
Under review as a conference paper at ICLR 2023

KINSHIP REPRESENTATION LEARNING WITH FACE
COMPONENTIAL RELATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Kinship recognition aims to determine whether the subjects in two facial images
are kin or non-kin, which is an emerging and challenging problem. However, most
previous methods focus on heuristic designs without considering the spatial corre-
lation between face images. In this paper, we aim to learn discriminative kinship
representations embedded with the relation information between face components
(e.g., eyes, nose, etc.). To achieve this goal, we propose the Face Componential
Relation Network (FaCoRNet), which learns the relationship between face com-
ponents among images with a cross-attention mechanism, which automatically
learns the important facial regions for kinship recognition. Moreover, we pro-
pose Relation-Guided Contrastive Learning, which adapts the loss function by
the guidance from cross-attention to learn more discriminative feature represen-
tations. The proposed FaCoRNet outperforms previous state-of-the-art methods
by large margins for the largest public kinship recognition FIW benchmark. The
code will be publicly released upon acceptance.

1 INTRODUCTION

In recent years, kinship recognition, which aims to determine whether a given pair of face images
have a kinship relation, has attracted public attention. Kinship recognition is inspired by the biolog-
ical discovery (Dal Martello & Maloney (2010)) that the appearance of a human face implies clues
about kinship-related information. It can be widely used in various scenarios including missing
child search (Lu et al. (2013)), automatic album organization (Zhou et al. (2012)), child adoption
(Yan et al. (2014)), and social media applications (Dehghan et al. (2014)). Facial kinship recognition
includes both face representation learning and face similarity matching, where the former aims to
learn discriminative features for input facial images, and the latter is to design models to predict the
kin/non-kin relationship between images in a pair. The main challenges of kinship are mixed varia-
tions due to uncontrolled environment, such as the large gap in age, expression, pose, illumination,
etc. Under these variations, it is challenging to learn representations that can help discover genetic
relationships between two samples from facial appearance and identify hidden similarities inherited
from genetic connections between different identities.

To deal with these challenges, several traditional approaches incorporate hand-crafted features (Lu
et al. (2013)) with metric learning (Fan et al. (2020)) to learn discriminative features. Motivated
by the success of deep learning, various methods improve kinship recognition by exploiting power-
ful deep feature representations. Zhang et al. (2015) first adopt a Convolutional Neural Networks
(CNN) model to extract discriminative features, outperforming previous hand-crafted ones. For
the extension, several CNN-based approaches (Luo et al. (2020); Dahan & Keller (2020); Yu et al.
(2021)) focus on designing fusion mechanisms to integrate the features among an image pair. Re-
cently, the supervised contrastive approach (Zhang et al. (2021)) learns discriminative features by
contrastive loss, which achieves state-of-the-art performance in kinship recognition. However, the
existing approaches have several issues. First, most methods directly exploit feature vector repre-
sentations, ignoring spatial correlation within face images. Moreover, nearly all of the approaches
rely on heuristic designs. For example, the feature fusion approaches (Zhang et al. (2015); Yu et al.
(2020)) utilize several arithmetic combinations or feature concatenation to fuse the feature pair for
kinship recognition. Despite state-of-the-art performance from Zhang et al. (2021), the results are
sensitive in the hyperparameter setting of the contrastive loss.
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To address the above issues, let us first think again: How do humans recognize kinship relationships?
To recognize accurately, humans usually first compare several biological face components of two
people, such as eye color, nose size, cheekbone shape, etc., and then analyze the relation between
these comparisons. For example, if the noses (orange circle) in the image pair appear similarly, then
there is a higher chance that this is a kin pair, as shown in Fig. 1 (left). Therefore, we adopt this idea,
focusing on how to exploit these face components to learn the relation between images in a pair,
where clues from face components can infer the genetic relationships between them. In this work,
we aim to learn discriminative feature representations embedded with face component information,
without a strong reliance on heuristic designs, as shown on the right-hand side of Fig. 1.
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Figure 1: The overall idea of this work. The left figure is an example of face components where
noses in kinship image pairs are very similar and vice versa. The figure on the right shows that our
method uses face components as clues and guides the training with the relation of facial image pairs,
where the relation estimation for face components (darker blue and darker green colors) is more
accurate than using face features alone (lighter blue and lighter green colors).

To achieve the abovementioned goal, we first propose the Face Componential Relation (FaCoR)
module to learn the relation between images in a pair with the consideration of face components.
The feature representations are then enhanced with the cross-relation between face components (e.g.,
eyes, nose, mouth, etc.) which are critical to kinship recognition. Moreover, we propose the novel
Relation-Guided Contrastive Loss based on cross-attention estimation instead of heuristic tuning
(Zhang et al. (2021)). The attention map can control the degree of penalty in the loss function, which
can let the feature representation of kin relation get closer in the feature space. In other words, it
penalizes the hard samples to learn more discriminative features for kinship recognition. The whole
architecture is named Face Componential Relation Network (FaCoRNet). The experimental results
show that our FaCoRNet achieves SOTA performance on the largest public kinship recognition
benchmark, FIW (Robinson et al. (2022)), our work outperforms the previous best method by 2.7%
(79.3% → 82.0%) in the standard protocol and 3.4% (79.2% → 82.6%) in the practical protocol.

Our contributions are summarized as follows:

• We propose a novel Face Componential Relation Network (FaCoRNet) that learns rele-
vance from the face components of image pairs with the cross-attention mechanism, and
adaptively learns important face components for kinship recognition.

• We propose a novel Relation-Guided Contrastive Loss that embeds cross-relation estimates
to guide the contrastive loss without heuristic tuning, which controls how hard samples are
penalized during the training phase.

• The proposed FaCoRNet model outperforms previous SOTA methods by large margins in
the largest kinship recognition benchmark.

2 RELATED WORK

In the past few years, several kinship recognition approaches have been proposed (Lu et al. (2013);
Zhang et al. (2015); Fan et al. (2020); Dahan & Keller (2020); Song & Yan (2020); Hörmann
et al. (2020); Luo et al. (2020); Shadrikov (2020); Lin et al. (2021); Yu et al. (2021); Zhang et al.
(2021)), most of them focus on extracting discriminative feature for each facial image. Traditional
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approaches include designing hand-crafted feature extractors (e.g., PCA (Abdi & Williams (2010)),
SIFT (Somanath & Kambhamettu (2012)), SFRD (Cui et al. (2013)), etc.), and metric learning (Ding
& Tao (2017); Dibeklioglu (2017)) for solving similarity metrics in kinship recognition. Recently,
deep learning approaches make significant advances and can be divided into two main categories:
feature fusion and deep metric learning.

Feature fusion: (Zhang et al. (2015)) utilizes the multiple face regions into the model input to
learn richer facial features for kinship recognition. The multi-task deep learning-based approach
(Dahan & Keller (2020)) uses all 7 kinship sub-classes to jointly train with the kinship labels for
kin recognition. Ustc-nelslip (Yu et al. (2020)) adopts a shared-weights multi-model to extract
features and designs three different math operations to fuse feature pairs. All the features are then
concatenated directly, followed by a fully-connected layer.

Deep metric learning: Duan et al. (2017) proposes coarse-to-fine transfer to capture kinship-
specific features from faces using supervised coarse pre-training and domain-specific retraining
paradigms. The contrastive learning approach (Zhang et al. (2021)) utilizes supervised contrastive
loss with the ArcFace pre-trained model (Deng et al. (2019)) and two MLP layers to learn more
robust features in the training stage. For the evaluation, it removes the MLP layers and extracts the
middle-layer backbone features to evaluate the cosine similarity to determine the kinship relation
between images in a pair, currently achieving state-of-the-art performance for kinship recognition.

The main issues of the above methods are that most methods rely on heuristic designs, and directly
exploit feature vector representations, ignoring spatial correlation within face images. Different
from the above approaches, our proposed FaCoRNet considers how to use face components to learn
the correlation between image pairs, in particular, which facial parts are important for kinship recog-
nition. Moreover, our approach incorporates the correlation information from face components to
adapt contrastive learning automatically, without a strong reliance on heuristic designs.

3 PROPOSED METHODS

In this work, we propose the Face Componential Relation Network (FaCoRNet), which considers
the face components and learn the cross-relation between face images in a pair to benefit kinship
recognition. FaCoRNet consists of a shared-weights backbone that extracts features as the inputs to
the Face Componential Relation (FaCoR) module. FaCoR is an attention-based module that calcu-
lates the cross-relation among a face image pair and enhances feature representations to fully exploit
the symmetry of face components in the image pair (Sec. 3.1). In the FaCoR module, cross-layer
features are interacted and fused in the channel dimension by the Channel Interaction (CI) block
(Sec. 3.1.1). Finally, the proposed Relation-Guided Contrastive Loss utilizes the computed cross-
relation to guide the contrastive loss, facilitating learning of more discriminative representations for
kinship recognition (Sec. 3.2). The overall framework is illustrated in Fig. 2.

3.1 FACE COMPONENTIAL RELATION (FACOR)

One core question for kinship recognition is: How to properly extract and calculate the relation be-
tween face components among a face image pair? However, most existing methods are not designed
for the face components of kinship recognition. To solve this, we propose the Face Componential
Relation (FaCoR) module, which can embed the relation information between face components into
kinship feature representations, as the core component of our FaCoRNet (Fig. 2).

We denote the input face image pair as (Ia, Ib) ∈ Rh×w×3, the extracted feature maps from the
backbone’s middle-layer as (Xa,Xb) ∈ RH×W×C , and the high-level features from the backbone’s
final layer as (ra, rb) ∈ RC , where H , W , and C represent the height, width, and the channel
number of feature maps, respectively. The proposed FaCoR module mainly serves two purposes:
1) To adaptively learn the correlation between face image pairs, and 2) to learn the dependencies
in face components between image pairs. These two directions help to learn which facial parts
are important for kinship recognition. More specifically, We first extract features (Xa,Xb) from
the shared-weights backbone and then use 1 × 1 convolution Conv to extract two intermediate
flattened feature vectors (Fa,Fb) = (Conv1×1(X

a),Conv1×1(X
b)) ∈ RH×W×C . Then, we find

wide-range dependencies between the flattened feature vector pair (Fa,Fb) and estimate the cross-
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Figure 2: An overview of the proposed Face Componential Relation Network (FaCoRNet) consist-
ing of a backbone and the Face Componential Relation (FaCoR) module (Sec. 3.1) including the
Channel Interaction (CI) block (Sec. 3.1.1), trained with the Relation-Guided Contrastive Loss L
(Sec. 3.2).

attention map β as:

βj,i =
exp(sij)∑N
i=1 exp(sij)

, sij = (Fai )
TFbj (1)

where βj,i estimates model attention in the i-th location of the j-th region.

We then multiply each output of the attention map β with the feature map (Xa,Xb) to obtain the
cross-attention features (Oa,Ob) ∈ RC×HW given by:

(
Oa
j , O

b
j

)
=

(
N∑
i=1

βj,iX
a
i ,

N∑
i=1

βj,iX
b
i

)
(2)

All the operations are differentiable since they are purely linear and properly reshaped.

We further adopt a scaled residual connection to the cross-attention features
(
Oa,Ob

)
with a learn-

able scaling parameter γ. Then a Channel Interaction (CI) block, which utilizes the attention mech-
anism in full channel dimension, is adopted to generate output pair

(
faout, f

b
out

)
as:

(
faout, f

b
out

)
=
(
CI (γOa +Xa) ,CI

(
γOb +Xb

))
(3)

where CI is the Channel Interaction (CI) block and will be elaborated later in Sec. 3.1.1.

Finally, we utilize another CI block to fuse the information from the high-level features (ra, rb) and
the cross-attention features

(
faout, f

b
out

)
, generating the final outputs (xa

out,x
b
out) as:

(
xa
out,x

b
out

)
=
(
CI (faout || ra) ,CI

(
fbout || rb

))
(4)

where the operation || denotes the concatenation of two feature maps in the channel dimension.

3.1.1 CHANNEL INTERACTION (CI)

To effectively fuse the information from different features, we propose a Channel Interaction (CI)
block that utilizes full channel attention as shown in the gray block in Fig. 2. CI computes the
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interaction weights w via two sets of 1× 1 convolution, a sigmoid, and a ReLU activation function
as:

w = σ (Conv1×1 (δ (Conv1×1(x̂)))) (5)

where Conv1×1(·) is a 1 × 1 convolution operation, σ is the sigmoid operation, and δ is the ReLU
operation. x̂ denotes the input of the CI block.

In our FaCoR module, we have two types of CI blocks: non-group CI (used in Eq. 3) and group CI
(used in Eq. 4). The non-group CI block first applies the global average pooling (GAP) operation to
obtain the feature vectors as input, and then directly multiplies the interaction weights w with the
input features element-wisely. The group CI block is used to effectively fuse cross-attention features(
faout, f

b
out

)
with the high-level features (ra, rb) in the channel dimension to perform group channel

interaction. More specifically, we divide the interaction weights w into two groups w = [w1,w2]
corresponding to two different groups of features (i.e., the cross-attention features

(
faout, f

b
out

)
and

the high-level features (ra, rb), respectively), and we conduct an element-wise product separately
to the two groups of features with the corresponding weights. Finally, we sum up the two groups of
features to become the final output xa

out = w1fout +w2r.

3.2 RELATION-GUIDED CONTRASTIVE LEARNING (REL-GUIDE)

Contrastive learning (Chen et al. (2020); Khosla et al. (2020)) is known as an effective representation
learning approach. It allows the model to learn the discriminative features from data similarities and
dissimilarities, even without labels. The supervised contrastive (Zhang et al. (2021)) approach learns
more robust features in kinship recognition, which achieve state-of-the-art performance. The main
idea of contrastive learning is to learn the discriminative feature, where feature representations of kin
relations in feature space would be nearby. Otherwise, the feature representations of non-kin relation
in feature space are far apart. For the standard contrastive learning, given N positive samples xi, yi,
the contrastive loss L is formulated as:

L =
1

2N

(
N∑
i=1

Lc(xi, yj) + Lc(yi, xi)

)
(6)

and Lc(xi, yi) is defined as:

Lc(xi, yi) = −log esim(xi,yi)/τ∑N
j=1(e

sim(xi,xj)/τ + esim(xi,yj)/τ )
(7)

where sim(x, y) is the cosine similarity operation between x and y, and the negative samples are
generated by incorporating positive from different kinship categories.

However, the kinship recognition performance of contrastive learning is sensitive to hyper-parameter
τ (Zhang et al. (2021)), which controls the degree of penalty for hard samples. The smaller τ
penalizes hard samples to a greater degree and vice versa. To solve this problem, we propose the
Relation-Guided Contrastive Loss by a relation indicator as shown in Fig. 2. The relation indicator
guides the contrastive loss from the cross-attention estimation instead of heuristic tuning in τ .

The main idea is that a smaller value from the cross-attention map needs a greater degree of penalty
for hard samples. In other words, the small correlation between image pairs in kin relation needs a
greater degree of penalty. This idea is also similar to updating the network with a large gradient to
improve kinship recognition performance, and vice versa. Therefore, we extract the cross-attention
map β in Eq. 1, which corresponds to the face component correlation between image pairs. Then,
we utilize the relation indication function M to estimate the similarity value ψ to replace the fixed
value of τ in Eq. 8 as:

Lc(xi, yi) = −log esim(xi,yy)/ψ∑N
j=1(e

sim(xi,xj)/ψ + esim(xi,yj)/ψ)
, ψ = M(β)/s (8)
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where s is the scale value and we adopt the global sum pooling operation as the relation indicator M.
In our FaCoRNet, the feature pair (x, y) in loss function use the output feature pairs (xa

out,x
b
out)

from Face Componential Relation to calculate loss for updating the model.

In the inference, we follow (Zhang et al. (2021)) for the training and inference process. We extract
the final outputs (xa

out,x
b
out) from Eq. 4 to calculate the cosine similarity, and a threshold is used

to predict whether there is a kinship relation between them.

4 EXPERIMENTS

4.1 DATASET AND EVALUATION: KINSHIP RECOGNITION

The compared methods are all trained and tested on a publicly available kinship recognition dataset
Families in the Wild (FIW) (Robinson et al. (2022)). The FIW dataset is the largest kinship
recognition dataset which includes 1000 different and disjoint family trees, around 12000 family
photos, and 11 kin relationship types. All face images are cropped to the size of 112 × 112 with
face detection and alignment in training and testing by MTCNN (Zhang et al. (2016)). The 11
kin relationship types include: a) Siblings: Brother-Brother (BB), Sister-Sister (SS), and Sister-
Brother (SIBS); b) Parent-Child: Father-Daughter (FD), Mother-Daughter (MD), Father-Son (FS),
and Mother-Son (MS); c) Grandparent-Grandchild: GFGD, GFGS, GMGD, and GMGS, with the
same naming convention as above. In this work, we mainly focus on the first 7 kinship relationships
since the Grandparent-grandchild categories contain much smaller data by an order of magnitude, as
shown in Fig. 3. For evaluation, we adopt cosine similarity and thresholding to calculate accuracy
as following the FIW benchmark (Robinson et al. (2022)).

Figure 3: Illustration of the data distribution on the FIW dataset. The x-axis is the 11 kinship
categories and the y-axis is the number of image pairs, respectively. The left and right figures
represent the data distribution for the training and testing set, respectively.

4.2 IMPLEMENTATION DETAILS

For experiments, we select 103784 positive and negative image pairs overall without non-aligned
images for training phase and follow the evaluation protocols as detailed in (Robinson et al. (2017))
by applying the restricted protocol where the identities of the subjects in the dataset are unknown,
and we are given predefined pairs of training images, per kinship class. We compare our FaCoR-
Net against several existing methods by using ArcFace (Deng et al. (2019)) as the pre-trained back-
bone for a fair comparison. To demonstrate the advanced face feature representation for kinship
recognition, we use the SOTA face recognition model, AdaFace (Kim et al. (2022)), as the feature
extraction network to compare with SOTA kinship recognition methods. Since the naive pre-trained
weights of Adaface are not suitable for the kinship method (more details in Sec. 4.3.1), we modified
the initialization model parameters as a normal distribution, with lower and upper bound to [-0.05,
0.05] and utilize the L2-norm feature normalization. For the training scheme, We use SGD as the
optimizer with a constant learning rate of 1e-4 and a momentum of 0.9. The batch size is set to 50,
and the total number of iterations to 4000 for 50 epochs.
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4.3 EXPERIMENTAL RESULTS

4.3.1 COMPARISON TO SOTA METHODS

We first evaluate kinship recognition performance with the FIW dataset under the standard proto-
col, and compare our proposed FaCoRNet with several state-of-the-art methods including stefhoer
(Hörmann et al. (2020)), DeepBlueAI (Luo et al. (2020)), Vuvko (Shadrikov (2020), Ustc-nelslip
(Yu et al. (2020)), and Contrastive (Zhang et al. (2021)). Table 1 compares the kinship recognition
accuracy by using two different pre-trained models (i.e., ArcFace and AdaFace) by various meth-
ods. The result shows that the kinship recognition average accuracy from our proposed method is
significantly higher than those achieved by the other methods. For the standard comparison which
adopts Arcface (Deng et al. (2019)) as the pre-trained model, our FaCoRNet outperforms previous
leading methods Ustc-nelslip, Vuvko, and Contrastive by 4.6 percent (0.760 → 0.806), 2.6 percent
(0.780 → 0.806), and 1.3 percent (0.793 → 0.806), respectively, as shown in Table 1(a). Then a
question arises: Do advanced face recognition models benefit kinship recognition? To answer this,
we adopt Contrastive (Zhang et al. (2021)) as the strong baseline and exploit AdaFace (Kim et al.
(2022)) as pre-trained for better general initial face representation. However, naively replacing the
pre-trained model with Adaface is not suitable for kinship recognition, as the average accuracy de-
crease significantly (0.793 → 0.728). We then modify the training scheme as stated in Sec. 4.2
and show that advanced face recognition models can improve the kinship recognition task (0.793
→ 0.802). Finally, by integrating the modified AdaFace backbone with our proposed FaCoRNet,
the result is further boosted by 1.8 percent (0.802 → 0.820), achieving the SOTA performance (Ta-
ble 1(b)). To summarize, by integrating the advanced face recognition model with FaCoRNet and
our proposed training scheme, our result significantly outperforms the previous SOTA method by
2.7 percent (0.793 → 0.820), achieving a new SOTA result.

Table 1: The state-of-the-art performance comparison of kinship recognition on FIW dataset by two
pre-trained backbones: (a) ArcFace (Deng et al. (2019)) and (b) AdaFace (Kim et al. (2022)). The
best accuracy in each column is highlighted in bold. †The results are from Robinson et al. (2022).

Method BB SS SIBS FD MD FS MS AVG.
(a) Pre-trained model: ArcFace (Deng et al. (2019))

Stefhoer† (Hörmann et al. (2020)) 0.660 0.650 0.760 0.770 0.770 0.800 0.780 0.740
DeepBlueAI† (Luo et al. (2020)) 0.770 0.770 0.750 0.740 0.750 0.810 0.740 0.760
Ustc-nelslip† (Yu et al. (2020)) 0.750 0.740 0.720 0.760 0.750 0.820 0.750 0.760

Vuvko† (Shadrikov (2020)) 0.800 0.800 0.770 0.750 0.780 0.810 0.740 0.780
Contrastive (Zhang et al. (2021)) 0.803 0.829 0.794 0.753 0.803 0.823 0.751 0.793

FaCoRNet (Ours) 0.824 0.827 0.804 0.763 0.806 0.824 0.779 0.803
FaCoRNet + Rel-Guide (Ours) 0.820 0.833 0.810 0.773 0.804 0.826 0.788 0.806

(b) Pre-trained model: AdaFace (Kim et al. (2022))
Contrastive (Zhang et al. (2021)) 0.630 0.776 0.731 0.663 0.687 0.736 0.687 0.728

Contrastive (Zhang et al. (2021)) (modified) 0.821 0.831 0.798 0.766 0.806 0.828 0.767 0.802
FaCoRNet (Ours) 0.832 0.840 0.821 0.790 0.822 0.848 0.802 0.819

FaCoRNet + Rel-Guide (Ours) 0.832 0.836 0.824 0.795 0.818 0.848 0.802 0.820

4.3.2 PRACTICAL KINSHIP RECOGNITION PROTOCOL

With the improvement of hardware, the photos captured by cameras or smartphones have better
quality, so it is worth investigating the impact of using higher-quality face images in practical ap-
plications. We conduct an experiment for practical kinship recognition as shown in Table 2 (b).
More specifically, we propose a quality-filtered protocol, where we select high-quality training and
testing face images with SER-FIQ quality scores (Terhorst et al. (2020)) larger than 0.5. The re-
sults demonstrate that the average accuracy of FaCoRNet are significantly higher than the baseline
(i.e., Contrastive). This trend is similar to the standard protocol as shown in Table 2 (a), but the
improvement from our method over the baseline is even more obvious (0.792 → 0.826).

Intuitively, using high-quality face images as training and testing data would improve overall accu-
racy. However, the accuracy of Contrastive (Zhang et al. (2021)) does not improve on high-quality
face images, which also confirms that our FaCoRNet can learn the correlation between image pairs
and fuse them more effectively, that is, capture the face components from eye, nose, and mouth. Be-
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sides, we further analyze the recognition results of different kinships and found that the accuracy of
the same gender (i.e., BB, SS, MD, FS) was significantly higher. Among them, the result of FaCoR-
Net + Rel-Guide in MD case has a significant improvement of 2.4 percent (0.818 → 0.842) from the
standard to the quality-filtered protocol, showing that the MD cases include a large amount of low-
quality face images in the standard protocol. On the other hand, MD has slightly lower recognition
accuracy than FS, and we conjecture that it is due to the challenging MD cases caused by makeup
and coverings as shown in Fig. 4. Moreover, the accuracy of the SIBS case decreases after selecting
high-quality face images. The main reason is that SIBS has less data than other kinship categories
as illustrated in Fig. 3. Finally, the results also demonstrate that our FaCoRNet outperforms the
previous SOTA method by a large margin in all kin categories.

Table 2: Performance comparison of kinship on FIW dataset in two quality-filtered protocols: (a)
standard protocol: use all image pairs without filtering; (b) quality-filtered protocol: select the image
pairs with the pair quality scores larger than 0.5, which is more practical in real-world scenarios.

Method BB SS SIBS FD MD FS MS AVG.
(a) Standard Protocol

Contrastive (Zhang et al. (2021)) 0.803 0.829 0.794 0.753 0.803 0.823 0.751 0.793
FaCoRNet (AdaFace) (Ours) 0.832 0.840 0.821 0.790 0.822 0.848 0.802 0.819

FaCoRNet + Rel-Guide (AdaFace) (Ours) 0.832 0.836 0.824 0.795 0.818 0.848 0.802 0.820
(b) Quality-Filtered Protocol (Quality Score > 0.5)

Contrastive (Zhang et al. (2021)) 0.800 0.817 0.772 0.739 0.784 0.836 0.786 0.792
FaCoRNet (AdaFace) (Ours) 0.834 0.842 0.780 0.770 0.839 0.865 0.804 0.823

FaCoRNet + Rel-Guide (AdaFace) (Ours) 0.836 0.838 0.784 0.784 0.842 0.862 0.815 0.826

Figure 4: Illustration of the hard samples in the Mother-Daughter (MD) case. This figure shows that
the face has makeup, glasses, etc., which makes it challenging to identify the kin relation.

4.3.3 ABLATION STUDIES

Component Analysis: In this section, we conduct an ablation study to analyze the proposed de-
sign for comparisons against various component modules. Our proposed FaCoRNet utilize the Face
Componential Relation (FaCoR) to extract the face components of both images in a pair by as-
signing the important facial regions for kinship recognition. Table 3 reports the contributions of
individual modules of FaCoRNet. The first row shows the naive approach of contrastive learning
with 2 fully-connected layers from Zhang et al. (2021) only. The second raw shows the improvement
of utilizing (Zhang et al. (2021)) with our proposed FaCoR module. The result demonstrates that
our FaCoR module has a significant improvement, which reveals that FaCoR can extract the face
component information by learning the correlation between image pairs. In the third row, the chan-
nel Channel Interaction (CI) is included for FaCoR and boost the average accuracy, which shows it
works better for fusing the cross-attention features with the high-level features from the backbone
output. The last row shows that the relation guidance in contrastive loss can further improve kinship
performance.

Table 3: Component analysis of FaCoRNet (pre-trained on ArcFace) on the FIW dataset.

Contrastive Face Componential Relation Channel Interaction Relation Guidance AVG.
✓ 0.793
✓ ✓ 0.795
✓ ✓ ✓ 0.803
✓ ✓ ✓ ✓ 0.806
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Face Quality Analysis: We do a comparison experiment with the case of the various face quality.
We utilize SER-FIQ (Terhorst et al. (2020)) to compute the face quality scores of all images and
adopt the lower score in a pair as the face-pair quality score. We divide the face-pair quality scores
into 5 groups as shown in Table 4. The results show that in low-quality cases (i.e., the quality scores
are smaller than 0.4), the overall recognition accuracy is lower than in high-quality cases. The prob-
lem is more severe in extremely low-quality cases (i.e., 0.2). Finally, the results also demonstrate
that our FaCoRNet outperforms the SOTA method under all quality cases.

Table 4: Performance comparison of kinship on FIW dataset under various groups of pair quality
scores. The table represents the pair quality score in groups from small to large.

Face-Pair Quality Score 0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1 AVG.
Contrastive (Zhang et al. (2021)) 0.749 0.782 0.813 0.803 0.793 0.792

FaCoRNet (AdaFace) (Ours) 0.794 0.820 0.843 0.821 0.824 0.820

Limitations: We enumerate some of the failure cases in Fig. 5. Among these hard samples, some
face pairs are captured in different scenarios and ages, resulting in large variants in illumination,
expression, and pose; except for the low-quality face image case as mentioned above, some of
them are obscured and covered (i.e., bread and wearing glasses), making the kinship recognition
challenging. Besides, in the case of low-quality face images, as long as one image in the pair is
of poor quality, the recognition result will be seriously affected. Finally, extreme poses also cause
difficulty for kinship recognition due to less face component information.

GT: Kin

Pred: Non-Kin

GT: Non-Kin

Pred: Kin

Covering

(e.g., beard, glasses, etc.)
Low image quality Makeup or poses 

Figure 5: Illustration of failure cases on FIW dataset include: The left side shows the cases where
the face is covered by a beard, glasses, etc; The middle shows low-quality images of a face; The
right-hand side shows the face with makeup and different poses.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel Face Componential Relation Network (FaCoRNet) for kinship
recognition. FaCoRNet is an attention-based model designed for learning correlation between im-
age pairs in terms of face components. To better address large variations in facial appearance,
FaCoRNet utilizes the Face Componential Relation (FaCoR) module to achieve not only adaptive
learning correlation between image pairs but also learning important face components for kinship
recognition. In addition, we embed the cross-attention estimation as a relation indicator to guide
the regular contrastive loss without the need for heuristic tuning, which can control the degree of
penalty for hard samples in the training phase. Experimental results show that our method achieves
SOTA performance on the largest public kinship recognition FIW benchmark. Moreover, in terms of
practical kinship recognition protocol, FaCoRNet also outperforms previous SOTA methods by large
margins. We believe that FaCoRNet is a potential kinship recognition method that can be served as a
strong baseline for further advancing facial relation learning approaches in kinship recognition. For
future work, we plan to incorporate face quality scores into the training process, aiming to mitigate
the issues from low-quality face images. We would also like to incorporate multi-modal information
(e.g., text, metadata) to compensate for the vision-based methods.
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6 APPENDIX

6.1 SUPPLEMENTARY RESULTS

We have supplemented a full comparison of all 11 kinship categories in Table 5 and Table 6, in-
cluding the addition of Grandparent-Grandchild categories: GFGD, GFGS, GMGD, and GMGS.
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Table 5: The state-of-the-art performance comparison of kinship recognition on FIW dataset in all 11
kinship categories by two pre-trained backbones: (a) ArcFace (Deng et al. (2019)) and (b) AdaFace
(Kim et al. (2022)). The best accuracy in each column is highlighted in bold. †The results are from
Robinson et al. (2022).

Method BB SS SIBS FD MD FS MS GFGD GMGD GFGS GMGS AVG.
(a) Pre-trained model: ArcFace (Deng et al. (2019))

Stefhoer† (Hörmann et al. (2020)) 0.660 0.650 0.760 0.770 0.770 0.800 0.780 0.700 0.640 0.730 0.600 0.740
DeepBlueAI† (Luo et al. (2020)) 0.770 0.770 0.750 0.740 0.750 0.810 0.740 0.720 0.670 0.730 0.680 0.760
Ustc-nelslip† (Yu et al. (2020)) 0.750 0.740 0.720 0.760 0.750 0.820 0.750 0.790 0.760 0.690 0.670 0.760

Vuvko† (Shadrikov (2020)) 0.800 0.800 0.770 0.751 0.780 0.810 0.740 0.780 0.760 0.690 0.690 0.780
Contrastive (Zhang et al. (2021)) 0.803 0.829 0.794 0.753 0.803 0.823 0.751 0.754 0.740 0.702 0.592 0.793

FaCoRNet (Ours) 0.82 0.827 0.804 0.763 0.806 0.824 0.779 0.756 0.703 0.698 0.592 0.803
FaCoRNet + Rel-Guide (Ours) 0.820 0.833 0.810 0.773 0.804 0.826 0.788 0.774 0.706 0.702 0.587 0.806

(b) Pre-trained model: AdaFace (Kim et al. (2022))
Contrastive (Zhang et al. (2021)) 0.630 0.776 0.731 0.663 0.687 0.736 0.687 0.722 0.665 0.669 0.525 0.728

Contrastive (Zhang et al. (2021)) (modified) 0.821 0.831 0.798 0.766 0.806 0.828 0.767 0.756 0.725 0.669 0.626 0.802
FaCoRNet (Ours) 0.832 0.840 0.821 0.790 0.822 0.848 0.802 0.806 0.684 0.694 0.575 0.819

FaCoRNet + Rel-Guide (Ours) 0.832 0.836 0.824 0.795 0.818 0.848 0.802 0.799 0.684 0.690 0.575 0.820

Table 6: Performance comparison of kinship on FIW dataset in all 11 kinship categories for two
quality-filtered protocols: (a) standard protocol: use all image pairs without filtering; (b) quality-
filtered protocol: select the image pairs with the pair quality scores larger than 0.5, which is more
practical in real-world scenarios.

Method BB SS SIBS FD MD FS MS GFGD GMGD GFGS GMGS AVG.
(a) Standard Protocol

Contrastive (Zhang et al. (2021)) 0.803 0.829 0.794 0.753 0.803 0.823 0.751 0.754 0.740 0.702 0.592 0.793
FaCoRNet (AdaFace) (Ours) 0.832 0.840 0.821 0.790 0.822 0.848 0.802 0.806 0.684 0.694 0.575 0.819

FaCoRNet + Rel-Guide (AdaFace) (Our) 0.832 0.836 0.824 0.795 0.818 0.848 0.802 0.799 0.684 0.690 0.575 0.820
(b) Quality-Filtered Protocol (Quality Score > 0.5)

Contrastive (Zhang et al. (2021)) 0.800 0.817 0.772 0.739 0.784 0.836 0.786 0.791 0.737 0.703 0.691 0.792
FaCoRNet (AdaFace) (Ours) 0.834 0.842 0.780 0.770 0.839 0.865 0.804 0.809 0.766 0.717 0.639 0.823

FaCoRNet + Rel-Guide (AdaFace) (Ours) 0.836 0.838 0.784 0.784 0.842 0.862 0.815 0.810 0.686 0.715 0.651 0.826

Since the Grandparent-Grandchild categories have only one-tenth of the data of the other categories,
there is not enough data for model training and inference This is the potential reason why our Fa-
CoRNet has sub-optimal performance in the Grandparent-Grandchild categories.
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