 2009). Within statistics, neural networks research
grew from the areas of semiparametric statistics and smoothing. In artificial intelli-
gence, neural networks seek to model biological neural networks with individual arti-
ficial neurons (nodes). Neural networks have evolved into one of the most important

7 In 2009, the ISDA issued the “Big Bang” protocol that incorporated fixed coupons in the CDS
contract. For North American contracts, this coupon is either 100 basis points or 500 basis points. In
this article, we do not take into account the coupon structure and the pricing of the so-called par spread.

112 | Deep Learning Credit Risk Modeling Fall 2021

machine learning algorithms, with broad applications in many areas, including speech
recognition, machine translation, and computer vision.8

Single-Layer Neural Network

A neural network is a system of nodes that can learn the relationship between
any sets of inputs and outputs. A simple neural network contains only a single hidden
layer. Suppose that we are trying to predict a continuous variable Y with N-dimen-
sional input X. In an ordinary least squares regression, the model predicts Y as a
linear function of X. A single-layer neural network introduces an intermediate step
that involves a nonlinear transformation σ(·) of a linear function of X, Xm m0

�α + α . The
final prediction for Y is then a linear function of this transformation, expressed as

 = σ α + α =Z X m Mm m m(), 1, ...,0
� (26)

 Y Zk0
�= β + β (27)

where Zm represents the M nodes in the hidden layer. The nonlinear transformation σ(·)
is called the activation function. Commonly used nonlinear activation functions include
the hyperbolic tangent function, sigmoid functions, and rectified linear unit (ReLU). 9 If
the activation function σ(·) were linear, we recover a linear relationship between X and
Y that can be captured by an ordinary least squares regression. Although each node in
the neural network embeds a simple nonlinear transformation, the network combines
many nodes to accommodate a much more complex relationship between X and Y.

When modeling credit risk, input X represents the set of model parameters while
output Y specifies the credit spread for a single maturity. For example, in the Heston
(1993) model, X includes the parameters associated with the stochastic volatility
process:

 (1) mean reversion speed k,
 (2) relative volatility of volatility σ,
 (3) mean reversion level q,
 (4) correlation between asset growth and volatility r,
 (5) initial level of stochastic volatility v0,
 (6) leverage, and
 (7) maturity.

The model parameters in a neural network are called weights. Each hidden node
Zm depends on all the inputs X and weights a, and the output is a function of Zm and
weights β. To operationalize the neural network, we estimate the model’s weights
in a training phase. During training, the optimal weights result from an optimization
procedure that minimizes a cost function. We use the common mean squared error
approach as the cost function for predicting continuous variables. This choice also
aligns with the way pricing models are typically calibrated to actual data.

Deep Learning

Neural networks represent a flexible methodology for function approximation.
Cybenko (1989) demonstrates that a single hidden layer containing a finite number
of nodes can approximate arbitrary continuous functions—a result known as the

8 Goodfellow, Bengio, and Courville (2016) offer a more in-depth treatment.
9 The hyperbolic tangent function is tanh (x) = (ex – e-x)/(ex + e-x); the sigmoid function is σ(x) = 1/

(1 + e-x); and the ReLU is σ(x) = max (0, x).

The Journal of Fixed Income | 113Fall 2021

universal approximation theorem. In practice, with one hidden layer, the number of
nodes needed to approximate complex functions could be quite large.

We can generalize single-layer neural networks by increasing the number of hid-
den layers to further enlarge the set of possible models, allowing for more complex
nonlinearities. Rather than using one hidden layer with a large number of nodes, we
could incorporate multiple hidden layers, each with fewer nodes, and achieve the
same level of complexity.

In the field of artificial intelligence, the history of neural networks extends at least
back to the 1950s, when Rosenblatt (1958) introduces a single-layer neural network
to learn a linear decision boundary. For decades, scientists believe that sophisticated
neural networks are very difficult to train. As the computer infrastructure for deep
learning (both hardware and software) improves over time, interest in neural networks
resurges over the past two decades. In addition, neural networks also become more
powerful as the quantity of training data expands. Researchers begin to train deeper
neural networks than ever before, and the term “deep learning” emerges to refer to
neural networks with multiple hidden layers (Goodfellow, Bengio, and Courville 2016).
Deep learning now constitutes a highly active research area, and some researchers
have trained models with more than 1,000 hidden layers.

In our application to credit risk modeling, we consider multilayer neural networks
to approximate the pricing function (i.e., the relationship between the model parame-
ters and the credit spreads). In this sense, our deep learning models replace complex
solutions to credit risk models.

Empirical Choices

In the practical implementation of neural networks, the researcher must make a
number of empirical choices that can greatly impact the efficacy of neural networks
for approximating functions. In this section, we note the main considerations in the
practical implementation of a deep learning model. In particular, we discuss choices
relevant to the model architecture, training and test sets, activation function, batch
size, and number of epochs. We also address predictive accuracy and the software
that we use to implement deep learning.

The architecture of the deep learning model refers to the arrangement of nodes
into layers. Although the universal approximation theorem states that a single-layer
neural network can approximate any continuous function, the theorem does not
specify the number of nodes needed to do so. For complex functions, the number of
nodes required in a single hidden layer could be very large. Researchers often employ
multiple hidden layers, so the number of nodes per layer can be greatly reduced. In
our implementation, we vary the number of hidden layers, depending on the complex-
ity of the credit risk model, and we fix the number of nodes at 100.10 The activation
function governs the nonlinearity embedded in each node; we use the ReLU.

Deep learning models must be trained to learn the relationship between inputs
and outputs. The training set, a collection of observations, is used to fit and optimize
the deep learning model. Learning is achieved by minimizing the cost function on the
training set. The fit on the training set is defined as an in-sample fit, similar to an
in-sample R-squared in a linear regression. Because the model uses the training set
to optimize weights, the value of the cost function on the training set is likely to exhibit
a downward bias relative to an out-of-sample fit. In our setting, we try to approximate
known model structures, so well-trained deep learning models should capture the

10 In unreported results, we compute the out-of-sample R-squared of trained neural networks with
10, 20, and as many as 150 nodes per hidden layer for one of the structural models (2SV0SJ) and for the
reduced-form model. We observe an increase in the out-of-sample R-squared for neural networks with more
than 60 nodes. However, after the network exceeds 100 nodes, we do not see significant improvement.

114 | Deep Learning Credit Risk Modeling Fall 2021

complete relationship between model parameters and credit spreads. Therefore, we
expect the deep learning models to achieve a high R-squared, close to 100%.

We train the deep learning models on simulated data, with 95% of the simulated
observations used for training and the remaining 5% reserved as the test set for
evaluating model performance. The test set is a collection of observations that the
neural network weights are not optimized on, so it serves as an out-of-sample test
for the model. A strong model shows accurate predictions on the test set as well as
the training set.

In the training phase, we need to learn the optimal weights of the neural network.
We use the Adam algorithm, a stochastic gradient descent method that employs
discrete steps to search for optimal parameters.11 Given the prediction error, weights
are updated by using a back-propagation algorithm. The researcher can choose the
number of samples to use at each iteration (i.e., the batch size), which we set to
1,024 observations. The batch size regulates the noise in the update. If the batch
size is too small, then the gradient calculation is subject to noisy sampling variation,
but frequent optimization updates could lead to faster learning. If the batch size is
too large, then computing the gradient entails less noise, but the model updates
could be very slow for a large data set.

The number of epochs defines how many times the deep learning model will
execute the entire training set to optimize model weights. For one epoch, the deep
learning model uses each observation once to update the model weights. We follow
the typical practice, which allows many epochs so that the deep learning algorithm
can run until the training error is sufficiently small. We set the number of epochs at
500 when training the deep learning models.

For the practical construction and implementation of deep learning models, we
use the Keras package in Python. The high-level Keras package implements deep
learning models without handling low-level operations such as tensor products or
numerical optimization schemes, enabling researchers to focus on modeling choices
rather than computational options.

USE OF NEURAL NETWORKS TO PREDICT CREDIT SPREADS

A credit risk model can be used as a pricing function: for a given set of param-
eters, the model generates a credit spread. In this section, we demonstrate that
deep learning can approximate this relationship between model parameters and
credit spreads. Similar to a pricing function, a deep learning model can produce
credit spreads for a given set of parameters, thus capturing the complexity of
the credit risk model.

We train deep learning models in two main steps. First, we simulate various
combinations of model parameters and credit spreads. Second, we train the deep
learning models on the simulated data so that they learn the pricing relationships
between model inputs and credit spreads. We thereby demonstrate that deep learning
models can accurately capture these relationships.

Simulated Data

Let fM(QM) be the pricing function for model M and model parameters QM where
M is one of the previously reviewed credit risk models. Our goal is using deep learn-
ing to approximate the pricing function fM. We generate simulated data of the form
{QM, fM(QM)} that we then use to train the deep learning models. We consider five

11 According to Kingma and Ba (2014), the Adam algorithm is “computationally efficient, has little
memory requirement, invariant to diagonal rescaling of gradients, and is well suited for problems that
are large in terms of data/parameters.”

The Journal of Fixed Income | 115Fall 2021

maturities: 1 year (1Y), 3 years (3Y), 5 years (5Y), 7 years (7Y), and 10 years (10Y).
For each model, we simulate 50,000 different combinations of model parameters
QM, using the Latin hypercube sampling (LHS) approach, which generates random
samples on a grid in a multivariate distribution, resulting in a more representative
sample from the parameter space than that derived from the same number of sam-
ples on a grid (Liu, Oosterlee, and Bohte 2019). As the dimension of the parameter
space increases, the number of data points required in a grid to cover the parameter
space expands exponentially, and the approach quickly becomes computationally
intensive. Latin hypercube sampling generates near-random samples of parameter
values even when the dimension of the parameter space is high. For each set of
parameter combinations, we use one of the identified credit risk models to compute
the credit spreads. For the structural models, credit spreads in the Merton (1974)
model are calculated in a closed-form solution; all other models employ the char-
acteristic function approach to compute the credit spreads. We follow the Pan and
Singleton (2008) model approach, applying a fully implicit finite-difference method
to numerically calculate the probability of default. For each model, with five different
maturities and 50,000 sets of parameter combinations, we produce an artificial data
set of 250,000 observations that we use to train the deep neural networks.

Exhibit 1 reports the upper and lower bounds for our parameter space. We set
the parameter bounds based on the empirical calibration exercises of, among oth-
ers, Pan and Singleton (2008) and Du, Elhamhi, and Ericsson (2019). For all of the
structural models, we set leverage between 0.01 and 0.99, thus including a range
of companies (from low-leverage to high-leverage firms).

Training and Evaluation

Using the simulated datasets, we train the deep neural networks. For each
model, we randomly divide the 250,000 simulated observations into training and

EXHIBIT 1
Simulated Set of Model Parameters

NOTES: This exhibit reports the parameter ranges used in our Latin hypercube sampling algorithm to draw 50,000 combinations.
For each model, the exhibit reports the range of parameter values as [lower bound, upper bound]. The 2SV1SJ model subsumes the
1SV1SJ, 0SV1SJ, and 2SV0SJ models. For the structural models, the leverage range is set to [0.01, 0.99]. Each set of simulated
parameter values is paired with five maturities: 1Y, 3Y, 5Y, 7Y, and 10Y.
aPlease refer to the models section for details on model specification and parameters.

Structural Models

σJ

–
[0.001, 1]

pup

ρAv

ρAv,i

μJ

µup

λ

σJ

µdown

�J

αvar

–
–

[0.001, 1]

[−0.99, −0.05]
[−0.99, −0.05]

[−0.99,−0.05]

[−2, 0]

–
–

[0.001, 1]

–
[0.001, 1]

[0.001, 1]

–
–

[0.001, 1]

–
[−2, 0]

[0.001, 1]

Reduced-Form Model

σa

v0

v0,i

z0

λ

λ

σvar

σvar,i

σz

σλ

�J

�var

κvar,i

kz

κλ

σJ

θvar

θvar,i

θz

θλ

Merton (1974)
Merton (1976)
Kou (2002)

Heston (SV)
Heston with jumps

2SV1SJ

Pan and Singleton (2008)

[0.001, 2]

[0.001, 1]

[0.001, 2]
[0.001, 2]

[0.001, 1]

[0.001, 1]

[0.001, 1]

[0.001, 1]

–
[0.001, 1]
[0.001, 1]

[0.001, 1]
[0.001, 1]

[0.001, 1]

[0.001, 1]

[0.001, 2]

–

–
[−2, 0]

[0.001, 2]
[0.001, 2]

[0.001, 2]

[0.001, 2]

[0.001, 2]

–

–
[0.001, 1]

[0.001, 1]
[0.001, 1]

[0.001, 1]

[0.001, 1]

[−7, 1]

116 | Deep Learning Credit Risk Modeling Fall 2021

test samples, assigning 95% of the observations to training and 5% to the test set
to evaluate the deep learning models. We standardize the simulated credit spreads
so that they have zero mean and unit standard deviation (by subtracting the mean
and dividing by the standard deviation). We follow the example of Horvath, Muguruza,
and Tomas (2019) and normalize the input parameters in the range -1 to 1, using
the upper and lower bounds in Exhibit 1, as defined in

 max min

max min

2 ()
1,1[]θ − θ + θ

θ − θ
∈ − (28)

where qmax is the upper bound, qmin is the lower bound, and q is the raw parameter
value. Normalizing inputs and outputs is common in deep learning because it acceler-
ates learning and enables faster convergence while potentially avoiding local optima.

Exhibit 2 depicts a schematic of a deep neural network that we build to learn the
pricing function of the Heston (1993) model. The Heston model is described by four
parameters governing the stochastic volatility (kv, qv, σv, and rvA), by the initial value

EXHIBIT 2
Deep Neural Network Used for the Heston Model

NOTES: This exhibit illustrates the deep learning architecture used to learn the pricing function of the Heston model. (1) The green layer
represents the inputs: four parameters describing the stochastic volatility process (kv, qv, σv, and rvA), the initial volatility, v0, and the
leverage Lev. (2) The middle blue panels represent three fully connected hidden layers with 100 nodes each. (3) The final red layer rep-
resents the outputs—a term structure of credit spreads for five maturities.

10Y

Input
Layer

Output
Layer

1st
Hidden
Layer
(100 nodes)

2nd
Hidden
Layer
(100 nodes)

3rd
Hidden
Layer
(100 nodes)

1Y

k
v

θ
v

σ
v

ρ
vA

v
0

Lev

3Y

5Y

7Y

The Journal of Fixed Income | 117Fall 2021

of stochastic volatility v0, and by leverage Lev. We use three hidden layers, each with
100 nodes. Each set of parameter combinations is passed to the first hidden layer
and then transformed using the ReLU activation function, which feeds sequentially
into the second and third layers. The output layer provides a term structure of credit
spreads for each combination of parameters. In the training phase, we obtain the
optimal weights that minimize the error between the simulated spreads and the
spreads calculated by the deep neural network.

In Exhibit 3, Panel 3A reports the common specification that applies to all the
deep neural networks. In particular, we split 250,000 simulated credit spreads into
95% training set and 5% test set, with a batch size of 1,024 observations, 500
epochs, and 100 nodes per hidden layer (Liu, Oosterlee, and Bohte 2019). ReLU
serves as the activation function.

Panel 3B (Exhibit 3) lists the specific architecture used for each model. We employ
three hidden layers for most of the models, except for the simplest structural mod-
els of Merton (1974, 1976) and Kou (2002); for these, we utilize two hidden layers.
This choice reflects differences in model complexity. Unlike the SVSJ models, the
three simplest structural models are all characterized by static parameters and no
time-varying state variables.

In addition, Panel 3C (Exhibit 3) notes the R-squared for each model and each
maturity computed on the test set. We compare the predicted credit spreads from
the deep learning models against the actual spreads. Across models and maturities,
we observe a high level of accuracy, close to 100% R-squared. The deep learning

EXHIBIT 3
Model Architectures and Test Set Performance

NOTES: This exhibit notes the architecture of the deep neural networks. Panel 3A reports the size of the simulated data, training
set, test set, and batch size. For each model, Panel 3B lists the number of hidden layers and the units per layer. Panel 3C notes the
R-squared on the test set for each time period.

Panel A: Common Specification

Simulated Data

Batch Size

Act. Fun

Train Size

Epochs

Output Fun

Test Size

Units (#nodes)

250,000

1,024

ReLU

95%

500

Linear

5%

100

Panel B: DNN Architecture

Models

Kou (2002)

1SV1SJ

Merton (1974)

Heston (SV)

2SV1SJ

Merton (1976)

Heston with jumps

0SV1SJ
2SV0SJ
Pan and Singleton
 (2008)

Hidden Layers

2

3

2

3

3
3
3
3

2

3

Panel C: Test Set R-Squared

1Y

1

1
1
1

0.999988

0.999831

0.999981

0.999733

0.999763
0.999651

3Y

1

1
1
1

0.999985

0.999930

0.999608
0.999652

0.999978

0.999807

5Y

1

1
1
1

0.999988

0.999921

0.999581
0.999649

0.999980

0.999804

7Y

1

1
1
1

0.999991

0.999891

0.999500
0.999652

0.999981

0.999798

10Y

1

1
1
1

0.999992

0.999850

0.999426
0.999653

0.999981

0.999751

118 | Deep Learning Credit Risk Modeling Fall 2021

models can accurately capture the relationship between the model parameters and
the credit spreads for the 10 models that we consider.

Therein lies the first main contribution of our article: deep neural networks can
learn both structural models and reduced-form models of credit risk, even when the
underlying design is complex (e.g., the 2SV1SJ model).

Computational Efficiency of Deep Neural Networks

How efficient are deep neural networks in pricing credit risk? We measure effi-
ciency as the speed of the model in generating credit spreads. This metric is particu-
larly relevant when (1) a complex model is used for calibration to historical data and (2)
the researcher must execute the pricing function many times to calculate the spreads.
We compute the average time, across five simulations, that each model requires to
produce a term structure of credit spreads. We then compare that time metric with
the time it takes for the trained deep neural networks to perform the same task.

Exhibit 4 reports the average time in seconds. Columns 1 through 5 note the time
recorded by each pricing function to build a term structure of spreads from a given
set of model parameters. Because numerical integrals are required, we must select
the degree of precision for computing the integrals. For structural models, we vary
the upper bound for the integral of the probability of finishing in the money in Equa-
tion 21 from 210 to 218 (210 discretizations give a less precise integral than 218). For
210 discretizations, the pricing function computes the credit spreads in about 0.025
seconds. However, when we aim for higher precision, the time to generate spreads
can range up to three seconds to four seconds. These few seconds may not seem
like a lot of time, but when credit term structures are computed for many different
input parameter combinations (e.g., during a calibration), thousands of iterations may
be needed to identify the optimal model parameters. The total time required would
differ greatly for 218 and 210.

For the reduced-form model, we vary the number of grid points (from 100 to
500) to approximate the intensity of default in Equation 22. More grid points would
lead to improved precision. For this model, we observe small differences across
precision levels, with the speed ranging from 0.10 seconds with 100 steps to 0.12

EXHIBIT 4
Efficiency of Deep Neural Networks

NOTES: This exhibit reports the average time in seconds that a model takes to generate a full term structure of credit spreads. Col-
umns 1 through 5 list the average speed of the pricing functions, from the least numerically precise to the most numerically precise.
The precision of structural models is given by the upper bound of the integral in Equation 21 that defines the probability of the option
finishing in the money. For the reduced-form model, precision is defined by the number of grid points of the default intensity. Column 6
notes the average speed for the deep neural networks. Column 7 lists the ratio of Column 3 to Column 6 as the relative efficiency.

Integral Upper Bound

0SV1SJ
1SV1SJ
2SV0SJ
2SV1SJ
Heston (SV)
Heston with Jumps

Intensity Step

Pan and Singleton
 (2008)

(1)

210

1/100

0.025
0.024
0.023
0.027
0.021
0.021

0.10

(2)

212

1/200

0.047
0.060
0.057
0.064
0.045
0.052

0.11

(3)

214

1/300

0.15
0.19
0.19
0.24
0.18
0.17

0.11

(4)

216

1/400

0.78
1.04
1.06
1.25
0.78
0.88

0.12

(5)

218

1/500

3.19
4.04
4.12
4.94
2.99
3.47

0.12

(6)

DNN

0.000998
0.000995
0.000995
0.000996
0.000996
0.000994

0.000993

(7)

Efficiency (3)/(6)

150
192
196
242
177
172

113

The Journal of Fixed Income | 119Fall 2021

seconds with 500 steps.12 However, when compared to the time that a deep neural
network takes to compute the term structure of credit spreads (Exhibit 4, Column
6), we observe significant differences. Deep neural networks generate the full term
structure in approximately 0.001 seconds, regardless of the complexity of the model
and regardless of whether the model is structural or reduced-form.

In Column 7 of Exhibit 4, we report the relative speed of deep neural networks
and traditional pricing functions. We compare the middle value for numerical precision
(Column 3) to the deep neural networks (Column 6). For the structural models, the
trained neural networks are about 150 to 200 times faster—the more complex the
underlying model, the greater the time savings from using a deep neural network.
For the reduced-form Pan and Singleton (2008) model, the deep neural network is
about 100 times faster.13

In our comparison, we must also take into account the training time for the deep
learning models. However, the training time for our deep neural networks is not pro-
hibitively long; on a standard personal computer with 16 gigabytes of RAM and four
cores, the most complex models require just over one hour to train. Once the deep
learning models are trained, they can save many hours of the researcher’s time in
calibration or other applications (when compared to numerical methods).

Deep neural networks can efficiently and accurately approximate the pricing func-
tion of a credit risk model. The natural follow-up question is whether trained neural
networks can replace the pricing function to calibrate the model to historical data.
We provide our answer in the next section.

DEEP LEARNING CALIBRATION

We demonstrate in the previous section how deep learning models can be used
to approximate the pricing function of credit risk models, accurately and efficiently
mapping the set of model parameters into credit spreads. A natural next step is
assessing whether we can use the trained deep neural networks to calibrate the
model to historical data.

For calibration, we select the structural (Heston 1993) stochastic volatility model
and the reduced-form model of Pan and Singleton (2008). In these one-factor models,
a single stochastic state variable drives the model dynamics. Empirically, the first
principal component on the term structure of single-name entities explains more
than 95% of the panel variation (Manzo and Veronesi 2016). Therefore, the one-fac-
tor structure in the Heston (1993) and Pan and Singleton (2008) models should be
sufficient to capture time series and cross-maturity variation in credit spreads.14

The goal of calibration is to choose a set of parameters that optimizes a specific
objective function. The most common objective function is derived from the assump-
tion that the credit risk model can price observed credit spreads, with a pricing error
that is assumed to have a known distribution. If we let CDSt(T) be the observed credit
spread at time t for the maturity T, then we can write it as

 CDS T f T St M M t t() (, ,) ε= Θ + (29)

12 The step, 1/m, defines how refined the grid is. As an example, if we assume a range for the
default intensity l between 0.000001 and 1, a step of 100 (500) will space l by 0.0099 (0.0019).

13 We run our models on a commercial Windows 10 machine with an Intel Xeon Silver 4110 CPU
(2.10GHz) with 32GB of memory.

14 We do not calibrate nonstochastic models because their static parameters are known violations
of time-varying volatility and jump risk.

120 | Deep Learning Credit Risk Modeling Fall 2021

where fM (⋅) is the pricing function, QM is the set of static model parameters, T is
the time to maturity, and St is the vector of state variables. As an example, for the
Heston (1993) model, QM is the set of parameters governing the stochastic volatility
process QM = {kv, qv, σv, rAv}, and the stochastic volatility is the sole state variable
St = vt. The pricing error term et is assumed to be normally distributed with a mean
of 0 and a constant variance 2

εσ (homoskedastic errors). Although a simplifying
assumption, homoskedastic errors help contain the number of parameters to esti-
mate M M, 2

ε{ }Θ = Θ σ+ . If we consider five maturities, for each time t, Equation 29
fits the full term structure—it relates the 5×1 vector of observed spreads CDSt(T) to
the 5×1 vector of model spreads fM (QM, T, St), for a given set of parameters and a
state variable. Note that for structural models, Equation 29 is also a function of the
“observed” leverage Lt, fM (QM, T, Lt, St).

The calibration provides us with the set of parameters MΘ̂ + associated with the
smallest pricing errors. This goal can be achieved by either minimizing the (weighted)
sum of squared errors or by maximizing the model’s log-likelihood.

We propose replacing the pricing function fM(⋅) with the trained deep neural net-
works NNM(⋅) and assuming the same linear error term as in Equation 29 to yield

 CDS T NN T St M M t t() (, ,) ε= Θ + (30)

We previously conclude that deep neural networks can accurately approximate the
pricing functions. By replacing pricing functions with deep learning models, we can
take advantage of the computational efficiency of the deep neural network without
sacrificing pricing accuracy.

We calibrate the models using the unscented Kalman filter. We cast the model
into a state-space representation, with the state equation represented by the sto-
chastic state variable. For the Heston (1993) model, the stochastic volatility is the
state variable. Its first and second moments are expressed as

= + θ −

=
σ

− +
θ σ

−

−
− ∆ − ∆

−
− ∆ − ∆ − ∆

E v v e e

Var v v
k

e e
k

e

t
Heston

t
k t

v
k t

t
Heston

t
v

v

k t k t v v

v

k t

[] (1)

[] ()
2

(1)

1

1

2
2

2
2

 (31)

For the Pan and Singleton (2008) model, the stochastic default intensity is the
state variable, with first and second moments defined as

λ = λ + θ −

λ =
σ

−

−
− ∆ − ∆

− ∆

E e e

Var
k

e

t
P S

t
k t

v
k t

t
P S v

v

k t

[] exp(ln() (1))

[]
2

(1)

&
1

&
2

2 (32)

where Dt = 1/52. The measurement equation is specified by Equation 30. Because the
measurement equation is nonlinear, the unscented Kalman filter accrues an advan-
tage over the extended Kalman filter: no need to derive analytical approximations
because the unscented Kalman filter approximates any equations in the distribution
space via sigma points (Wan and Van Der Merwe 2000). We call our approach, which
combines the unscented Kalman filter with deep neural networks, NN-UKF (the appen-
dix includes further technical details).

The deep neural networks are trained on standardized data. Therefore, in the
practical implementation, we standardize both the state equation and the parameters

The Journal of Fixed Income | 121Fall 2021

QM by using Equation 28 before feeding them into the
trained NNM(QM, T, St).

15 The deep learning models then
produce standardized credit spreads, which we trans-
form using the mean and variance of the observed
spreads. The final NN-UKF output is the model’s total
log-likelihood, which we aim to maximize to find the
optimal set of parameters QM+.

We choose American Express (AXP) as a random
name in the North American CDS universe, and we
collect weekly data from January 2001 to Septem-
ber 2014 for the five maturities (1Y, 3Y, 5Y, 7Y, and
10Y). Our initial sample is limited by the availability
of the CDS universe, which developed in the early
2000s. In the calibration exercise, our goal is to stress
the approximating pricing function in the presence of
relevant observable inputs, such as leverage for the
structural model, as well as a multiyear period that
spans normal and distressed periods, including the
Great Recession. We collect annual accounting data
from Google Finance and measure leverage as the
ratio of total liabilities over the book value of asset.
We assume that leverage is constant within each year
and that it is consistently high, ranging between a
maximum of 0.93 in 2009 to a minimum of 0.87 in
2014. We also calibrate a model where leverage is
constructed using the asset, that is, the sum of total

liabilities and market capitalization. Compared to the book value, the market value
of asset adds time variation to the observed leverage. Consequently, we expect the
market value to improve the model fit to historical data.

In our calibration, we assume a risk-free rate of zero, an assumption that does
not materially affect our results because CDS spreads display low sensitivity to inter-
est rates (Duffie 1999). We calibrate both models under the risk-neutral probability
measure, but our proposed NN-UKF approach is flexible, accommodating the inclusion
of a market price of risk in the volatility and intensity dynamics.

Exhibit 5 notes the calibrated parameters, with their numerical standard errors
in parentheses. In both the structural models and the reduced-form models, the
underlying state dynamics show (1) persistent variation in volatility, with low mean
reverting speeds of 0.001; and (2) less persistence for the default intensity, with a
coefficient of 0.048 for the reduced-form model. However, the large standard errors
for both models highlight the empirical challenge in identifying the mean reversion
speed. The long-run volatility is 13.4% for the Heston (1993) model with a leverage
effect where the correlation between asset value and volatility is -93.6%. In the Pan
and Singleton (2008) model, the volatility of the default process is about 36%, and
the long-run default intensity is 56.6% (exp(-0.569)), implying an average default
jump approximately every two years (1 / ˆ 1.8)θ =λ .

Exhibit 5 also reports the goodness of the fit as measured by the in-sample
R-squared. The high R-squared reflects small pricing errors with low volatility. For
the Heston (1993) model, the definition of leverage matters. Using the market value
of leverage, we observe an in-sample R-squared of 95%, higher than the calibration
under the book value of leverage (88.6%). The R-squared is even higher for the Pan
and Singleton (2008) model, reaching 98.5%. Evidently, deep neural networks not

15For structural models, we also scale the observed leverage.

EXHIBIT 5
Estimated Parameters and In-Sample R-Squared for
Model Calibration

NOTES: This exhibit lists the calibrated parameters, with the
numerical standard errors in parentheses, for the structural
Heston (1993) model and the reduced-form Pan and Singleton
(2008) model on the term structure of CDS spreads of Amer-
ican Express (AXP). The data are weekly, from January 2001
to September 2014. The Heston (1993) model is calibrated
using leverage constructed with the book value as well as the
market value of asset. Calibrations use the neural network–
based unscented Kalman filter (NN-UKF) implemented under the
risk-neutral probability measure. The parameter σe is the
standard deviation of the pricing error. R2 is the in-sample
goodness of fit. Please see the models section for model speci-
fication and parameters.

Model

Heston SV

Pan and
 Singleton
 (2008)

Calibrated
Parameters

kv

0.001

kλ

0.037

θv

0.135

θλ

0.375

−

ρAv

−0.977

σv

0.136

σλ

0.393

σ

σ

0.0000

0.0009

In-Sample
R2 (%)

89.3

96.9

122 | Deep Learning Credit Risk Modeling Fall 2021

only can learn complex models of credit risk but also can be effectively employed for
model calibration to historical data.

In Panels 6A, 6B, and 6C, we plot the relation between the fitted CDS and the
actual CDS spreads. Because the R-squared measures are so high, we display the
scatter plots in log-log form to better visualize any mispricing. For each scatter plot,
we include a 45-degree line where data points would lie if the fitted spreads perfectly
matched the actual spreads. Overall, few deviations from the 45-degree line occur
across the five maturities for both the reduced-form model and the structural model
with market leverage. Across models, the largest pricing errors are evident for short-
term spreads. Furthermore, by combining a properly designed deep neural network
with the appropriate inputs (such as market leverage instead of book leverage),
the Heston (1993) model can achieve performance similar to that of the statistical
reduced-form model of Pan and Singleton (2008).

In Panels 6D, 6E, and 6F (Exhibit 6), we plot the state variables. Our proposed
NN-UKF approach generates endogenous state variables that capture relevant time
variations. The state variables experience meaningful variation across peaceful and
turbulent times; both the stochastic volatility of the Heston (1993) model and the

EXHIBIT 6
Graphical Representation of Model Calibration

NOTES: This exhibit plots the fit of the Pan and Singleton (2008) model, Heston (1993) model with the book value of leverage, and
Heston (1993) model with the market value of leverage. Panels 6A, 6B, and 6C are scatter plots for the fit of the full term structure
(in logarithms). The black 45-degree lines represent a perfect fit. Panels 6D, 6E, and 6F plot the endogenous state variables: the sto-
chastic volatility in the Heston (1993) model and the stochastic default intensity in the Pan and Singleton (2008) model. Both models
are calibrated to weekly data using the NN-UKF approach on the term structure of CDS spreads of American Express (AXP) from
January 2004 to September 2014.

20
04

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
05

Panel E: Hidden Volatility

20
04

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
05

Panel F: Hidden Volatility

200%

150%

100%

50%

0%

20
04

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
05

Panel D: Hidden Intensity

Im
pl

ie
d

St
at

e
Va

ria
bl

es

1y 3y 5y 7y 10y

6

4

2

–2

0

Observed CDS (logs)

Fi
tt

ed
 C

D
S

(lo
gs

)

2

Panel A: Pan and Singleton (2008)

4 60

–4

Panel B: Heston (Book Leverage)

Observed CDS (logs)
2 4 60

Observed CDS (logs)

Panel C: Heston (Market Leverage)

2 4 60

The Journal of Fixed Income | 123Fall 2021

stochastic default intensity of the Pan and Singleton (2008) model are particularly
high in the Great Recession of 2008.

CONCLUSION

In this article, we introduce deep learning into the credit risk modeling literature.
We demonstrate that deep neural networks can learn complex models of credit risk
with a high degree of accuracy. Using simulated data, we train deep learning models
to capture the pricing relationship that maps model parameters into credit spreads.
Applied on 10 different models of credit risk, our deep learning approach achieves
predictive sample R-squared of more than 99%. Moreover, our deep learning approach
provides a more computationally efficient alternative to traditional pricing functions:
deep neural networks can build a full term structure of credit spreads about 100 to
240 times faster than the pricing functions.

We apply our deep learning approach to model calibration. We combine trained
deep neural networks with the unscented Kalman filter to calibrate both structural
and reduced-form credit risk models. Our NN-UKF approach attains in-sample
R-squared of 88.6% and 95% for the structural model of Heston (1993) using book
leverage and market leverage, and 98.5% for the reduced-form model of Pan and
Singleton (2008).

Our findings represent an advancement in the credit risk modeling literature. Our
results suggest that researchers can approximate complex models of credit risk in
offline training and use them in an online calibration. This approximation can spare
the researcher from computationally expensive numerical techniques when the model
does not allow closed-form solutions. Although some initial computational cost is
incurred in training the deep learning models, these trained models can save signif-
icant time and computing resources in subsequent applications.

Our deep learning approach can be extended in several directions. Interest rate
models also employ (affine) reduced-form models to price, for example, the term struc-
ture of Treasury rates (Duffie and Kan 1996). Moreover, an extensive body of literature
addresses modeling baskets of CDSs, or CDS indexes such as the CDX and iTraxx
indexes (Brigo, Pallavicini, and Torresetti 2010). From a modeling perspective, one
challenge is properly capturing the default correlation, usually described by a normal
copula. Numerical precision becomes more relevant when the researcher is model-
ing the risk embedded in tranches of the index, such as collateral debt obligations.
Precision is usually achieved at the expense of intensive numerical procedures, such
as the systemic expected loss in Manzo and Picca (2020) that requires importance
sampling to generate enough rare events. Future research can adapt our approach
to approximate these complex functions.

Given the flexibility of deep learning models and their strong predictive power,
we are confident that appropriately specified deep learning models can be applied to
broader settings in economics and finance research. For example, the deep learning
approach may be used to approximate other models with time-varying asset volatility
(Du, Elkamhi, and Ericsson 2019), first passage time (Black and Cox 1976), optimal
capital structure (Leland and Toft 1996), and multifactor approaches (e.g., Kelly,
Manzo, and Palhares 2020).

APPENDIX

NEURAL NETWORK–BASED UNSCENTED KALMAN FILTER

The approach we propose for the model’s calibration to historical data is the unscented
Kalman filter (Wan and Van Der Merwe 2000) where the pricing equation is replaced by the

124 | Deep Learning Credit Risk Modeling Fall 2021

trained neural networks, an approach we call NN-UKF. We choose this approach because
it is flexible to the inclusion of the market price of risk in the dynamics of the state vari-
ables. However, our calibration exercise is under the risk-neutral probability measure.

We cast the models with stochastic factors into a state-space representation where
each process is a state variable and where the pricing function is the measurement
equation. In particular, we assume that the measurement equation is

 y NN St j t t|()= Θ + η
(A1)

where yt is the vector of observed credit spreads; NNj(⋅) is the trained neural network for
model j, parametrized by the set Q; St is the vector of state processes; and η ~ N(0, ση)
assumes homoskedastic pricing errors. For the Heston (1993) model (SV) and the Pan
and Singleton (2008) model, we use discretized versions of the volatility and default
intensity dynamics, respectively. The actual state equations are then their respective
means and variances, conditional on the (t - 1) information set It-1.

We compute the log-likelihood using the unscented transformation (UT) that employs
a set of sigma points to calculate the first two moments of the state and measurement
equations. In formulas, given initial states mt-1 = St-1 and covariance Pt-1, we form a matrix
Xt-1 of 2L + 1 sigma vectors, χi,t-1, with corresponding weights Wi, such that

()
()

()
{ }

()

()
()
()

()

= µ

= µ + + λ = …

= µ − + λ = + …

= λ + λ

= λ + λ + − α + β

= = + λ = …

− −

− − −

− − −
−

L i L

L i L L

W L

W L

W W L i L

t t

i t t V t
i

i t t V t
i L

m

c

i
m

i
c

1, ,

1, , 2

/

/ 1

1 / 2 1, , 2

0. 1 1

, 1 1 , 1

, 1 1 , 1

0
()

0
() 2

() ()

P

P

X

X

X

(A2)

where W is a set of weights determined by the scaling parameters l = a2(L + k) - L,
a = 1e-3, k = 0, and β = 2 and where the latter captures information on the Gaussian
distribution of the states.

By propagating these sigma points through the state equation, we obtain the time
(t - 1) ex ante forecast of time t states and measurements, expressed as

S

Y NN

t t t

t t t t |

| 1 1

| 1 | 1

X

S()
()= µ

= Θ

− −

− −

(A3)

where the sample mean and covariance are the weighted sample mean and covariance
of the posterior sigma points, that is

∑

∑

∑

∑

=

= − −
′

µ =

= − µ − µ
′

=
−

=
− −

=
−

=
− −

W

W

W

W

t i
m

i

L

i t t

t i
c

i

L

i t t t i t t t

t i
m

i

L

i t t

S t i
c

i

L

i t t t i t t t

()

0

2

, | 1

,
()

0

2

, | 1 , | 1

()

0

2

, | 1

,
()

0

2

, | 1 , | 1

y

P y y

P

y

Y

Y Y

S

S S
(A4)

The Journal of Fixed Income | 125Fall 2021

Given these estimated moments, the time t log-likelihood llkt(Q) is

y P yy yllk P CIV CIVt t t t t t t()

1
2

ln | |
1
2

() (), ,
1Θ = − − − ′ −−

(A5)

and the state update is

µ = µ + −

= +

CSt t t t
obs

t

S t S t t S t t

()

, , ,
'

y

P P Py

K

K K

(A6)

where CSt
obs is the time t observed term structure (1, 3, 5, 7, and 10 years), P Py yt S t t, ,

1K = × −

is the Kalman gain, and ∑= − µ −
′

= − −WS t i
c

i

L

i t t t i t t t,
()

0

2

, | 1 , | 1P yy S Y is the covariance between

the states and the measurement equation. Then, by replacing mt and PS,t as initial values,
we can compute new sigma points and obtain the likelihood at t + 1.

As the last step, we estimate the parameters by maximizing the sum of llkt, expressed
as

llk

t

N

t
ˆ : max

0
∑ ()Θ Θ

=

(A7)

In the practical implementation, we follow Kelly, Manzo, and Palhares (2020) and
employ a parallel unscented Kalman filter. The goal is further accelerating the calibration.
For each time t, we run isolated unscented Kalman filters that function as follows: given
the initial states, we obtain the pricing errors, update the states, and recompute the
pricing errors. We repeat this process about five times and then select the log-likelihood
that corresponds to the minimum sum of squared errors. Usually, a few iterations are
enough to observe a significant (exponential) reduction in the pricing errors.

DISCLAIMER, FUNDING, AND ACKNOWLEDGMENTS

The views expressed are those of the individual authors and do not necessarily reflect official
positions of Kepos Capital LP (Kepos). This article is not an offer to sell, or a solicitation of an
offer to buy, any investment product or services offered by Kepos. Kepos does not opine on the
accuracy or completeness of the information contained herein, and any information provided by
third parties is not independently verified by Kepos. All errors are our own.

The authors wish to thank a number of colleagues for helpful comments: Mark Carhart, Gior-
gio De Santis, Mark Huang, Arlen Khodadadi, Mike Lock, and participants at the Kepos Capital
seminar and the QuantInsti seminar.

REFERENCES

Altman, E. I., B. Brady, A. Resti, and A. Sironi. 2005. “The Link between Default and Recovery
Rates: Theory, Empirical Evidence, and Implications.” The Journal of Business 78 (6): 2203–2228.

Black, F., and J. C. Cox. 1976. “Valuing Corporate Securities: Some Effects of Bond Indenture
Provisions.” The Journal of Finance 31 (2): 351–367.

Black, F., and M. Scholes. 1973. “The Pricing of Options and Corporate Liabilities.” Journal of
Political Economy 81 (3): 637–654.

Brigo, D., A. Pallavicini, and R. Torresetti. 2010. Credit Models and the Crisis: A Journey into CDOs,
Copulas, Correlations and Dynamic Models. John Wiley & Sons.

126 | Deep Learning Credit Risk Modeling Fall 2021

Carr, P., and D. Madan. 1999. “Option Valuation Using the Fast Fourier Transform.” Journal of
Computational Finance 2 (4): 61–73.

Carr, P., and L. Wu. 2007. “Theory and Evidence on the Dynamic Interactions between Sovereign
Credit Default Swaps and Currency Options.” Journal of Banking & Finance 31 (8): 2383–2403.

Cybenko, G. 1989. “Approximation by Superpositions of a Sigmoidal Function.” Mathematics of
Control, Signals and Systems 2 (4): 303–314.

Du, D., R. Elkamhi, and J. Ericsson. 2019. “Time-Varying Asset Volatility and the Credit Spread
Puzzle.” The Journal of Finance 74 (4): 1841–1885.

Duan, J. C. 1999. “Conditionally Fat-Tailed Distributions and the Volatility Smile in Options.” Rotman
School of Management, University of Toronto, Working Paper.

Duffie, D. 1999. “Credit Swap Valuation.” Financial Analysts Journal 55 (1): 73–87.

Duffie, D., and R. Kan. 1996. “A Yield-Factor Model of Interest Rates.” Mathematical Finance
6 (4): 379–406.

Feldhütter, P., and S. M. Schaefer. 2018. “The Myth of the Credit Spread Puzzle.” The Review of
Financial Studies 31 (8): 2897–2942.

Feng, G., S. Giglio, and D. Xiu. 2020. “Taming the Factor Zoo: A Test of New Factors.” The Journal
of Finance 75 (3): 1327–1370.

Feng, G., N. Polson, and J. Xu. 2019. “Deep Learning in Characteristics-Sorted Factor Models.”
SSRN 3243683.

Goodfellow, I., Y. Bengio, and A. Courville. 2016. Deep Learning. MIT Press.

Gu, S., B. T. Kelly, and D. Xiu. 2019. “Autoencoder Asset Pricing Models.” Journal of Econometrics
222 (1): 429–450.

——. 2020. “Empirical Asset Pricing via Machine Learning.” The Review of Financial Studies
33 (5): 2223–2273.

Hastie, T., R. Tibshirani, and J. Friedman. 2009. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer Science & Business Media.

Heston, S. L. 1993. “A Closed-Form Solution for Options with Stochastic Volatility with Applications
to Bond and Currency Options.” The Review of Financial Studies 6 (2): 327–343.

Horvath, B., A. Muguruza, and M. Tomas. 2019. “Deep Learning Volatility.” SSRN 3322085.

Huang, J.-Z., Z. Shi, and H. Zhou. 2020. “Specification Analysis of Structural Credit Risk Models.”
The Review of Finance 24 (1): 45–98.

Hutchinson, J. M., A. W. Lo, and T. Poggio. 1994. “A Nonparametric Approach to Pricing and Hedging
Derivative Securities via Learning Networks.” The Journal of Finance 49 (3): 851–889.

Jarrow, R. A., and S. M. Turnbull. 1995. “Pricing Derivatives on Financial Securities Subject to
Credit Risk.” The Journal of Finance 50 (1): 53–85.

Kelly, B. T., G. Manzo, and D. Palhares. 2020. “Credit-implied volatility.” Accessed September
7, 2021 from https://www.aqr.com/Insights/Research/Working-Paper/Credit-Implied-Volatility.

Kingma, D. P., and J. Ba. 2014. “Adam: A Method for Stochastic Optimization.” arXiv preprint.
arXiv1412.6980.

Kou, S. G. 2002. “A Jump-Diffusion Model for Option Pricing.” Management Science 48 (8):
1086–1101.

https://www.aqr.com/Insights/Research/Working-Paper/Credit-Implied-Volatility

The Journal of Fixed Income | 127Fall 2021

Leland, H. E., and K. B. Toft. 1996. “Optimal Capital Structure, Endogenous Bankruptcy, and the
Term Structure of Credit Spreads.” The Journal of Finance 51 (3): 987–1019.

Liu, S., A. Borovykh, L. A. Grzelak, and C. W. Oosterlee. 2019. “A Neural Network-Based Framework
for Financial Model Calibration.” Journal of Mathematics in Industry 9 (1): 9.

Liu, S., C. W. Oosterlee, and S. M. Bohte. 2019. “Pricing Options and Computing Implied Volatilities
Using Neural Networks.” Risks 7 (1): 16.

Longstaff, F. A., J. Pan, L. H. Pedersen, and K. J. Singleton. 2011. “How Sovereign Is Sovereign
Credit Risk?” The American Economic Review 3: 75–103.

Manzo, G. 2013. “Political Uncertainty, Credit Risk Premium and Default Risk.” PhD dissertation,
August 31. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.439.5419&rep=rep1&-
type=pdf.

Manzo, G., and A. Picca. 2020. “The Impact of Sovereign Shocks.” Management Science 66 (7):
3113–3132.

Manzo, G., and P. Veronesi. 2016. “Sovereign Credit Risk.” Handbook of Fixed-Income Securities:
561–586.

Merton, R. C. 1974. “On the Pricing of Corporate Debt: The Risk Structure of Interest Rates.”
The Journal of Finance 29 (2): 449–470.

——. 1976. “Option Pricing when Underlying Stock Returns Are Discontinuous.” Journal of Financial
Economics 3: 125–144.

Pan, J., and K. J. Singleton. 2008. “Default and Recovery Implicit in the Term Structure of Sovereign
CDS Spreads.” The Journal of Finance 63 (5): 2345–2384.

Rosenblatt, F. 1958. “The Perceptron: A Probabilistic Model for Information Storage and Organi-
zation in the Brain.” Psychological Review 65 (6): 386.

Ruf, J., and W. Wang. 2019. “Neural Networks for Option Pricing and Hedging: A Literature Review.”
SSRN 3486363.

Wan, E. A., and R. Van Der Merwe. 2000. “The Unscented Kalman Filter for Nonlinear Estimation.”
In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and
Control Symposium, Cat. No. 00EX373: 153–158.

Yan, S. 2011. “Jump Risk, Stock Returns, and Slope of Implied Volatility Smile.” Journal of Financial
Economics 99 (1): 216–233.

To order reprints of this article, please contact David Rowe at d.rowe@pageantmedia.com
or 646-891-2157.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.439.5419&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.439.5419&rep=rep1&type=pdf

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.

