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Abstract

Diffusion-based generative processes, formulated as differential equation solving,
frequently balance computational speed with sample quality. Our theoretical inves-
tigation of ODE- and SDE-based solvers reveals complementary weaknesses: ODE
solvers accumulate irreducible gradient error along deterministic trajectories, while
SDE methods suffer from amplified discretization errors when the step budget is
limited. Building upon this insight, we introduce AdaSDE, a novel single-step SDE
solver that aims to unify the efficiency of ODEs with the error resilience of SDEs.
Specifically, we introduce a single per-step learnable coefficient, estimated via
lightweight distillation, which dynamically regulates the error correction strength
to accelerate diffusion sampling. Notably, our framework can be integrated with
existing solvers to enhance their capabilities. Extensive experiments demonstrate
state-of-the-art performance: at 5 NFE, AdaSDE achieves FID scores of 4.18 on
CIFAR-10, 8.05 on FFHQ and 6.96 on LSUN Bedroom. Codes are available in
https://github.com/Westlake-AGI-Lab/AdaSDE.

1 Introduction

Diffusion Models (DMs) [1, 2, 3, 4, 5] have revolutionized generative modeling, achieving state-of-
the-art performance across a broad range of applications [6, 7, 8, 9, 10, 11, 12, 13, 14]. Rooted in
non-equilibrium thermodynamics, DMs learn to reverse a diffusion process: data are first gradually
corrupted by Gaussian noise in a forward phase, and then reconstructed from pure noise through a
learned reverse dynamics. This principled design offers stable training and exact likelihood model-
ing [15], resolving long-standing challenges in earlier approaches, e.g., GANs [16] and VAEs [17].

Recent advances in diffusion models have highlighted the role of differential-equation solvers in
balancing sampling speed and generation quality. We first develop a unified error analysis that
decomposes the total approximation error into two orthogonal components: (1) gradient error,
the discrepancy between the learned score function and the ground-truth score; and (2) discretiza-
tion error, introduced by time discretization during sampling. Viewed through this lens, existing
solvers exhibit complementary behaviors. Ordinary differential equation (ODE) based methods offer
deterministic trajectories with modest discretization error for low number of function evaluations
(NFEs), but their performance is fundamentally constrained by the irreversible accumulation of
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gradient error [18, 19, 20, 21]. In contrast, stochastic differential equation (SDE) based methods
inject stochasticity that can mitigate gradient error and enhance sample diversity; however, effectively
suppressing gradient error in practice usually requires large step counts (e.g., 100–1,000 NFEs) [2, 22].
Hybrid strategies such as restart sampling[23] alternate forward noise injection with backward ODE
integration to combine these advantages, yet they still operate in high-NFE regimes.

Building on the above analysis, we introduce AdaSDE, a novel single-step SDE solver that unifies the
computational efficiency of ODEs with the error resilience of SDEs under low-NFE budgets. Unlike
traditional SDE solvers [24, 2] that inject fixed noise based on a predetermined time schedule, AdaSDE
employs an adaptive noise injection mechanism controlled by a learnable stochastic coefficient γi
at each denoising step i. To effectively optimize γi, we further develop a process-supervision
optimization framework that provides fine-grained guidance at each intermediate step rather than
only supervising the final reconstruction. This design is inspired by the observation that diffusion
trajectories exhibit consistent low-dimensional geometric structures across solvers and datasets [25,
26]. By aligning the geometry of the trajectories using γi, AdaSDE reduces gradient error through
adaptive stochastic injection, while preserving deterministic efficiency of ODE solvers.

Extensive experiments on both pixel-space and latent-space DMs demonstrate the superiority of
AdaSDE. Remarkably, with only 5 NFE, AdaSDE achieves FID scores of 4.18 on CIFAR-10 [27] and
8.05 on FFHQ 64×64 [28], surpassing the leading AMED-Solver [20] by 1.8×. Our contributions
are threefold:

• We conduct a theoretical comparison of SDE and ODE error dynamics, demonstrating that SDEs
offer more robust gradient error control.

• We introduce AdaSDE, the first single-step SDE solver that achieves efficient sampling (<10
NFEs) by optimizing adaptive γ-coefficients. Moreover, AdaSDE serves as a universal plug-in
module that can enhance existing single-step solvers.

• Extensive evaluations on multiple generative benchmarks show that our AdaSDE achieves state-
of-the-art performance with significant FID gains over existing solvers.

2 Related Work

Recent advancements in accelerating DMs primarily progress along two directions: improved
numerical solvers and training-based distillation.

Improved numerical solvers. Early studies [2, 24] accelerated sampling by improving noise-
schedule design, and DDIM [29] later introduced a non-Markovian formulation that enabled de-
terministic and much faster sampling. The establishment of the probability-flow ODE view [15]
further unified diffusion formulations and paved the way for higher-order numerical schemes and
practical preconditioning strategies, exemplified by EDM [30]. Following this insight, a series of
ODE/SDE integrators have emerged to push the accuracy–speed frontier. For instance, DEIS [31],
DPM-Solver [21], and DPM-Solver++[22] exploit exponential integration, Taylor expansion, and
data-prediction parameterization to achieve robust few-step sampling. Linear multistep variants,
including iPNDM [32, 31] and UniPC [33], further enable efficient DMs sampling with ∼10 NFE.
Hybrid and stochastic extensions extend beyond deterministic solvers: Restart Sampling [23] alter-
nates ODE trajectories with SDE-style noise injection; SA-Solver [34] introduces a training-free
stochastic Adams multi-step scheme with variance-controlled noise.

Training-based distillation. Two main paradigms dominate this research direction. The first
is trajectory approximation, which uses compact student networks to approximate trajectories
generated by teacher models, reducing computational steps. This can be achieved offline: by curating
datasets from pre-generated samples [35], or online through progressive distillation that gradually
decreases the number of sampling steps [36, 18]. The second paradigm is temporal alignment, which
enforces coherence across sampling trajectories by aligning intermediate predictions between adjacent
timesteps [37, 38], or by minimizing distributional gaps between real and synthesized data [39, 40].
While these methods improve generation quality and efficiency, they typically require substantial
computational resources and complex training protocols, limiting their practicality. Recent distillation-
based solvers—such as AMED [20], EPD [41], and D-ODE [37]—achieve few-step sampling through
lightweight tuning rather than full retraining. Complementary efforts on time schedule optimization,
including LD3 [42], DMN [43], and GITS [26], further improve efficiency. While most few-step
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samplers are rooted in ODE formulations, our approach introduces few-step SDE-driven generation
by learning stochastic coefficients under a computationally lightweight objective.

3 Preliminaries

3.1 Diffusion Models with Differential Equations

DMs define a forward process that perturbs data into a noise distribution, followed by a learned
reverse process that inverts this perturbation to generate samples. The forward process is designed as
a stochastic trajectory governed by a predefined noise schedule, which can be described by:

dx = ṡ(t)
s(t)x+ s(t)

√
2σ(t)σ̇(t)dw (1)

where σ(t) is the monotonically increasing noise schedule, and w denotes a standard Wiener process.
This formulation ensures that the marginal distribution pt(x) at time t corresponds to the convolution
of the data distribution p0 = pdata with a Gaussian kernel of variance σ2(t). By selecting a sufficiently
large terminal time T, pT converges to an isotropic Gaussian N (0, σ2(T )I), serving as the prior.
Sampling is performed by reversing the forward dynamics through either a reverse-time SDE in
Eq. (1) or an ODE [15]:

dx = −σ(t)σ̇(t)∇x log pt(x)dt. (2)
Here, the score function ∇x log pt(x) is the drift term that guides samples toward high density
regions of p0. Following common practice [19], the noise schedule is simplified to σ(t) = t, reducing
σ(t)σ̇(t) to t. A neural network sθ(x, t) is optimized through denoising score matching [15] to
estimate the score function. The training objective minimizes the weighted expectation:

Et,x0,xt

[
λ(t) ∥sθ(xt, t)−∇xt

log pt(xt | x0)∥2
]

(3)

where λ(t) specifies the loss weighting schedule and pt (xt | x0) denotes the Gaussian transition
kernel of the forward process. During sampling, sθ(x, t) serves as a surrogate for the true score in
the reverse-time dynamics, reducing the general SDE in Eq. (2) to the deterministic gradient flow:

dx = sθ(xt, t)dt (4)

4 Analysis of ODE and SDE

4.1 Trade-offs Between ODE and SDE Solvers

The choice between ODE and SDE solvers in DMs entails trade-offs among sampling speed, quality,
and error dynamics. ODE solvers, characterized by deterministic trajectories, offer computational
efficiency and stability through compatibility with compatibility with higher-order numerical methods,
e.g., iPNDM [32, 31]. Such solvers reduce local discretization errors and achieve competitive sample
quality with as few as 10–50 steps [21, 19]. However, their deterministic nature limits their ability to
correct errors from imperfect score function approximations, leading to performance plateaus as step
count increases [23]. Furthermore, the absence of stochasticity may suppress fine-grained variations,
potentially reducing sample diversity compared to SDE-based methods [2].

In contrast, SDE solvers leverage stochasticity to counteract accumulated discretization and gradient
errors over time, enabling superior sample fidelity in high-step regimes [23]. The injected noise
further encourages exploration of the data manifold, improving diversity [2]. However, these benefits
come at the cost of significantly larger step counts (typically 100–1,000) required to suppress errors
that scale as O(δ3/2), compared to O(δ2) for ODEs [23, 44]. Moreover, SDE trajectories are highly
sensitive to suboptimal noise schedules, particularly in low-step settings [24]. While reverse-time
SDEs theoretically guarantee convergence to the true data distribution under ideal conditions [45],
their computational cost often renders them impractical for real-time applications.

Recent hybrid approaches, such as Restart sampling [23], reconcile these trade-offs by alternating
deterministic steps with stochastic resampling, leveraging ODE efficiency for coarse trajectory simu-
lation while resetting errors via SDE-like noise injection. This strategy highlights the complementary
strengths of both methods, positioning hybrid frameworks at the forefront of quality-speed Pareto
frontiers in diffusion-based generation. However, Restart sampling still performs under high-step
regimes (>50 steps).
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4.2 Error Propagation in Deterministic and Stochastic Sampling

The trade-offs discussed in Section 4.1 raise a key question:

Can SDE-based approaches achieve efficient sampling with substantially fewer steps?

To answer this, we build on the theoretical frameworks of [23, 44] to analyze the total sampling error
of ODE and SDE formulations under the Wasserstein-1 metric. We begin with the discretized ODE
system ODEθ, governed by the learned drift field sθ, and examine its approximation behavior over the
interval [t, t+∆t] ⊂ [0, T ]. Theorem 1 formalizes this analysis and establishes an upper bound on
the Wasserstein-1 distance between the generated and true data distributions (proof in Appendix B.1).
Theorem 1. (ODE Error Bound [23]) Let ∆t > 0 denote the discretization step size. Over the
interval [t, t+∆t], the trajectory xt = ODEθ (xt+∆t, t+∆t→ t) is generated by the learned drift
sθ, and the induced distribution is denoted by pODEθ

t . We make the following assumptions:
A1. Lipschitz and bounded drift: tsθ(x, t) is L2-Lipschitz in x, L0-Lipschitz in t and uniformly
bounded by L1.
A2: The learned drift satisfies a uniform supremum bound: supx,t ∥tsθ(x, t)− t∇ log pt(x)∥ ≤ ϵt.
A3. Bounded trajectories: ∥xt∥ ≤ B/2 for all t ∈ [t, t+∆t].
The Wasserstein-1 distance between pODEθ

t and the true distribution pt satisfies:

W1

(
pODEθ
t , pt

)
︸ ︷︷ ︸

total error

≤ B · TV
(
pODEθ

t+∆t , pt+∆t

)
︸ ︷︷ ︸

➀ gradient error bound

+ eL2∆t (∆t(L2L1 + L0) + ϵt)∆t︸ ︷︷ ︸
➁ discretization error bound

(5)

where TV(·, ·) denotes the total variation distance.

The bound in Eq. 5 consists of two term distinct interpretations. The first term ➀ is the gradient error
bound which reflects the discrepancy between the learned score function and the ground-truth one
at the start time t + ∆t. It also captures the propagation of errors accumulated from earlier time
steps. The second term ➁ is the discretization error bound, which represents the newly introduced
errors within the current interval [t, t+∆t]. Since the ODE process is deterministic, any discrepancy
between the generated and true distributions at t+∆t is directly carried forward to time t, without
stochastic mechanisms to dissipate it.

Next, we introduce our AdaSDE update over the interval [t, t+∆t], defined as:

xt = AdaSDEθ(xt+∆t, t+∆t→ t, γ) ,

which inserts a stochastic forward perturbation followed by a deterministic backward process.

xγt+∆t = xt+(1+γ)∆t = xt+∆t + εt+∆t→ t+(1+γ)∆t, (Forward process)

xt = ODEθ
(
xγt+∆t, t+ (1 + γ)∆t→ t

)
, (Backward process)

where
εt+∆t→ t+(1+γ)∆t ∼ N

(
0,
(
(t+ (1 + γ)∆t)2 − (t+∆t)2

)
I
)
.

Here, γ ∈ (0, 1) is a tunable coefficient with its optimization deferred in Section 5. Different from
deterministic ODE, AdaSDE introduces controlled noise injection to mitigate error accumulation.
Theorem 2 establishes an error bound between the generated and the true data distribution for our
AdaSDE (proof in Appendix B.2).

Theorem 2. Under the same assumptions in Theorem 1. Let pAdaSDEθ
t denote the distribution after

AdaSDE update over the interval [t, t+∆t]. Then

W1

(
pAdaSDEθ
t , pt

)
≤ B · (1− λ(γ))TV

(
pAdaSDE
t+(1+γ)∆t, pt+(1+γ)∆t

)
︸ ︷︷ ︸

gradient error bound

(6)

+ e(1+γ)L2∆t(1 + γ) ((1 + γ)∆t (L2L1 + L0) + ϵt)∆t︸ ︷︷ ︸
discretization error bound

(7)

where λ(γ) = 2Q
( B

2
√
(t+ (1 + γ)∆t)2 − t2

)
, Q(r) = Pr(a ≥ r) for a ∼ N (0, 1).

4



15 20 25 30 35 40
steps

(a) Gradient Error

0.006

0.012

0.018

0.024

0.030 SDE: = 0.001
SDE: = 0.005
SDE: = 0.01
ODE: = 0

15 20 25 30 35 40
steps

(b) Discretization Error

0.010

0.013

0.015

0.018 SDE: = 0.001
SDE: = 0.005
SDE: = 0.01
ODE: = 0

15 20 25 30 35 40
steps

(c) Total Error

0.016

0.024

0.032

0.040
SDE: = 0.001
SDE: = 0.005
SDE: = 0.01
ODE: = 0

Figure 1: Gradient error, Discretization error and Total error on synthetic dataset across various
steps (measured in 1-Wasserstein Distance). γ = 0 indicates adding no stochasticity (ODE), γ > 0
indicates SDE variants, figures are plotted in Pareto Frontier.

As shown in Theorem 2, the decoupled formulation tightens the Wasserstein-1 error bound through a
reduced coefficientB(1−λ(γ)). We next formalize this improvement by comparing the gradient-error
terms of ODE and AdaSDE formulations in Theorem 3.
Theorem 3. Under the same assumptions as in Theorem 1 and Theorem 2, we denote:

EODE
grad = B · TV

(
pODEθ

t+∆t , pt+∆t

)
, (ODE gradient error)

EAdaSDE
grad = B ·

(
1− λ(γ)

)
TV
(
pAdaSDE
t+(1+γ)∆t, pt+(1+γ)∆t

)
. (SDE gradient error)

Then we have EAdaSDE
grad ≤ EODE

grad , where the inequality is strict when γ > 0.

Proof sketch. (full proof in Appendix B.3) For the ODE update, EODE
grad depends on the total-variation

distance between the distributions at time t+∆t. For AdaSDE update, EAdaSDE includes a contraction
factor (1−λ(γ)) and is evaluated at the higher noise level t+(1+ γ)∆t. Define the Gaussian kernel

ϕγ(z) = (2πσ2
γ)
−d/2 exp

(
−∥z∥

2

2σ2
γ

)
, σ2

γ =
(
t+ (1 + γ)∆t

)2 − (t+∆t
)2
.

The distributions after the noise injection satisfy

pt+(1+γ)∆t = pt+∆t ∗ ϕγ , qt+(1+γ)∆t = qt+∆t ∗ ϕγ .

By Lemma 6 in Appendix, convolution with the same Gaussian kernel does not increase total variation
distance:

TV(pt+∆t∗ϕγ , qt+∆t∗ϕγ) ≤ TV(pt+∆t, qt+∆t) .

Consequently,
EAdaSDE
grad ≤ (1− λ(γ)) EODE

grad ,

with a strictly smaller bound whenever γ > 0.

Although the gradient error term of AdaSDE enjoys a tighter bound through B(1 − λ(γ)), its dis-
cretization error grows rapidly under large time steps (∆t) with noise schedules scaling as γ(t)∝∆t.
Specifically, the exponential growth factor e(1+γ)L2∆t combined with the quadratic ∆t-dependence
in (1 + γ)2∆t2 (L2L1 + L0) creates error amplification that scales asymptotically as O(∆teC∆t)
when γ ∼ O(∆t). This dominates the improved gradient error control, particularly during critical
initial denoising steps where the product (1 + γ)∆t violates discretization stability conditions. This
amplification offsets the benefit of gradient-error contraction, causing total error accumulation along
the trajectory and explaining the degraded few-step performance of SDE-based sampling in practice.

4.3 Synthetic Validation

To verify the error-mitigation capability of stochastic updates in AdaSDE, we conduct experiments on
a 2D double-circle synthetic dataset, comparing the total, gradient, and discretization errors.
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0

Figure 2: Illustration of the 2D double-
circles: two concentric rings with radii
0.8 (outer, blue) and 0.6 (inner, green).
We uniformly sample 20,000 points and
add isotropic Gaussian noise (σ = 0.1).

Setup. As illustrated in Figure 2, we use a 2D double-
circle dataset consisting of 20, 000 samples uniformly
distributed along two concentric circles with radii of 0.8
(outer) and 0.6 (inner), each perturbed by Gaussian noise
with a standard deviation of 0.1. We follow the training
and sampling procedures of EDM [30] to model the data
distribution, employing the second-order Heun method for
SDE integration. The stochastic coefficient γ is varied
over {0, 0.001, 0.005, 0.01}, where γ = 0 corresponds to
the deterministic ODE sampler.

To quantify different types of errors, we measure the 2D
Wasserstein-1 distance between corresponding distribu-
tions. The total error is computed as the distance between
the ground-truth data distribution and the generated distri-
bution. To estimate gradient and discretization errors,
we first construct an intermediate regenerated distribu-
tion. Specifically, given the dataset of 20, 000 samples,
we perturb each point by Gaussian noise according to
xtmid = x0 + tmidσ, where tmid = 0.8 and perform one-third of a denoising step to obtain the regener-
ated samples. The gradient error is defined as the distance between the regenerated distribution and
the model-generated distribution at T = 80.0, while the discretization error is defined as the distance
between the regenerated distribution and the ground-truth distribution.

Result. The gradient error, discretization error, and total error over the steps range t ∈ [15, 40] are
illustrated in Figure 1. It is observed that the discretization error of ODEs is less than that of SDE
variants (in Figure 1 (b)), corresponding to the derived result that the upper bound for ODE sampling
error (stated in Theorem 1) is less than that for SDEs (stated in Theorem 2) by a multiplication
factor. However, the gradient error (i.e., error caused by network approximation) of SDEs (γ > 0)
drops compared to ODE counterparts (in Figure 1 (a)), validating the Wasserstein-1 distance bound
in Theorem 3. The stochastic step is effective in alleviating the gradient error made by network
approximation. Consequently, as shown in Figure 1 (c), the total error accumulated throughout the
sampling process decreases due to the reduction of gradient error brought by stochasticity, confirming
the effectiveness of our approach in improving sampling accuracy. Given the above theoretical
analysis and synthetic validation on Wasserstein-1 distance, we present the following remark.

Remark 1. Let Etotal(N, γ) represent the accumulated sampling error for a discretization of N steps
with parameter γ. Then for ∀N ∈ Z+, ∃ γ ∈ (0, 1) such that:

Etotal(N, γ) ≤ Etotal(N, 0)

5 Methodology

Building on the above theoretical and empirical validation, we introduce AdaSDE, a single-step SDE
solver that parameterizes the stochastic coefficient γ as learnable variable. This design unleashes the
potential of SDE-based solvers under low-NFE regimes.

5.1 Sampling Trajectory Geometry

The trajectories generated by Eq. (4) exhibit low complexity geometric features with implicit con-
nections to annealed mean displacement, as established in previous work [26, 25]. Each sample
initialized from the noise distribution progressively approaches the data manifold through smooth,
quasi-linear trajectories characterized by monotonic likelihood improvement. In addition, under
identical dataset and time schedule, all sampling trajectories demonstrate geometric consistency
across different sampling methods. This geometric insight motivates a discrete-time distillation frame-
work. By strategically inserting intermediate temporal steps within student trajectories, we construct
high-fidelity reference trajectories. This enables process-supervised optimization that rigorously
determines the governing γ parameters for trajectory segments. Specifically, given a student time
schedule Tstu = {t0, t1, . . . , tN} with N steps, we insert M intermediate steps between tn and tn+1

(denoted as Ttea = {t0, t(1)0 , . . . , t
(M)
0 , t1, . . . , tN} ) to generate refined teacher trajectories. Notably,
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(a) DDPM
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GT/Teacher 
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(b) EDM-SDE (c) AdaSDE (ours)
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Figure 3: The proposed AdaSDE framework. AdaSDE diverges from traditional heuristic noise
injection methods used in DDPM [2] and EDM-SDE [19]. Instead, we use intermediary supervision
from a teacher sampling path to learn and optimize the noise injection process.

Algorithm 1 Optimizing Θ1:N

1: Given: time schedules Tstu and Ttea
2: Repeat until convergence
3: Sample xtN = ytN ∼ N (0, t2NI)
4: for n = N to 1 do
5: Sample ϵn ∼ N (0, I)
6: {γ, ξ, λ, µ}n ← Θn
7: t̂n ← tn + γntn

8: xtn ← xtn +
√
t̂2n − t2nϵn

9: Compute xtn−1
using Eq. (9)

10: Update Θn via Eq. (10)
11: end for

Algorithm 2 AdaSDE sampling

1: Given: parameters Θ1:N , student time
schedule Tstu

2: Initialize xtN ∼ N (0, t2NI)
3: for n = N to 1 do
4: Sample ϵn ∼ N (0, I)
5: {γ, ξ, λ, µ}n ← Θn
6: t̂n ← tn + γntn

7: xtn ← xtn +
√
t̂2n − t2nϵn

8: Compute xtn−1
using Eq. (9)

9: end for
10: Return: xt0

our interpolation scheme employs a flexible strategy that allows for selecting different time schedules
based on various solvers. This adaptability enhances the fidelity of teacher trajectories.

5.2 Fast SDE-based Sampling

We extend the midpoint-based correction mechanisms Eq. (8) from AMED-Solver [20] to SDEs,
proposing a sampling framework that strategically aligns stochastic perturbations with learned
trajectory geometry.

xtn ≈ xtn+1
+ (tn − tn+1) sθ (xξn , ξn)︸ ︷︷ ︸

midpoint gradient

, ξn ∈ [tn+1, tn] (8)

The parameterization adopts the design from DPM-Solver’s intermediate time step construction,
formally defined as ξn =

√
tntn+1. This square-root formulation guarantees smooth geometric

interpolation between adjacent time steps in the noise scheduling process. Building on insights
from [46, 47] showing network scaling mitigates input mismatches, we propose learnable parameters
{λn, µn} to adaptively adjust both exposure bias and timestep scales. The parameters Θn =

{γn, ξn, λn, µn}Nn=1 are optimized through our discrete-time distillation framework described in
Section 5.1. Consequently, Eq. (8) can be reformulated in the following form:

xtn ≈ xtn+1
+ (1 + λn) (tn − tn+1) sθ (xξn , ξn + µn) (9)

Let {ytn}
N
n=1 denote the reference states of teacher trajectories. Starting from the identical initial

noise yt0 , we generate student trajectories by optimizing the parameter sequence {Θn}Nn=1, resulting
in student states {xtn}

N
n=1 that align with the teacher trajectories under a predefined metric d(·, ·).

Crucially, since xtn depends on all preceding parameters {Θn}Nn=1 through the iterative sampling
process, we implement stagewise optimization by minimizing the cumulative alignment loss at each
timestep tn :

Ltn(Θn) = d (xtn ,ytn) (10)
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Table 1: Image generation results across different datasets. (a) CIFAR10 [35] (unconditional), (b)
FFHQ [28] (unconditional), (c) ImageNet [49] (conditional), (d) LSUN Bedroom [50] (unconditional).
We compared AdaSDE-Solver and the training-required method AMED-Solver [20], as well as other
training-free methods. AdaSDE achieves superior performance across all datasets.

(a) CIFAR10 32× 32 [27]

Method NFE

3 5 7 9

Multi-Step Solvers

DPM-Solver++(3M) [22] 110.0 24.97 6.74 3.42
UniPC [33] 109.6 23.98 5.83 3.21
iPNDM [32, 31] 47.98 13.59 5.08 3.17

Single-Step Solvers

DDIM [29] 93.36 49.66 27.93 18.43
Heun [19] 306.2 97.67 37.28 15.76
DPM-Solver-2 [21] 153.6 43.27 16.69 8.65
DPM-Plugin (ours) 39.57 13.75 9.19 7.21
AMED-Solver [20] 18.49 7.59 4.36 3.67
AdaSDE (ours) 12.62 4.18 2.88 2.56

(b) FFHQ 64× 64 [28]

Method NFE

3 5 7 9

Multi-Step Solvers

DPM-Solver++(3M) [22] 86.45 22.51 8.44 4.77
UniPC [33] 86.43 21.40 7.44 4.47
iPNDM [32, 31] 45.98 17.17 7.79 4.58

Single-Step Solvers

DDIM [29] 78.21 43.93 28.86 21.01
Heun [19] 356.5 116.7 54.51 28.86
DPM-Solver-2 [21] 215.7 74.68 36.09 16.89
DPM-Plugin (ours) 66.31 20.80 14.51 10.48
AMED-Solver [20] 47.31 14.80 8.82 6.31
AdaSDE (ours) 23.80 8.05 5.11 4.19

(c) ImageNet 64× 64 [49]

Method NFE

3 5 7 9

Multi-Step Solvers

DPM-Solver++(3M) [22] 91.52 25.49 10.14 6.48
UniPC [33] 91.38 24.36 9.57 6.34
iPNDM [32, 31] 58.53 18.99 9.17 5.91

Single-Step Solvers

DDIM [29] 82.96 43.81 27.46 19.27
Heun [19] 249.4 89.63 37.65 16.76
DPM-Solver-2 [21] 140.2 59.47 22.02 11.31
DPM-Plugin (ours) 108.9 17.03 11.69 8.06
AMED-Solver [20] 38.10 10.74 6.66 5.44
AdaSDE (ours) 18.51 6.90 5.26 4.59

(d) LSUN Bedroom 256× 256 [50]

Method NFE

3 5 7 9

Multi-Step Solvers

DPM-Solver++(3M) [22] 111.9 23.15 8.87 6.45
UniPC [33] 112.3 23.34 8.73 6.61
iPNDM [32, 31] 80.99 26.65 13.80 8.38

Single-Step Solvers

DDIM [29] 86.13 34.34 19.50 13.26
Heun [19] 291.5 175.7 78.66 35.67
DPM-Solver-2 [21] 227.3 47.22 23.21 13.80
DPM-Plugin (ours) 97.13 21.02 13.68 10.89
AMED-Solver [20] 58.21 13.20 7.10 5.65
AdaSDE (ours) 18.03 6.96 5.69 5.16

In each training loop, we perform backpropagation N times. The comparison with existing SDE
solvers are presented in Figure 3. The complete training algorithm is detailed in Algorithm 1, while
the inference procedure is outlined in Algorithm 2. AdaSDE serves as a plug-and-play module for
existing solvers. To implement this, we train the AdaSDE predictor Algorithm 1 by replacing the
mean update in Equation (8) with the target solver’s formulation.

6 Experiments

6.1 Experiment Setup

Models and datasets. We apply AdaSDE and DPM-Plugin to five pre-trained diffusion models across
diverse domains. For pixel-space models, we include CIFAR10 (32 × 32) [27], FFHQ (64 × 64) [48],
and ImageNet (64 × 64) [49]. For latent-space models, we evaluate LSUN Bedroom (256 × 256)
[50] with a guidance scale of 1.0. Additionally, we consider text-to-image high-resolution generation
models, including Stable Diffusion v1.5 [5] at 512 × 512 resolution with a guidance scale of 7.5.

Solvers and time schedules. We compare AdaSDE against state-of-the-art single-step and multi-step
ODE solvers. The single-step baselines include training-free methods—DDIM [29], EDM [19], and
DPM-Solver-2 [21], as well as the lightweight-tuning approach AMED-Solver [20]. For multi-step
methods, we evaluate DPM-Solver++ (3M) [22], UniPC [33], and iPNDM [32, 31]. To further
demonstrate the effectiveness of our method, we also conduct a head-to-head comparison between
DPM-Plugin and DPM-Solver-2 [21].
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Table 2: FID results on Stable Diffusion v1.5 [5]
with a classifier-free guidance weight w = 7.5.

Method NFE

4 6 8 10

MSCOCO 512×512

DPM-Solver++(2M) [22] 21.33 15.99 14.84 14.58
AMED-Plugin [20] 18.92 14.84 13.96 13.24
DPM-Solver-v3 [51] - 16.41 15.41 15.32
AdaSDE (ours) 30.89 13.99 13.39 12.68

Table 3: Ablation study of time schedules on
CIFAR-10 [27].

Time schedule NFE

3 5 7 9

CIFAR-10 32×32

Time Uniform [2] 12.62 4.18 2.88 2.56
Time Polynomial [19] 11.61 10.05 5.14 3.35
Time LogSNR [21] 23.38 10.42 7.96 4.84

To ensure an equitable and consistent comparison, our study faithfully adheres to the time scheduling
strategies as recommended in the related work [19, 22, 33]. Specifically, we implement the logarithmic
signal-to-noise ratio (logSNR) scheduling for DPM-Solver{-2, ++(3M)} and UniPC algorithms. For
other baseline algorithms, EDM time schedule with ρ set to 7 has been employed. For AdaSDE and
DPM-Plugin, we implement time-uniform schedule.

Learned perceptual image patch similarity While some search-based frameworks employ LPIPS
as their distance metric [52], we observed that using LPIPS during the intermediate steps of our
method provided no significant performance gains and substantially increased training duration.
Consequently, to balance efficiency and final quality, our approach utilizes Mean Squared Error
(MSE) for optimizing intermediate steps, while applying the LPIPS metric in the final stage to
enhance the overall training outcome.

Training details. Our AdaSDE is assessed at low NFE settings (NFE ∈ {3, 5, 7, 9}) with AFS [53]
implemented. Sample quality is gauged using the Fréchet Inception Distance (FID) [54] over 50k
images. For Stable-Diffusion, We evaluate FID as [54], using 30k samples from fixed prompts
based on the MS-COCO [28] validation set. The random seed was fixed to 0 to ensure consistent
reproducibility of the experimental results.

6.2 Main Results

In table 1, we benchmark AdaSDE against single- and multi-step baseline solvers on CIFAR-10,
FFHQ, ImageNet 64×64, and LSUN Bedroom across varying NFE. We observe consistent and
substantial improvements in the low-step regime (3–9 NFE). For example, at NFE=9 we obtain FIDs
of 4.59 (ImageNet) and 5.16 (LSUN Bedroom), while the second-best single-step baseline (AMED-
Solver) reaches 5.44 and 5.65, respectively, indicating clear gains. In an even more challenging
few-step setting (NFE=3 on LSUN Bedroom), AdaSDE achieves 18.03 FID, markedly outperforming
AMED-Solver’s 58.21. On CIFAR-10, NFE=5 yields 4.18 FID (vs. AMED-Solver’s 7.59); on FFHQ,
NFE=5 yields 8.05, substantially better than DPM-Plugin’s 20.80 and DPM-Solver-2’s 74.68. Overall,
AdaSDE maintains—and often widens—its advantage as the number of steps decreases.

We further evaluate AdaSDE on Stable Diffusion v1.5 with classifier-free guidance set to 7.5, reporting
FID on the MS-COCO validation set (see table 2). At NFE=8/10, AdaSDE attains 13.39/12.68,
surpassing DPM-Solver++(2M) at 14.84/14.58 and AMED-Plugin at 13.96/13.24, while remaining
competitive with DPM-Solver-v3 across multiple step counts. These results indicate that our adaptive
stochastic coefficient not only improves pixel-space diffusion models but also transfers robustly to
high-resolution text-to-image generation in latent space. Additional quantitative results are provided
in Figures 5 to 7.

6.3 Ablation Studies

Effect of the stochastic coefficient. We quantify the contribution of the learned stochastic coefficient
by comparing AdaSDE with and without γn on CIFAR-10, FFHQ, and Stable Diffusion v1.5 (MS-
COCO); see tables 4 and 5. Removing γn consistently degrades FID, with the effect most pronounced
in the few-step regime. On CIFAR-10, FID rises from 12.62 to 13.32 at NFE=3 and from 4.18 to 4.36
at NFE=5. On FFHQ 64×64, we observe similar trends: FID increases from 23.80 to 25.85 at NFE=3
and from 8.04 to 8.11 at NFE=5. The benefit is especially clear on SD v1.5 (MS-COCO 512× 512):
when γn is removed, FID rises from 30.89 to 37.23 at NFE=4 and from 13.79 to 16.34 at NFE=6,
while the gap narrows as steps increase (12.68 with γn versus 12.82 without at NFE=10). These
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Table 4: Ablation of γn on CIFAR-10 [27] and
FFHQ [28].

Training configuration NFE

3 5 7 9

CIFAR-10 32×32

AdaSDE 12.62 4.18 2.88 2.56
w.o. γn 13.32 4.36 2.91 2.63

FFHQ 64×64

AdaSDE 23.80 8.04 5.11 4.19
w.o. γn 25.85 8.11 5.12 4.27

Table 5: Ablation of γn on Stable Diffusion
v1.5 [5].

Training configuration NFE

4 6 8 10

MSCOCO 512×512

AdaSDE 30.89 13.79 13.39 12.68
w.o. γn 37.23 16.34 14.18 12.82

results support that injecting learned stochasticity stabilizes few-step trajectories and mitigates error
accumulation in low-NFE sampling.

Effect of time schedule. We further compare common time schedules on CIFAR-10—LogSNR,
EDM (polynomial), and time-uniform—summarized in table 3. The time-uniform schedule is the
most reliable once NFE is at least 5, achieving FID scores of 4.18, 2.88, and 2.56 at NFE=5, 7, and
9, respectively, clearly outperforming the polynomial (10.05, 5.14, 3.35) and LogSNR (10.42, 7.96,
4.84) schedules. At the extreme NFE=3 setting, the polynomial schedule attains a marginally lower
FID than the uniform schedule (11.61 versus 12.62), but its performance degrades rapidly as NFE
increases. Overall, we adopt the time-uniform schedule as the default for few-step experiments due
to its robustness across moderate step counts.

7 Conclusion and Limitation

Conclusion. In this work, we present AdaSDE, a novel framework using adaptive stochastic
coefficient optimization to fundamentally address the efficiency-quality trade-off in diffusion sampling.
It achieves new state-of-the-art results, such as a 4.18 FID on CIFAR-10 with only 5 NFE (a 1.8x
improvement over prior SOTA). AdaSDE acts as a lightweight plugin, compatible with existing
single-step solvers and requiring only 8-40 parameters for tuning, enabling practical deployment
without full model retraining.

Limitation. When the step size is large and stronger stochastic injection is used (higher γ), local
errors can amplify across steps and dominate the total sampling error, leading to instability. In
practice, the admissible range of γ is constrained by both the dataset and the step schedule, often
necessitating conservative time discretization or γ clipping. Our method’s per-step distribution resets
and geometric alignment break the linear recurrence assumptions underlying multistep (e.g., iPNDM
[31, 32], UniPC [33]) and predictor–corrector frameworks.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly articulate the primary contributions of
the paper. These include the proposal of AdaSDE, the first single-step SDE-based solver
designed to unify the efficiency of ODEs with the error resilience of SDEs. The paper
makes specific claims that are substantiated by both theoretical analysis (error decomposi-
tion into gradient and sampler errors, with provable improvements under stochastic noise
injection) and empirical results (e.g., SOTA FID scores on CIFAR-10 and FFHQ at 5 NFE).
Additionally, the adaptive noise coefficient γ and the process-supervised training method
are explicitly introduced in the introduction as key components. The scope and impact
of the method are realistically positioned, and there are no unattainable aspirational goals
presented as achieved results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We acknowledge both theoretical and practical limitations. Theoretically,
AdaSDE relies on assumptions such as Lipschitz continuity and boundedness of the learned
score function, which may not hold in all diffusion models or datasets. Additionally, the
method assumes the geometric regularity of sampling trajectories across solvers and datasets,
which might be violated in more complex or high-dimensional generative tasks.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We offer a formal theoretical analysis in Section 4 and Appendix B to support
the claims made about AdaSDE’s sampling error decomposition and contraction proper-
ties. Each theorem is stated with all necessary assumptions, including Lipschitz conti-
nuity, bounded score approximation error, and norm constraints on sample trajectories.
These assumptions are explicitly enumerated before each theorem (e.g., Theorem 1 on the
Wasserstein-1 bound for ODEs and Theorem 2 for AdaSDE). The corresponding proofs are
either outlined in the main text or fully detailed in the appendix with supporting lemmas
(e.g., Lemma 1 and Lemma 2), and referenced accordingly.
Theorems involving the role of γ in modulating error bounds are rigorously derived, with
explicit expressions of how γ affects both gradient and sampler errors. Furthermore, the
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paper provides interpretation and intuition alongside the formal derivations (e.g., contraction
factor (1− λ(γ))) and confirms theoretical insights with synthetic experiments (Figure 1).
All notation is defined in Appendix A, and every proof follows a clear structure with
mathematical rigor and consistency. The manuscript adheres closely to NeurIPS standards
for theoretical completeness and reproducibility.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe all experimental setups in detail, including datasets, evalua-
tion metrics (FID), solver configurations, time schedules, and training hyperparameters.
Algorithms are provided in pseudocode (Algorithm 1 & 2), and the number of function eval-
uations (NFE) is specified for each result. In addition, the complete code and reproducibility
instructions will be released upon publication, ensuring that all results can be independently
verified.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The datasets used (CIFAR-10, FFHQ, ImageNet 64×64, LSUN Bedroom,
MS-COCO) are standard and publicly accessible. We will release the full codebase and
configuration files upon publication, including scripts for reproducing all reported results.
The supplemental material will include detailed setup and usage instructions to ensure
faithful reproduction of the main experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify the datasets used (CIFAR-10, FFHQ 64×64, ImageNet 64×64,
LSUN Bedroom, and MS-COCO for Stable Diffusion), the number of evaluation samples
(50k or 30k), and the metric (FID). We describe the number of sampling steps (NFE),
guidance scales, and time schedules (uniform, logSNR). For training, we detail the process-
supervised optimization of the stochastic parameters γ, including the student-teacher time
schedules and stage-wise loss. The solvers and comparison baselines are also listed clearly,
along with ablation study settings. All relevant experimental settings are included in the
main text or supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
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7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: To ensure the reproducibility of experimental results, we fixed the random seed
to 0 throughout all experiments. Under this controlled condition, the observed variations
across multiple runs were found to be statistically insignificant (p > 0.05). While the
paper does not explicitly report error bars for every experimental result, the consistency
achieved through fixed random seeds provides an alternative approach to demonstrating
result stability.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We conducted our experiments using NVIDIA A800 and 4090 GPUs with
80GB and 24GB memory, respectively. We train Θ for 10K images, which only takes 5-10
minutes on CIFAR10 with a single 4090 GPU and about 20 minutes on LSUN Bedroom
with 4 4090 GPUs. We did not use large-scale distributed clusters or proprietary cloud
services, and all experiments can be reproduced on a single modern GPU.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and ensured that our work
adheres to all relevant principles, including responsible use of computational resources,
transparency of methodology, acknowledgment of potential societal risks, and respect for
reproducibility and openness. Our study does not involve human subjects, sensitive personal
data, or deployment in high-stakes applications. We take care to clarify limitations and
ensure that our findings are not misrepresented or overstated. All datasets used are publicly
available, and no private or proprietary data were involved.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We acknowledge that diffusion-based generative models, including our pro-
posed AdaSDE framework, may be used to synthesize realistic images at scale, which could
potentially be misused for generating misleading or harmful content (e.g., deepfakes or
misinformation). Although our work focuses on improving sampling efficiency and does not
directly involve content generation pipelines or personalization, we recognize that enhanced
accessibility and speed may lower the barrier to misuse. We encourage future research to
pair such generative techniques with detection, watermarking, and auditing tools to ensure
responsible deployment.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
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Justification: While our work does not release a new pretrained model or dataset, it proposes
an efficient sampling strategy (AdaSDE) applicable to existing diffusion models. As such
methods could be used to accelerate the generation of high-quality synthetic media, we
recognize potential risks such as misuse in producing harmful or misleading content. To
address this, we include clear statements in the paper discouraging the application of
AdaSDE in domains involving safety-critical or deceptive use without human oversight. We
also plan to release code only for academic and research use under an appropriate license,
and we do not release any generated content or fine-tuned models that could pose direct
safety concerns.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use publicly available datasets, including CIFAR-10, FFHQ 64×64, Ima-
geNet 64×64, LSUN Bedroom, and MS-COCO. Each dataset is cited in the paper with its
original reference, and we confirm that all are released under licenses permitting academic
research use (e.g., MIT, CC-BY, or equivalent). We also build on standard pretrained diffu-
sion models (e.g., EDM, DDPM, Stable Diffusion), which are properly cited and used under
their respective open-source licenses. No scraped or proprietary data are used. We include
version references and license information where applicable in the paper and supplemental
material.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
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Justification: We do not introduce any new datasets, pretrained models, or other standalone
assets in this paper. All our experiments are conducted on existing, publicly available
datasets and pretrained diffusion models, which are properly cited.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve any human subjects or crowdsourcing in data
collection, annotation, or experimentation. All datasets used are publicly released and do
not contain personally identifiable information.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: All contributions to this work, including ideas, implementation, writing, and
experiments, were made by the listed authors. We have no additional contributors or external
collaborations that need to be acknowledged. If relevant acknowledgments arise later (e.g.,
code release support), we will include them in the final camera-ready version.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Appendix

A Notation and Symbols for the Proof

This subsection provides a comprehensive list of notations and symbols specific to the theoretical
proof. The definitions align with the conventions in stochastic calculus and diffusion model analysis.
We build on the notations of [23].

A.1 Common Terms

• ODEθ(·) : Approximate ODE trajectory using the learned score sθ(x, t).

• pt : True data distribution at noise level t.

• pODEθ
t : Distribution generated by simulating ODEθ.

• B : Norm upper bound for trajectories, satisfying ∀t, ∥xt∥ < B/2.

• xt ∼ pt : xt is sampled from distribution pt.

A.2 AdaSDE Terms

• ∆t : ODE discretization step size.

• γ : Hyperparameter controlling the noise injection ratio in the AdaSDE process.

• xγt+∆t : AdaSDE forward process: xt+∆t + εt+∆t→t+(1+γ)∆t.

• ε: Gaussian noise ∼ N (0, I).

• xγt : AdaSDE backward process: ODEθ
(
xγt+∆t, t+ (1 + γ)∆t→ t

)
.

• AdaSDEθ(x, γ) : Applies the AdaSDE operation with parameter γ to state x.

• x̄t: The solution to dx̄t = −tsθ (xt+∆t, t+∆t) dt,

A.3 Lipschitz and Error Bounds

• L0 : Temporal Lipschitz constant:∥tsθ(x, t)− tsθ(x, s)∥ ≤ L0|t− s|
• L1 : Boundedness of the learned score: ∥tsθ(x, t)∥ ≤ L1.

• L2 : Spatial Lipschitz constant:∥tsθ(x, t)− tsθ(y, t)∥ ≤ L2∥x− y∥
• ϵt : Score matching error:∥t∇x log pt(x)− tsθ(x, t)∥

A.4 Special Operators

• ODE (x, t1 → t2) : Ground Truth backward ODE evolution under the exact score from t1
to t2.

• ODEθ (x, t1 → t2) : Approximate ODE evolution using the learned score sθ.

• ∗: Convolution operator between distributions, e.g., P ∗R denotes the convolution of P and
R.

• ← : Time-reversal marker, e.g., x←t .

A.5 Key Process Terms

• px,γt : Distribution at noise level t after applying the AdaSDE process starting from state x.

• pAdaSDEθ
t : Distribution generated by the AdaSDE algorithm.

• ξx, ξy : i.i.d Gaussian noise: ξx ∼ N
(
0, σ2Id

)
, ξy ∼ N

(
0, σ2Id

)
.
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A.6 Error Dynamics

• e(t) := ∥x←t − x̄←t ∥ : Error dynamics in the time-reversed coordinate system in t.

• λ(γ) : Noise merging probability:2Q
(

B

2
√

(t+(1+γ)∆t)2−t2

)
, where Q(r) = Pr(a ≥ r) for

a ∼ N (0, 1).

• W1(·, ·) : Wasserstein-1 distance.

• TV (·, ·) : Total Variation (TV) distance.

Where εt+∆t→t+(1+γ)∆t ∼ N
(
0,
(
(t+ (1 + γ)∆t)2 − (t+∆t)2

)
I
)
. For the sake of simpli-

fying symbolic representation and facilitating comprehension, in the following proof, we use
AdaSDEθ(x, γ) to denote xγt in the above processes. In various theorems, we will refer to a function
Q(r) : R+ → [0, 1/2), defined as the Gaussian tail probability Q(r) = Pr(a ≥ r) for a ∼ N (0, 1).

B Proofs of Main Theoretical Results

Lemma 1 (Upper Bound on ODE Discretization Error). [23] Let xt = ODE (xt+∆t, t+∆t→ t)
denote the solution of the backward ODE under the exact score field, and x̄t =
ODEθ (x̄t+∆t, t+∆t→ t) denote the discretized ODE solution using the learned field sθ. As-
sume sθ satisfies:
1. Temporal Lipschitz Continuity:

∥tsθ(x, t)− tsθ(x, s)∥ ≤ L0|t− s| ∀x, t, s

2. Boundedness:

∥tsθ(x, t)∥ ≤ L1 ∀x, t

3. Spatial Lipschitz Continuity:

∥tsθ(x, t)− tsθ(y, t)∥ ≤ L2∥x− y∥ ∀x,y, t

Then the discretization error satisfies:

∥xt − x̄t∥ ≤ eL2∆t (∥xt+∆t − x̄t+∆t∥+ (∆t (L2L1 + L0) + ϵt)∆t)

Proof. Step 1: Definition of Time-Reversed Processes
Introduce time-reversed variables x←t and x̄←t governed by: where k is the integer satisfying
t ∈ [t′, t′ +∆t), corresponding to discrete timesteps.

Step 2: Error Dynamics
Define the error e(t) := ∥x←t − x̄←t ∥. Its derivative satisfies:

d

dt
e(t) ≤

∥∥t∇ log pt (x
←
t )− tsθ

(
x̄←t′+∆t, t

′ +∆t
)∥∥ .

Decompose the right-hand side:

≤ ∥t∇ log pt (x
←
t )− tsθ (x←t , t)∥︸ ︷︷ ︸

Approximation Error ϵt

+ ∥tsθ (x←t , t)− tsθ (x̄←t , t)∥︸ ︷︷ ︸
L2∥x←t −x̄←t ∥

+
∥∥tsθ (x̄←t , t)− tsθ (x̄←t′+∆t, t

′ +∆t
)∥∥︸ ︷︷ ︸

Temporal Discretization Error

.
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Step 3: Temporal Discretization Error Bound
Further decompose the temporal discretization error:

≤
∥∥tsθ (x̄←t , t)− tsθ (x̄←t′+∆t, t

)∥∥+ ∥∥tsθ (x̄←t′+∆t, t
)
− tsθ

(
x̄←t′+∆t, t

′ +∆t
)∥∥

≤ L0|t′ +∆t− t′|+ L2∥x̄←t − x̄←t′+∆t
∥ (Lipschitz continuity)

≤ L0∆t+ L2

(∥∥x̄←t − x̄←t′+∆t

∥∥) .
Using the boundedness condition ∥dx̄←t /dt∥ ≤ L1, we have:

∥∥x̄←t − x̄←t′+∆t

∥∥ ≤ ∫ t′+∆t

t

∥dx̄←s ∥ ds ≤ L1∆t

Step 4: Composite Differential Inequality
Combining all terms, the error dynamics satisfy:

d

dt
e(t) ≤ L2e(t) + (ϵt + L0∆t+ L2L1∆t)

Step 5: Gronwall’s Inequality Application
Integrate over t ∈ [t, t+∆t] and apply Gronwall’s inequality:

e (t) ≤ eL2∆t (e (t+∆t) + (ϵt +∆t (L0 + L2L1))∆t)

Lemma 2 (TV Distance Between Gaussian Perturbations). Let ξx ∼ N (0, σ2Id) and ξy ∼
N (0, σ2Id) be independent noise vectors. For x′ = x + ξx and y′ = y + ξy, their total vari-
ation distance satisfies:

TV(x′,y′) = 1− 2Q

(
∥x− y∥

2σ

)
where Q(r) = Pra∼N (0,1)(a ≥ r).

Proof. Let δ = x− y. The TV distance is:

TV(x′,y′) =
1

2

∫
Rd

|N (z;x, σ2Id)−N (z;y, σ2Id)|dz

=
1

2

∫
Rd

∣∣N (z− δ;0, σ2Id)−N (z;0, σ2Id)
∣∣ dz

Through orthogonal transformation U aligning δ with the first axis:

Uδ = (∥δ∥, 0, ..., 0)⊤

By rotational invariance of Gaussians:
TV(x′,y′) = TV

(
N (∥δ∥, σ2),N (0, σ2)

)
For 1D Gaussians N (µ, σ2) and N (0, σ2):

TV =
1

2

∫ ∞
−∞

∣∣∣∣ϕ(z− µ
σ

)
− ϕ

( z
σ

)∣∣∣∣ dz
= Φ

(
− µ

2σ

)
− Φ

( µ
2σ

)
(By symmetry)

= 1− 2Φ
( µ
2σ

)
= 2Q

( µ
2σ

)
where µ = ∥x− y∥. then:

TV(x′,y′) = 1− 2Q

(
∥δ∥
2σ

)
= 1− 2Q

(
∥x− y∥

2σ

)
.
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Lemma 3. Let px,γt and py,γt denote the densities of xγt and yγt respectively. After applying AdaSDE
with noise injection from t to t+ (1 + γ)∆t followed by backward ODE evolution, we have:

TV (px,γt , py,γt ) ≤ (1− λ(γ))TV (pxt , p
y
t )

where λ(γ) = 2Q

(
B

2
√
(t+ (1 + γ)∆t)2 − t2

)
.

Proof. Consider states xt and yt at noise level t with ∥xt − yt∥ ≤ B. The AdaSDE process first
perturbs both states to noise level t+ (1 + γ)∆t through Gaussian noise injection:

xt+(1+γ)∆t = xt + ξx, ξx ∼ N (0, [(t+ (1 + γ)∆t)2 − t2]I)
yt+(1+γ)∆t = yt + ξy, ξy ∼ N (0, [(t+ (1 + γ)∆t)2 − t2]I)

We construct a coupling between the noise injections: when xt = yt, set ξx = ξy; otherwise use
reflection coupling. By Lemma 2, the merging probability satisfies:

λ(γ) = 2Q

(
∥xt − yt∥
2σt(γ)

)
≥ 2Q

(
B

2σt(γ)

)
(since ∥xt − yt∥ ≤ B)

where Q(r) = Pra∼N (0,1)(a ≥ r).
This implies:

P(xt+(1+γ)∆t ̸= yt+(1+γ)∆t | xt ̸= yt) ≤ 1− λ(γ)
where λ(γ) quantifies the minimum merging probability between the Gaussian perturbations.

The subsequent backward ODE evolution preserves this coupling relationship because both trajecto-
ries are driven by the same learned score sθ. Therefore:

P(xγt ̸= yγt ) ≤ (1− λ(γ))P(xt ̸= yt)

Through the coupling characterization of total variation distance, we conclude:

TV(px,γt , py,γt ) ≤ (1− λ(γ))TV(pxt , p
y
t )

Lemma 4 (AdaSDE Error Propagation). Let xt+∆t ∈ Rd be an initial point. Define exact and
approximate ODE solutions:

xt = ODE
(
xt+(1+γ)∆t, t+ (1 + γ)∆t→ t

)
,

x̂t = ODEθ
(
x̂t+(1+γ)∆t, t+ (1 + γ)∆t→ t

)
.

Under AdaSDE with noise injection t + ∆t → t + (1 + γ)∆t and ∥xt − x̂t∥ ≤ B, there exists a
coupling such that:∥∥xt+(1+γ)∆t − x̂t+(1+γ)∆t

∥∥ ≤ eL2(1+γ)∆t(1 + γ) [∆t(L2L1 + L0) + ϵt] ∆t,

where L0, L1, L2, ϵt are the Lipschitz/boundedness/approximation constants for sθ and discretization
errors.

Proof. By Lemma 1 (ODE Discretization Error), the local truncation error satisfies:

∥xt − x̂t∥ ≤ eL2(1+γ)∆t
[
∥xt+(1+γ)∆t − x̂t+(1+γ)∆t∥

+
(
(1 + γ)∆t(L2L1 + L0) + ϵt

)
(1 + γ)∆t︸ ︷︷ ︸

Local discretization error

]
.

Applying AdaSDE’s noise injection with variance σ2 = (t+ (1 + γ)∆t)2 − t2, Lemma 2 gives:

E∥xt+(1+γ)∆t − x̂t+(1+γ)∆t∥ ≤ (1− λ(γ))∥xt − x̂t∥,

where the merging probability λ(γ) = 2Q
( B

2
√

(t+ (1 + γ)∆t)2 − t2
)

dominates the coupling

effectiveness.
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Multiplying by (1− λ(γ)) from partial revert and adding the local ODE approximation error leads to
the stated bound:∥∥xt+(1+γ∆t) − x̂t+(1+γ∆t)

∥∥ ≤ (
1− λ(γ)

) ∥∥xt − x̂t
∥∥

+ eL2 (1+γ)∆t (1 + γ)
[
(1 + γ)∆t(L2L1 + L0) + ϵt

]
∆t

= eL2 (1+γ)∆t (1 + γ)
[
∆t(L2L1 + L0) + ϵt

]
∆t

Lemma 5 (Connection of Wasserstein-1 distance and Norm). Let p1 and p2 be two probability
distributions over a space X ⊆ Rd, and let Γ(p1, p2) denote the set of all joint distributions with
marginals p1 and p2. The Wasserstein-1 distance between p1 and p2 satisfies:

W1(p1, p2) = inf
ψ∈Γ(p1,p2)

E(x1,x2)∼ψ [∥x1 − x2∥] ,

where ∥ · ∥1 is the L1 norm. Furthermore, for independent samples x1 ∼ p1 and x2 ∼ p2, we have:

W1(p1, p2) ≤ E [∥x1 − x2∥] ,

with equality if and only if the coupling ψ is optimal.
Lemma 6. TV(P ∗R,Q∗R) ≤ TV(P,Q) for independent distributions P,Q, and R.The inequality
TV(P ∗R,Q ∗R) = TV(P,Q) holds if and only if R is a degenerate distribution.

Proof. 1. Total Variation Distance Definition

The total variation distance between two distributions P and Q is defined as:

TV(P,Q) =
1

2

∫ ∞
−∞
|p(x)− q(x)|dx

where p(x) and q(x) are the probability density functions of P and Q, respectively.

2. Convolution Definition

The convolution of two distributions P and R is defined as:

(P ∗R)(x) =
∫ ∞
−∞

p(x− y)r(y)dy

Similarly, for Q and R :

(Q ∗R)(x) =
∫ ∞
−∞

q(x− y)r(y)dy

3. TV Distance for Convolved Distributions

We want to compute TV(P ∗R,Q ∗R), which is:

TV(P ∗R,Q ∗R) = 1

2

∫ ∞
−∞
|(P ∗R)(x)− (Q ∗R)(x)| dx

=
1

2

∫ ∞
−∞

∣∣∣∣∫ ∞
−∞

(p(x− y)− q(x− y))r(y)dy

∣∣∣∣ dx
Applying triangle inequality, we obtain:

TV(P ∗R,Q ∗R) ≤ 1

2

∫ ∞
−∞

(∫ ∞
−∞
|p(x− y)− q(x− y)|r(y)dy

)
dx

Using Fubini’s theorem, we can swap the order of integration:

TV(P ∗R,Q ∗R) ≤ 1

2

∫ ∞
−∞

(∫ ∞
−∞
|p(x− y)− q(x− y)|dx

)
r(y)dy
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For fixed y, the inner integral is:∫ ∞
−∞
|p(x− y)− q(x− y)|dx =

∫ ∞
−∞
|p(x)− q(x)|dx

Thus, we obtain:

TV(P ∗R,Q ∗R) ≤ 1

2

∫ ∞
−∞

(∫ ∞
−∞
|p(x)− q(x)|dx

)
r(y)dy

TV(P ∗R,Q ∗R) ≤ TV(P,Q)

The inequality TV(P ∗R,Q ∗R) = TV(P,Q) holds if and only if R is a degenerate distribution.

B.1 Proof of Theorem 1

Theorem 1. Let t+∆t be the initial noise level. Let xt = ODEθ (xt+∆t, t+∆t→ t) and pODEθ
t

denote the distribution induced by simulating the ODE with learned drift sθ. Assume:
1. The learned drift tsθ(x, t) is L2-Lipschitz in x, bounded by L1, and L0-Lipschitz in t.
2. The approximation error ∥tsθ(x, t)− t∇ log pt(x)∥ ≤ ϵt.
3. All trajectories are bounded by B/2.
Then, the Wasserstein-1 distance between the generated distribution pODEθ

t and the true distribution
pt is bounded by:

W1

(
pODEθ
t , pt

)
≤ B · TV

(
pODEθ

t+∆t , pt+∆t

)
+ eL2∆t · (∆t (L2L1 + L0) + ϵt)∆t

where ∆t is the step size

Proof. Let x̂t = ODEθ (xt+∆t, t+∆t→ t) with the corresponding distribution p̂t and xt =

ODE (xt+∆t, t+∆t→ t) (simulated under the true score). The proof bounds W1

(
pODEθ
t , pt

)
via triangular inequality:

W1

(
pODEθ
t , pt

)
≤W1

(
pODEθ
t , p̂t

)
+W1 (p̂t, pt) (11)

Then we can bound two terms seperately.

1. gradient error: By bounded-diameter inequality,

W1

(
pODEθ
t , p̂t

)
≤ B · TV

(
pODEθ

t+∆t , pt+∆t

)
2. discretization error: Using Lemma 1 (discretization bound), given xt ∼ pt, x̂t ∼ p̂t

∥x̂t − xt∥ ≤ eL2∆t · (∆t (L2L1 + L0) + ϵt)∆t

where the exponential factor arises from Gronwall’s inequality applied to the Lipschitz drift. Accord-
ing to Lemma 5, we can combine terms via triangular inequality:

W1

(
pODEθ
t , pt

)
≤ B · TV

(
pODEθ

t+∆t , pt+∆t

)
︸ ︷︷ ︸

gradient error

+ eL2∆t · (∆t (L2L1 + L0) + ϵt)∆t︸ ︷︷ ︸
discretization error
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B.2 Proof of Theorem 2

Theorem 2 (AdaSDE Error Decomposition). Consider the same setting as Theorem 1. Let pAdaSDEθ
t

denote the distribution after AdaSDE iteration. Then

W1

(
pAdaSDEθ
t , pt

)
≤B · (1− λ(γ))TV

(
pAdaSDE
t+(1+γ)∆t, pt+(1+γ)∆t

)
︸ ︷︷ ︸

gradient error

+ e(1+γ)L2∆t(1 + γ) ((1 + γ)∆t (L2L1 + L0) + ϵt)∆t︸ ︷︷ ︸
discretization error

where λ(γ) = 2Q

(
B

2
√
(t+ (1 + γ)∆t)2 − t2

)
.

Proof. Let xt+(1+γ)∆t ∼ pt+(1+γ)∆t and x̂t+(1+γ)∆t ∼ pAdaSDE
t+(1+γ)∆t. denote exact and generated

distributions respectively. And x̄t+(1+γ)∆t ∼ pθt+(1+γ)∆t. The proof contains three key components:

By Lemma 3, the AdaSDE process contracts the TV distance:

∥x̄t − x̂t∥ ≤ (1− λ(γ))∥x̄t+(1+γ)∆t − x̂t+(1+γ)∆t∥
= (1− λ(γ))∥x̄t+(1+γ)∆t − xt+(1+γ)∆t∥

Since x̄t ∼ pθt and x̂t ∼ pAdaSDEθ
t , we obtain:

TV
(
p̄t, p

AdaSDEθ
t

)
≤ (1− λ(γ))TV

(
p̄t+(1+γ)∆t, p̂t+(1+γ)∆t

)
= (1− λ(γ))TV

(
p̄t+(1+γ)∆t, pt+(1+γ)∆t

)
Using the bounded trajectory assumption ∥x∥ ≤ B/2, we convert TV to Wasserstein-1:

W1

(
p̄t, p

AdaSDEθ
t

)
≤ B · TV

(
p̄t, p

AdaSDEθ
t

)
≤ B(1− λ(γ))TV

(
p̄t+(1+γ)∆t, pt+(1+γ)∆t

)
From Lemma 3, the local ODE error satisfies:

∥xγt − x̄γt ∥ ≤ e(1+γ)L2∆t(1 + γ) [(1 + γ)∆t(L2L1 + L0) + ϵt] ∆t

According to Lemma 5 and Apply triangle inequality to Wasserstein distances:

W1

(
pAdaSDEθ
t , pt

)
≤W1

(
p̄t, p

AdaSDEθ
t

)
+W1 (p̄t, pt)

≤ B(1− λ(γ))TV
(
pAdaSDE
t+(1+γ)∆t, pt+(1+γ)∆t

)
+ e(1+γ)L2∆t(1 + γ) [(1 + γ)∆t(L2L1 + L0) + ϵt] ∆t

This completes the error decomposition.

B.3 Proof of Theorem 3

Theorem 3 (TV comparison: AdaSDE vs. ODE). Assume the same conditions as in Theorem 1 and
Theorem 2, and in particular that there exists a compact K ⊂ Rd with diam(K) ≤ B such that the
relevant one-step distributions are supported in K. Define

(i) ODE gradient: EODE
grad := B · TV

(
pODEθ

t+∆t , pt+∆t

)
,

(ii) AdaSDE gradient: EAdaSDE
grad := B

(
1− λ(γ)

)
TV
(
pAdaSDE
t+(1+γ)∆t, pt+(1+γ)∆t

)
.

where λ(γ) = 2Q
( B

2
√
(t+ (1 + γ)∆t)2 − t2

)
∈ (0, 1) and B > 0 is the diameter bound. Then

EAdaSDE
grad ≤ EODE

grad .
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Proof. By Theorem 1,
EODE
grad = B · TV

(
pODEθ

t+∆t , pt+∆t

)
.

By Theorem 2,
EAdaSDE
grad = B

(
1− λ(γ)

)
TV
(
pAdaSDE
t+(1+γ)∆t, pt+(1+γ)∆t

)
.

From t+∆t to t+ (1+ γ)∆t, AdaSDE injects Gaussian noise (a common Markov kernel) into both
branches. By Lemma 6 (convolution/pushforward is nonexpansive in TV),

TV
(
pAdaSDE
t+(1+γ)∆t, pt+(1+γ)∆t

)
≤ TV

(
pODEθ

t+∆t , pt+∆t

)
.

Since 0 < (1− λ(γ)) < 1, we get

EAdaSDE
grad = B

(
1− λ(γ)

)
TV
(
pAdaSDE
t+(1+γ)∆t, pt+(1+γ)∆t

)
≤ B · TV

(
pODEθ

t+∆t , pt+∆t

)
= EODE

grad .

Remark 2 (When the inequality is strict). If γ > 0, the Gaussian kernel is nondegenerate, and
TV
(
pODEθ

t+∆t , pt+∆t

)
> 0 (equivalently, the two pre-smoothing distributions are not a.e. equal and

admit L1 densities), then

TV
(
pAdaSDE
t+(1+γ)∆t, pt+(1+γ)∆t

)
< TV

(
pODEθ

t+∆t , pt+∆t

)
,

and hence EAdaSDE
grad < EODE

grad .

C More on AdaSDE

C.1 Experiment details.

Experiment detail in main result

Since AdaSDE has fewer than 40 parameters, its training incurs minimal computational cost. We train
Θ for 10K images, which only takes 5-10 minutes on CIFAR10 with a single 4090 GPU and about
20 minutes on LSUN Bedroom with four 4090 GPUs. For generating reference teacher trajectories,
we use DPM-Solver-2 with M=3. For tuning across all datasets, we employed a learning rate of
0.2 along with a cosine learning rate schedule (coslr). The random seed was fixed to 0 to ensure
consistent reproducibility of the experimental results. To ensure the robustness of our experimental
results, we conducted ten independent runs for each NFE (Number of Function Evaluations) setting
on the CIFAR10 dataset. Across these runs, the FID (Fréchet Inception Distance) scores consistently
varied by no more than 0.1.

C.2 Time uniform scheme

[2] proposes a discretization scheme for diffusion sampling given the starting σmax, end time σmin

and ϵs. Denote the number of steps as N , then the time uniform discretization scheme is:

σ(t) =
(
e0.5 βd t

2+βmin t − 1
)0.5

σ−1(σ) =

√
β2
min + 2βd ln(σ2 + 1)− βmin

βd

βd =
2
(
ln
(
σ2
min + 1

)
/ϵs − ln

(
σ2
max + 1

))
ϵs − 1

βmin = ln
(
σ2
max + 1

)
− 0.5βd

ttemp =

(
1 +

i

N − 1

(
ϵ1/ρs − 1

))ρ
ti = σ(ttemp)

We set σmax = 80.0, σmin = 0.002, ρ = 1 and ϵs = 10−3 across all datasets in our experiments.
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C.3 Supplementary experimental results

Table 6: Evaluation on MSCOCO 512×512 (Flux.1-dev).

Model NFE Sampler/Method FID ↓ CLIP (%) ↑

Flux.1-dev 512×512

6
DPM-Solver-2 54.09 28.49

AdaSDE 35.32 29.94

8
DPM-Solver-2 30.17 29.75

AdaSDE 26.51 30.51

10
DPM-Solver-2 26.32 30.32

AdaSDE 23.54 30.77

DPM-Solver++(2M)

AdaSDE(Ours)

12 NFE 16 NFE 20 NFE

Figure 4: Comparison of image synthesis quality under identical NFE constraints using AdaSDE
(ours) and DPM-Solver++ (2M). Both methods generate images with Stable Diffusion v1.5 [5] and
classifier-free guidance (scale = 7.5) for the prompt “A photo of some flowers in a ceramic vase".
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Table 7: Unconditional generation results on CIFAR10 32×32.

Method AFS NFE

3 4 5 6 7 8 9 10

DPM-Solver-v3 × - - 15.10 11.39 - 8.96 - 8.27

UniPC
× 109.6 45.20 23.98 11.14 5.83 3.99 3.21 2.89
✓ 54.36 20.55 9.01 5.75 4.11 3.26 2.93 2.65

DPM-Solver++(3M)
× 110.0 46.52 24.97 11.99 6.74 4.54 3.42 3.00
✓ 55.74 22.40 9.94 5.97 4.29 3.37 2.99 2.71

iPNDM
× 47.98 24.82 13.59 7.05 5.08 3.69 3.17 2.77
✓ 24.54 13.92 7.76 5.07 4.04 3.22 2.83 2.56

DDIM
× 93.36 66.76 49.66 35.62 27.93 22.32 18.43 15.69
✓ 67.26 49.96 35.78 28.00 22.37 18.48 15.69 13.47

DPM-Solver-2
× - 205.41 - 45.32 - 12.93 - 10.65
✓ 227.32 - 47.22 - 13.68 - 10.89

AMED-Solver
× - 17.18 - 7.04 - 5.56 - 4.14
✓ 18.49 - 7.59 - 4.36 - 3.67 -

AdaSDE (ours)
× - 10.16 - 4.67 - 3.18 - 2.65
✓ 12.62 - 4.18 - 2.88 - 2.56 -

Table 8: Unconditional generation results on ImageNet 64×64.

Method AFS NFE

3 4 5 6 7 8 9 10

UniPC
× 91.38 55.63 54.36 14.30 9.57 7.52 6.34 5.53
✓ 64.54 29.59 16.17 11.03 8.51 6.98 6.04 5.26

DPM-Solver++(3M)
× 91.52 56.34 25.49 15.06 10.14 7.84 6.48 5.67
✓ 65.20 30.56 16.87 11.38 8.68 7.12 6.25 5.58

iPNDM
× 58.53 33.79 18.99 12.92 9.17 7.20 5.91 5.11
✓ 34.81 21.31 15.53 10.27 8.64 6.60 5.64 4.97

DDIM
× 82.96 58.43 43.81 34.03 27.46 22.59 19.27 16.72
✓ 62.42 46.06 35.48 28.50 23.31 19.82 17.14 15.02

DPM-Solver-2
× - 140.20 - 59.47 - 22.02 - 11.31
✓ 163.21 - 62.32 - 23.68 - 11.89

AMED-Solver
× - 32.69 - 10.63 - 7.71 - 6.06
✓ 38.10 - 10.74 - 6.66 - 5.44 -

AdaSDE (ours)
× - 18.53 - 7.01 - 5.36 - 4.63
✓ 18.51 - 6.90 - 5.26 - 4.59 -
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(a) DPM-Solver-2. NFE=5, FID = 43.27 (b) DPM-Solver-2. NFE=9, FID = 8.65

(c) AdaSDE. NFE=5, FID = 4.18 (d) AdaSDE. NFE=9, FID = 2.56
Figure 5: Qualitative result on CIFAR10 32×32 (5 and 9 NFEs)

(a) DPM-Solver-2. NFE=5, FID = 74.68 (b) DPM-Solver-2. NFE=9, FID = 16.89

(c) AdaSDE. NFE=5, FID = 8.05 (d) AdaSDE. NFE=9, FID = 4.19
Figure 6: Qualitative result on FFHQ 64×64 (5 and 9 NFEs)

(a) DPM-Solver-2. NFE=5, FID = 59.47 (b) DPM-Solver-2. NFE=9, FID = 11.31

(c) AdaSDE. NFE=5, FID = 6.90 (d) AdaSDE. NFE=9, FID = 4.59
Figure 7: Qualitative result on ImageNet 64×64 (5 and 9 NFEs)
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