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InfoMAE: Pairing-Efficient Cross-Modal Alignment with
Informational Masked Autoencoders for IoT Signals

Anonymous Author(s)

Abstract
Standard multimodal self-supervised learning (SSL) algorithms re-

gard cross-modal synchronization as implicit supervisory labels

during pretraining, thus posing high requirements on the scale

and quality of multimodal samples. These constraints significantly

limit the performance of sensing intelligence in IoT applications,

where the heterogeneity and the non-interpretability of time-series

signals result in abundant unimodal data but scarce high-quality

multimodal pairs. This paper proposes InfoMAE, a cross-modal

alignment framework that tackles the challenge of multimodal

pair efficiency under the SSL setting by facilitating efficient cross-

modal alignment of pretrained unimodal representations. InfoMAE

achieves efficient cross-modal alignment with limited data pairs
through a novel information theory-inspired formulation that si-

multaneously addresses distribution-level and instance-level align-

ment. Extensive experiments on two real-world IoT applications

are performed to evaluate InfoMAE’s pairing efficiency to bridge

pretrained unimodal models into a cohesive joint multimodal model.

InfoMAE enhances downstream multimodal tasks by over 60% with

significantly improved multimodal pairing efficiency. It also im-

proves unimodal task accuracy by an average of 22%
1
.
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1 Introduction
Multimodal Self-Supervised Learning (SSL) algorithms, although

achieving unprecedented performance in extensive sensing appli-

cations [11, 12, 40, 52, 53], present unique data challenges rarely

encountered with unimodal SSL or vision-language domains due

to the complexity in acquiring high-quality multimodal pair for IoT

signals. The inherent properties of sensory data common in sensing

applications result in abundant unimodal signals but scarce multi-

modal pairs. First, sensory modalities have heterogeneous proper-

ties, such as sampling rate, timestamp, or duration, that increase the

likelihood of capturing asynchronous events. Consequently, stan-

dard IoT multimodal datasets require manual calibration to reduce

temporal misalignments or to synchronize between the time-series

signals. [40, 57, 62]. Second, raw IoT signals often lack intuitive

1
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Figure 1: Comparison of supervised learning, self-supervised
learning, and pair-efficient self-supervised learning.

interpretability. Unlike images or text, where visual features can

be easily matched to textual captions, capturing useful signatures

between sensing modalities like vibration or frequency waves is

challenging. Preprocessing and calibrating these signals requires

modality-specific domain knowledge or technical expertise, which

is labor-intensive and susceptible to operational errors. Finally, IoT

sensors are subject to varying deployment conditions, leading to

sparse and noisy data [36]. Each modality can be independently af-

fected by the deployment conditions or environmental factors. For

instance, a loud noise source might significantly impact acoustic

sensors while having minimal effect on seismic signals. This het-

erogeneity often results in poor-quality multimodal pairs that are

uncorrelatedwith each other or incomplete datasets with significant

gaps and missing data points. These factors contribute to signif-

icant challenges in IoT data collection. As IoT networks scale in

quantity and the number of modalities, acquiring large-scale, high-

quality multimodal pairs becomes increasingly time-consuming,

error-prone, and less reliable. The limited multimodal pairs with

potential misalignments can introduce uninformative false positive

pairs [9, 49], polluting the multimodal feature patterns extracted

by the pretrained encoders.

Despite these challenges, most existing multimodal SSL frame-

works [1, 35, 48, 56] rely heavily on massive multimodal pairs to

learn robust joint representations during the pretraining, but their

capability could degrade significantly with insufficient synchro-

nized pairs [44, 72]. On the other hand, independently pretraining

each modality on their unimodal data and directly concatenat-

ing misaligned modality features for finetuning fails to capture

cross-modal interactions that are critical to downstreammultimodal

tasks [28, 69]. Instead, we observe that with limited multimodal

pairs, we can effectively convert independently trained unimodal

encoders into a coherent model that sustains strong generalizability

1
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in multimodal tasks. We refer to this process as pair-efficient SSL.
The relation of pair-efficient SSL for multimodal data compared to

standard SSL draws an analogy to the evolvement of SSL compared

to supervised learning, as visualized in Figure 1. In supervised learn-

ing, manual labels serve as supervision to train encoders for map-

ping inputs to task-specific labels. Its performance depends heavily

on the quantity and quality of human annotations. Self-supervised

learning (SSL) mitigates label scarcity by first designating proxy

labels from the data properties to learn general semantics with

massive unlabeled data, then calibrating the pretrained model to a

downstream task with minimal human annotations. Similarly, in

multimodal SSL contexts, cross-modal alignment acts as a special

form of “supervision”, where point-to-point modality correspon-

dence is utilized to identify semantically meaningful and consistent

sensory information. Taking another step forward, pair-efficient

SSL takes advantage of abundant unimodal data for “independent

pretraining”, followed by “cross-modal finetuning” with limited

multimodal pairs to align unimodal models into a cohesive multi-

modal model.

In this paper, we propose InfoMAE, a cross-modal learning frame-

work designed to enhance the alignment of unimodal representa-

tions using a limited number of multimodal pairs. The key idea be-

hind InfoMAE is to enforce alignment across modalities at both the

distribution and instance levels. Existing contrastive learning frame-

works adopt point-to-point alignment to map samples across differ-

ent modalities to a proximate joint representation [40, 52, 55, 63].

These approaches focus on aligning individual samples, essentially

viewing alignment as a local optimization problem that aims to min-

imize the geometric distances between corresponding samples in

the representation space. However, such instance-level approaches

face significant challenges with limited multimodal pairs, as they

may overfit to the specific pairs available and result in poor gen-

eralization with pairing biases. These hinder capturing complex

cross-modal relationships, especially when the multimodal pairs

are sparse and unevenly distributed. In contrast, InfoMAE takes a

more holistic approach by emphasizing distribution-level alignment,

considering the overall information content of the limited multi-

modal pairs rather than only focusing on the individual samples.

We present a comprehensive analysis of distribution alignment and

propose an information theory-based approach to formally define

the distribution alignment problem in the factorized information

space. We formulate this as a differential learning objective to con-

struct (i) shared joint representations as a compact common variable

across modalities capable of performing any multimodal task and

(ii) private representations holding implicit modality-specific infor-

mation independent of shared representations. InfoMAE alleviates

the strict requirement of exact multimodal sample pairs and can

better accommodate potential misalignments in data collection or

temporal synchronization, improving the representations learned

even with a small-scale multimodal pair.

We extensively evaluate InfoMAE across various combinations

of pretrained unimodal domains. InfoMAE achieves exceptional per-

formance gain compared to the standard multimodal SSL paradigm

under limited multimodal pairs and outperforms existing works

when aligning the unimodal representations. Individual unimodal

encoders, in return, can also benefit from the representational struc-

tures with improved downstream performance. Additionally, as the

number of multimodal pairs scale, InfoMAE also demonstrates ver-

satility as a standard multimodal SSL framework, achieving SOTA

performance across real-world IoT applications.

2 Analysis of Cross-Modal Alignment
2.1 Notation
Consider 𝑀 sets of unsynchronized modality data X = {𝑋𝑖 }𝑖∈𝑀 ,

where each set 𝑋𝑖 contains unlabeled samples of fixed-length win-

dows partitioned from the time-series signals of the 𝑖-th modality.

Let 𝑁𝑖 = |𝑋𝑖 | denote the size of each modality set.

For the 𝑗-th sample of modality set 𝑖 , we apply Short-Time

Fourier Transform (STFT) to obtain its time-frequency represen-

tation, x𝑖 𝑗 ∈ R𝐶𝑖×𝐼×𝑆𝑖
, where 𝐶𝑖 is the number of input channels,

𝐼 is the number of time intervals within a sample window, and 𝑆𝑖
is the spectrum length in the frequency domain. We have a set

of modality encoders E = {𝐸1, 𝐸2, . . . , 𝐸𝑀 } to extract the modal-

ity embeddings of each sample and a set of modality decoders

D = {𝐷1, 𝐷2, . . . , 𝐷𝑀 } to map the samples from the embedding

space back to the time-frequency domain
ˆX = {𝑋𝑖 }𝑖∈𝑀 as a part

of the reconstruction process. Additionally, there is a set of mul-

timodal data X𝑠 = {𝑋𝑠
𝑖
}𝑖∈𝑀𝑠 consisting of a subset of modalities

𝑀𝑠 ⊆ 𝑀̂ , where samples across the modalities are synchronized

in time and have equal sizes |𝑋𝑠
1
| = · · · = |𝑋𝑠

𝑀𝑠 |. Note that each
synchronized data of modality 𝑖 can also be a subset of the unsyn-

chronized unimodal, set such that 𝑋𝑠
𝑖
⊆ 𝑋𝑖 , as any synchronized

multimodal data is inherently unsynchronized when considered

independently. Finally, we have a set of labeled data for supervised

learning and finetuning on a much smaller scale, where each sample

has a corresponding label 𝑦 𝑗 for each downstream task.

2.2 Problem Definition
Prior multimodal SSL practices require large-scale, fully synchro-

nized multimodal sets X𝑠 to learn joint multimodal representa-

tions that perform well in downstream tasks. However, these ap-

proaches often overlook two challenges: (i) Insufficient multimodal
data: When |X𝑠 | is small, existing methods struggle to learn effec-

tive joint representations, and (ii) Unutilized unimodal data: The
abundance of available unimodal data is often neglected. In IoT ap-

plications, the scale of synchronized multimodal sets can be signifi-

cantly limited due to signal heterogeneities, temporal misalignment,

or domain variances, which result in incomplete modalities. This

results in more available unimodal data than synchronized multi-

modal data (|𝑋𝑖 | ≥ |𝑋𝑠
𝑖
|). However, this abundant unimodal data

is excluded from existing multimodal SSL pretraining techniques.

To better utilize unimodal data, our problem falls under the SSL

setting with unimodal pretrained models and limited multimodal

pairs, which consists of two stages:

Independent Unimodal Pretraining: For each independent modal-

ity data 𝑋𝑖 , we train a corresponding unimodal encoder 𝐸𝑖 . The

goal is to learn a holistic unimodal representation that maximizes

downstream unimodal performance after finetuning. Since modal-

ity sets 𝑋𝑖 are independent, this pretraining is not constrained by

the number of synchronized pairs and can, therefore, fully leverage

the abundant unimodal data.

Efficient Cross-Modal Alignment: Given a set of synchronized

modalities data X𝑠 of 𝑀𝑠 ⊆ 𝑀 modalities, we aim to align the

2
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Figure 2: An illustration of instance-level vs. distribution-
level Cross-Modal Alignment

pretrained encoders efficiently. This alignment projects unimodal

representations into joint representations that maximize the down-

stream multimodal performance after finetuning. The scale of the

multimodal alignment should be significantly smaller than the uni-

modal pretraining |𝑋𝑠
𝑖
| ≪ |𝑋𝑖 |. In contrast to prior multimodal

SSL works focusing on learning robust joint representations on

large-scale multimodal data, this work aims to improve the data
efficiency of learning robust joint representations given only limited

multimodal pairs.

2.3 Factorization & Distributional Alignment
This section analyzes multimodal representation factorization in

the information space and demonstrates how it enables distribution-

level alignment of unimodal representations.

2.3.1 Connection between Factorization and Cross-modal Align-
ment. In aligning multimodal representations, prior approaches

often rely on contrastive learning to minimize themodality gap [39]
by pulling representations of different modalities from the same

sample closer together while pushing representations from different

samples further apart. However, due to the inherent heterogeneity,

each modality contains unique, modality-specific information, and

enforcing perfect alignment across modalities could potentially hurt

the performance in multimodal downstream tasks [29]. To address

these challenges, recent works [29, 37, 40] have proposed factoriz-

ing modality representations into shared and private subspaces. It

preserves both common and modality-specific information and al-

lows for the alignment of shared representations while maintaining

independent private representations for downstream tasks. How-

ever, these works operate on instance-level alignment, and it remains

unclear whether this is sufficient when only limited modality pairs

are available for learning. The scarcity of paired samples introduces

the risk of biased sampling, potentially misleading the alignment

process. With this in mind, we analyze a different approach that

factorizes the representation in the information space and enforces

distribution-level alignment to capture a more comprehensive corre-

lation between modalities by emphasizing their information content
rather than just their geometric proximity. The intuition behind this

is that instead of individual sample pairs, we aim to align modalities

by the global structure (as shown in Figure 2). When the multimodal

pairs are scarce, the distributional alignment aims to be resilient to
sampling biases and capture meaningful cross-modal relationships.

2.3.2 Distributional Alignment through Information-theory based
Factorization. We now formally define the factorization problem

in the information space. Without loss of generality, we state the

definitions for two modalities, X = {𝑋1, 𝑋2}, but they can be gen-

eralized to more modalities.

First, we are interested in constructing a compact random vari-

able𝑈 (shared representation) that can perform any task that can

be achieved using 𝑋1 separately and 𝑋2 separately. Formally, we

define a sufficient common variable as follows.

Definition 2.1. (Sufficient Common Variable) 𝑈 is defined as

the sufficient common variable between 𝑋1, 𝑋2 if and only if 𝑈 =

𝑠1 (𝑋1) = 𝑠2 (𝑋2) for some 𝑠1, 𝑠2, and

(∀𝑓1, 𝑓2)
(
[𝑓1 (𝑋1) = 𝑓2 (𝑋2)] =⇒ [(∃𝑓 ) 𝑓 (𝑈 ) = 𝑓1 (𝑋1) = 𝑓2 (𝑋2)]

)
,

(1)

namely, any common (shared) function between 𝑋1, 𝑋2 can be com-

puted using 𝑈 . Building on the sufficient common variable, we

define the shared representation to be the most compact form of

𝑈 with the minimized entropy to ensure that 𝑈 captures only the

essential shared features across modalities.

Definition 2.2. (Shared Representation) We refer to a sufficient

common variable 𝑈 with minimal entropy 𝐻 (𝑈 ) as the shared

representation.

However, it is not clear how to find a sufficient common vari-

able or a shared representation. We show that an approximation of

the shared representation can be obtained by solving the follow-

ing optimization problem, and later in Section 3, we propose the

differentiable loss objectives with proof provided in Appendix A.

minimize 𝐻 (𝑈 ) s.t. 𝑋1 ⊥⊥ 𝑋2 | 𝑈 ,

and (∃𝑠1, 𝑠2) 𝑈 = 𝑠1 (𝑋1) = 𝑠2 (𝑋2)
(2)

The conditional independence in Equation 2 enforces a form of

distributional alignment, ensuring that given the shared representa-

tion𝑈 is the most compact aligned representation such that 𝑋1, 𝑋2

provide no additional information about each other.

Moreover, we define the private representations 𝑉1,𝑉2 between

𝑋1, 𝑋2 as follows.

Definition 2.3. (Private Representation)𝑉1,𝑉2 is the private repre-
sentation of𝑋1, 𝑋2 if they have minimal entropy among the random

variables satisfying: 𝑉1 = 𝑝1 (𝑋1),𝑉2 = 𝑝2 (𝑋2) for some 𝑝1, 𝑝2 and

there exist functions𝑔1, 𝑔2 such that𝑋1 = 𝑔1 (𝑉1,𝑈 ), 𝑋2 = 𝑔2 (𝑉2,𝑈 ),
where𝑈 is the shared representation.

Similarly, we look for approximate representations. In particular,

we replace equalities with a distance constraint𝑑 , and independence

is replaced by small mutual information. In Section 3, we discuss

the detailed implementation of a differentiable loss function to find

the approximate representations.

3 InfoMAE
This section introduces InfoMAE, a novel cross-modal alignment

framework that efficiently aligns unimodal representations at the

distribution and instance levels. We provide a detailed overview of

InfoMAE’s cross-modal alignment module in Figure 3.

3
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3.1 Unimodal Pretraining
Unlike standard multimodal SSL that pretrains on synchronized

multimodal pairs, we first initiate unimodal pretraining on large-

scale unsynchronized unimodal data. In the first stage, we pretrain

each encoder 𝐸𝑖 independently on unimodal data 𝑋𝑖 with MAE,

which applies mask reconstruction defined as the following for

each modality 𝑖 ∈ 𝑀 :

Lunimodal

𝑖 = | |𝑋𝑖 − 𝑋𝑖 | |2 | 𝑋𝑖 = 𝐷𝑖 (𝐸𝑖 (𝑋𝑖 )) . (3)

The pretrained unimodal encoders 𝐸𝑖 extract a generalized rep-

resentation for each modality𝑀𝑖 . However, they do not guarantee

information compatibility between modalities when used together

in the downstream tasks. In the following sections, we present

InfoMAE’s different components (as illustrated in Figure 4) to cal-

ibrate the encoders to explicitly align the modalities in both the

distribution-level and instance-level with only a limited amount of

multimodal pair X𝑠 .

3.2 Distribution-level Alignment
We begin with the differentiable objective function that we opti-

mize to obtain the (approximate) shared (𝑈 ) and private represen-

tations (𝑉 ) defined in Section 2.3.2. To extract 𝑈 that is a function

of both 𝑋1, 𝑋2, we equivalently extract𝑈1 = 𝐹 shared
1

(𝐸1 (𝑋1)),𝑈2 =

𝐹 shared
2

(𝐸2 (𝑋2)), where 𝐹1, 𝐹2 are 2-layer MLP projectors that maps

the general representation into shared and private representations,

and enforce a constraint that 𝑈1 = 𝑈2. Similarly, we extract 𝑉1 =

𝐹
private

1
(𝐸1 (𝑋1)),𝑉2 = 𝐹

private

2
(𝐸2 (𝑋2)). We use U = {𝑈1,𝑈2} and

V = {𝑉1,𝑉2} for the extracted shared and private representations,

respectively.

3.2.1 Shared Representation. . As described in Section 2, we aim

to find the shared representation 𝑈 that solves the optimization

problem in Definition (2.2). However, due to the difficulty of the op-

timization problem
2
and the possibility that a shared representation

does not exist, we instead approximate the shared representation

by minimizing the following objective

Lshared

info
=𝛼𝑑 (𝑈1,𝑈2) + 𝛽 (𝐻 (𝑈1) + 𝐻 (𝑈2))
+ 𝐼 (𝑋1;𝑋2 | 𝑈1) + 𝐼 (𝑋1;𝑋2 | 𝑈2),

(4)

where 𝛼 and 𝛽 are the hyperparameters controlling the weight

of each term, and 𝑑 (·) is a distance measure. The first two terms

in the loss function aim to find 𝑈1 = 𝑈2 with minimal entropy,

while the last two terms aim to impose conditional independence

of 𝑋1, 𝑋2 given 𝑈1 or 𝑈2. We would like to note that the entropy

and conditional mutual information listed in Eq. (4) are not easy to

compute or differentiate. To alleviate this, we reduce these terms

into probabilistic density functions below:

Lshared

info
= 𝛼𝑑 (𝑈1,𝑈2 ) +

2∑︁
𝑖=1

E𝑋1,𝑋2,𝑈𝑖

[
log

𝑝𝑋1,𝑋2,𝑈𝑖

𝑝𝑋1
𝑝𝑋2

𝑝𝑈𝑖

+(1 − 𝛽 ) log
𝑝𝑋𝑖 ,𝑈𝑖

𝑝𝑋𝑖
𝑝𝑈𝑖

+ log

𝑝𝑋3−𝑖 ,𝑈𝑖

𝑝𝑋3−𝑖𝑝𝑈𝑖

]
.

(5)

Due to the space limit, we leave the detailed proof and discus-

sion in Appendix A. To further enhance the differentiability of

Eq. (5) by avoiding directly computing the probabilistic density

((e.g., log
𝑝𝑋

1
,𝑋

2
,𝑈𝑖

𝑝𝑋
1
𝑝𝑋

2
𝑝𝑈𝑖

)), we follow [31, 50, 60] and utilize the density-
ratio trick to train a discriminator R, which given𝑋1, 𝑋2,𝑈 , outputs

2
The optimization problem in Definition (2.2) is non-convex with a possibly infinite

number of variables.
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the probability that 𝑋1, 𝑋2,𝑈 are generated from 𝑝𝑋1,𝑋2,𝑈𝑖
, instead

of 𝑝𝑋1
𝑝𝑋2

𝑝𝑈𝑖
. The density ratio can then be estimated as

log

𝑝𝑋1,𝑋2,𝑈1

𝑝𝑋1
𝑝𝑋2

𝑝𝑈1

= log

R(𝑋1;𝑋2;𝑈1)
1 − R(𝑋1;𝑋2;𝑈1)

. (6)

We train the discriminators jointly with the encoders and summa-

rize the training configurations for both in Appendix E.

3.2.2 Private Representation. . As the decoders take both the shared
and private representations as input, the self-reconstruction ob-

jective would enforce the private representations 𝑉 to capture the

implicit modality-specific information. Following Definition 2.3,

we minimize the entropy of the private representations (𝑉1,𝑉2). In
addition, for each modality, we expect the private and shared repre-

sentations to be independent. To better guide the learning process,

we explicitly minimize their mutual information. The objectives of

the private representations can be summarized as the following:

Lprivate

info
= 𝛾𝐻 (𝑉1) + 𝛾𝐻 (𝑉2) + 𝜖𝐼 (𝑉1;𝑈1) + 𝜖𝐼 (𝑉2;𝑈2), (7)

where 𝛾 and 𝜖 are used as the hyperparameters for private entropy

and shared private independence. Similar to Eq.(5), we apply density-
ratio trick (Eq.(6)) to estimate each term in Eq. (7).

While the formulation effectively aligns modality representa-

tions within the information space, it depends on further learning

objectives to ensure they are meaningful for downstream tasks.

Next, we will describe the additional components of InfoMAE that

are designed to capture meaningful representations."

3.3 Self Reconstruction
InfoMAE applies simple MAE objective to enforce that the learned

representation captures the critical semantical information through

reconstruction loss. Following [24], we randomly mask out 75% of

the patched input. To ensure both the shared and private represen-

tation are meaningful, the decoder takes in the concatenated shared

and private representation h𝑖 𝑗 = u𝑖 𝑗 | |v𝑖 𝑗 to reconstruct the input
x̂𝑖 𝑗 . We take the MSE loss on the masked portion between the recon-

structed x̂𝑖 𝑗 and the original input x𝑖 𝑗 with 𝛿 as the hyperparameter

and 𝐷𝑖 (·) as the decoder for 𝑖-th modality.

Lreconstruction = 𝛿
∑︁
𝑖∈𝑀

∑︁
𝑗∈𝐵

| |x𝑖 𝑗 − x̂𝑖 𝑗 | |2 | x̂𝑖 𝑗 = 𝐷𝑖 (h𝑖 𝑗 ) . (8)

3.4 Instance-level Alignment
Augmentations are primarily used to generate different views for

private-space contrastive learning in most existing works [29, 37,

40]. However, we argue that the transformation invariance property

should be reflected in both private and shared representations to un-

derstand the instance variances. Thus, InfoMAE adds a contrastive

loss on the concatenated representation of the shared and private

spaces h𝑖 𝑗 by treating two randomly different augmented views as

the positive pairs with 𝜏 as the temperature hyperparameter.

Laug = −𝜆
∑︁
𝑖∈𝑀

∑︁
𝑗∈𝐵

log

exp

(
h𝑖 𝑗 · h′𝑖 𝑗/𝜏

)∑
𝑘≠𝑗∈𝐵 exp

(
h𝑖 𝑗 ·h𝑖𝑘
𝜏

)
+∑

𝑘∈𝐵 exp
(
h𝑖 𝑗 ·h′𝑖𝑘

𝜏

) . (9)

Table 1: Cross-modal Alignment Dataset. Domains used for
supervised evaluation are bolded.

Application Modalities Domains

Moving Object

Detection (MOD)

seismic

acoustic

domain M

domain G

domain T

Human Activity

Recognition (HAR)

accelerometer

gyroscope

magnetometer

PAMAP2

RealWorld-HAR

3.5 Temporal Locality
We apply a simple ranking constraint to learn temporal locality of

time-series signals. During pretraining, a sequence sampler ran-

domly selects a batch of sequences consisting of a fixed number

of consecutive samples, while the samples across sequences are

distant in time. We define 𝐶𝑠𝑠′ as the average Euclidean distance

of all sample embedding pairs between the sequence 𝑠 and 𝑠′ of
length 𝐿. Then, we define the temporal constraint as:

L
temporal

= 𝜂
∑︁
𝑠∈𝐵

∑︁
𝑠′≠𝑠∈𝐵

max (𝐶𝑠𝑠 −𝐶𝑠𝑠′ + 1, 0)

𝐶𝑠𝑠′ =

𝐿∑︁
𝑖=1

𝐿∑︁
𝑗=1

𝑑
Euclidean

(𝑠𝑖 , 𝑠′𝑗 ),
(10)

where 𝑑
Euclidean

denotes the Euclidean distance, 𝐶𝑠𝑠 and 𝐶𝑠𝑠′ are

the average intra-sequence (𝐷𝑎) and inter-sequence distances (𝐷𝑒 ),

and the added 1 is the margin indicating the minimum gap between

the two distances. 𝜂 is used as the hyperparameter to control the

weight of the temporal constraint.

3.5.1 Overall Cross-Modal Alignment Objectives. Finally, the over-
all training objective of InfoMAE for the cross-modal alignment

stage can be summarized as follows:

L = Lreconstruction + Lshared

info
+ Lprivate

info
+ Laug + L

temporal
. (11)

InfoMAE adopts both distribution-level and instance-level align-

ment of each modality’s factorized shared and private representa-

tions. Since the cross-modal alignment of InfoMAE is also a gener-

alized multimodal framework, we would also like to note that this

objective can be used as the joint multimodal pretraining objective.

4 Evaluations
This section evaluates InfoMAE’s paired-data efficiency compared

to existing multimodal SSL frameworks on cross-modal alignment.

We first describe the experimental setup. Then, we examine Info-

MAE’s finetuning performance after cross-modal alignment with

limited multimodal pairs across two real-world applications. We fur-

ther demonstrate InfoMAE’s flexibility and lastly ablate InfoMAE

to understand its performance.

4.1 Experimental Setup
4.1.1 Backbone Encoder. We use SWIN-Transformer (SW-T) [41]

as the backbone encoder. SW-T computes local attention within

shifting windows on the input patches to reduce time complex-

ity. Implementation details and encoder configurations for each

application are listed in Appendix D and E.
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Table 2: Linear Probing Performance of Moving Object Detection on Domain M by aligning pretrained unimodal encoders.
𝐴𝑆𝑒𝑖 | |𝐵𝐴𝑐𝑜 means seismic encoder from domain A and acoustic encoder from domain B are used for alignment.

Framework

Aligned Domains T𝑆𝑒𝑖 ||𝑀𝐴𝑐𝑜 G𝑆𝑒𝑖 || 𝑇𝐴𝑐𝑜 T𝑆𝑒𝑖 || 𝑇𝐴𝑐𝑜 G𝑆𝑒𝑖 ||𝑀𝐴𝑐𝑜 T𝑆𝑒𝑖 || 𝐺𝐴𝑐𝑜

Joint

Pretrain

Modal

Alignment

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Unimodal Concat ✗ ✗ 0.6731 0.6699 0.5392 0.5281 0.4454 0.4366 0.7247 0.7217 0.6584 0.6543

CMC [63] ✗ ✓ 0.6792 0.6702 0.4313 0.4356 0.4173 0.4032 0.6919 0.6877 0.6497 0.6335

FOCAL [40] ✗ ✓ 0.7462 0.7432 0.6249 0.6249 0.5613 0.5579 0.7549 0.7527 0.7194 0.7160

GMC [55] ✗ ✓ 0.7354 0.7317 0.6591 0.6523 0.4756 0.4720 0.8044 0.8053 0.7247 0.7211

SimCLR [6] ✗ ✓ 0.3061 0.2742 0.2873 0.2609 0.2974 0.2758 0.2981 0.2698 0.2800 0.2308

TNC [64] ✗ ✓ 0.1969 0.0815 0.1788 0.1312 0.1855 0.1021 0.1929 0.0896 0.1949 0.1041

TSTCC [15] ✗ ✓ 0.3001 0.2706 0.2639 0.2393 0.2867 0.2432 0.3048 0.2842 0.2860 0.2337

InfoMAE ✗ ✓ 0.7950 0.7929 0.6986 0.7007 0.5928 0.5908 0.8326 0.8324 0.7636 0.7537

Joint Pretrain ✓ ✗ Acc: 0.3329 F1: 0.3039

4.1.2 Datasets. Our experiments focus on two real-world appli-

cations: Moving Object Detection (MOD) and Human Activity

Recognition (HAR). The MOD application contains vibration-based

datasets using seismic and acoustic sensors. The HAR application

consists of publicly released IMU sensor datasets (accelerometer,

gyroscope, and magnetometer) collected from many human sub-

jects performing various daily activities. To evaluate cross-modal

alignment, we simulate a practical scenario where the pretrained

domains differ significantly to reflect the diverse signals across

different IoT application domains. Under this setting, we have un-

synchronized unimodal data from different domains: MOD consists

of data from three separately collected domains (M, G, T), each

with different targets, terrains, and environmental conditions. HAR

consists of data from two publicly released datasets (RealWorld-

HAR [62] and PAMAP2 [57]). We pretrain unimodal encoders with

only the unimodal data from different domains and then use a

limited amount of synchronized multimodal pairs for cross-modal

alignment and downstream finetuning. For joint pretraining, we

pretrain on the massive available synchronized multimodal pairs.

We summarize the data used in Table 1 and describe these applica-

tions and domains in more detail in Appendix B.

4.1.3 Baselines. We extensively evaluate InfoMAE with different

SSL baselines including unimodal contrastive (SimCLR[7],MoCo[8]),

multimodal (CMC[63], GMC[55], FOCAL [40]) contrastive, tempo-

ral contrastive (TNC[64], TSTCC[15]), and MAE based frameworks

(MAE[24], CAV-MAE[18]). We describe these baselines in more

detail in Appendix F.

4.2 Cross-Modal Alignment Evaluation
4.2.1 Cross-Modal Alignment onMOD. Weevaluate InfoMAE against

prior CL works [7, 15, 40, 55, 63, 64] on cross-modal alignment with

various combinations of unimodal models pretrained with different

domains. We align the encoders with a small scale of multimodal

pairs (5% of the unimodal data scale) and an even smaller subset of

labeled multimodal pairs from domain M for finetuning. This appli-

cation involves two modalities (seismic and acoustic). Therefore we

represent the domains of the unimodal representations with two

letters (e.g., 𝑇Sei | |𝐺Aco means aligning seismic encoder pretrained

on domain T and acoustic encoder pretrained on domain G).

In addition to the prior CL baselines, we also show the perfor-

mance for direct concatenation of the pretrained unimodal represen-

tations without any alignment and for Joint Multimodal Pretraining

on the same amount of synchronized multimodal pairs. We present

the accuracy and F1-score after finetuning in Table 2, InfoMAE

consistently outperforms the unimodal concatenation by a signifi-

cant margin since direct concatenation fails to exploit cross-modal

correspondence. CMC and other unimodal SSL frameworks even

have negative impacts compared to direct concatenation, indicating

that unimodal objectives or simply aligning the multimodal rep-

resentations without considering the modality discrepancy could

hurt the downstream performance. InfoMAE also achieves better

results than FOCAL and GMC, underscoring the benefits of enforc-

ing distribution-level alignment over instance-level alignment in

downstream tasks with limited multimodal data. When the same

amount of multimodal data is used for Joint Multimodal Pretrain-

ing, the significant gap between the aligned unimodal models and

the joint pretrained multimodal model suggests the feasibility of

transferring pretrained unimodal representations to multimodal

representations with only limited (5%) synchronized multimodal

data. It is noteworthy that some domain combinations ( e.g., GT,

TT, TG) do not even overlap with data from the alignment and

finetuning set (MOD).

4.2.2 Cross-Modal Alignment on HAR. Besides MOD application,

we also evaluate InfoMAE on HAR applications. In contrast to MOD

evaluation, which aligns unimodal encoders pretrained on different

domains, we analyze how additional unsynchronized data from

the same domains could assist the downstream performance given

the limited number of multimodal pairs. Here, we independently

pretrain all unimodal encoders on unsynchronized IMU data from

either PAMAP2, RealWorld-HAR, or Combined, which is the con-

catenation of the former two. Then, we use a small portion of the

synchronized multimodal data pairs from PAMAP2 for cross-modal

alignment and downstream finetuning. We present the results in

Table 4. InfoMAE consistently achieves the best performance, with

an average of 4.09% and 5.16% improvements in accuracy and the
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Table 3: Alignment performance (MM) with different multimodal pair ratios from MOD.

Multimodal Data

Supervised Joint Pretrain CMC GMC FOCAL InfoMAE

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

5%

0.5740 0.5663

0.3329 0.3039 0.7087 0.6989 0.8614 0.8616 0.8694 0.8668 0.8828 0.8808
15% 0.6142 0.6104 0.8111 0.8062 0.8781 0.8753 0.8727 0.8703 0.9049 0.9028
25% 0.7071 0.7938 0.8433 0.8372 0.8774 0.8759 0.8848 0.8831 0.9290 0.9270
50% 0.8942 0.8920 0.8754 0.8724 0.8948 0.8938 0.9009 0.8994 0.9377 0.9367

Table 4: Linear Probing performance of HAR on PAMAP2 by
aligning pretrained unimodal encoders.

Unimodal

Pretrain Domain

Combined PAMAP2 RealWorld-HAR

Multimodal

Alignment Domain

PAMAP2 PAMAP2 PAMAP2

Metric Acc F1 Acc F1 Acc F1

Concat 0.7843 0.7000 0.7763 0.6210 0.5675 0.4187

CMC 0.7334 0.6508 0.7285 0.6788 0.7010 0.5956

FOCAL 0.7922 0.7129 0.7354 0.6327 0.7643 0.6243

GMC 0.7314 0.5915 0.7344 0.5869 0.7414 0.5816

SimCLR 0.7299 0.6190 0.7075 0.5426 0.7225 0.5581

TNC 0.5431 0.4080 0.5889 0.4824 0.6378 0.5167

TSTCC 0.7299 0.6003 0.7065 0.5773 0.7354 0.5864

InfoMAE 0.8261 0.7303 0.8117 0.7175 0.7912 0.6901

TM GT TT GM TG
Seismic

0.2

0.4

0.6

0.8

Ac
cu
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Acoustic

0.2

0.4

0.6

0.8
No sync CMC FOCAL InfoMAE

Figure 5: Unimodal linear probing accuracy of MODwith and
without cross-modal alignment.

F1-score compared to the best-performing baseline, FOCAL. The

improvement is most significant in aligning unimodal encoders

pretrained on RealWorld-HAR, which completely differs from the

alignment set (PAMAP2). This further demonstrates InfoMAE’s

robustness as an alignment framework with a limited amount of

multimodal pairs, reflecting its superior ability to utilize the uni-

modal data better even when they are from different domains.

4.3 Unimodal Evaluation with Cross-Modal
Alignment

We analyze how incorporating the multimodal correspondences

into each unimodal encoder after alignment could benefit the down-

stream tasks. Figure 5 shows the accuracy for seismic and acoustic

modalities before and after cross-modal alignment in the MOD ap-

plication. With limited multimodal pairs, the pretrained unimodal

encoders could gain the most significant performance improve-

ments with InfoMAE. This emphasizes the InfoMAE’s superior effi-

ciency in enforcing cross-modal correspondence to each modality

to improve their downstream performance, with only a few multi-

modal pairs required. With InfoMAE, the aligned unimodal model

Table 5: Performance of Joint Pretraining on MOD (seismic
and acoustic) dataset and then finetuned on unseen domains.

Domain Domain G Domain T

Frameworks Acc F1 Acc F1

CMC [8] 0.7924 0.7897 0.6791 0.6776

FOCAL [40] 0.9137 0.9111 0.8156 0.8130

GMC [55] 0.7986 0.7947 0.3457 0.3387

MoCo [8] 0.8719 0.8688 0.7500 0.7483

SimCLR [6] 0.8418 0.8386 0.7288 0.7207

TNC [64] 0.6916 0.6797 0.5680 0.5625

TSTCC [15] 0.7080 0.7004 0.5804 0.5766

MAE [24] 0.6708 0.6642 0.4421 0.4365

CAV-MAE [18] 0.5507 0.5282 0.3457 0.3387

InfoMAE 0.9196 0.9186 0.8546 0.8535

can generate the most holistic representations through distribu-

tional alignment compared to geometric alignment (CMC, FOCAL).

4.4 Multimodal Pairing Efficiency
We also evaluate InfoMAE’s alignment performance at varying

amounts of multimodal data for MOD application in Table 3. We

align both encoders pretrained from domain M (MM) and compare

them to standard joint pretraining with different ratio of multi-

modal data. Additionally, we provide supervised training results on

the same amount of labeled multimodal data used for finetuning.

InfoMAE consistently achieves superior multimodal data efficiency,

with minimal degradation as we reduce the number of multimodal

data. In general, InfoMAE has an average of 3.42% gain over the

highest-performing baselines and over 60% compared to joint model

pretraining, which performs poorly in the absence of multimodal

data. Note that the joint pretraining even performs worse than the

supervised approach with only 5% of multimodal data, indicating

the standard self-supervised pretraining fails to learn effective repre-

sentations with an insufficient amount of synchronized multimodal

data. In contrast, the two-stage learning paradigm of InfoMAE

leveraging widely available unsynchronized unimodal data could

effectively mitigate this problem.

4.5 Standard Mutimodal Pretraining on
Large-scale Synchronized Dataset

While InfoMAE excels as an efficient cross-modal alignment frame-

work under limited pairs, it also demonstrates remarkable flexibility

as a standard multimodal SSL framework. We evaluate InfoMAE
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Table 6: Ablation Results of InfoMAE Cross-Modal Alignment.

Frameworks

TM GT TT GM TG

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

noTemp 0.6946 0.6902 0.5881 0.5884 0.5044 0.4888 0.7435 0.7432 0.6651 0.6570

noShared 0.7683 0.7595 0.6504 0.6515 0.5298 0.5232 0.8125 0.8116 0.7395 0.7351

noPrivate 0.5479 0.4732 0.4180 0.3402 0.2873 0.1812 0.6259 0.5519 0.5399 0.5519

noAug 0.7863 0.7823 0.6973 0.6967 0.5881 0.5868 0.8232 0.8225 0.7924 0.7879

InfoMAE 0.7950 0.7929 0.6986 0.7007 0.5928 0.5908 0.8326 0.8324 0.8326 0.8324

against prior state-of-the-art works on Joint Multimodal Pretrain-

ing using abundant multimodal pairs, as shown in Table 5. We use

synchronized, unlabeled multimodal data from the MOD dataset

to pretrain backbone encoders. Then we freeze the pretrained en-

coders and perform linear probing using labeled multimodal data

from domains 𝐺 and 𝑇 , as described in Section 4.1. InfoMAE con-

sistently outperforms the MAE-based framework and achieves bet-

ter performance than other contrastive baselines. We leave more

evaluation on Joint Multimodal Pretraining across four real-world

datasets to Appendix G. Prior works, primarily designed for joint

multimodal pretraining, often struggle with limited multimodal

pairs and show significant performance degradation. In contrast,

InfoMAE not only improves multimodal pairing efficiency but main-

tains high performance with minimal performance degradation.

4.6 Ablation Studies
Finally, we study how each module of InfoMAE contributes to its

performance through ablation studies. We evaluate four variants of

InfoMAE by removing temporal, shared, private, and augmentation

components in Table 6. The absence of either shared or private com-

ponents leads to a significant degradation, implying the significance

of factorized representation for cross-modal alignment. The drop

in performance after removing temporal locality constraints also

indicates the importance of learning temporal correspondence for

time-series signals. Without temporal locality, the learned represen-

tations lose crucial temporal correspondence and can significantly

compromise the ability to learn multimodal correspondences on

top of the unimodal representations. Conversely, InfoMAE with-

out augmentations does not significantly reduce the performance,

demonstrating its robustness toward augmentation choices, in con-

trast to many contrastive learning frameworks that require careful

selection of augmentations to avoid representational collapses.

5 Related Works
Self-Supervised Multimodal Learning. Self-supervised learning

(SSL) techniques, such as Contrastive Learning (CL) and masked

reconstructions, have achieved significant success in visual, textual,

and time-series representation learning [5, 15, 16, 19, 56, 59, 64,

75, 77, 79]. Masked reconstruction learns informative representa-

tions by reconstructing masked inputs [4, 13, 24, 34, 74], with vari-

ous masking strategies explored [2, 30, 78], and extended to time-

frequency spectrograms [27, 51] and videos [20, 65]. Multimodal

representation learning has become increasingly important with

diverse applications [3, 38, 57, 58, 80]. Recent works leverage CL to

learn correspondences between modalities [11, 52, 54, 55, 63, 67, 81],

and others pretrain unified encoders for multimodal representa-

tions [26, 47]. Factorized Multimodal Learning [25, 29, 37, 40, 68]

further decouples multimodal learning by acknowledging both

modality-specific and modality-shared information. FOCAL [40]

proposed contrastive learning objectives to learn shared and private

representation in the orthogonal space. FactorizedCL [37] separates

the shared and private space based on their relevance to the down-

stream tasks. Some works [18, 71] combine CL with MAE to capture

cross-modal correspondence. Yet, these works minimize the geo-

metric modality gap to learn cross-modal correspondences and rely

on massive amounts of multimodal data for joint multimodal pre-

training. In contrast, InfoMAE minimizes the information modality

gap to further enhance the downstream performance. In reducing

multimodal data pairs for training, many works [45, 66, 70] pro-

pose to impute missing modality pairs through feature generations.

Wang et al. [72] proposes using CL to align multimodal encoders

through an anchor modality yet still overlooking unimodal data. In

contrast, InfoMAE minimizes the reliance on multimodal data by

taking advantage of a large amount of unimodal data.

Multimodal Information Theory. There has been a long his-

tory of exploring common information between random variables

in information theory [17, 73, 76], and it is still an active research

field [21–23, 61]. However, it remains challenging to compute the

common information in practical applications. Kleinman1 et al. [33]
combines Variational Autoencoders with Gacs-Korner Common

Information. Mai et al. [46] proposes to measure the information

redundancy for multimodal data. However, they do not explicitly

consider the unique information for factorization. InfoMAE adopts

the informational factorization considering both private and shared

information to construct a joint representation in a task-agnostic

manner rather than extracting task-related information like [37].

6 Discussion & Conclusion
We proposed InfoMAE, a pairing-efficient multi-stage SSL paradigm

for multimodal IoT sensing. It first pretrains independent modality

encoders on large-scale unimodal data sets. Then, it leverages a

novel information theory-based optimization to achieve distribu-

tional cross-modal alignment with only limited multimodal pairs.

Extensive evaluations compared to standard multimodal SSL frame-

works demonstrated the superior efficiency and effectiveness of

InfoMAE across multiple real-world IoT applications. We believe

it opens new opportunities for developing more data-efficient and

qualitative self-supervised multimodal models. In the Appendix,

we provide more implementation details and evaluations.
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Appendix
The appendix of this paper is structured as follows.

• A Proof of Information Formulations.

• B Datasets.

• C Data Preprocessing.

• D Backbone Model.

• F Baselines.

• E Training Configurations.

• G Additional Evaluation.

A Information Formulation
This section provides detailed proof of the proposed information

formulation for cross-modal alignment.

A.1 Proof of the Equivalence between (1) and (2)

in Definitions
We first show the equivalence between the condition (1) and the

constraints in (2) by proving the following proposition.

Proposition A.1. For random variables 𝑋1, 𝑋2, if 𝑈 = 𝑠1 (𝑋1) =
𝑠2 (𝑋2), and there exists𝑊 = 𝑔1 (𝑋1) = 𝑔2 (𝑋2) such that 𝑋1 ⊥⊥ 𝑋2 |
𝑊 , then the following two statements are equivalent.

(a) (∀𝑓1, 𝑓2)
(
[𝑓1 (𝑋1) = 𝑓2 (𝑋2)] =⇒ [(∃𝑓 ) 𝑓 (𝑈 ) = 𝑓1 (𝑋1) =

𝑓2 (𝑋2)]
)
.

(b) There is a one-to-one mapping between𝑊 and𝑈 (i.e., 𝑋1 ⊥⊥
𝑋2 | 𝑈 ).

Proof. We first prove the direction (b) =⇒ (a) using properties

of basic information-theory measures (Chapter 2 in [10]). For any

𝑓1, 𝑓2 such that 𝑓1 (𝑋1) = 𝑓2 (𝑋2), we have

0

(𝑖 )
= 𝐼 (𝑋1;𝑋2 |𝑈 )

(𝑖𝑖 )
≥ 𝐼 (𝑓1 (𝑋1); 𝑓2 (𝑋2) |𝑈 )

(𝑖𝑖𝑖 )
≥ 0, (12)

where (𝑖) follows that 𝑋1 and 𝑋2 are independent conditioned

on 𝑈 ; (𝑖𝑖) is due to the data processing inequality of mutual in-

formation; and (𝑖𝑖𝑖) is because the mutual information is always

non-negative. (12) implies that 𝐼 (𝑓1 (𝑋1); 𝑓2 (𝑋2) |𝑈 ) = 0. In addition,

since 𝐼 (𝑓1 (𝑋1); 𝑓2 (𝑋2) |𝑈 ) = 𝐻 (𝑓1 (𝑋1) |𝑈 ) − 𝐻 (𝑓1 (𝑋1) |𝑓2 (𝑋2),𝑈 )
and 𝐻 (𝑓1 (𝑋1) |𝑓2 (𝑋2),𝑈 ) = 0, we have 𝐻 (𝑓1 (𝑋1) |𝑈 ) = 0. This

concludes that there exist a deterministic function 𝑓 such that

𝑓 (𝑈 ) = 𝑓1 (𝑋1) = 𝑓2 (𝑋2).
Next, we prove the other direction (a) =⇒ (b). Note that𝑊

given in the proposition statement satisfies𝑊 = 𝑔1 (𝑋1) = 𝑔2 (𝑋2)
and therefore, from (a), we know that there exist a function ℎ1 such

that𝑊 = ℎ1 (𝑈 ). Since𝑊 also satisfies that 𝑋1 ⊥⊥ 𝑋2 | 𝑊 and

𝑈 = 𝑠1 (𝑋1) = 𝑠2 (𝑋2), then applying the direction (b) =⇒ (a), we

have that 𝑈 = ℎ2 (𝑊 ) for some function ℎ2. Therefore, there is a

one-to-one mapping between𝑊 and𝑈 . □

Note that it is difficult to obtain a random variable 𝑈 that sat-

isfies (a) (i.e. the sufficient common variable in Defined 2.2). The

Proposition A.1 allows us to find a random variable𝑊 (if it exists)

instead. And the one with minimum entropy can be obtained by

solving the optimization problem (2).

A.2 Derivation of the Shared Loss (4)
We first group the terms that only depend on𝑈1 or𝑈2 as follows.

Lshared

info
= 𝛼𝑑 (𝑈1,𝑈2) + 𝛽 (𝐻 (𝑈1) + 𝐻 (𝑈2)) + 𝐼 (𝑋1;𝑋2 | 𝑈1) (13)

+ 𝐼 (𝑋1;𝑋2 | 𝑈2)
= 𝛼𝑑 (𝑈1,𝑈2) + L(𝑈1) + L(𝑈2), (14)

where 𝑑 (𝑈1,𝑈2) can be measured using the Euclidean distance or

other distance measures. And

L(𝑈1) = 𝐼 (𝑋1;𝑋2 |𝑈1) + 𝛽𝐻 (𝑈1)
(𝑖 )
= 𝐼 (𝑋1;𝑋2 |𝑈1) + 𝛽𝐼 (𝑋1;𝑈1)
(𝑖𝑖 )
= E𝑈1

[
𝐷𝐾𝐿 (𝑝𝑋1,𝑋2 |𝑈1

| |𝑝𝑋1 |𝑈1
𝑝𝑋2 |𝑈1

)
]

(15)

+ 𝛽𝐷𝐾𝐿 (𝑝𝑋1,𝑈1
| |𝑝𝑋1

𝑝𝑈1
)

= E𝑋1,𝑋2,𝑈1

[
log

𝑝𝑋1,𝑋2 |𝑈1

𝑝𝑋1 |𝑈1
𝑝𝑋2 |𝑈1

]
+ 𝛽E𝑋1,𝑈1

[
log

𝑝𝑋1,𝑈1

𝑝𝑋1
𝑝𝑈1

]
= E𝑋1,𝑋2,𝑈1

[
log

𝑝𝑋1,𝑋2,𝑈1
𝑝𝑈1

𝑝𝑋1,𝑈1
𝑝𝑋2,𝑈1

]
+ 𝛽E𝑋1,𝑈1

[
log

𝑝𝑋1,𝑈1

𝑝𝑋1
𝑝𝑈1

]
= E𝑋1,𝑋2,𝑈1

[
log

𝑝𝑋1,𝑋2,𝑈1

𝑝𝑋1
𝑝𝑋2

𝑝𝑈1

+ log

𝑝𝑋1
𝑝𝑈1

𝑝𝑋1,𝑈1

+ log

𝑝𝑋2
𝑝𝑈1

𝑝𝑋2,𝑈1

]
(16)

+ 𝛽E𝑋1,𝑈1

[
log

𝑝𝑋1,𝑈1

𝑝𝑋1
𝑝𝑈1

]
= E𝑋1,𝑋2,𝑈1

[
log

𝑝𝑋1,𝑋2,𝑈1

𝑝𝑋1
𝑝𝑋2

𝑝𝑈1

(17)

+(1 − 𝛽) log
𝑝𝑋1,𝑈1

𝑝𝑋1
𝑝𝑈1

+ log

𝑝𝑋2,𝑈1

𝑝𝑋2
𝑝𝑈1

]
, (18)

where (𝑖) follows the relation between mutual information an en-

tropy that 𝐼 (𝑋1;𝑈1) = 𝐻 (𝑈1) − 𝐻 (𝑈1 |𝑋1) and 𝐻 (𝑈1 |𝑋1) = 0 be-

cause 𝑈1 is a deterministic function of 𝑋1; (𝑖𝑖) is by definition of

the conditional mutual information; and the remaining equalities

use the Bayes’ rule. Similarly, we have

L(𝑈2) = 𝐼 (𝑋1;𝑋2 |𝑈2) + 𝛽𝐻 (𝑈2)

= E𝑋1,𝑋2,𝑈2

[
log

𝑝𝑋1,𝑋2,𝑈2

𝑝𝑋1
𝑝𝑋2

𝑝𝑈2

(19)

+ log
𝑝𝑋1,𝑈2

𝑝𝑋1
𝑝𝑈2

+ (1 − 𝛽) log
𝑝𝑋2,𝑈2

𝑝𝑋2
𝑝𝑈2

]
. (20)

Combining (14), (18) and (20), we can obtain

Lshared

info
= 𝛼𝑑 (𝑈1,𝑈2 ) +

2∑︁
𝑖=1

E𝑋1,𝑋2,𝑈𝑖

[
log

𝑝𝑋1,𝑋2,𝑈𝑖

𝑝𝑋1
𝑝𝑋2

𝑝𝑈𝑖

(21)

+(1 − 𝛽 ) log
𝑝𝑋𝑖 ,𝑈𝑖

𝑝𝑋𝑖
𝑝𝑈𝑖

+ log

𝑝𝑋3−𝑖 ,𝑈𝑖

𝑝𝑋3−𝑖𝑝𝑈𝑖

]
. (22)

A.3 Derivation of the Private Loss (7)
Similar to (18), since 𝐻 (𝑉1 |𝑋1) = 𝐻 (𝑉2 |𝑋2) = 0, we have that

Lprivate

info
= 𝛾𝐻 (𝑉1) + 𝛾𝐻 (𝑉2) + 𝜖𝐼 (𝑉1;𝑈1) + 𝜖𝐼 (𝑉2;𝑈2),
= 𝛾𝐼 (𝑋1;𝑉1) + 𝛾𝐼 (𝑋2;𝑉2) + 𝜖𝐼 (𝑉1;𝑈1) + 𝜖𝐼 (𝑉2;𝑈2),

=
∑︁
𝑖

E𝑋𝑖 ,𝑉𝑖 ,𝑈𝑖

[
𝛾 log

𝑝𝑋𝑖 ,𝑉𝑖

𝑝𝑋𝑖
𝑝𝑉𝑖

+ 𝜖 log
𝑝𝑉𝑖 ,𝑈𝑖

𝑝𝑉𝑖𝑝𝑈𝑖

]
.

(23)
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Table 7: Statistical Summaries of Individual Domains

Dataset Applications Classes Modality Sampling Rate Sample Length Interval (Overlap)

#Pretrain

Samples

Alignment

#Alignment

Samples

# Finetune

Samples

Domain M MOD 7 acoustic (8kHz), seismic (100Hz) 2 sec 0.2 sec (0%) 39,609 ✓ 1981 734

Domain G MOD 4 acoustic (8kHz), seismic (100Hz) 2 sec 0.2 sec (0%) 35,168 ✗ - -

Domain T MOD 4 acoustic (8kHz), seismic (100Hz) 2 sec 0.2 sec (0%) 43,819 ✗ - -

PAMAP2 HAR 18 acc, gyro, mag (all 100Hz) 2 sec 0.4 sec (50%) 9,611 ✓ 4805 961

RealWorld-HAR HAR 8 acc, gyro, mag (all 50Hz) 5 sec 1 sec (50%) 12,887 ✗ - -

Table 8: Statistical Summaries of Evaluated Datasets.

Dataset Classes Modalities (Freq) Sample Length Interval (Overlap) #Samples #Labels

Domain M 7 acoustic (8kHz), seismic (100Hz) 2 sec 0.2 sec (0%) 39,609 7,335 (M); 3,136 (G); 4,205 (T)

ACIDS 9 acoustic, seismic (both 1025Hz) 1 sec 0.25 sec (50%) 27,597 27,597

RealWorld-HAR 8 acc, gyro, mag, lig (all 50Hz) 5 sec 1 sec (50%) 12,887 12,887

PAMAP2 18 acc, gyr, mag (all 100Hz) 2 sec 0.4 sec (50%) 9,611 9,611

B Datasets
This section describes the cross-modal alignment and joint multi-

modal pretraining evaluation datasets. We have two real-world IoT

applications: Moving Object Detection (MOD) and Human Activity

Recognition (HAR).

B.1 Cross-modal Alignment Datasets
B.1.1 Moving Object Detection. We have seismic and acoustic sig-

nals describing different vehicles on three different domains. For

simplicity, we use one letter to represent each domain. Table 7 pro-

vides the statistical values of each domain, and we provide detailed

descriptions below:

Domain M is a publicly released [40] moving object detection

dataset consisting of seismic and acoustic data from 7 different

moving vehicles, recorded at three different distances and four

different speeds. The sensor nodes, RaspberryShake, include a mi-

crophone array sampled at 16,000Hz and a geophone sampled at

100Hz. This dataset contains three types of downstream tasks — ve-

hicle classification, distance classification, and speed classification.

For cross-validation, data collected from three sensor nodes are

used for training, and data from a separate node is used for testing.

DomainG contains a self-collected dataset on state park grounds

near an outdoor research facility. Four sensor nodes, each featuring

a geophone and a microphone array, were deployed to collect seis-

mic and acoustic vibration signals from nearby objects at 200Hz

and 16000Hz, respectively. Both seismic and acoustic signals were

downsampled by half to match the signals from MOD. Four targets

were chosen during the data collection, and each navigated the

neighborhood near the sensors in some arbitrary order. Targets in-

volved were (1) Polaris
3
off-road vehicle, (ii) a Warthog

4
all-terrain

unmanned ground robot, (iii) a Husky unmanned outdoor field

robot
5
, and (iv) a standard civilian truck. Data collection spanned

over two days with different on-site noises observed, including but

3
https://www.polaris.com/

4
https://clearpathrobotics.com/warthog-unmanned-ground-vehicle-robot/

5
https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/

not limited to human interference (talking and walking near the

sensors), environmental disturbances, background noises, etc.

Domain T contains seismic and acoustic vibration signals with a

similar setup as MOD but involves different targets and scenes. This

set contains data collected from a paved parking lot, unpaved trails,

and gravel roads within a park. Vibration signals of 2 standard-

size SUVs from different manufacturers, one lightweight sports car,

and one muscle car were recorded. For each scene, we collected

one hour of data for each vehicle. We use the first 50 minutes for

training and the last 10 minutes for validation and testing.

B.1.2 Human Activity Recognition. Unlike the MOD application,

where we used data from different domains for unimodal pretrain-

ing, we leveraged two different HAR datasets for unimodal pretrain-

ing and cross-modal alignment to evaluate the scenario in which

IMU data has high degrees of heterogeneity.

RealWorld-HAR [62] is a public dataset that utilizes accelerom-

eter, gyroscope, magnetometer, and light signals sampled at 50Hz.

It includes data from 15 subjects performing eight common human

activities: climbing stairs down and up, jumping, lying, standing,

sitting, running/jogging, and walking. We used the data collected

from devices positioned at the subjects’ waists. For our experiments,

we randomly selected ten subjects for training, 2 for validation, and

3 for testing.

PAMAP2 [57] contains inertial data from 18 human daily ac-

tivities, such as walking, cycling, and playing soccer, performed

by nine subjects. The dataset includes 9,611 instances, with data

captured using inertial measurement units (IMUs) placed on the

chest, the wrist of the dominant arm, and the dominant side’s an-

kle. However, our experiment only utilized data collected from the

wrist. Each data contains a 3-axis accelerometer, gyroscope, and

magnetometer signal at a sampling rate of 100Hz. Seven random

subjects are used for training, and two subjects for testing.

Combined is a concatenated dataset of RealWord-HAR and

PAMAP2. Since PAMAP2 does not contain any light signals, we

drop the light modality and only use the accelerometer, gyroscope,

and magnetometer for evaluation.
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Table 9: Encoder & Decoder configurations.

Dataset MOD ACIDS RealWorld-HAR PAMAP2

Dropout Ratio 0.2 0.2 0.2 0.2

Patch Size aud: [1, 40], sei: [1,1] [1, 8] [1, 2] [1, 2]

Window Size [3, 3] [2,4] [3, 3] [3, 5]

Encoder Block Num [2, 2, 4] [2, 2, 4] [2, 2, 2] [2, 2, 2]

Encoder Block Channels [64, 128, 256] [64, 128, 256] [32, 64, 128] [32, 64, 128]

Head Num 4 4 4 4

Encoder Fusion Channel 256 256 128 128

Encoder Fusion Head Num 4 4 4 4

Encoder Fusion Block 2 2 2 2

FC Dim 512 512 256 128

Factorization Dimension 128 128 128 128

Decoder Block Num [2, 2] [2, 2] [2, 2] [2, 2]

Decoder Block Channels [128, 64] [128, 64] [64, 32] [64, 32]

B.2 Joint Multimodal Pretraining
In addition to pair-efficient SSL, we separately evaluate standard

multimodal SSL, pretraining on large-scale multimodal data. We

describe each dataset in more detail below and summarize the

statistics in Table 8

Moving Object Detection (MOD) [40] is the superset of the
domains we used in cross-modal alignment evaluation. We pretrain

the encoders on domain M and then report the finetune perfor-

mance in domain G and domain T.

Acoustic-Seismic Identification Data Set (ACIDS) is an addi-

tional multimodal dataset collected using two synchronized acous-

tic and seismic sensor systems (16-bit analog-to-digital converter

operating at 1025 Hz) with more than 270 individual data runs,

each featuring a singular ground vehicle type. The dataset captures

signals from 9 distinct ground vehicles operating under 3 different

environmental conditions. These targets were recorded at a con-

stant speed from 5km/h to 40km/h as they navigated through the

sensor systems, passing the sensors between 25 and 100 meters.

The acoustic data is processed with a low-pass filtration at 400 Hz

using a 6th-order filter to obviate spectral aliasing and a high-pass

filtration at 25 Hz with a 1st-order filter to mitigate environmental

noise (e.g., wind). The collected data runs were randomly divided

into an 8:1:1 ratio for training, validation, and testing.

RealWorld-HAR [62] is the same dataset we used for cross-

modal alignment evaluation. See B.1.2 for the detailed description.

PAMAP2 [57] is the same dataset we used for cross-modal

alignment evaluation. See B.1.2 for the detailed description.

C Data Preprocessing
We partition the time-series data into segments of uniform length.

Each segment is then subdivided into intervals that may or may

not overlap. We apply the Fourier transform to the signal in each

interval to derive its spectral content, thereby retaining both tem-

poral and spectral characteristics. The resultant spectrograms are

subsequently inputted into our designed feature encoders. We have

established a suite of data augmentation techniques applicable to

the time domain pre-Fourier transform and the frequency domain

post-Fourier transform. Each sample is subjected to a randomly

chosen augmentation, which could be from either domain. More-

over, to enhance the stochastic nature of data augmentation within

multimodal frameworks, we assign a fifty percent chance for each

modality to undergo the randomly selected augmentation process.

D Backbone
SWIN-Transformer[41]. SWIN-Transformer is a variant of the

Vision Transformer [14] designed for images. We have adapted

the SWIN-Transformer to process time-frequency spectrogram in-

puts. The time-frequency spectrogram input from each modality is

first segmented into non-overlapping patches of embedding vec-

tors via a convolutional layer. The model then extracts features

through blocks of layer, each consisting of self-attention layers

computed within the local windows. A shifting window mecha-

nism is applied to increase the perceptual field at a much lower

computational cost and allows the model to capture global infor-

mation. The patches are downsampled at the end of each block

by merging adjacent patches to double the feature channels. Sepa-

rate SWIN-Transformer encoders are used to extract features from

each sensory input modality. For supervised learning, additional

self-attention layers are used to fuse the features to combine infor-

mation across the various modalities. In cases where the learning

framework operates at the modality level, the model bypasses the

cross-modal fusion stages and computes pretraining losses directly

on the features extracted from each modality. SWIN-Transformer

is also used as the decoder for Masked Autoencoders. Instead of

downsampling after each block, we expand the patches through

linear layers at the beginning of each block to mirror the encoding

steps. The decoded features at the end are then projected to match

the dimension of patched input spectrograms for reconstruction

loss. The backbone configurations of the datasets used in this paper

for both encoding and decoding are detailed in Table 9.

E Experiment and Implementation Details
Training. We specify the configurations used for InfoMAE dur-

ing Joint Multimodal Pretraining, InfoMAE two-stage pretraining,

and finetuning in Table 10. We randomly sample a batch of se-

quences of 4 consecutive samples (a total of 256 samples) during
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Table 10: Training configurations.

Joint Multimodal Pretraining Unimodal Pretraining Cross-Modal Alignment Finetuning

Optimizer AdamW [43] AdamW [43] AdamW [43] Adam [32]

Weight Decay 0.05 0.05 0.05 0.05

Start Learning Rate (LR) 0.0001 0.0001 0.0001 0.01

LR Scheduler Cosine Cosine Cosine Step

LR Decay 0.2 0.2 0.2 0.2

LR Period 500 500 100 50

Epochs

MOD, ACIDS: 2500

RealWorld-HAR, PAMAP2: 1000

2500 500 200

Batch Size 256 256 256 128

Table 11: Discriminator configurations.

Dataset MOD ACIDS RealWorld-HAR PAMAP2

Dropout Ratio 0.2 0.2 0.2 0.2

Mod Conv Kernel aud: [1, 5], sei: [1,3] [1,4] [1, 3] [1, 5]

Mod Conv Channel 128 128 128 64

Mod Conv Layers 5 6 6 4

MLP Layers 4 4 4 4

Activation Function LeakyReLU LeakyReLU LeakyReLU LeakyReLU

Table 12: Discriminator training configurations.

Stage Joint Multimodal Pretraining Cross-Modal Alignment

Optimizer AdamW [43] AdamW [43]

Weight Decay 0.005 0.005

Start LR 0.00005 0.00005

LR Scheduler Cosine [42] Cosine [42]

LR Decay Epochs

MOD, ACIDS: 500

RealWorld-HAR, PAMAP2: 50

MOD, ACIDS: 500

RealWorld-HAR, PAMAP2: 50

Warm Up Epochs 10 10

Train Period 50 50

pretraining. We jointly optimize the backbone encoders and de-

coders with AdamW [43] optimizer and Cosine scheduler [42]. The

model configurations for both the encoder and decoder are summa-

rized in Table 9. Additionally, when training InfoMAE, we jointly

train discriminators for density-ratio estimations [31, 50, 60]. We

apply convolution blocks to map the time-frequency sample into

a one-dimensional embedding to match the input dimension 𝑋1

with their shared and private representations 𝑉1,𝑈1. Then, the dis-

criminator estimates their density ratio through a 5-layer MLP. The

exact discriminator configuration is provided in Table 11. We follow

standard practice [31] in training the discriminators with warmup

epochs and training periods. The detailed training configurations

for the discriminators are presented in Table 12.

Computation. We conducted our experiments on NVIDIA RTX

4090 GPUs with 24GB memory. The training time varies from a few

minutes for finetuning to 2 days for Joint Multimodal Pretraining.

Implementations. We build our models on top of the open-

source implementations [24, 40, 41] using Pytorch 2.0.1. We will

also release our code upon acceptance.

F Baselines
We describe all the baselines used in the evaluation below.

Supervised: The supervised approach trains with full supervi-

sion for each task to learn a mapping from the input to task-specific

labels. Labels are used to update the entire model which includes

both the encoder and the classification layer.

SimCLR [6] presents a simple contrastive framework for con-

trastive learning in visual perception tasks. In our implementation,

each batch is randomly sampled. During the pretraining phase, we

apply random augmentations to each sample to create two distinct

views. The goal of these augmentations is to pull the transformed

version of the same sample closer in the feature space while pushing

the representations of other samples further apart. We treat other

samples within the same minibatch (2N - 2) as the negative pairs.

Consequently, variant views of an identical sample form positive

pairs, whereas views derived from separate samples are treated as

negative pairs.

MoCoV3 [8] involves a query encoder denoted as 𝑓𝑞 and a key

momentum encoder denoted as 𝑓𝑘 . Both encoders have the same

backbone network followed by a projection head. The query en-

coder 𝑓𝑞 includes an additional projection head at the end. During

pretraining, MoCoV3 relies on randomly augmented views of input

samples to learn transformation invariant features. For each sample,

it generates a query vector 𝑞 using 𝑓𝑞 and a key vector 𝑘 using 𝑓𝑘 .

The objective is to maximize the agreement between positive en-

coded query-key pairs. Specifically, the positive key 𝑘+ is encoded

from the same sample as the query 𝑞, while the negative keys 𝑘−

are encoded from other samples within the same mini-batch. This

encourages the model to learn meaningful representations by con-

trasting positive and negative pairs. Additionally, MoCoV3 employs

random batch sampling during training, and the key momentum

encoder 𝑓𝑘 is gradually updated using a query momentum with the

query encoder 𝑓𝑞 .

CMC [63] represents a novel approach in contrastive learning

that emphasizes the utilization of multiview data. CMC extracts

meaningful representations by treating different modalities of the

14



1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

InfoMAE: Pairing-Efficient Cross-Modal Alignment with Informational Masked Autoencoders for IoT Signals Conference’17, July 2017, Washington, DC, USA

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Accuracy F1-Score0.4

0.6

0.8

1.0

MOD
Accuracy F1-Score0.4

0.6

0.8

1.0

ACIDS
Accuracy F1-Score0.4

0.6

0.8

1.0

RealWorld-HAR
Accuracy F1-Score0.4

0.6

0.8

1.0

PAMAP2

Supervised
CAV-MAE

CMC
FOCAL

GMC
MAE

MoCo SimCLR TNC TSTCC InfoMAE

Figure 6: Joint Multimodal Pretraining compared with previous joint pretraining SSL frameworks on four datasets.

data as different views, minimizing the geometric gap between syn-

chronized feature representations from these different modalities.

During the training process, each mini-batch is processed by the

backbone model to obtain modality representation. The framework

then focuses on maximizing the similarity of representations from

identical samples across modalities, while simultaneously treat-

ing dissimilar modality representations from distinct samples as

negative pairs. The cumulative loss from all modality pairings is

computed as the final loss term.

GMC [55] presents a multimodal contrastive loss function de-

signed to align embeddings from various modalities geometrically

to the joint embeddings. This framework operates on the princi-

ple of random batch sampling and augmentation similar to other

contrastive learning baselines. In addition to modality-specific en-

coders, GMC has an additional joint encoder that processes inputs

from all modalities concurrently. To facilitate the alignment of the

joint embedding with the individual modality embeddings, an extra

linear layer maps the joint embedding into the same dimensional

space. Subsequently, a unified projection head is utilized to project

both the individual and joint modality embeddings before the loss

computation. GMC aims to maximize the similarity of individual

modality embeddings (single view) to the joint embedding (global

view).

FOCAL [40] is a recent contrastive learning framework designed

for multimodal time-series signals. FOCAL acknowledges that each

modality contains information shared across different modalities

and information unique to each modality. FOCAL follows CMC in

learning the shared representations and SimCLR for private repre-

sentation. To avoid entanglement of the factorized representations,

FOCAL minimizes the cosine similarity between the shared and

private subspaces as well as between the private subspaces, cre-

ating an orthogonal latent space. In addition, FOCAL proposes a

temporal ranking constraint to learn time-series locality.

TNC [64] is a self-supervised learning framework that captures

time series representations through a debiased contrastive objective,

distinguishing between temporally close and distant samples. TNC

defines neighboring samples as those within the same sequence,

sharing similar timestamps, and non-neighboring samples as those

from different sequences. A discriminator is employed to predict the

likelihood of each sample and its neighbors being in the same tem-

poral window, to maximize the similarity of neighboring samples

while minimizing that of non-neighboring ones.

TS-TCC [16] is a contrastive learning framework that robustly

captures time series representations. It achieves this by combining

cross-view predictions and contrasting both temporal and con-

textual information. In practice, TS-TCC randomly groups mul-

tiple sequences into mini-batches. For each sample, it generates

two views through random augmentations. Context vectors are

extracted from all sample representations up to a given timestamp

within the sequence using an autoregressive model. These context

vectors are then used to predict future timestamps in the other view.

The framework simultaneously addresses both temporal alignment

and context awareness, enhancing its ability to discern meaningful

patterns in time series data.

MMAE [24] is a variant of Masked Autoencoders (MAE) with

additional fusion modules for multimodal learning. It incorporates

an encoder-decoder architecture and achieves SOTA performance

on multiple vision tasks. Unlike contrastive learning, MAE does not

depend heavily on random augmentations. During the pretraining,

we randomly mask a significant portion (i.e., 75%) of each modality

input. Instead of dropping the masked patches as in the original

MAE paper, we replace them with 0 values to ensure consistent

dimensions. A separate encoder and decoder are used for each

modality. After encoding, we concatenate the modality features

and then use separate MLP projection layers to get the fused modal-

ity embeddings before decoding to learn cross-modal information.

Then a separate projector is used to map the fused embedding back

to each modality embedding. Finally, the modality decoder recon-

structs the modality input from the projected modality embeddings.

The overall objective is to minimize the mean squared error (MSE)

between the masked portion of the original modality patches and

the reconstructed modality patches.

CAV-MAE [18] is a self-supervised learning framework build-

ing on top of both contrastive learning and MAE to learn audio-

visual representations. It extends the capabilities of the traditional

Masked Autoencoder (MAE) to process and learn from both audio

and visual inputs simultaneously. CAV-MAE first extracts modality

embedding through individual modality encoder. Then, it applies a

joint encoder to extract joint embedding as well as encode separate

modality embedding. The joint embedding is decoded for recon-

struction, while the encoded modality embeddings are treated as

positive pairs for contrastiy ve learning.

G Additional Evaluation
G.1 Joint Multimodal Pretraining
Although InfoMAE is primarily designed for learning settingswhere

the multimodal pairs are scarce, InfoMAE also demonstrates strong

flexibility and generalization as a standard multimodal SSL frame-

work when abundant multimodal pairs are available. We present
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Table 13: Ablation Results of InfoMAE.

Dataset MOD ACIDS RealWorld-HAR PAMAP2

Frameworks Acc F1 Acc F1 Acc F1 Acc F1

woTemp 0.8734 0.8724 0.8808 0.7154 0.8442 0.8394 0.6948 0.6279

woShared 0.9531 0.9518 0.8845 0.7435 0.8771 0.8843 0.8095 0.7686

woPrivate 0.9082 0.9066 0.8562 0.7174 0.9100 0.9179 0.8080 0.7680

woAugmentation 0.9538 0.9532 0.9101 0.7275 0.9106 0.9180 0.8163 0.7903

InfoMAE 0.9826 0.9819 0.9356 0.8101 0.9411 0.9462 0.8478 0.8319

additional finetuning performance after joint multimodal pretrain-

ing in Figure 6 with many SOTAmultimodal SSL frameworks across

the four real-world IoT datasets we described. InfoMAE significantly

exceeds the MAE-based SSL framework and achieves comparable

or superior performance to the contrastive learning baselines. It

is noteworthy that other baselines are mainly designed for joint

multimodal pretraining. InfoMAE is a universal framework for

cross-modal alignment that achieves comparable performance as

multimodal SSL with few sacrifices.

G.2 Ablation Studies on Joint Multimodal
Pretraining

In addition to ablating InfoMAE for cross-alignment, we conduct ab-

lation studies on Joint Multimodal Pretraining, evaluating different

variants of InfoMAE when abundant multimodal data is available

for pretraining. The results across the four datasets are presented

in Table 13. Consistent with the results in Section 4.6, removing

either shared or private representations hurts the performance

of InfoMAE, indicating that both modality-shared and modality-

exclusive information contribute positively to downstream tasks.

Removing augmentations has minor impacts. However, InfoMAE

experiences the most significant degradation when the temporal

locality is absent, primarily due to that a generalized learning ob-

jective is required for Information Formulation to learn meaningful

factorizations on time-series signals.
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