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ABSTRACT

Despite remarkable advances in Large Language Models (LLMs), a persistent
challenge remains: the potential for these models to acquire erroneous or outdated
information from their training data. Direct fine-tuning with data containing new
knowledge can be ineffective due to conflicts between old and new knowledge.
This paper proposes a novel fine-tuning paradigm called Delicate Fine-Tuning
(DFT ) that leverages parametric arithmetic to pinpoint the location of knowledge
and update only the minimal set of relevant parameters. Experimental results on
two publicly available datasets demonstrate that our proposed DFT significantly
improves the knowledge updating performance of full fine-tuning, consistently
outperforming existing baselines in most cases.

1 INTRODUCTION

Large Language Models (LLMs) exhibit remarkable proficiency in understanding and generating
natural language Brown et al. (2020); Raffel et al. (2020); Ouyang et al. (2022). Despite their
impressive learning capabilities, LLMs are susceptible to acquiring inaccurate knowledge from their
training corpora. Furthermore, the dynamic nature of real-world knowledge necessitates continuous
updates, as information that was once accurate may become outdated or invalid over time.

For instance, in 2020, the query ”Who is the President of the United States?” would have yielded
”Donald Trump” as the answer. However, the current answer is ”Joe Biden.” This exemplifies the
ongoing challenge faced by LLMs: the need for continuous updating to ensure they reflect accurate
and up-to-date knowledge.

Current approaches to model editing and knowledge updating typically involve augmenting the net-
work architecture (Dong et al., 2022; Huang et al., 2022; Raunak & Menezes, 2022), introducing
additional model parameters (Dai et al., 2023; Dong et al., 2022; Huang et al., 2022), or integrating
external knowledge bases (Dai et al., 2023; Dong et al., 2022; Huang et al., 2022). These methods
often necessitate more complex procedures than straightforward fine-tuning with new knowledge
(Zhang et al., 2022; Li & Liang, 2021; Hu et al., 2021).

At present, direct fine-tuning of the model remains the predominant method for incorporating new
knowledge.

During human cognitive development, individuals often encounter situations where new knowledge
conflicts with their existing understanding.

They usually remember both the new knowledge and the old knowledge simultaneously, and then
often get confused, leading to contradictions that make it difficult to learn the new knowledge. If
we directly modify the memory of old knowledge and original cognition, then the new knowledge
to be learned will not conflict with the original cognition and knowledge, which makes it better to
learn and absorb the new knowledge. For example, if people have been educated to believe that ”the
Earth is flat” since childhood, it would be challenging for them to accept the conflicting knowledge
that ”the Earth is round” when they become adults. Conversely, if they could directly modify their
memory of the erroneous knowledge ”the Earth is flat” to the correct knowledge ”the Earth is round,”
it would be much simpler.

So how do we locate the position of old knowledge and then update it accurately? Our research has
shown that when fine-tuning large language models, they tend to learn sentence structure, grammar,
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and style first, with knowledge being acquired last. Therefore, we control the variables to prevent
the model from learning sentence structure and stylistic information.

Inspired by the above empirical observations and (Ilharco et al., 2022)’s task arithmetic, we propose
a novel paradigm of knowledge updating called DFT (Delicate Fine-Tuning ). Specifically, DFT
begins by using the large language model to predict and generate an answer, resulting in a data point.
Next, DFT modifies only the key knowledge within the sentence, keeping the sentence structure and
style intact, creating a new data point. We then fine-tune the model separately with both data points,
recording the parameter changes. By comparing these parameter changes, we identify sections that
exhibit similar changes in direction. These sections, representing aspects that are not relevant to the
knowledge update, are discarded entirely.

We retain only the parameters exhibiting contrasting change directions, then compare their differ-
ences, rank those differences, and identify the top T % with the largest differences .Then update
the top T % of parameters , where T is a predefined threshold ratio. The whole process is repeated
iteratively until the model’s knowledge update is complete.

This paper makes the following contributions:

• We propose a novel fine-tuning paradigm “DFT (Delicate Fine-Tuning )” for knowledge
updating in large language models.

• Our experimental results show that DFT (Delicate Fine-Tuning ) improves the knowledge
updating performance across various fine-tuning methods and surpasses existing baselines
in most cases.

2 RELATED WORK

Currently, the method of knowledge updating and model editing (also known as knowledge editing)
for LLMs is mainly divided into two classes Yao et al. (2023); Wang et al. (2023b):

a. The method preserving model’s parameters

Adding Additional Parameters.

This approach involves injecting a small number of trainable parameters, representing new knowl-
edge, into the LLM while keeping its original parameters frozen . This technique, explored by
Dong et al. (2022); Huang et al. (2022); Raunak & Menezes (2022); Dai et al. (2023), allows for
efficient knowledge injection without retraining the entire model. Dong et al. (2022) proposed a
lightweight feed-forward network that incorporates additional parameters specifically tailored to
factual contexts, enabling knowledge generalization.Huang et al. (2022) developed a model edi-
tor named Transformer-Patcher, which sequentially corrects errors in LLM outputs by adding and
training a limited number of neurons within the transformer architecture.

Retrieve augmentation.

These methods rely on an external knowledge base containing new or corrected information, aiming
to amend the output of LLMs by incorporating retrieved knowledge relevant to the given prompt or
question. This approach, explored by Murty et al. (2022); Mitchell et al. (2022); Li et al. (2022);
Madaan et al. (2022), facilitates the integration of new knowledge into the model’s responses.

Mitchell et al. (2022) propose a memory module that stores manual edits, enabling a classifier to re-
trieve and apply the relevant knowledge.Madaan et al. (2022) leverage the memory of user feedback
to generate prompts that guide LLMs toward more accurate responses. Alternatively, Zheng et al.
(2023) utilize in-context learning to revise LLM outputs by extracting demonstrations from a corpus
based on similarity, eliminating the need for gradient calculations.

b. The method modifying model’s parameters

Fine-tuning has become a ubiquitous technique in NLP research, owing to the widespread adoption
of pre-trained models for downstream tasks. Its intuitive nature and effectiveness in imparting new
knowledge make it a valuable tool for model editing Zhu et al. (2020); Zhang et al. (2022); Yao et al.
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(2023). Recent advancements in parameter-efficient fine-tuning methods, such as Prefix-Tuning Li
& Liang (2021) and LoRA (Hu et al. (2021)), have further enhanced its applicability to knowledge
editing. Zhang et al. (2022) proposed an adaptive fine-tuning strategy that dynamically adjusts the
magnitude of parameter updates based on the importance of the weight matrix, thereby improving
efficiency and adaptability. Zhu et al. (2020) introduced a loss constraint that minimizes the impact
on irrelevant knowledge during fine-tuning, preserving the integrity of the base model. Similarly,
Lee et al. (2022) explored large-scale continual learning for knowledge updating through regularized
fine-tuning.

Meta-learning approaches aim to update knowledge within LLMs by adjusting their parameters
based on predictions from a well-trained hypernetwork. This technique, investigated by Sinitsin
et al. (2019); Mitchell et al. (2021); De Cao et al. (2021), enables efficient knowledge updates
without retraining the entire model. Mitchell et al. (2021) introduced an auxiliary network with
gradient decomposition, enabling efficient edits to LLMs based on a single input-output pair.De Cao
et al. (2021) proposed updating specific weights within a subset of modules using a hypernetwork
with constrained optimization.

Locate and edit targets the internal mechanisms of LLMs, aiming to modify specific parameters
and neurons to correct outputs based on knowledge-driven interventions Meng et al. (2022a); Dai
et al. (2022); Meng et al. (2022b); Santurkar et al. (2021); Geva et al. (2022). Geva et al. (2021)
discovered that the feed-forward network layers within transformers store key-value pairs associated
with specific knowledge. Meng et al. (2022a) employed a causal reasoning method to identify key
neuron activations and update factual associations by modifying feed-forward weights. To facilitate
large-scale knowledge editing, they introduced Meng et al. (2022b), a method that directly updates
thousands of memories within LLMs. Gupta et al. (2023) enhanced knowledge updating by opti-
mizing edit token selection and layer selection during the editing process. Yu et al. (2023) utilized
partitioned gradients to identify significant weights for unlearning biases in the model.

Hiyouga hiyouga (2023) developed the fastedit software framework, which enables convenient edit-
ing of models using causal reasoning. Zhang et al. Zhang et al. (2024); Wang et al. (2023a); Yao
et al. (2023); Cheng et al. (2023); Mao et al. (2023); Zhang et al. (2023) developed the EasyEdit
software framework, which makes it easy to use a variety of methods for editing models.

While numerous methods have been proposed for knowledge updating in LLMs, many necessi-
tate the introduction of additional knowledge bases, neural network modules, or model parameters.
This often leads to practical challenges, including increased model complexity and inference costs.
Therefore, this paper focuses on enhancing and refining fine-tuning methods as a more efficient and
practical approach to knowledge updating in LLMs.

3 TASK DEFINITION

This paper addresses the task of knowledge updating in large language models (LLMs). Given a pre-
trained model fθ and a set of input-output knowledge pairs Kold = (x1, y1), (x2, y2), ..., (xi, yi),
the objective is to modify the model parameters θ to obtain a new model fθ∗ that generates a corre-
sponding set of updated input-output pairs Knew = (x1, y

new
1 ), (x2, y

new
2 ), ..., (xi, y

new
i ). Here, i

represents the number of knowledge pairs to be updated.

Following the definition in (Yao et al., 2023), we can formally express this process and its objective
as:

fθ∗(xi) =

{
ynewi if xi ∈ N(xi)

fθ(xi) if xi ∈ other
(1)

where N(xi) represents xi itself and its equivalent neighbourhood.

The knowledge update task aims to modify the model’s responses only for xi and its equivalent do-
main N(xi), where N(xi) represents the neighborhood of xi encompassing semantically equivalent
instances. The goal is to update the answers associated with xi and its equivalent domain without
affecting the responses to other out-of-scope knowledge.

The effectiveness of knowledge updating is evaluated based on the following three metrics:
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a. Reliability

Measured as the average accuracy of the updated model fθ∗ on the new knowledge. This metric
assesses the effectiveness of the update process itself. For example, the answer to the question
”Who is the President of the US?” should be updated from ”Donald Trump” to ”Joe Biden” after
knowledge updating.

b. Generalization

Evaluated by the average accuracy of fθ∗ on examples drawn uniformly from the equivalence neigh-
borhood N(xi). This metric assesses the ability of the model to generalize the update to semantically
equivalent inputs. For example, the answer to the question ”Who holds the position of the President
of the US?” should also be updated from ”Donald Trump” to ”Joe Biden”.

c. Locality

Assessed by the proportion of predictions from the updated model fθ∗ that remain unchanged com-
pared to the pre-update model fθ on irrelevant examples. This metric evaluates the ability of the
model to preserve the original knowledge base while updating specific knowledge. For example,
the answer to the question ”’You’re fired!’ is the catchphrase of which celebrity?” should remain
unchanged as ”Donald Trump” after the update.

4 PROPOSED METHOD: DFT

This section details our proposed approach for knowledge updating in LLMs. Departing from meth-
ods that rely on external knowledge bases or additional parameters, our method leverages a full
fine-tuning strategy. The process is structured in two distinct stages:

4.1 LOCATE THE PARAMETERS ASSOCIATED WITH THE OLD KNOWLEDGE

Supervised fine-tuning (SFT) on a designated dataset enables us to identify the direction of param-
eter alignment with the desired knowledge. This alignment is reflected in the variations observed in
the model’s parameters during the training process. Within this framework, we define incremental
parameters, denoted as θ∆, as knowledge parameters for a given large language model fθ and its
parameters θ. These knowledge parameters are computed as follows:

θ∆ = FT{θ,K} − θ (2)

where FT is the operation of supervised fine-tuning, while K, θ refer to the dataset of knowledge
and the parameters of the original model fθ, respectively.

Analogously, we initially fine-tune the model fθ on a dataset comprising the model’s original knowl-
edge. Subsequently, we subtract the original model parameters θ from the parameters obtained after
fine-tuning to derive the knowledge parameters θold∆ , representing the learned original knowledge.
This calculation is expressed as:

θold∆ = FT{θ,Kold} − θ (3)

where Kold refers to a dataset composed of the model’s original knowledge. The related work in
Ilharco et al. (2022) considers that subtracting the parameters θold∆ from θ can assist the model fθ to
forget this part of old knowledge:

θ′ = θ − λθold∆ , (4)

where λ is a hyper-parameter to control the rate of forgetting. This process yields a new model,
fθ′ , with parameters θ′, which exhibits reduced retention of the original knowledge compared to the
initial model fθ. The forgetting operation may have a destructive effect on the normal knowledge of
the model.
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However, we believe that θold∆ also contains other information such as sentence structure, grammar,
and style, which requires further processing to accurately pinpoint the old knowledge.

Then, we re-fine-tune the model fθ on a dataset containing new knowledge, and then subtract the
parameters θ of the original model fθ from model’s parameters after fine-tuning to obtain the knowl-
edge parameters θold∆ indicating the new knowledge, as follows:

θnew∆ = FT{θ,Knew} − θ (5)

where Knew refers to a dataset composed of new knowledge .

Then, We compare θold∆ and θnew∆ , discarding all elements with the same sign. Then, we select the
top T % of elements in θnew∆ with the largest difference from θold∆ . T is a predefined threshold ratio.

θcore∆ = f{θnew∆ , θold∆ ,T} (6)

θcore∆ is the crucial parameter that needs to be updated.

4.2 LEARNING NEW KNOWLEDGE BY UPDATING ONLY THE MOST RELEVANT PARAMETERS

We define the process of learning new knowledge as follows:

θ∗ = θ + λθcore∆ (7)

where λ is a hyper-parameter to control the rate of learning. We repeat the processes outlined in
equations (3), (5), (6), and (7) until the model’s output reflects the new knowledge. Now we gain
a new model fθ∗ with its parameters θ∗, which has forgotten the old knowledge compared to fθ. It
learns only the new knowledge, avoiding any other information, preventing catastrophic forgetting
caused by style changes and the like.

5 EXPERIMENTS

5.1 DATASETS

Our experiments employ two widely used datasets: Levy et al. (2017) and COUNTERFACT (Meng
et al., 2022a). ZsRE is a Question Answering (QA) dataset that leverages question rephrasings
generated via back-translation to represent the equivalence neighborhood. COUNTERFACT presents
a more challenging benchmark with counterfactual data. Following the experimental setup outlined
in Yao et al. (2023), we utilize the evaluation (eval) and edit sets of these datasets, comprising 19,085
and 10,000 data points, respectively. To facilitate two-stage knowledge update, we partition both
datasets into sets of old knowledge and new knowledge. For instance, in ZsRE, a typical knowledge
update scenario involves modifying the answer from ”Los Angeles” to ”New Orleans”, as illustrated
in the following example:

The old knowledge:

{”instruction”: ”What city did Marl Young live when he died?”, ”input”: ””, ”output”: ”Los
Angeles” }
The new knowledge:

{”instruction”: ”What city did Marl Young live when he died?”, ”input”: ””, ”output”: ”New
Orleans” }

5.2 BASELINES

To evaluate the effectiveness of the proposed DFT method, we conducted experiments comparing it
to both fine-tuning methods and locate-based methods. For fine-tuning methods, we first compared
DFT to full fine-tuning (Full-FT) and LoRA (Hu et al., 2021). LoRA (Low-Rank Adaptation) is a
parameter-efficient fine-tuning technique that introduces trainable low-rank matrices to the model’s
layers, enabling efficient adaptation while preserving the majority of the model’s parameters. We
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Table 1: Results on three metrics of the two datasets based on LLAMA2-7B and LLAMA-7B.

Dataset Editor LLAMA2-7B LLAMA-7B
Reliability Generality Locality Reliability Generality Locality

ZsRE Original model 43.81 43.26 / 43.35 42.92 /
LoRA 43.22 42.40 70.91 46.90 45.98 75.99
DFTLoRA 48.73 48.14 76.23 49.95 49.22 78.54
FT-c 49.23 47.12 67.48 47.54 45.60 68.25
Full-FT 81.23 74.96 70.62 70.83 66.80 65.37
ROME 43.67 42.84 93.85 44.36 43.23 99.51
MEMIT 83.78 79.35 70.61 78.21 77.74 69.23
DFTFT 88.32 83.63 74.44 85.55 84.32 75.42

COUNTERFACT Original model 18.68 17.06 / 21.72 17.96 /
LoRA 30.67 23.33 40.19 27.63 21.32 39.86
DFTLoRA 35.33 31.42 48.42 34.34 28.22 49.42
FT-c 29.51 19.77 19.52 26.72 17.88 20.10
Full-FT 66.23 44.32 28.62 32.34 32.41 32.52
ROME 18.61 17.43 93.79 21.99 19.32 92.32
MEMIT 62.16 37.62 22.23 57.12 31.62 25.92
DFTFT 78.53 52.42 36.39 63.51 45.44 39.13

further investigated a fine-tuning approach with an L∞ constraint (FT-c) (Zhu et al. (2020)), de-
signed to retain irrelevant knowledge.

Regarding locate-based methods, we experimented with ROME (Meng et al. (2022a)), a method that
updates specific factual associations through causal intervention. Finally, we compared DFT with
MEMIT (Meng et al. (2022b)), a method known for its effectiveness in directly updating large-scale
memories within LLMs.

5.3 COMPLETION DETAILS

For our experiments, we employ LLAMA2-7B and LLAMA-7B as the base models. The primary
focus of our evaluation is the ability to update old knowledge with new knowledge. Therefore, we
fine-tuned the base model using full fine-tuning for 3 epochs on the old knowledge dataset, resulting
in the ”original model” for our experiments (akin to the ”original model” used in other studies). To
maintain output consistency, we utilize the greedy decoding strategy during testing. Our experiments
were conducted on a hardware platform comprising 8 x A800-80G GPUs.

5.4 EXPERIMENTAL RESULTS

Table 1 presents the experimental results, our DFT method consistently outperforms other baselines
in most cases. Notably, FT-c exhibits only minor improvements over the original model, potentially
due to its reliance on norm regularization, which tends to preserve a portion of the old knowledge
during the update process. As our original model has already acquired a substantial amount of old
knowledge, learning new knowledge poses greater challenges.

Surprisingly, ROME maintains near-identical Reliability and Generalization scores compared to
the original model on both datasets, while achieving high locality (exceeding 90%). This suggests
limited knowledge updating by ROME, as the injection of new knowledge typically impacts locality.
The limited parameter modification capability of ROME, combined with the extensive pre-existing
knowledge in our original model, likely hinders the effectiveness of its causal tracing mechanism.
It is noteworthy that full fine-tuning demonstrates a significantly greater capacity for learning new
knowledge compared to LoRA. This difference can be attributed to LoRA’s focus on training a
restricted subset of parameters within the attention structure, while a substantial portion of factual
knowledge is encoded within the MLP layers.
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Table 2: Results on three m55etrics of the zsRE dataset based on BLOOM-7B.
Editor Metric

Reliability Generality Locality
Original model 28.02 27.95 /
LoRA 29.32 29.31 77.32
DFTLoRA 30.38 31.02 79.64
Full-FT 44.32 43.72 63.94
DFTFT 45.83 44.64 72.15

5.5 UPDATING WITH LORA

Within this experimental framework, our approach involves simultaneous knowledge updating via
full fine-tuning (or LoRA) in a single training process. We formally define this LoRA integrated
approach as follows:

θold∆ = LoRA{θ,Kold} − θ, (8)
θnew∆ = LoRA{θ,Knew} − θ (9)

θcore∆ = f{θnew∆ , θold∆ } (10)
θ∗ = θ + λθcore∆ (11)

where LoRA represents the operation of supervised fine-tuning utilizing the LoRA technique . θ∗ is
noted as the parameters of the edited model fθ∗ which has completed the knowledge updating.

As presented in Table 1, the experimental results indicate that knowledge updating using LoRA out-
performs full fine-tuning in certain instances. This improvement can be attributed to the parameter-
efficient nature of LoRA-based knowledge forgetting, enabling more efficient learning and adapta-
tion.

Empirical evidence from our experiments suggests that updating the model parameters through
LoRA adaptation effectively approximates the performance achieved by full fine-tuning.

We hypothesize that this observation stems from the distributed nature of knowledge encoding across
multiple model parameters. LoRA modifies the patterns and relationships associated with the old
knowledge embedded within the attention structure, which represents an implicit knowledge repre-
sentation.

5.6 ADAPTABILITY TESTING

To further assess the adaptability of our proposed method, we conducted experiments on the zsRE
dataset using BLOOM-7B as the base model. We maintained the same experimental settings as
previously described. The results, presented in Table 2, demonstrate the continued effectiveness of
DFT.

5.7 TIME TESTING

To evaluate the efficiency of our proposed DFT method, we compared the editing time of various
knowledge updating and model editing methods for different edit sizes. Employing LLAMA2-7B
as our base model, we present the results in Table 3.

Analysis of the results in Table 3 reveals that fine-tuning-based methods consistently exhibit sig-
nificantly lower editing times compared to locate-based methods. This disparity can be attributed
to the increased complexity and time requirements associated with locating specific neurons and
parameters in locate-based methods. Furthermore, ROME’s limitation to single-datapoint edits, in
contrast to the batch editing capabilities of other methods, further diminishes its efficiency. Among
fine-tuning-based methods, FT-c demonstrates faster optimization due to its norm constraint.

DFT method, while requiring multiple backward passes and comparisons as a multi-stage knowl-
edge updating approach, necessitates updating only a limited set of parameters. Consequently, DFT

7
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Table 3: Editing time for 1 edit, 10 edits, 100 edits of the two dataset based on LLAMA2-7B.Run
ROME with FastEdit.Run MEMIT with EasyEdit

Editor 1 edit 10 edits 100 edits
zsRE COUNTERFACT zsRE COUNTERFACT zsRE COUNTERFACT

FT-c 0.59(s) 0.55(s) 5.73(s) 5.57(s) 56.13(s) 55.12(s)
ROME 2.76(s) 2.46(s) 27.9(s) 24.32(s) 285.23(s) 242.21(s)
MEMIT 612(s) 606(s) 6231(s) 6193(s) 61831(s) 61631(s)
Full-FT 0.78(s) 0.74(s) 7.92(s) 7.43(s) 76.72(s) 75.11(s)
DFTFT 1.49(s) 1.42(s) 11.98(s) 11.21(s) 120.92(s) 118.87(s)

exhibits an editing time approximately twice that of Full-FT, yet remains notably fast and conve-
nient.

Further acceleration of supervised fine-tuning can be achieved through the utilization of deepspeed
or other analogous optimization techniques.

5.8 PARAMETRIC ANALYSIS OF UPDATING KNOWLEDGE

DFT knowledge updating method hinges on the precise identification of knowledge-related param-
eters within the model. From an interpretability perspective, this approach allows us to pinpoint
specific parameters containing the desired knowledge, enabling targeted updates. Furthermore, we
conducted an in-depth analysis of the parameter distribution and its modifications within the LLMs.

Analysis reveals that parameter modifications in the MLP layers are more pronounced than those
observed in the attention layers. This observation suggests that knowledge is primarily encoded
within the MLP layers of the model.

6 CONCLUSION

This paper introduces a novel paradigm for knowledge updating during supervised fine-tuning,
termed DFT (Differential Fine-Tuning). DFT leverages parametric arithmetic to pinpoint the lo-
cation of existing knowledge and facilitates the acquisition of new knowledge, effectively resolving
potential contradictions between old and new information.

Experimental evaluations conducted on the zsRE and CounterFact datasets demonstrate the superior
performance of our proposed method compared to other baselines in most scenarios.

7 LIMITATIONS

While the proposed DFT paradigm enhances the efficacy of fine-tuning methods for updating knowl-
edge in large language models, it incurs an increase in computational overhead due to the incorpo-
ration of multiple backward passes.
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