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ABSTRACT

Assistance games are a promising alternative to reinforcement learning from human
feedback (RLHF) for training AI assistants. Assistance games resolve key draw-
backs of RLHF, such as incentives for deceptive behavior, by explicitly modeling
the interaction between assistant and user as a two-player game where the assistant
cannot observe their shared goal. Despite their potential, assistance games have
only been explored in simple settings. Scaling them to more complex environments
is difficult because it requires both solving intractable decision-making problems
under uncertainty and accurately modeling human users’ behavior. We present
the first scalable approach to solving assistance games and apply it to a new, chal-
lenging Minecraft-based assistance game with over 10400 possible goals. Our
approach, AssistanceZero, extends AlphaZero with a neural network that predicts
human actions and rewards, enabling it to plan under uncertainty. We show that
AssistanceZero outperforms model-free RL algorithms and imitation learning in
the Minecraft-based assistance game. In a human study, our AssistanceZero-trained
assistant significantly reduces the number of actions participants take to complete
building tasks in Minecraft. Our results suggest that assistance games are a tractable
framework for training effective AI assistants in complex environments. Code and
videos are available at this website.

1 INTRODUCTION

The pipeline of pretraining, supervised fine-tuning (SFT), and reinforcement learning from human
feedback (RLHF) or its variants has become the dominant paradigm for training general AI assistants.
RLHF involves fine-tuning pretrained foundation models to take actions (i.e., produce responses) that
are preferred by human annotators according to criteria like helpfulness and harmlessness (Bai et al.,
2022). However, RLHF-trained assistants have a number of drawbacks. Annotators can be fooled
into giving positive feedback for unhelpful actions, incentivizing deceptive or manipulative assistant
behavior (Lang et al., 2024; Williams et al., 2024). Furthermore, RLHF does not encourage models to
maintain uncertainty about a user’s goals; the objective of producing highly rated single-turn responses
discourages the assistant from asking clarifying questions or hedging its responses (Shani et al., 2024).
Non-chatbot AI assistants like GitHub Copilot (Chen et al., 2021) suffer similar problems: Copilot
cannot ask for clarification when a coding task is ambiguous. Furthermore, autocomplete assistants
like Copilot do not take into account the collaborative nature of assistance—an AI assistant’s actions
should complement its user’s rather than trying to predict and replace them.

An alternative paradigm for training AI assistants is assistance games (Fern et al., 2014; Hadfield-
Menell et al., 2016; Shah et al., 2020). Assistance games avoid the aforementioned drawbacks of
RLHF by explicitly accounting for both the interactive nature of assistance and uncertainty about
the user’s goal. In particular, an assistance game is a two-player game in which an assistant and
a user take actions in a shared environment (Figure 2b). The two agents share a reward function,
but crucially the assistant is initially uncertain about it. Assistance games remove incentives for
deception since the assistant’s performance depends on the true latent reward function, rather than
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Human digs
outline of

foundation Assistant begins breaking
blocks within the outline

Human + assistant finish
the foundation together

Digging a foundation: the assistant watches the human outline the house’s
foundation and then digs it out.

Assistant watches human
begin to build roof

Assistant continues building
roof; human free to build
rest of house

Assistant completes roof

Building a roof: the assistant infers the structure of the roof from human actions
and completes it while the human builds another part of the house.

Assistant has built stone
walls one block too tall

Human breaks one of the
incorrect blocks

Assistant breaks the remaining
blocks that are too tall

Learning from corrections: the assistant builds the walls too tall, but when the
human breaks one of the blocks it learns the correct height and breaks the others.

Figure 1: We develop an AI assistant that helps users build houses in Minecraft using assistance
games, an alternative to reinforcement learning from human feedback (RLHF). Our assistant helps
real human players build a variety of goal houses it has never seen during training. It displays
emergent behaviors like understanding pragmatic communication and learning from corrections.

human feedback. They also incentivize the assistant to interact with the user to resolve its uncertainty.
Finally, solving assistance games results in assistants whose actions complement the user’s actions to
achieve optimal joint performance. In the conclusion (Section 6), we envision a recipe for applying
assistance games to LLM post-training to replace RLHF.

Given the advantages of assistance games, why do they remain a poorly studied method for training
AI assistants? Assistance games have been used to solve very toy problems, but have been largely
dismissed in complex settings due to seemingly insurmountable challenges. First, the AI assistant
must maintain uncertainty over reward functions and make decisions under that uncertainty, which
is considered computationally intractable (Papadimitriou & Tsitsiklis, 1987; Madani et al., 2003).
Second, unlike RLHF, solving assistance games requires a human model that can predict a human’s
response to AI actions. If the AI assistant fails to understand human communication strategies, it
could perform poorly with real humans (Carroll et al., 2020).

We tackle these challenges and show that complex assistance games can be tractably solved. To do so,
we introduce a new assistance game benchmark, the Minecraft Building Assistance Game (MBAG),
in which an AI assistant helps a human build a goal structure in a Minecraft-based environment
without prior knowledge of the goal (Figure 1). Creating an effective assistant in MBAG is a major
challenge because the distribution over goal structures is highly complex, and the number of possible
goals is far larger than in prior work (over 10400, compared to less than 20).

Using MBAG, we investigate whether deep reinforcement learning (RL) algorithms are capable of
solving assistance games. We find that PPO, a popular model-free RL algorithm, can easily build
known goal houses in MBAG; however, it struggles to help when the goal structure is unknown.
We believe PPO fails because it requires learning both how to predict the goal and act based on its
predictions simultaneously from high variance feedback.

Thus, to better solve assistance games, we introduce a new algorithm called AssistanceZero that
separates prediction and action by extending AlphaZero (Silver et al., 2017). Similarly to AlphaZero,
AssistanceZero combines Monte Carlo tree search (MCTS) with a neural network to choose actions.
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Figure 2: Assistance games are an alternative paradigm to RLHF for developing helpful and harmless
AI assistants. In RLHF (top), an assistant policy is trained to take in the environment state (e.g., human
chat messages) and produce an action (e.g., a response message). The assistant policy is trained to
maximize a reward function which is learned from human feedback. In contrast, in assistance games
(bottom), the human is assumed to be another agent acting in the same environment as the assistant,
rather than an exogenous source of feedback. The human and assistant share a reward function, but it
depends on reward parameters that are initially known only to the human.

AssistanceZero employs a neural network with additional heads that predict rewards and human
actions, which are used by MCTS to effectively plan under uncertainty (Figure 4). AssistanceZero
results in much more effective assistants than PPO (Table 1). We also tackle the second challenge of
solving assistance games by exploring how to develop effective human models that produce helpful
assistants. Interestingly, we find that the best human models in MBAG also combine MCTS with
imitation learning, a method known as piKL Jacob et al. (2022).

We compare policies trained via an assistance game to those trained with other approaches, such as a
pipeline analogous to pretraining and SFT. In MBAG, we find that AssistanceZero-trained assistants
greatly outperform those trained with pretraining+SFT or other approaches, both with our best human
model (Table 3) and with real humans (Figure 3). The AssistanceZero assistant displays many helpful
emergent behaviors, such as adapting based on corrections (Figure 1). Overall, our results suggest that
assistance games are tractable to scale and can be a superior framework for training helpful assistants
in challenging environments. We believe our approach can be extended to creating assistants for a
range of real-world settings, such as AI pair programmers that help solve coding tasks.

Our contributions may be summarized as: (1) we overcome the difficulties of solving assistance
games by proposing AssistanceZero, a new model-based RL algorithm; (2) we show that assistant
policies trained via assistance games outperform those trained via other assistance paradigms, both in
simulation and with real humans; (3) we introduce MBAG, a benchmark for assistance games with
exponentially more goals than in prior work; and, (4) we investigate approaches to human modeling
and determine the most effective human models for solving assistance games.

2 BACKGROUND AND RELATED WORK

We begin by introducing the assistance game formalism and surveying related work. An assistance
game is a Markov game in which two players, the human H and the assistant R, interact to optimize
a shared reward function. It consists of a state space S , action spaces AH and AR for the human and
assistant, a set of possible reward parameters Θ, and a discount factor γ ∈ [0, 1]. Reward parameters
and an initial state are sampled from a predefined distribution p(s1, θ). At each timestep t = 1, . . . , T ,
both agents select actions aHt ∈ AH, aRt ∈ AR; receive shared reward R(st, a

H
t , aRt ; θ); and the

environment transitions to state st+1 according to a transition distribution p(st+1 | st, aHt , aRt ).

A human policy πH : S ×Θ → ∆(AH) defines a distribution over actions πH(aH | s, θ) given an
environment state and reward parameters. An assistant policy πR : (S ×AH×AR)∗×S → ∆(AR)
defines a distribution over actions πR(aRt | ht) conditioned on the state-action history up until the
current timestep: ht = (s1, a

H
1 , aR1 , . . . , st−1, a

H
t−1, a

R
t−1, st). Note that the assistant policy is not

conditioned on the reward parameters since it cannot observe them. While in general a human policy
might also depend on ht, for simplicity we assume that πH is only conditioned on (s, θ); previous
results show there is an optimal human policy conditioned only on (s, θ) (Hadfield-Menell et al.,
2016). Given a pair of policies (πH, πR), we can define their joint expected return as

J(πH, πR) = E
[∑T

t=1 γ
t−1R(st, a

H
t , aRt ; θ)

]
,

the expected discounted sum of their shared reward, where (s1, θ) ∼ p(s1, θ); aHt ∼ πH(aH | st, θ);

3



Published at the ICLR 2025 Workshop on Human-AI Coevolution (HAIC)

1

2

3

4

5

Human judgements
of helpfulness

-40%

-20%

0%

+20%

Change in human
place/break actions

vs. playing alone

Pretraining
+ SFT

Assistance
game (ours)

Human
assistant

Figure 3: In a human study, we find that our assistant significantly reduces the number of actions
taken by participants when compared to building without an assistant. Our assistance game-based
assistant is judged as considerably more helpful than one trained with a pretraining and supervised
fine-tuning (SFT) pipeline, and is rated nearly as helpful as an expert human assistant. Error bars on
the left plot indicate 90% confidence intervals; box plots on the right indicate the median, quartiles,
range, and outliers.

aRt ∼ πR(aR | ht); and st+1 ∼ p(st+1 | st, aHt , aRt ). For a fixed human policy πH, we define a
best response to it as an assistant policy πR that maximizes J(πH, πR).

Related work Assistance games were introduced by Fern et al. (2014) and Hadfield-Menell et al.
(2016) under the names “hidden-goal MDPs” and “cooperative inverse reinforcement learning.” A
few prior works have explored small-scale assistance games (Dragan & Srinivasa, 2013; Javdani
et al., 2015; Malik et al., 2018; Fisac et al., 2020; Woodward et al., 2020; Zhi-Xuan et al., 2024) with
around ten or fewer discrete reward parameters. We aim to scale assistance games to much larger
structured reward parameter spaces, similar to the goals real humans have when interacting with
assistants; in our environment |Θ| ≈ 10400.

Our approach to solving assistance games builds on techniques for scalably solving games (Silver
et al., 2017; Brown et al., 2020; Hu et al., 2021a), modeling human behavior (Carroll et al., 2020;
Laidlaw & Dragan, 2021; Yang et al., 2022; Jacob et al., 2022), and training effective collaborative
agents (Stone et al., 2010; Hu et al., 2020; Treutlein et al., 2021; Strouse et al., 2021; Hu et al.,
2021b; Bakhtin et al., 2022). Minecraft and Minecraft-like environments have been previously used
as testbeds for assistance and collaboration (Szlam et al., 2019; Gray et al., 2019; Bara et al., 2021;
Skrynnik et al., 2022; Kiseleva et al., 2022; Zholus et al., 2022; Mehta et al., 2024) as well as for
general interactive learning (Kanervisto et al., 2022; Baker et al., 2022; Fan et al., 2022; Milani et al.,
2023; Wang et al., 2023).

3 THE MINECRAFT BUILDING ASSISTANCE GAME

To investigate how to solve complex assistance games, we introduce the Minecraft Building Assis-
tance Game (MBAG). When designing MBAG, we aimed to satisfy a few desiderata to make it a
useful environment for studying assistance games more broadly. First, the distribution over reward
parameters p(θ) should be complex but structured, similar to human preferences in other domains.
As described in the related work, most past work on assistance games has considered only a small
number of possible reward functions. Second, there should be a variety of ways for the assistant
to help the human that require varying amounts of information about the reward function. Finally,
the environment should be tractable for academic labs to train RL agents, making it feasible to
empirically study more complex assistance games. In the remainder of this section, we describe the
structure and implementation of MBAG.

A state in MBAG consists of a 3-dimensional grid of blocks, player locations within the grid, and
player inventories. Each location in the grid can be one of ten block types, including air; we use an
11 × 10 × 10 grid for our experiments. Each agent, or player, can be at any unoccupied discrete
location within the 3-dimensional grid. The action space consists of a no-op, moving in one of the six
cardinal directions, placing a block, or breaking a block. Place and break actions are parameterized
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Overall Human Assistant
Assistant goal % actions goal %
PPO baseline 71.6 ± 1.0 203 ± 3 0.0 ± 0.8
− LSTM 72.4 ± 0.9 200 ± 3 2.2 ± 0.7
+ rew. engineering 74.0 ± 0.9 200 ± 3 3.5 ± 0.7
+ aux. loss 74.1 ± 0.9 191 ± 3 7.2 ± 1.0

AssistanceZero 79.8 ± 0.9 158 ± 3 27.0 ± 1.5
Human alone 70.8 ± 1.0 200 ± 3 —

Table 1: Our proposed algorithm AssistanceZero produces more effective assistants for a fixed
human model compared to a carefully tuned PPO implementation. We evaluate how well assistant
policies perform with an imitation learning-based human model at building goal structures not seen
during training. See Section 4 for details.

by a location, and place actions are also parameterized by a block type. This means that in the
11 × 10 × 10 environment there are over 20,000 possible actions. The players can only reach a
limited distance to break or place blocks and many actions are invalid given the current state (e.g., it
is impossible to break an air block); thus, usually a small subset of all actions are valid.

The reward parameters θ consist of a goal grid of blocks. To assign rewards for human and assistant
actions, we use the edit distance d(s, θ) between the current state s and the goal θ, i.e., the minimum
number of place and break block actions necessary to transform s to the goal. The reward function
R(s, aH, aR; θ) = d(s′, θ)− d(s, θ) is the difference in edit distance before and after the assistant
and human actions. This means that correct (incorrect) place or break actions give a reward of +1
(-1).

At the start of an episode, the goal is sampled from a dataset of houses based on the CraftAssist
dataset Gray et al. (2019). We maintain separate train and test datasets to evaluate generalization.
While the human agent can observe the goal, it is not visible to the assistant. MBAG satisfies our first
desideratum because there is an exponentially large number of possible goals (on the order of 10400),
making the goal distribution much more complex than prior studies of assistance games. However,
due to the structured nature of the houses, the assistant can still infer information about the goals from
human interaction. MBAG also satisfies the second desideratum because some assistant strategies,
like digging a foundation, require very little knowledge of the goal. On the other hand, adding
final decorations requires specific information. For more details about the MBAG environment, see
Appendix C.

4 SOLVING ASSISTANCE GAMES WITH ASSISTANCEZERO

Using MBAG, we first examine how to solve the complex problem of sequential decision-making
under uncertainty posed by assistance games. We begin by assuming we have a fixed human policy
πH(aH | s, θ) and study how to find a best response assistant policy. For now, we use a human
model πH based on imitation learning; see Section 4.3 for more details about our approach to human
modeling.

4.1 PPO FAILS TO SOLVE ASSISTANCE GAMES

Shah et al. (2020) show that finding a best response to a fixed human policy in an assistance game is
equivalent to solving a single-agent partially observable Markov decision process (POMDP); we call
this an assistance POMDP. An effective tool to solve many POMDPs is model-free deep RL, which
leverages the generalization capabilities of deep neural networks to perform well in environments that
are intractable to solve via other methods like dynamic programming or planning (Ni et al., 2022).
In particular, proximal policy optimization (PPO) (Schulman et al., 2017) with a recurrent policy
network has shown promise in a variety of partially observable and multi-agent settings (OpenAI
et al., 2019; Yu et al., 2022).

We use PPO to train assistant policies in MBAG through a standard model-free RL loop. PPO
collects a set of rollouts from several environments in parallel; human actions are sampled from
the fixed human model πH, and assistant actions are sampled from the current assistant policy πR,
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Figure 4: AssistanceZero (bottom) extends AlphaZero (top) to solve assistance games. While
AlphaZero requires access to the transition and reward functions to run MCTS, in assistance games
the rewards and human actions depend on the reward parameters θ, which are not visible to the
assistant. AssistanceZero learns to predict the reward parameters and human actions from rollouts,
enabling it to plan with MCTS and train an effective assistant policy.

which is parameterized as a convolutional neural network (Hochreiter & Schmidhuber, 1997). At the
beginning of each training episode, a goal structure θ is randomly sampled from the training dataset
Dtrain. Then, PPO optimizes the assistant policy’s parameters using a surrogate loss function which
aims to increase the policy’s reward.

To test our PPO assistant policy, we evaluate it with the same imitation learning-based human model
over 1,000 episodes with goal structures from our test set Dtest. We collect three performance metrics:
the average percentage of the goal structure that is completed, the total number of place and break
blocks taken by the human, and the percentage of the total goal structure built by the assistant.
We also evaluate the human model playing alone. Compared to this baseline, ideally the human
model-assistant pair should achieve an equal or higher goal percentage while requiring fewer human
actions. See Appendix F for the full details of our training and evaluation setup.

Unfortunately, we found that PPO struggles in MBAG. An assistant trained with recurrent PPO does
not help the human model at all (first row of Table 1). Surprisingly, non-recurrent PPO slightly
outperforms recurrent PPO (second row). We believe this setting is challenging for PPO due to the
high variance of the reward signal it uses for learning. Since the reward function is shared, the reward
depends not only on the assistant’s actions, but also on those of the human model, which the assistant
can only control indirectly. Furthermore, since the assistant is uncertain about the goal structure, even
taking an action that is helpful in expectation given the observation history will sometimes result in
negative reward. The sequential and long-horizon nature of the task exacerbates these issues, further
increasing the noise in the reward-to-go signal that PPO seeks to optimize.

As a result, the most discernible signal PPO receives early in training is that place and break actions
tend to be incorrect, incurring negative reward. Thus, the assistant policy converges to building little
to nothing. To decrease the noise in the reward signal and incentivize the assistant to act more, we
explore training the assistant based on only the reward from its own actions1. We also experiment
with adding an auxiliary loss term to encourage placing the correct blocks. These slightly increase
the percentage of the goal built by the assistant-human model pair while reducing or maintaining the
number of human model actions (third and fourth of Table 1). However, they are still only barely
helpful. Thus, to tractably solve complex assistance games such as MBAG, we turn to an alternative
approach.

4.2 ASSISTANCEZERO

Given the failure of PPO to train effective assistant policies in MBAG, we propose a different
algorithm for solving assistance POMDPs: AssistanceZero. We hypothesize that PPO struggles
because the reward signal is very noisy, and it must learn to both predict the goal structure and
act based on its predictions from this noisy signal. Thus, we design AssistanceZero to separate

1This no longer solves the assistance game and could be dangerous; the assistant may be incentivized to
prevent the human from taking actions so that it can take them instead.
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goal prediction and action selection by learning a goal predictor and then using it for planning.
Specifically, AssistanceZero is an extension of AlphaZero, a deep RL algorithm that has achieved
superhuman performance in complex competitive games like Go and chess (Silver et al., 2017). Like
AlphaZero, AssistanceZero chooses actions using a variant of Monte Carlo tree search (MCTS)
(Kocsis & Szepesvári, 2006). MCTS builds a search tree by simulating the results of taking different
sequences of actions from the current state. However, it requires knowledge of both the reward and
the next state resulting from an action, neither of which is known in an assistance POMDP: the
next state depends on the human’s action, and the reward R(s, aH, aR; θ) depends on the reward
parameters θ which are not visible to the assistant.

To overcome these challenges, AssistanceZero employs a recurrent neural network with parameters
ϕ that takes as input a state-action history h and has four heads: a policy head πϕ(aR | h), a value
head V̂ ϕ(h), a reward parameter prediction head p̂ϕ(θ | h), and a human action prediction head
p̂ϕ(aH | h). The policy and value heads select actions and evaluate the value of states, respectively,
similarly to the policy and value networks in AlphaZero. The reward parameter and human action
prediction heads predict distributions over θ and aH so that MCTS can estimate the reward and next
state given a selected action.

Similar to PPO, we train the AssistanceZero network by collecting rollouts in several parallel
environments, selecting assistant actions using MCTS with the current network parameters. Then,
the four heads are trained using separate loss terms. As in AlphaZero, the policy head is updated to
minimize the KL divergence towards the policy output from MCTS, and the value head to minimize
the squared error with the reward-to-go. The reward parameter and human action prediction heads are
trained with negative log-likelihood loss to predict θ and aH, respectively. We found that the reward
parameter prediction head is prone to overfitting to the most recently seen goal structures, so we
additionally include a KL divergence term from the current prediction p̂ϕ(θ | ht) to the predictions
made when ht was originally sampled, which we denote as p̂t(θ). The full AssistanceZero loss can
be written for a trajectory of n timesteps as

L(ϕ) = 1
n

∑n
t=1

[
λpolicyDKL

(
πMCTS
t ∥πϕ(· | ht)

)
+ λvalue

(
V̂ ϕ(ht)−

∑T
t′=t γ

t′−tR(st′ , a
H
t′ , a

R
t′ ; θ)

)2

− λreward log p̂
ϕ(θ | ht) + λprev-rewDKL

(
p̂ϕ(θ | ht)∥p̂t(θ)

)
− λaction log p̂

ϕ(aHt | ht)
]
, (1)

where λpolicy, λvalue, λreward, λprev-rew, and λaction are weights that trade off the five loss terms, and
πMCTS
t refers to the action distribution output by MCTS at timestep t. After a few epochs of gradient

descent on L(ϕ) over the collected episodes, AssistanceZero collects new episodes by running
MCTS with the updated network parameters and repeats the process. The technique of learning
an approximate belief distribution over the reward parameters θ from rollouts is similar to learned
belief search (Hu et al., 2021a). The variant of MCTS employed by AssistanceZero is also similar
to POMCP (Silver & Veness, 2010), a variant of MCTS for POMDPs, except that we use a learned
model of the environment. AssistanceZero is also related to model-based extensions of AlphaZero
like MuZero (Schrittwieser et al., 2020); however, MuZero assumes full observability and that the
next state is deterministic, which is not the case in assistance games. See Appendix B for a full
description of AssistanceZero and our variant of MCTS.

We train and evaluate AssistanceZero assistant policies using the same setup as the PPO assistants;
the results are shown in the bottom row of Table 1. Our AssistanceZero assistant significantly
outperforms PPO-based assistants across all metrics, increasing the percentage of the goal completed
by building 27% of the structure while reducing the number of human model actions by 42.

4.3 CHOOSING A HUMAN MODEL

While we have shown that AssistanceZero can train assistants that perform well with a fixed human
model, it remains unclear how to obtain a good human model in the first place. Ideally, an assistant
policy should perform well not only with the human model it was trained with, but with real humans.
We explore a number of approaches from the human-AI interaction literature for developing human
models in MBAG, including reward-based and data-based models.
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Human Cross entropy Goal % after X min
model Alone w/ asst. 3 5 10 20

PPO 12.23 12.24 79 96 99 100
AlphaZero 6.85 6.52 82 97 100 100
BC-alone 2.11 2.15 8 13 30 58
BC-with-asst. 2.13 2.06 10 18 40 71
BC-combined 1.89 1.99 9 17 41 71
piKL-alone 2.18 2.37 25 40 66 82
piKL-with-asst. 2.25 2.29 26 42 74 92
piKL-combined 1.98 2.20 26 44 75 91

Humans subjs. — — 25 42 80 95

Table 2: We evaluate eight human models based on their cross entropy with the actions of real
humans (playing either with or without an assistant) and how well they perform at building goal
structures alone compared to human subjects. We find that the reward-based human models, PPO
and AlphaZero, are poor predictors of human actions and build houses faster than human subjects.
BC models predict human actions well but build houses more slowly than human subjects. Finally,
piKL models, which combine the BC models with planning, predict human actions well and build
houses at a similar rate to human subjects. The most accurate BC and piKL models are trained on the
combined human-alone and human-with-assistant data.

Reward-based human models assume that humans choose actions approximately optimally to maxi-
mize their reward function. We use deep RL to train two reward-based models to build goal structures
by themselves. For one model, we use PPO with an entropy coefficient, which approximates Boltz-
mann rationality, a common noisily-optimal model of human behavior (Luce, 1959; 1977; Ziebart
et al., 2010). We train the other model using AlphaZero.

Next, we train a series of data-based human models using behavior cloning (BC), which predicts
actions from states using supervised learning. For the training dataset, we record 18 episodes in
MBAG of five human subjects building houses randomly selected from Dtrain. In half of these
episodes the human builds alone and in the other half an experienced Minecraft player acts as an
assistant. We display the goal structure to subjects as a transparent blueprint overlaying the normal
Minecraft game, while keeping it hidden from the human assistant. Using BC, we train three human
models: one on the data where the subject played alone (BC-alone), one on the subset played with
the assistant (BC-with-assistant), and one on the whole dataset (BC-combined); see Appendix F.1 for
details.

Some recent work has proposed combining reward-based and data-based human models (Cornelisse
& Vinitsky, 2024). To explore this type of human modeling, we implement piKL (Jacob et al., 2022),
which uses MCTS with an imitation-learned prior policy to select actions that maximize reward but
are also human-like. We experiment with piKL models based on each of our three BC models.

We evaluate all eight human models according to prediction accuracy, performance alone, and efficacy
for training assistants. To measure prediction performance, we calculate the cross entropy of each
model on human data; for the BC and piKL models, we use cross-validation. We also evaluate each
human model building 1,000 goal structures alone to determine how well it performs compared to our
human subjects. Finally, for each human model, we train an assistant with AssistanceZero and then
evaluate the assistant policy with every other human model for 100 episodes. This helps determine if
a human model leads to an assistant that generalizes well to other human models. See Appendix E.1
for more details on our human model training and evaluation.

The results of our human model evaluations are shown in Table 2 and Figure 9. Similarly to past work
(Carroll et al., 2020; Laidlaw & Dragan, 2021; Bakhtin et al., 2021), we find that pure reward-based
models are poor predictors of human actions. Both the PPO and AlphaZero human models have
very high cross entropy with real human actions and build goal structures much more quickly than
human subjects. The BC human models have considerably lower cross entropy, with the lowest cross
entropy achieved by the BC model trained on the combined BC dataset. However, they also seem to
suffer from compounding errors (Ross et al., 2011) and thus build less of the goal structure than real
humans. The piKL models are slightly less predictive in terms of cross entropy but closely match
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Assistant Overall Human Assistant
training goal % actions goal %
Pretraining 89.8 ± 0.7 240 ± 4 2.3 ± 0.5
SFT 90.4 ± 0.7 241 ± 4 2.9 ± 0.3
Assistance game 92.6 ± 2.4 179 ± 11 26.0 ± 3.3
Hum. model alone 90.0 ± 0.8 245 ± 4 —

Table 3: We compare three approaches to building assistants in our MBAG benchmark: pretraining,
which is analogous to autocomplete-based assistants like GitHub Copilot; SFT, which is analogous to
the first stage of RLHF; and assistance games. We evaluate the assistant policy trained with each
approach based on the same metrics as Table 1. The policy based on assistance games outperforms
the others in all metrics, building around a quarter of the goal structure itself and allowing the human
to take many fewer actions.

human performance.

The results of training AssistanceZero assistants with one human model and testing with another are
shown in Figure 9. We evaluate each assistant-human model pair based on both the average goal
percentage completed and the mean number of human actions. Compared to the human models
building alone, in most cases assistants are able to maintain or increase the goal percentage while
decreasing the number of human actions, demonstrating their effectiveness. Overall, the piKL
human models seem to produce the best assistants according to both metrics. We chose to use the
AssistanceZero assistant trained with the piKL-combined human model for the remainder of our
experiments. It achieves low cross entropy on human data, similar performance by itself to humans
alone, and produces an assistant that generalizes to other human models.

5 COMPARING ASSISTANCE PARADIGMS

Given our complete recipe for training an assistant in MBAG via assistance games—fixing a piKL
policy for the human model and then using AssistanceZero to solve the resulting assistance POMDP—
we now compare assistance games to other paradigms for training AI assistants. In particular, we
develop pipelines for training MBAG assistants similar to those used by GitHub Copilot/OpenAI
Codex (Chen et al., 2021) and the supervised fine-tuning (SFT) stage of RLHF (Bai et al., 2022;
Ouyang et al., 2022), since these are two dominant paradigms for training current AI assistants. We
compare the resulting policies to our AssistanceZero-trained assistant.

Both RLHF and Codex begin with pretrained language models, which allows them to learn useful
representations and to be able to predict human actions. One way to view the pretraining data is that
it consists of humans solving a variety of tasks. For example, Codex was trained on GitHub, and files
in GitHub can be viewed as human demonstrations of solving various programming tasks. Thus, in
MBAG, we analogously generate a pretraining corpus by using the BC-combined human model to
generate 10,000 episodes where it builds randomly selected goal structures from our training set Dtrain.
We then remove information about the goal structure from the observations and train a recurrent
neural network on the resulting dataset, which we refer to as the pretrained model. Similarly to
language or code models, this model can predict human actions without goal information and has
learned representations that allow it to understand the structure of human goals. By sampling actions
from the pretrained model at a low temperature, we obtain an assistant similar to GitHub Copilot: it
acts to build the goal structure when it is highly confident about which actions the human will take,
and does not take actions when it is unconfident.

We further train the pretrained model using supervised fine-tuning (SFT), the first stage of RLHF. For
SFT, we use data of a human expert acting as the assistant from the same data collection sessions
used to train the BC-with-assistant human models. We fine-tune the pretrained model to imitate the
human assistant, similar to how LLMs are trained to imitate human-written assistant responses during
the SFT stage of RLHF. We use a grid search over 540 hyperparameter combinations to find the best
combination of learning rate, training epochs, data augmentation, and dropout for the SFT policy;
see Appendix F.3.1 for details.

Evaluation with human models We compare the pretrained and SFT models to our assistance
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game-based policy in Table 3. We evaluate each with the piKL-combined human model over 1,000
episodes and report the same metrics as in Table 1. Both the pretrained and SFT policies slightly
decrease the number of human actions (by around 4-5) needed to achieve a similar goal completion
percentage. The SFT policy builds around 3% of the goal structure on average. In contrast, the policy
trained with AssistanceZero decreases the number of human actions by around 65 while leading to a
higher goal completion percentage; it builds around 26% of the goal itself.

Human study To validate our promising results, we measure the performance of AI assistants
with real humans. We compare humans playing in four conditions: alone (no assistant), with the
SFT policy, with our AssistanceZero-trained assistant, and with an expert human assistant. We use a
within-subjects design where each participant builds the same house five times in a row. The first
episode is used as practice to familiarize the subject with the Minecraft controls and goal structure.
Then, the subject builds the house under the four conditions in a random order.

We collect both subjective and objective metrics of the assistants’ helpfulness. After playing with
each assistant, subjects rate its overall helpfulness, answer Likert scale agree-disagree questions about
the assistant (e.g., whether it understood their intentions), and provide free-response comments. We
also measure the number of actions taken by the human subject to complete the goal structure with
an assistant, normalized by dividing by the number of actions needed for the subject to complete the
goal alone.

An overview of the human study results are shown in Figure 3, with more results in Appendix D.1. The
AssistanceZero-trained assistant performs considerably better than the SFT assistant and approaches
the human baseline. Participants rate the AssistanceZero assistant’s helpfulness on average as 3.1
± 0.4 on a 5-point scale (90% confidence interval), while the SFT assistant is rated 1.7 ± 0.3 and
the human baseline is rated 4.0 ± 0.5. Also, our assistant enables participants to build the goal
structure with significantly fewer place and break actions compared to building alone (one-sided
t test p < 0.05). Qualitatively, participants were impressed by AssistanceZero’s ability to learn
effectively from corrections (e.g., breaking multiple incorrect blocks after the human broke one or
two of them), while noting the SFT assistant was not helpful at all. However, there is still a sizeable
gap between our assistant’s performance and the expert human baseline, demonstrating that MBAG
is a challenging benchmark for assistance. We hope this will inspire others to develop even more
effective AI assistants in MBAG and other complex, collaborative tasks.

6 CONCLUSION

We have introduced the Minecraft Building Assistance Game and used it to show how to scalably
solve assistance games using AssistanceZero. Furthermore, we have found that assistants trained via
assistance games outperform those trained similarly to typical LLM post-training piplines.

Future work: LLM post-training In the future, assistance games can be applied to LLM post-
training as well. Here, we briefly outline a vision for how this could work. To build an LLM-based
assistance game, one would treat the human and assistant chat messages as actions. That is, the
human and assistant alternate taking actions until the human ends the conversation, with the state
consisting of all previous messages. For reward parameters, one could curate a large dataset of natural
language descriptions of tasks that humans might want to solve. Then, a human model could be built
by prompting an LLM to act as a human solving a given task—possibly with additional fine-tuning
on abundant real human chat data. To measure reward, another LLM could evaluate whether the task
is completed by the end of a chat conversation.

By training an LLM in this assistance game to help with the initially unknown human task, it could
be possible to avoid some of the pitfalls of RLHF. Because the assistant would be optimizing over
multiple chat turns and under uncertainty about the goal, it would be incentivized to ask clarifying
questions. Furthermore, because rewards would be judged by an equally powerful LLM based on
the task description, there would be less incentive for deception: if an assistant fooled the human
model to appear successful, it would still receive low reward from the judge. We hope our work on
assistance games will eventually help LLMs move beyond simply answering questions to become
effective collaborators in complex, real-world tasks.
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A APPENDIX

B ASSISTANCEZERO DETAILS

In this appendix, we describe the full details of the AssistanceZero algorithm.

MCTS To choose actions during training and deployment, AssistanceZero uses Monte Carlo tree
search (MCTS). MCTS repeats a three-stage process for Nsim simulations, adding one additional
node during each simulation to a tree where nodes represent histories and branches are action pairs
(aH, aR).

In the selection stage, an assistant action aR is selected at the current history node h that maximizes

Q(h, aR) + cPUCT πϕ(aR | h)
√∑

b∈AR N(h, b)

1 +N(h, aR)
, (2)

where N(h, aR) is the number of times action aR has previously been selected at node h, πϕ(aR | h)
is the output of the network’s policy head, and cPUCT is a tunable parameter that balances exploration
and exploitation. Q(h, aR) is an estimate of the Q-value of aR; we will describe how this is
calculated later. Once an assistant action is chosen, then a human action aH is sampled according to
the probabilities output by the human action predictor head p̂ϕ(aH | h). Then, the state s′ resulting
from taking actions (aH, aR) is calculated and the state and actions are appended to h to reach a
node h′. The reward associated with the transition is estimated by marginalizing over the reward
parameter distribution output by the reward prediction head:

R̂(h, aH, aR) =
∑
θ∈Θ

R(s, aH, aR; θ) p̂ϕ(θ | h′). (3)

Then, the selection process repeats until a node h is reached which has not previously been reached.

In the expansion stage, the new node is input to the network to calculate the policy head outputs
πϕ(aR | h), the value estimate V̂ ϕ(h), the human action predictions p̂ϕ(aH | h), and the reward
parameter predictions p̂ϕ(θ | h). The policy outputs at the root node have Dirichlet noise applied,
similarly to AlphaZero.

In the backup stage, the Q-values of all ancestor nodes of h are recursively updated with the
discounted sum of rewards along edges of the tree plus the value estimate V̂ ϕ(h). As normally in
MCTS, Q(h, aR) is simply the average of the Q-values estimated over all previous simulations that
have taken aR in node h. For actions with no visits, Q(h, aR) is set to the average of all backed-up
values for node h:

Q(h, aR) =

∑
b∈AR N(h, b)Q(h, b)∑

b∈AR N(h, b)
if N(h, aR) = 0.

When selecting actions according to (2), we normalize Q-values by the highest and lowest value seen
among all visits to that node, similarly to MuZero (Schrittwieser et al., 2020). We scale the Q-values
such that the higest value seen is mapped to 1 and the lowest value seen is mapped to 0.

The resulting policy from MCTS is defined as

πMCTS(aR | h) ∝ N(h, aR)τ ,

where τ is an inverse temperature parameter.

Training procedure As described in Section 4.2, AssistanceZero alternates between rolling out
trajectories in the environment by selecting actions with MCTS and updating the network according
to the loss function in (1). Specifically, each training step consists of the following phases:

1. Run MCTS in a large number of environments in parallel to collect trajectories. Because
episodes are long (1,500 timesteps), we collect only a smaller number of timesteps from
each environment, which we call fragments. Then, all environments are paused mid-episode
until the next trajectory collection phase. When an episode ends due to the completion of
the goal structure or after 1,500 timesteps, a new episode begins with a newly sampled goal
structure; data continues to be sampled until the required number of timesteps is reached.
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Figure 5: The architecture of the MBAG environment. The Python environment (left) can run on
its own very quickly on a single CPU core, enabling efficient training for AI assistants and human
models. However, it can also connect to a running Minecraft instance (right) with a custom version
of the Malmo mod (Johnson et al., 2016). This enables visualizing AI policies and recording video of
them; collecting data of humans playing by themselves or with each other; and, testing AI assistants
with real humans.

2. Store the collected data in a replay buffer. Each fragment is kept as a single unit within the
replay buffer to enable training recurrent policies.

3. Sample data from the replay buffer and run SGD to minimize the loss in (1), then update the
networks used for sampling with the new weights.

Lower-variance reward estimation There is some subtlety in the best way to estimate rewards
depending on the structure of the reward function. In some environments, such as MBAG, the
environment’s reward function is decomposable into a component that depends only on the human’s
action and a component that depends only on the assistant’s action:

R(s, aH, aR; θ) = RH(s, aH; θ) +RR(s, aR; θ).
In this case, one can estimate the reward equivalently in expectation to (3) as

R̂(h, aH, aR) =
∑
θ∈Θ

RH(s, aH; θ) p̂ϕ(θ | h′) +RR(s, aR; θ) p̂ϕ(θ | h). (4)

That is, in (4) the human’s reward is estimated based on estimated reward parameters at the next
timestep using h′, while the assistant’s reward is estimated based on the estimated reward parameters
at the current timestep using h. This is preferable to (3) because the second term no longer depends
on aH, which is sampled for each simulation of MCTS and thus introduces additional variance.

The reason that (4) is equivalent to (3) in expectation is that the assistant’s action is independent of
the reward parameters θ given the history h, since the assistant policy πR(aR | h) only takes as input
h and not θ. On the other hand, it is not possible to do the same to estimate the human’s component
of the reward, since aH does reveal information about θ.

C ENVIRONMENT DETAILS

Minecraft is typically a difficult environment to use for reinforcement learning because it is slow
and resource intensive. To avoid these challenges, we implement MBAG as a “Minecraft simulator”
written in a mix of pure Python and C. MBAG can be used without a running Minecraft game, allowing
for training to take place more quickly and with fewer resources (MBAG can run around 100x the
speed of Minecraft). However, MBAG can also interact with the Microsoft Malmo mod Johnson
et al. (2016) to allow the Python environment to sync with Minecraft. This allows policies to be
visualized by watching them run in a Minecraft. It also enables human-AI play, in which human
actions detected in Minecraft are translated into their equivalents in MBAG, and AI actions taken in
MBAG are translated into actions in Minecraft.

We provide two versions of MBAG: one where the players must collect resources by breaking a
regenerating “palette” of blocks located on one side of the environment, and one where the players
have unlimited blocks. In the former version, players may also give blocks to other players; give
actions are parameterized by a location, similar to place and break block actions. For the purposes of
this paper, we investigate the second version with unlimited blocks; this version of the environment is
more difficult to build an assistant for, since the assistant cannot simply collect resources to help the
human.
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C.1 GOAL STRUCTURES

We base the goal structures for MBAG on the CraftAssist houses dataset, which was collected by Gray
et al. (2019); they gave study participants the open-ended task of building any house in Minecraft and
recorded the resulting structure. Since we require that goal structures in MBAG have a one-block gap
on all sides, their dimensions can be at most 9× 8× 8. However, many of the goal structures in the
CraftAssist dataset are much larger. When houses in the dataset are no more than twice the desired
dimensions, we scale them down to fit.
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D HUMAN STUDY

D.1 FULL HUMAN STUDY RESULTS

Here, we include additional results from our human study, including the participant demographics
and more survey questions from the 16 subjects.

0 5 10

Number of participants

>100 hours
10-100 hours

<10 hours
None

Experience playing Minecraft

0 5 10

Number of participants

>1,000 hours
100-1,000 hours

10-100 hours
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first-person video games
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Number of participants
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or video games in general
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Female

Male
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30-39

25-29

18-24
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Figure 6: The demographics of the participants in our human study and their prior experience playing
Minecraft and video games.
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to be more
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Figure 7: The full set of survey questions that participants answer after playing with each assistant.
For the first two questions, participants answered with a 1-5 scale. For the remaining statements,
participants answered with a 1-5 scale from “strongly disagree” to “strongly agree.” The mean of the
responses are shown along with 90% confidence intervals.
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D.2 STUDY DESIGN

Figure 8: An example screenshot of the Minecraft game seen in the human study, which is provided
to participants in the “Minecraft Guide.”

We conduct the study with a total of 16 participants. To begin the study, each subject answers
demographic and survey questions related to their prior experience playing Minecraft and other video
games (see Figure 6 for results). Next, we describe the task of building a goal structure with an
assistant where the subject can see the goal but the assistant cannot. The subject is provided with
a “Minecraft Guide” describing the Minecraft mechanics, keyboard and mouse controls, and how
the goal structure is visualized. There are three goal display options: the entire goal is visible as
translucent goal blocks, only the currently placeable goal blocks are shown, and the goal is completely
hidden (only the current world state is visible). See Figure 8 for an example screenshot.

After reading the guide, the subject plays a practice round by building a goal structure alone in order
to familiarize themselves with the Minecraft environment and the goal. Next, they build the same
structure in each of the four conditions—no assistant, with the SFT policy, with our AssistanceZero-
trained assistant, and with an expert human assistant—in a randomly permuted order. The human
assistant is an experienced Minecraft player who is not a co-author on this paper and was recruited
from the same institution as the authors.

We randomly sample a unique goal structure for each participant from our test set Dtest. Since each
subject builds their assigned goal structure five times, there may be a learning effect where the
participant builds the house more quickly and efficiently for later conditions. We account for this
effect by using a Latin square design. We randomly sample four permutations of the four assistance
conditions, resulting in a total of 16 orders, one for each participant. The study is single-blind,
meaning that subjects are not given any information about the assistant they were building with,
including whether the three assistants differ from each other.

After completing the goal in each condition, the subject completes survey questions about their own
and the assistant’s performance. See Figure 7 for the full list of survey questions and results.

Subjects are paid $20 for their participation in the form of an Amazon gift card.
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E ADDITIONAL RESULTS

E.1 HUMAN MODELING

E.1.1 CROSS EVALUATION OF ASSISTANTS AND HUMAN MODELS
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Figure 9: We train AssistanceZero assistant policies with each of our eight human models and
evaluate the assistants with all human models. Here, we show the mean goal percentage achieved by
each assistant-human pair as well as the mean number of place and break actions taken by the human.
Colors indicate the difference in each metric compared to the human model building alone.

Figure 9 shows the full results of training AssistanceZero assistant policies with all of our human
models and evaluating them with every other human model. We find that training the assistant with
the piKL human models yields the best performance, increasing the percentage of the goal structure
that is built while reducing the number of actions taken by the human model. Assistant policies
trained with PPO- and AlphaZero-based human models performed the worst, demonstrating the issue
with modeling humans as rational or Boltzmann-rational.

E.1.2 BEHAVIOR CLONING ABLATIONS

We perform several ablations of our best behavior cloning model, BC-combined. The results are
shown below using the same metrics as in Table 2:

Cross entropy Goal % after X min
Ablation Alone w/ asst. 3 5 10 20

None 1.89 1.99 9 17 41 71
No data augmentation 2.41 2.36 10 18 35 62
No dropout 2.56 2.44 8 14 30 49
No LSTM 2.13 2.12 12 21 43 70
No previous action input 2.40 2.36 12 22 44 71

Humans subjs. — — 25 42 80 95

Table 4: Ablations of key components of our BC human models. See Appendix F for the full meaning
of all ablations.
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The ablation study shows that data augmentation, dropout, using a recurrent network, and using
the previous action as input are all important to achieving low cross entropy with BC. Furthermore,
removing data augmentation or dropout also considerably lowers the performance of the BC model
playing alone.

E.1.3 PIKL ABLATIONS

As described in Appendix F.3.1, the most important hyperparameter for our piKL human models is
cPUCT, which trades off between policies that achieve higher reward versus ones that are closer to the
BC model. Below, we show variations of our piKL-combined human model with various values of
cPUCT.

Cross entropy Goal % after X min
cPUCT Alone w/ asst. 3 5 10 20

10 2.28 2.61 39 60 82 92
30 1.98 2.20 26 44 75 91
50 1.91 2.08 21 36 65 88

Humans subjs. — — 25 42 80 95

Table 5: Ablations of the cPUCT parameter for the piKL-combined human model. We find that using
cPUCT = 50 achieves the lowest cross entropy, but builds houses much slower than real humans.
cPUCT = 10 builds houses faster than real humans and has much higher cross entropy. We decided to
use cPUCT = 30 for our main experiments because it achieves relatively low cross entropy and closely
matches human performance at building houses alone.

E.2 PPO ASSISTANT TRAINING

We conduct extensive ablation experiments to train a PPO-based assistant policy with an imitation-
learning based human model, as shown in Table 6. First, we experimented with interleaving con-
volutional and LSTM layers or removing the LSTM layers. Next, we tried reward engineering by
only providing reward based on the assistant’s own actions, rather than the shared reward that also
depends on the human model’s actions. We also included auxiliary losses to encourage correct block
placement (“block-placing loss”) and predict the goal structure (“goal prediction loss”). Finally, we
ablated the standard PPO entropy bonus and value function loss. The best overall policy does not
include LSTM layers, utilizes reward engineering, and adds the block-placing loss in addition to the
standard PPO losses. See Appendix F.3.2 for more information about PPO assistant training and the
final set of hyperparameters.
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LSTM Reward Block-placing Goal prediction Entropy VF Overall Human Assistant
engineering loss loss coefficient loss goal % actions goal %

✓ ✓ ✓ ✓ ✓ ✓ 71.1 ± 0.9 201 ± 3 -1.1 ± 1.0
✓ ✓ ✓ ✓ ✓ 71.2 ± 1.0 200 ± 4 -0.0 ± 0.0
✓ ✓ ✓ ✓ ✓ 70.9 ± 1.0 200 ± 4 -0.0 ± 0.1
✓ ✓ ✓ ✓ ✓ 71.0 ± 1.0 199 ± 3 0.3 ± 0.6
✓ ✓ ✓ ✓ ✓ 70.6 ± 1.0 194 ± 3 0.8 ± 1.0

✓ ✓ ✓ ✓ ✓ 71.5 ± 0.9 191 ± 3 2.8 ± 1.0
✓ ✓ ✓ ✓ 62.4 ± 1.2 206 ± 3 -14.4 ± 1.6
✓ ✓ ✓ ✓ 74.1 ± 0.9 191 ± 3 7.2 ± 1.0
✓ ✓ ✓ 71.6 ± 0.9 201 ± 3 0.0 ± 0.0
✓ ✓ ✓ ✓ 70.8 ± 0.9 196 ± 3 0.6 ± 0.9
✓ ✓ ✓ ✓ 70.5 ± 1.0 193 ± 3 -0.0 ± 1.3

✓ ✓ ✓ ✓ ✓ 71.1 ± 1.0 201 ± 4 -0.3 ± 0.1
✓ ✓ ✓ ✓ 71.4 ± 1.0 201 ± 3 -0.0 ± 0.2
✓ ✓ ✓ ✓ 70.5 ± 1.0 200 ± 3 -0.6 ± 0.2
✓ ✓ ✓ ✓ 72.9 ± 0.9 203 ± 3 0.1 ± 0.5
✓ ✓ ✓ ✓ 69.9 ± 0.9 207 ± 3 -4.2 ± 0.8

✓ ✓ ✓ ✓ 67.9 ± 1.0 195 ± 3 -3.0 ± 0.9
✓ ✓ ✓ 72.0 ± 1.0 207 ± 3 -2.6 ± 0.8
✓ ✓ ✓ 70.9 ± 1.0 200 ± 3 0.3 ± 0.3

✓ ✓ ✓ 68.2 ± 1.0 194 ± 3 -1.0 ± 0.9
✓ ✓ ✓ 71.5 ± 0.9 204 ± 3 -1.6 ± 0.8

Table 6: Full ablation results of evaluating how well PPO-based assistant policies trained with an
imitation learning-based human model build goal structures not seen during training. Overall goal %
is the total percentage of the goal completed; human actions refers to the number of place and break
actions taken by the human model; and assistant goal % is the percentage of the goal completed by
the assistant. The first six ablation columns correspond to whether LSTM layers are used; reward
engineering by only providing reward for the assistant’s own actions; an auxiliary loss to encourage
correct block placement; a goal prediction loss; the PPO entropy bonus; and the PPO value function
loss.

E.3 ASSISTANCEZERO ABLATIONS

We present two ablations of AssistanceZero in MBAG:

Ablation Overall goal % Human actions Assistant goal %
None 77.5 ± 3.2 154 ± 9 25.2 ± 4.6
No LSTM 69.0 ± 3.6 192 ± 11 -0.6 ± 5.2
λprev-rew = 0 76.8 ± 2.6 167 ± 10 18.1 ± 5.1

Table 7: Ablations of AssistanceZero.

As expected, because AssistanceZero is solving a POMDP, a recurrent policy performs much better.
We also validate the inclusion of the KL penalty between the previous and current reward parameter
prediction distributions (which is scaled by λprev-rew).
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F EXPERIMENT DETAILS

Here, we provide further details about our data collection and training procedures.

F.1 DATA COLLECTION

To train the BC human models, we collect 18 episodes of 5 human subjects building goal structures.
For half of the total episodes, the subject is given a goal structure and is instructed to build it quickly
and efficiently without assistance. For the other half, a single experienced human Minecraft player
acts as the assistant to help build the house. The human assistant is instructed to help the human
subjects build their goal structures, but they are not shown the goal structure themselves. While the
human agent and assistant can observe each other’s actions, there is otherwise no communication
between them.

Out of the five human subjects we collected data from, four were male and one was female; four had
previous Minecraft experience and one did not.

F.2 NETWORK ARCHITECTURE

For both the human models and AI assistant policies, we use a convolutional neural network architec-
ture with six residual blocks and (optionally) two LSTM blocks:

Embedded observations

1× 1× 1 convolution

Residual block

Residual block

Residual block

LSTM block

Residual block

Residual block

Residual block

LSTM block

1× 1× 1 convolution

Leaky ReLU

1× 1× 1 convolution

Policy head

Average pool

Fully connected

Leaky ReLU

Fully connected

Value head

1× 1× 1 convolution

Leaky ReLU

1× 1× 1 convolution

Reward parameter
prediction head

1× 1× 1 convolution

Leaky ReLU

1× 1× 1 convolution

Human action
prediction head

5× 5× 5 convolution

Batch norm

ReLU

Dropout

5× 5× 5 convolution

Batch norm

+

ReLU

Residual block

LSTM

+

LSTM block

The network takes in observations as a tensor of shape W ×H ×D ×N for an environment of size
W ×H ×D, where each location includes the following features:

• an embedding representing the current block type present at that location,
• an embedding representing the goal block type at that location (if the goal is visible to the
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agent),

• an embedding representing which player, if any, is standing at that location,

• an embedding representing which player, if any, was the last to place or break a block at that
location (this allows the agents’ actions to be visible to each other),

• the counts of each type of block in each players’ inventories divided by 64,

• and the current timestep divided by 1,000.

The observation embeddings are transformed via a 1×1×1 convolutional layer (i.e., a fully connected
layer at each spatial location) before being passed through the backbone.

The backbone consists of six or eight layers depending on whether the network is recurrent. The
residual layers follow the ResNet architecture (He et al., 2016) but with 3D 5× 5× 5 convolutions
and optional dropout. An LSTM block consists of a standard LSTM layer with a skip connection,
where the LSTM is applied separately at every spatial location in the input. The residual and LSTM
blocks use 64 channels throughout the network.

The output of the backbone is a tensor of size W ×H ×D × 64. It is passed through the four heads
described in Section 4.2:

1. The action head consists of two 1×1×1 convolutional layers with a Leaky ReLU activation
function in between. The output of the action head is a W × H × D × (2B + 8) for a
environment of size W ×H ×D with B block types (B = 10 in our experiments). The
action head is passed through a softmax function to produce a distribution over actions.
Each element of the output corresponds to a possible action, with some actions represented
by multiple elements. Seven of the output channels correspond to the no-op and movement
actions; the probabilities are summed across all spatial locations to produce a distribution
over these actions. One channel corresponds to the break block action at each spatial location.
B channels correspond to the place block action at each spatial location, with each channel
representing a different block type. Finally, the last B channels correspond to the give block
action at each spatial location, with each channel representing a different block type; give
block actions are only valid for locations with another player that is near by. We mask
invalid actions by setting their probabilities to 0 and renormalize the distribution.

2. For the value head, the backbone outputs are averaged over all spatial locations to produce a
single vector of dimension 64. This is then passed through two fully connected layers with a
Leaky ReLU activation function in between. The output of the value head is a scalar.

3. For the reward parameter prediction head, the backbone outputs are passed through two
1 × 1 × 1 convolutional layers with a Leaky ReLU activation function in between. The
output of the goal head is a tensor of size W ×H ×D×B, where B is the number of block
types. At each spatial location a softmax is applied; this produces a predicted distribution
over the block types in the goal structure at that location.

4. The human action prediction head has an identical architecture to the policy head. The
output of the human action prediction head is a distribution over actions that the human is
likely to take, with the outputs interpreted the same way as the policy head.

F.3 TRAINING DETAILS

We implement all RL and imitation learning algorithms in RLlib (Liang et al., 2018) and PyTorch
(Paszke et al., 2019). During RL training, we randomize the starting location of the human policy
to improve generalization. Since some RL algorithms sample experience in fragments shorter than
a full episode, we also randomize the length of the first episode in the environment. This avoids a
situation where in one iteration of PPO all fragments are from the beginning of episodes and in the
next they are all from the end.

F.3.1 IMITATION LEARNING

We use behavior cloning for our BC human models as well as the pretraining and SFT assistants.
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Data augmentation We use data augmentation during behavior cloning for some experiments.
The data augmentation consists of choosing a random permutation of block types for each state
and applying it to the current blocks in the world, the block types in the goal structure, the players’
inventories, and any place or give actions. We found that data augmentation helped in some cases; see
the BC ablations in Appendix E.1.2 and the details of the SFT assistant training in Appendix F.3.1.

Behavior cloning human models As described in the main text, we train human models with
behavior cloning on three datasets: 9 episodes of humans playing alone, 9 episodes of humans
playing with an assistant, and the full dataset of 18 episodes (see Appendix F.1). We use the network
architecture described in Appendix F.2 for our BC models, but with an additional input of the previous
action taken by the human model. We found that this substantially improved human action prediction
(see ablations in Appendix E.1.2). We use the following hyperparameters:

Hyperparameter Value
BC-alone BC-with-assistant BC-combined

Epochs 30 80 40

Data augmentation yes
LSTM yes
Dropout 0.7
SGD batch size 128
Optimizer Adam
Learning rate 10−3 decayed linearly to 10−4 over first half of training

Table 8: Hyperparameters for BC human models.

The only difference between the models trained on different splits was the number of epochs. See
Appendix E.1.2 for ablations of these hyperparameters.

piKL human models piKL (Jacob et al., 2022) is a human model that combines a BC-trained
policy with MCTS. In particular, piKL selects actions by running MCTS with the prior policy given
by the BC network’s output. Grill et al. (2020) show that this is approximately equivalent to solving a
regularized optimization problem that finds the policy which maximizes reward minus a KL constraint
to the BC policy.

We carefully tune the parameter cPUCT in MCTS which effectively interpolates between purely
maximizing reward and purely following the BC policy (see Appendix E.1.3). We find a value of 30
balances prediction error and performance.

A drawback of using piKL as a human model is that it does assign positive probability to all actions,
only those visited by MCTS. This means that the cross entropy of piKL on human data is infinite
if there is a single action taken by the human that MCTS does not visit. To fix this, we define
a distribution with full support over all actions based on the asymptotic approximation given in
Grill et al. (2020) of the policy MCTS would reach after infinitely many simulations. We use this
full-support policy for calculating the cross entropy of piKL, for evaluating piKL human models in
MBAG, and while training assistants with piKL human models.

We do not use a value function for piKL, although Jacob et al. (2022) experiment with this. When
running piKL in MBAG with another agent, we plan in MCTS as though the other agent only takes
no-ops.

Pretrained assistant To train the pretrained assistant described in Section 5, we sample 10,000
episodes from the BC-combined model. We remove information about the goal structures, seg-
ment each episode into fragments of length 64, and train a recurrent policy with the following
hyperparameters:
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Hyperparameter Value
SGD batch size 256
Total training batches 96,000
Data augmentation no
LSTM yes
Dropout 0.5
Optimizer Adam
Learning rate 10−3

Table 9: Hyperparameters for the pretrained assistant.

When evaluating the policy, we sample from it with temperature 0.3. That is, we scale the output
logits by 1/0.3 before applying softmax to obtain action probabilities.

SFT assistant The SFT assistant is fine-tuned from the pretrained assistant using BC on expert
human assistant data from our data collection sessions (Appendix F.1). We carefully tuned the
hyperparameters of the SFT assistant using grid search over 540 parameter combinations. We
trained an SFT assistant with each set of parameters and then evaluated it with the BC-combined
human model for 100 episodes. We ranked the parameter combinations based on the percentage
of the goal built on the assistant. Then, we re-evaluated the top 20 hyperparameter combinations
for 1,000 episodes to reduce variance. We selected our final hyperparameter settings based on the
best-performing assistant from these evaluations according to goal percentage built by the assistant.

The table below shows the final parameters as well as those considered in the grid search:

Hyperparameter Value Values considered in grid search
Initialization Pretrained assistant w/o action head { Random, pretrained assistant w/ or w/o action head }
Training epochs 100 {10, 20, 30, 50, 100}
Data augmentation yes {yes, no}
LSTM yes —
Dropout 0 {0, 0.5}
Optimizer Adam —
SGD batch size 256 —
Learning rate 10−4 {10−3, 3× 10−4, 10−4}
Sampling temperature 0.3 {1, 0.5, 0.5}

Table 10: Hyperparameters for the SFT assistant. We tune the hyperparameters via grid search over
the values in the right column, if given. We consider initialization of the policy network from either
random weights or from the weights of the pretrained assistant. Initialization w/o the action head
means we initialize all weights from the pretrained assistant except for those in the action head.

F.3.2 REINFORCEMENT LEARNING

PPO human model (single-agent) We use the following hyperparameters to train the PPO human
model, which we trained to build houses alone:
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Hyperparameter Value
Training iterations 100
Rollout length 500
Number of environments 640
SGD batch size 512
SGD epochs per iteration 3
Optimizer Adam
Learning rate 3× 10−4

Discount factor (γ) 0.95
GAE coefficient (λ) 0.95
Entropy coefficient 0.03
Clipping parameter 0.2
Gradient clipping 10
LSTM No
Dropout 0
KL target 0.01
Initial KL coeff. 0.2
Value function loss coeff. 0.01

Table 11: Hyperparameters for PPO human model training.

PPO assistant To effectively train an assistant with PPO, we modified the reward function and
added an auxiliary loss term. For the former, we only give reward that is directly attributable to the
place/break actions of the assistant and disregard any place/break actions taken by the human. This
means that PPO’s goal is not actually aligned with the assistance game objective. However, without
this modification, we found that the PPO assistant did not make meaningful contributions to building
the goal structure—it either took no-op and movement actions or repeatedly placed and broke the
same block.

For the auxiliary loss, which we call the “block-placing loss,” we use the cross-entropy between the
block type placed by the assistant and the goal block type at that location, if there is one. This loss
provides some training signal when the assistant places a block in a location that is part of the goal
structure, even if the block type is incorrect. Without this loss, placing an incorrect block type would
simply result in a reward of 0, making it more challenging for the assistant to learn to place blocks at
all. We linearly decay this loss coefficient from 1 to 0 over the first 2× 106 timesteps.

We also experimented with adding a second auxiliary loss term to predict the goal structure. This
involved adding a goal prediction head similar to that used in AssistanceZero and training with the
same loss function. However, we did not find that this loss produced the best PPO assistant.

Finally, we observed that removing the LSTM blocks from the baseline network architecture described
in Appendix F.2 improved the assistant’s performance.

All the hyperparameters for the PPO assistant are shown in Table 12. See Appendix E.2 for a full list
of ablation experiments and results.
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Hyperparameter Assistant
Training iterations 300
Rollout length 64
Number of environments 256
SGD minibatch size 256
SGD epochs per iteration 3
Optimizer Adam
Learning rate 3× 10−4

Discount factor (γ) 0.95
GAE coefficient (λ) 0.95
Entropy coefficient (horizon) 3 → 0.01 (2× 106)
Clipping parameter 0.2
Grad clip norm threshold 10
Recurrent network (LSTM) No
KL target 10
KL coeff. 0.2
Value function coeff. 0.01
Goal loss coeff. 0
Place block loss coeff. (horizon) 1 → 0 (2× 106)

Table 12: Hyperparameters for PPO assistant training.

MCTS Actions in MBAG consist of a high-level action type (no-op, break block, place block,
move up, etc.) and parameters for the location (used by break/place) and block type (used by place).
Because of this structure, we found it helpful to separate the action selection step of MCTS into two
stages, which we refer to as bi-level action selection. First, MCTS chooses the high-level action type
by using aggregated prior policy probabilities, Q-values, and visit counts that are summed over all
actions with that action type. Then, if the action type requires additional parameters (i.e., place and
break actions), we repeat the action selection process among all actions of that type.

Similarly to AlphaZero, we add Dirichlet noise to the action selection step. We use separate noise
levels for the two stages—0.25 for the first action type stage, and 10 divided by the number of valid
actions for the second stage.

AlphaZero human model (single-agent) We use the following hyperparameters to train the
AlphaZero human model to build houses alone:
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Hyperparameter Value
Training iterations 125
Rollout length per iteration per environment 64
Number of environments 256
Replay buffer size 65,536
Timesteps sampled from replay buffer per iteration 65,536
SGD batch size 256
SGD epochs per iteration 1
Optimizer Adam
Learning rate 10−3

Discount factor (γ) 0.95
Gradient clipping 10
LSTM no
Dropout 0
Value function loss coeff. 0.01
No-op reward -0.2
Number of MCTS simulations 100
Inverse temperature for MCTS 1.5
cPUCT 1

Table 13: AlphaZero hyperparameters for the human model (single-agent) and assistant training.

We used two additional tricks to improve single-agent AlphaZero training. First, we terminate
episodes if a new minimum goal distance is not achieved for 100 timesteps. Second, we add a penalty
to the reward function of −0.2 for no-op actions to encourage the policy to act and explore.

AssistanceZero assistant We use the following hyperparameters for training assistants with Assis-
tanceZero:

Hyperparameter Value
Training iterations 500
Rollout length per iteration per environment 64
Number of environments 256
Replay buffer size 262,144
Timesteps sampled from replay buffer per iteration 65,536
SGD batch size 256
SGD epochs per iteration 1
Optimizer Adam
Learning rate 10−3

Discount factor (γ) 0.95
Gradient clipping 10
LSTM yes
Dropout 0
Number of MCTS simulations 100
Inverse temperature for MCTS 1.5
cPUCT 1
λpolicy 1
λvalue 0.01
λreward 3
λprev-rew linear increase from 0 to 30 over training
λaction 1

Table 14: AssistanceZero hyperparameters for MBAG.
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F.4 EVALUATION

When evaluating AssistanceZero assistants, we use only 20 simulations of MCTS, which is roughly
the number that can run in real-time with Minecraft on an NVIDIA GeForce 1080 Ti GPU. All
evaluations use randomly sampled houses from the test set Dtest, while all training uses houses from
the train set Dtrain; thus, we always test human models and assistants on unseen goal structures.
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