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ABSTRACT

Convolutional Neural Networks (CNNs) have profoundly influenced the field of
computer vision, drawing significant inspiration from the visual processing mech-
anisms inherent in the brain. Despite sharing fundamental structural and rep-
resentational similarities with the biological visual system, differences in local
connectivity patterns within CNNs open up an interesting area to explore. In this
work, we explore whether integrating biologically observed connectivity patterns
can enhance model performance and foster alignment with brain representations.
We introduce a novel methodology, termed Lp-convolution, which employs the
multivariate p-generalized normal distribution (MPND). We took advantage of
MPND’s conformational flexibility to carefully bridge disparities between artifi-
cial and biological connectivity patterns by designing an adaptable Lp-masks. Lp-
masks finds the optimal conformation through task-dependent adaptation such as
distortion, scale, and rotation. This allows Lp-convolution to perform well in tasks
that require flexible input field shapes, including not only square-shape but also
horizontal and vertical ones. Furthermore, we demonstrate that Lp-convolution
with biological constraint which we call Gaussian structured sparsity significantly
enhances the performance of historically successful CNNs with large kernels.
Lastly, we present that neural representations of CNNs aligns better with the visual
cortex when the conformation of Lp-masks is close to a Gaussian distribution, a
biologicially closer condition.

1 INTRODUCTION

The rise of Vision Transformers (ViTs) has revolutionized the field of computer vision, outperform-
ing traditional Convolutional Neural Networks (CNNs) on many tasks and establishing new perfor-
mance standards (Dosovitskiy et al., 2020; Liu et al., 2021b; Touvron et al., 2021). This shift to ViTs,
however, demands a significant increase in model parameters, larger datasets, and extended training
periods (Maurı́cio et al., 2023). Under constraints of time and resources, CNNs remain a more prac-
tical choice, especially as CNNs often perform better on smaller datasets (Liu et al., 2021a; Zhu
et al., 2023). This advantage is partly due to CNNs’ inherent design that mirrors biological visual
systems like the primary visual cortex (V1) in the brain (Hubel & Wiesel, 1962; 1965; Fukushima,
1980), which serves as strong inductive biases, such as hierarchical structures, local feature learning,
and parameter sharing, which contribute to their effective generalization capabilities (LeCun et al.,
1989; Bartunov et al., 2018; Pogodin et al., 2021).

The findings of visual information processing in the brain have greatly influenced the development
of CNNs, providing a reciprocal platform for understanding neural visual mechanisms (Hassabis
et al., 2017; Zador et al., 2023; Yang & Wang, 2020; Lindsay, 2021). However, the significant
architectural differences between the biological brain and modern computers present engineering
challenges that make integrating biological insights into CNNs impractical and often inefficient for
problem-solving (Marković et al., 2020). Thus, it is important to integrate brain-inspired concepts in
a manner that is compatible with existing CNN architectures. In this study, we identify connectivity
patterns as a promising area for innovation. While CNNs typically feature rectangular, dense, and
uniformly distributed connections, the brain’s visual area V1 exhibits circular, sparse, and normally
distributed connections (Lerma-Usabiaga et al., 2021; Seeman et al., 2018; Hage et al., 2022; Rossi
et al., 2020) (see Appendix A.3 for the actual connectivity pattern of V1 neurons). Exploring these
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distinct connectivity patterns could introduce novel inductive bias that significantly enhance the
performance and efficiency of CNNs, potentially transforming their design and application.

Traditionally successful CNNs have relied on stacking small 3x3 kernels beyond the initial layer (He
et al., 2016; Simonyan & Zisserman, 2014), as simply increasing the kernel size does not necessarily
enhance performance, which we call large kernel problem, despite its increased trainable parame-
ters (Peng et al., 2017) (See Table 1 Base vs Large). However, modern CNNs that achieve perfor-
mance comparable to ViTs have been adopting significantly larger kernel sizes, ranging from 7x7 to
50x50 (Liu et al., 2022; Ding et al., 2022; Liu et al., 2023). This shift indicates new possibilities and
directions in CNN design.

In this paper, we ask interesting question that could mutually captivate both neuroscience and ma-
chine learning communities: Would introducing biological connectivity pattern as a novel in-
ductive bias into a CNN resolve large kernel problem and aligns better with brain’s repre-
sentations? To answer this question, we introduce Lp-convolution, a novel approach that lever-
ages the multivariate p-generalized normal distribution (MPND) to address the disparities between
biological and artificial connectivity patterns (Fig. 1). Through channel-wise trainable Lp-masks
in convolutional layers (Fig. 2), we explore their conformational adaptability (Fig. 4 and 5), re-
sulting in enhanced performance in large kernel CNNs and improved alignment with biologi-
cal representations (Fig. 6 and Table 1). Code, datasets, and pre-trained models are available at
https://anonymous.4open.science/r/lpconv-E39D.

2 BRIDGING DISPARITY BETWEEN BIOLOGICAL AND ARTIFICIAL
CONNECTIVITY PATTERNS
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Figure 1: Local receptive fields from biological and artificial systems can be mathematically reconciled
by introducing multivariate p-generalized normal distribution (a-b) Graphical illustration of receptive fields
in V1 of mouse brain (a) at layer 2/3 (b). (c-d) Graphical illustration of receptive fields in AlexNet (c) at Conv1
layer (d). (e) Shapes of MPND with varying parameters of C and p. (f) Top, visualization of mean receptive
fields of functional synapses in mouse V1 layer 2/3 (column 1) and AlexNet Conv1 with varying conditions
(columns 2-5). Bottom, optimized MPND over receptive fields shown in the first row. (g) p after MPND op-
timization; Using Welch’s t-test with Holm-Bonferroni’s multiple comparisons correction, all possible combi-
nations between groups were statistically significant (p-value<0.05) except for ‘n.s.’ (non-significant) denoted
in the figure; n=17 for all conditions. We optimized MPND parameters of p and σ, where C =

[
1/σ 0
0 1/σ

]
,

σinit = 0.5, and pinit = 2

2
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Standard CNN architectures are typically designed with rectangular, dense, and uniformly dis-
tributed connections (LeCun et al., 1998; Krizhevsky et al., 2012; Simonyan & Zisserman, 2014;
He et al., 2015), in contrast to the circular, sparse, and normally distributed connections commonly
observed in biological neuron (Lerma-Usabiaga et al., 2021; Seeman et al., 2018; Hage et al., 2022).
Early studies in biological modeling using CNNs have shown that task-specific adaptations can
lead to sparse weight patterns (Maheswaranathan et al., 2018; Tanaka et al., 2019; Lindsey et al.,
2019; Yan et al., 2020; Zheng et al., 2021). These insights demonstrate the adaptability of CNNs and
highlight the potential for bridging artificial and biological connectivity patterns. To address this, we
analyzed the functional connectivity patterns of both biological and artificial systems, by introducing
the MPND (Goodman & Kotz, 1973). MPND is the key of our paper to bridge the conformational
difference between biological and artificial connectivity patterns, or local receptive fields (RFs).
Note, While the term ‘receptive field’ can sometimes include sensory-level inputs and multi-layer
interactions in a broader context, in this work, we specifically define the RF as a local connectivity
pattern between neurons in immediately adjacent layers (See detail in Appendix A.20).

Multivariate p-generalized normal distribution Let s represent the d-dimensional random vec-
tors indicating specific points within RF. s0 is the receptive center with d-dimensional vector of
fixed constants. The relative offset is given by ∆s = s−s0. Introducing MPND (Goodman & Kotz,
1973), we define the RF using as probability density function (PDF) of s as following:

β exp
(
−∥C∆s∥pp

)
, (1)

where C is d×d inverse of covariance matrix, ∥ ·∥pp denotes the Lp-norm raised to the p-th power, β
is normalization factor1, and p ≥ 1. In Figure 1e, we show some examples of MPNDs with varying
values of p and C. 2

Constructing biological and artificial RFs from the functional synapses To compare the bi-
ological and artificial RFs, we first prepared the 2D offsets of functional synapses relative to the
post-synaptic units in both systems: mouse V1 L2/3 and AlexNet Conv1 (Fig. 1a-d; See details in
Appendix A.1 and A.2). To match the scale difference between the two systems, we standardized the
relative offsets with zero mean and unit variance. For the artificial system, we prepared 4 different
cases, using both ImageNet-1k pre-trained and randomly-initialized AlexNet3 with inputs of noises
or images (See inputs and corresponding RFs in Appendix A.4). We constructed 2D probability
mass functions (PMFs) from the collected offsets, which we call biological or artificial RFs.

MPND effectively models both biological and artificial RFs For the comparison of biological
and artificial RFs, we optimized parameters of p and σ in MPND (Fig. 1e, Eq. 1) over PMFs of
biological or artificial RFs (Fig. 1f and g). We show that optimized p∗ of functional synaptic input
patterns of biological neurons were optimized at near 2 (Gaussian-distributed; See details in Ap-
pendix A.3). In contrast, the local RF pattern of pre-trained AlexNet’s Conv1 was optimized at the
range of 3.7 ∼ 3.8, and the untrained one was optimized at the range of 11 ∼ 14 (where input types
were less effective). An intriguing observation is the decrease in the value of p for the pre-trained
AlexNet’s first convolutional layer (Conv1), bringing it closer to the biological RF. Based on these
findings, we propose that both biological and artificial RFs can be effectively modeled with MPND.
Given these findings, we propose to consider that the value of p close to 2 is indicative of biological
RF, while a higher p represents RFs to be more artificial.

3 Lp-CONVOLUTION: INTRODUCING MPND IN THE CONVOLUTION

In the early stages of CNN development, large kernels were not widely adopted, with their use
predominantly confined to the initial layers (Krizhevsky et al., 2012; Szegedy et al., 2015; 2017).
Attempts to enlarge kernel size sometimes led to a decline in classification performance (Peng et al.,
2017). We confirmed this in Table 1 Conv (Base) vs Conv (Large), simply enlarging the kernel
sizes of previously successful CNNs such as AlexNet, VGG, or ConvNext showed a marked drop in

1β = [(2Γ(1 + p−1))d · det(C)]−1 where Γ is gamma function, and det(·) denotes the determinant.
2When we optimize for MPND, C is initialized with

[
1/σ 0
0 1/σ

]
where σ determines the scale.

3For clarity, we refer to trained as pre-trained models and to untrained as randomly-initialized models.
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(a) (b) (c) (d) (e)

(f) (g) Learned 𝑳𝒑-masks for each channels (𝒑𝒊𝒏𝒊𝒕= 𝟏𝟔, σ𝒊𝒏𝒊𝒕 = 𝒌/𝟐)Learned 𝑳𝒑-masks for each channels (𝒑𝒊𝒏𝒊𝒕= 𝟐, σ𝒊𝒏𝒊𝒕 = 𝒌/𝟐)

𝑘 × 𝑘 𝑘′ × 𝑘′

𝑳𝒑-mask 

Figure 2: Graphical illustration of Lp-Conv layers and visualization of learned Lp-masks after traning
(a-c) Lp-Conv layers with σinit = k/2 and varying pinit = {2, 16, 256}; Lp-masks overlaid on kernels (red
arrows). (d-e) Conventional Conv layers with the kernel size of k×k (Base) or k′×k′ (Large). (f-g) Visualized
32 example learned Lp-masks from Lp-converted AlexNet Conv1 after training with Tiny Imagenet dataset

performance. Consequently, the more favored strategy was stacking smaller kernels (1x1, 3x3) (Si-
monyan & Zisserman, 2014; He et al., 2016).

Based on our observation in Figure 1 artificial RFs become closer to biological RFs with training
(decrease in p of MPND by ImageNet-1k training in AlexNet Conv1), we asked two intriguing
questions: 1) Can introducing brain-inspired concept of flexible RF provide a solution to the of
large kernel problem in CNN? 2) Can CNNs with RFs close to biological ones align better with the
representation of the brain? To answer these questions, we introduce Lp-convolution: overlaying
channel-wise trainable Lp-masks onto the kernels of CNNs.

Lp-convolution Here, we propose the Lp-convolution, which is compatible with various convolu-
tions. We formulate the Lp-convolution based on the MPND in the convolutional layer by employing
channel-wise Lp-masks, which are overlaid on convolutional filters (Fig. 2a-c).

First, we define the relative height and width offsets, ∆S ∈ R2×Kh×Kw from the kernel center,
(Kh/2,Kw/2), as follows

∆S·,h,w = (∆h,∆w)T = (h− Kh

2
, w − Kw

2
)T

for h ∈ [0,Kh − 1], w ∈ [0,Kw − 1], where Kh and Kw denote the kernel height and kernel
width, respectively. Empirically, we utilize the normalized value between 0 and 1. It is noted that
S·,h,w ∈ R2 denotes all values corresponding to h-th height and w-th width.

Second, we propose the Lp-mask, structured mask matrix, derived from the offset and MPND. Our
Lp-mask, M ∈ [0, 1]Co×Kh×Kw for all output channel Co, is a soft mask that is proportional to
Eq. 1 without a normalization factor β as following

Mo,h,w = exp
(
−∥Co,·,·∆S·,h,w∥pp

)
, (2)

where C ∈ RCo×2×2 is the set of 2 × 2 covariance matrix for each output channel. In other words,
Lp-mask calculates the soft mask Mo,·,·for each o-th output channel independently, and each soft
mask handles the positional correlation, height and width position, from the offset, ∆S. Our Lp-
mask in Eq. 2 corresponds to RF in Eq. 1, when Kh = KW = Co = 1.

Third, we propose the Lp-convolution by applying Lp-mask into the convolutional weights W ∈
RCi×Co×Kh×Kw , where Ci is the number of input channel. For each i-th input channel Xi and
convolutional filter weights Wi, we formulate the corresponding convolution output Yi as

Yi = ϕ(Xi ∗ (Wi ⊙M)), (3)

where ϕ is non-linear function and ∗ is the convolution operation.

4
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We note that C and p are trainable parameters4. To ensure the positive definite property of Co and
satisfy the Lp-norm property with p ≥ 1, we can employ Cholesky decomposition for C and value
clipping for p.

As shown in Equation 3, our Lp-convolution is a generalized version of the traditional convolution.
In our settings, it is noted that Lp mask converges to a binary mask as p approaches infinity. Empir-
ically, Lp mask becomes a binary mask for sufficiently large p, as shown in Fig. 1. If all elements
of Lp mask equal one, then Lp-convolution degrades to the traditional convolution. In this situation,
both traditional convolution and our Lp convolution have square-shaped RFs for each layer. In other
words, our Lp-convolution takes task or data-dependent RFs with varying M by optimizing the C
and p as shown in Figure 2. Therefore, Lp-convolution has task-specific RFs with varying distortion,
scale, and rotation levels.

In practical terms, we replaced all existing Conv2d layers in the baseline CNN model with Lp-Conv
layers by applying a function called LpConvert to the baseline CNN model (See pseudo-code in
Appendix A.21). To provide further insight into the conformational changes of Lp-masks during
model training, we present examples of 32 random Lp-masks from Conv1 of an AlexNet model
trained with TinyImageNet (f and g in Fig. 2).

4 Lp-CONVOLUTION BENEFITS LARGE KERNEL CNNS

Lp-convolution on traditional models To test whether Lp-convolution is robustly applicable to
traditional CNN architectures, we conducted vision classification tasks (See detailed experimental
settings in Appendix A.9) using the CIFAR-100 and TinyImageNet datasets on models of AlexNet,
VGG-16, ResNet-18, ResNet-34, and the ConvNext-tiny (Liu et al., 2022). As can be seen in the
Table 1, applying Lp-Masks with approximately double the kernel size generally improves clas-
sification performance, whereas simple kernel enlargement fails to achieve similar improvements
(highlighted in red). Furthermore, we found that the optimal choice of the hyperparameter pinit
varies depending on the model architecture 5. However, the best performance was most often ob-
served when pinit = 2 (which is close to biological RFs), with 9 out of 10 cases achieving either the
top or second-best results. These results suggest that explicitly applying Gaussian-like structured
sparsity to large kernels during the convolution operation may lead to better optimization.

Biologically-inspired Lp-convolution improves robustness To assess the robustness of Lp-
Models, we utilized CIFAR-100-C, a dataset specifically designed for evaluating robustness using
corrupted validation data (Hendrycks & Dietterich, 2019). We focused on data corruptions at sever-
ity level 1 across all tested architectures (see the attached PDF, Figure 1, for all architectures). Our
findings reveal that Lp-Convolution of Lp=2 significantly enhances robustness, as demonstrated in
Table 2.

Lp-convolution on modern large kernel CNN Next, we explored the impact of Lp-Convolution
on modern large kernel CNNs like RepLKNet (Ding et al., 2022), which utilizes kernels up to size
31×31. By integrating Lp-convolution into these models, we aimed to investigate whether our Lp-
convolution method can enhance the performance of large kernel CNNs. Specifically, we conducted
experiments with RepLKNet using and without Lp-Convolution. For the Lp2-RepLKNet model,
all Conv2d layers were replaced with Lp-Conv (p = 2) layers without modifying the kernel sizes.
As can be seen in Table 4, Lp-Convolution achieves a performance improvement with little to no
increase in computational cost even in modern large kernel CNN architecture. This indicates that
Lp-Convolution can be easily incorporated as a flexible option for researchers aiming to optimize
model architectures.

Transfer learning with Lp-convolution on pretrained models There are countless pretrained
CNN models in existence that have achieved state-of-the-art performance using large-scale datasets.
Actively reusing these models can offer significant time and economic advantages. Theoretically,

4C and p are updated with the standard backpropagation process. Lp-mask, M, is dynamically generated
during forward process using C and p.

5Note that although p is a parameter that can be adjusted during training, it was not fine-tuned to the point
where it overlaps with the initial settings of each pinit condition (See Appendix A.16).
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Table 1: Top-1 performance on the CIFAR-100 and TinyImageNet datasets in CNNs are reported with 5 trials
(mean±std). The symbol † indicates that both C and p are frozen parameters during training. k × k, default
kernel size. l × l, large kernel size. l = 2 × ⌈ k

2
⌉ + k(≈ 2k). For all Lp-Conv layers, C was initialized with

1/σinit of diagonals and 0 of off-diagonals, where σinit = k/2, where k represents the default kernel size in each
layer of the baseline CNN. Statistical comparison results using Welch’s t-test with the base model are marked
as follows: ‘ns’ (p-value ≥ 0.05), ‘*’ (0.01 ≤ p-value < 0.05), ‘**’ (0.001 ≤ p-value < 0.01), and ‘***’
(p-value < 0.001). The text in bold denotes the best performance, while underlined signifies the second best.
Gray indicates a baseline performance and red indicates a decrease in performance.

CIFAR-100
Layer Kernel pinit AlexNet VGG-16 ResNet-18 ResNet-34 ConvNeXt-T

(Base) Conv k × k - 66.05 ± 0.33 70.26 ± 0.29 71.22 ± 0.18 72.47 ± 0.23 58.36 ± 6.48
(Large) Conv l × l - ***54.53 ± 0.65 **64.82 ± 2.92 ***72.80 ± 0.27 ***73.52 ± 0.11 ns54.13 ± 1.14

†Lp-Conv 256 ns65.95 ± 0.32 **71.03 ± 0.38 ns71.24 ± 0.23 ns72.61 ± 0.27 ns60.34 ± 2.80
Lp-Conv 16 **67.12 ± 0.37 **70.87 ± 0.23 ***72.35 ± 0.30 ***73.32 ± 0.23 ns61.30 ± 1.71
Lp-Conv l × l 8 **66.85 ± 0.18 **71.14 ± 0.29 ***72.26 ± 0.28 ***73.37 ± 0.15 ns59.94 ± 5.04
Lp-Conv 4 *66.68 ± 0.28 ***71.71 ± 0.36 ***73.00 ± 0.15 ***74.07 ± 0.22 ns59.34 ± 7.53
Lp-Conv 2 ns66.13 ± 0.33 ***72.88 ± 0.30 ***73.86 ± 0.14 ***74.95 ± 0.11 ns62.61 ± 3.03

TinyImageNet
Layer Kernel pinit AlexNet VGG-16 ResNet-18 ResNet-34 ConvNeXt-T

(Base) Conv k × k - 52.25 ± 0.35 67.75 ± 0.07 66.63 ± 0.51 69.22 ± 0.11 70.25 ± 0.45
(Large) Conv l × l - ***35.52 ± 0.46 ns66.96 ± 1.50 ***68.33 ± 0.19 ns69.46 ± 0.36 ns68.66 ± 1.50

†Lp-Conv 256 ns52.60 ± 0.12 ns67.72 ± 0.18 ns66.37 ± 0.55 ns69.27 ± 0.27 ns70.45 ± 0.44
Lp-Conv 16 ***53.98 ± 0.50 ***69.29 ± 0.25 **67.72 ± 0.43 **70.00 ± 0.33 ns70.62 ± 0.30
Lp-Conv l × l 8 **54.07 ± 0.91 ***69.72 ± 0.16 *67.63 ± 0.45 ***69.81 ± 0.23 ns70.52 ± 0.36
Lp-Conv 4 ***54.30 ± 0.48 ***69.79 ± 0.30 **68.20 ± 0.50 **69.99 ± 0.44 ns70.74 ± 0.37
Lp-Conv 2 ***54.13 ± 0.53 ***69.96 ± 0.45 ***68.45 ± 0.36 ***70.43 ± 0.24 ns70.72 ± 0.31

Table 2: sSummarized robustness experiments on various Lp-CNNs. The table shows the number of wins for
each method across different architectures.

Robustness Base Large Lp=2 Lp=4 Lp=8 Lp=16

ConvNeXt-T 0 1 18 0 0 0
VGG-16 0 0 19 0 0 0
AlexNet 0 1 1 4 13 0
ResNet-18 0 13 6 0 0 0
ResNet-34 0 6 13 0 0 0
Win Counts 0 21 57 4 13 0

Table 3: Effect of Lp-Convolution on large kernel CNN. RepLKNet was trained on TinyImageNet for 150
epochs with an architecture of [2,2,6,2] blocks and [64,128,256,512] channels. Results are presented as mean
(std).

Model Kernel sizes Top-1 Acc. (%) Param (M) Flops (G)
RepLKNet [31-29-27-13] 66.2 (0.38) 11.65 2.54
Lp2-RepLKNet [31-29-27-13] 67.1 (0.35) 11.79 2.54

an Lp-convolution layer with Lp-masks frozen Cinit and pinit = ∞ can function identically to the
original base model. By employing pretrained weights for the central parameters of the CNN’s
convolution layer and initializing surrounding weights to zero in the enlarged kernel while using a
high p value, it is possible to train the Lp-mask without significantly deviating from the model’s
original performance (Fig. 3).

To investigate this concept, we performed transfer learning experiments using the ImageNet-
pretrained ConvNeXt-V2 Tiny model (Woo et al., 2023) across five distinct datasets, Oxford flowers
(Nilsback & Zisserman, 2008), DescribableTextures (dtd) (Cimpoi et al., 2014), Oxford Pets (Parkhi
et al., 2012), FGVC Aircraft (Maji et al., 2013), and UCF101 (Soomro et al., 2012). For a fair com-
parison, we conducted experiments with identical hyperparameters for each convolution layer. All
datasets were trained with 16-shot learning, and the models were evaluated after training for 100
epochs without applying early stopping. As indicated in Table 4, implementing Lp-masks with high
values of p = 16 enhances transfer learning performance beyond that of the pretrained baseline
model, whereas simply increasing the kernel size results in a significant decline in performance.
Our results demonstrate that Lp-convolution can be effectively integrated with existing successful
pretrained models to push performance beyond previous level.
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Lp-Mask

Zero-initialized weights

IN-pretrained weights

Figure 3: Schematic illustration of transfer learning setup with Lp-Convolution As described in the figure,
the pretrained weights were surrounded by zero-initialized parameters, and an Lp-Mask (ranging between 0
to 1) is overlaid. This configuration helps to start without significantly deviating from the original model’s
performance.

Table 4: The result of ConvNeXt-V2 pretrained ImageNet 1K for transfer learning with Lp-Convolution using
5 different datasets. We run 16-shot transfer learning and average accuracy over 5 different trials. Avg stands
for the average performance across five datasets. Win count indicates the number of dataset that the convolution
layer achieved. Underline denotes performance improvement over baseline model. Bold denotes the best results
among all different models.

Oxford flowers dtd Oxford Pets FGVC Aircraft UCF101 Avg Win count
Conv (Base) 95.84 61.12 90.43 55.03 65.98 73.68 1
Conv (Large) 51.57 8.22 11.33 4.63 20.48 19.24 0

Lp-Conv (p=2) 95.59 58.78 89.36 54.25 63.92 72.38 0
Lp-Conv (p=4) 95.51 58.20 89.16 43.34 63.94 70.03 0
Lp-Conv (p=8) 95.33 60.53 90.64 54.37 66.16 73.41 0

Lp-Conv (p=16) 95.92 61.71 90.71 54.92 66.43 73.94 4

5 CONFORMATIONAL ADAPTABILITY OF Lp-MASKS IN SUDOKU CHALLENGE

Figure 4: Lp-convolution enhances Sudoku solving efficiency by effectively balancing accuracy between
square and row-column puzzles (a) Graphical illustration of Sudoku quiz and Sudoku Lp-ConvNet; (left),
example Sudoku quiz as an input; (middle), basic block repeated L times (L = 10, yellow) contains sequential
layers of 1) reflection padding, 2) Lp-Conv, 3) batch normalization, and 4) activation layers; (right), the example
Sudoku solution as a target. In Sudoku, a 9×9 square must be filled in with numbers from 1-9 with no repeated
numbers in 9x1 rows (blue), 1x9 columns (green), or 3x3 squares (orange). (b) Loss and accuracy curves
during test session. ‘(3 × 3)’ or ‘(7 × 7)’ denotes the size kernel. ‘L†

p’ denotes parameters of Lp-mask is
frozen. ‘Large’ denotes a simple enlargement of the kernel, without a mask.

Our experimental results so far indicate that a trainable Lp-Mask benefits large kernel optimiza-
tion. To gain deeper mechanistic insight into this effect, we conducted a specialized experiment,
9×9 Sudoku-solving task (Park, 2018; Oinar, 2021; Amos & Kolter, 2017; Palm et al., 2018; Wang
et al., 2019) which aims to solve multiple goals simultaneously (See experimental details in Ap-
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pendix A.5). As Sudoku challenge necessitates simultaneously achieving three objectives—ensuring
every row, column, and box contains all numbers from 1 to 9—(Fig. 4a), we assume that Lp-Masks
can evolve their conformation along with training in a task-dependent manner.

Lp-convolution in Sudoku solving: balancing square and row-column imbalances We show
that introducing Lp-convolution alleviates the imbalance between square accuracy and row-column
accuracy. In Figure 4b, the (3×3) Base model or (7×7) L†

p(pinit = 256) model exhibited an im-
balance in Square-to-Row/Column accuracy and showed signs of overfitting after approximately 15
epochs. Next, we tested two trainable Lp-masks with pinit = 2, 16, which resemble a biological
RF (p = 2) and an artificial RF in (p = 16), respectively. In (7×7) Lp(pinit = 2) model, we ob-
served Square-to-Row/Column accuracy become more balanced, resulting in remarkable improve-
ment in overall Sudoku accuracy (red in Fig. 4b). We speculated that this alleviation of Square-to-
Row/Column accuracy imbalance in (7×7) Lp(pinit = 2) could be attributed to the task-dependent
adaptation of Lp-masks’ conformation. To test this possibility, we have designed ablation experi-
ments on (7×7) Lp(pinit = 2) model.

(a) (b) Layer-wise learned 𝐿𝑝-mask properties for (7x7) 𝐿𝑝 (p=2)𝐿𝑝-mask shapes 
(Case 𝑝 = 2)

𝜃 ablation range 

A
c
c
u

ra
c
y
 R

a
ti
o

(c) Ablation of vertical orientation selective 𝐿𝑝-masks in (7x7) 𝐿𝑝 (p=2)

Figure 5: Task-dependent conformational adaptation of Lp-masks (a) The shapes of Lp-masks
when p = 2 and varying properties of scale (α), distortion (γ), and rotation (θ), which are derived
from the singular value decomposition of C; Red box indicates column selective Lp-masks which
are ablation targets in (c). (b) Layer-wise distribution of learned Lp-mask properties. (c) Selectively
ablation of Lp-masks near 90◦ by gradually increasing the ablation; Ablation in all 10 Lp-conv
layers (left), first 5 layers (middle), and last 5 layers (right) respectively.

Ablation of orientation selective masks reveals Lp-masks’ conformational adaptability Con-
trary to a previous large-kernel model that introduces unstructured sparsity directly into filters (Liu
et al., 2023), Lp-convolution with p = 2 introduces structured sparsity based on a Gaussian dis-
tribution. This approach facilitates covariance analysis of the Gaussian distribution, thereby en-
hancing interpretability. Using Singular Value Decomposition (SVD) on C, we extracted three in-
terpretable properties of scale (α), rotation (θ), and distortion (γ) (See conformational analysis in
Appendix A.5). Figure 5a shows conformations of Lp-masks inverse calculated from α, θ, and γ.

Quantitative analysis of (7×7) Lp(pinit = 2) model revealed an increase in scales when layer deep-
ened (Fig. 5b, see visualization in Appendix A.7), with orientations of horizontal (0,180◦) and ver-
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tical (90◦) directions. This indicates the task-dependent adaptation of Lp-masks, which provide
flexible and structured RFs in visual processing. To confirm these orientation-selective masks con-
tribute to the balanced Sudoku-solving task, we conducted an ablation test. We classified masks
with high distortion (γ > 3) as orientation-selective masks. Among these, we selectively ablated
near 90◦ by gradually increasing the range (close in shape with the red dashed box in Fig. 5a) while
tracking changes in column and row accuracies. While row and box accuracy exhibited a consistent
decrease, column accuracy sharply decreased as the θ range increased (Fig. 5c and Appendix A.8),
with this trend was notable in the later layers. Together, these results indicate that the conformational
adaptability of Lp-masks enables balanced learning in the Sudoku-solving task, thereby contributing
to overall performance enhancement.

6 EMPLOYING Lp-CONVOLUTION FOR BIOLOGICAL SYSTEMS

N
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Similarity of 

RSM (SSM)
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[VISp, VISlm, VISal, VISpm, VISam ]
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𝑳𝒑-Conv Layers 
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(a)

(b)
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Figure 6: Representational similarity between biological brain and artificial models using natural images
(a) Schematical illustration of representational similarity analysis (RSA) from neural activities of mouse VC
L2/3 subregions and convolutional layers of TinyImageNet-trained CNNs; Unit activities in both mouse brain or
CNNs were obtained from N number of image inputs; N ×N RS matrix was constructed for every subregions
or layers by measuring the correlations across unit activities. The similarity of the RSMs (SSM) between the
V1 region and CNN Conv layer was measured by Kendall’s rank correlation coefficient. (b) For the comparison
across Lp-models, the maximum SSM was collected among all pair-wise SSM scores across regions and layers;
the two-sample Student’s t-test for statistical analysis, *: p<0.05, **: p<0.01, ***: p<0.001.

Representational similarity analysis between Lp-CNNs and visual cortex Figure 6 a illustrates
our approach to assessing the alignment of representations between biological and artificial systems.
We utilized the standardized dataset from Allen Brain Observatory (de Vries et al., 2020), which uses
118 images of Natural Scenes and corresponding neural activities recorded from the mouse visual
cortex (VC). Our method builds upon established Representational Similarity Analysis (RSA) tech-
niques (Khaligh-Razavi & Kriegeskorte, 2014; Devereux et al., 2013; Diedrichsen & Kriegeskorte,
2017), to compare the representations of CNNs (Bakhtiari et al., 2021; Shi et al., 2019) (See details
in Appendix A.11).

Based on the observation that Lp-convolution tends to perform better as it approaches biologically
observed RFs with pinit = 2, we posed the question of whether the neural representation of artificial
models with biological RFs aligns more closely with the representation of VC. To address this, we
compared the neural representations of TinyImageNet-trained CNNs from Table 1 by presenting the
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118 Natural Scene images, with the mouse VC representations. To facilitate model comparison, we
extracted the representative value, maximum SSM, chosen from pair-wise SSMs across the convolu-
tional layers and the VC subregions (See pair-wise SSMs in Appendix A.12). In the results, models
with pinit closer to 2 generally exhibited better alignment with the brain (Fig. 6b). In summary,
we find that Lp-convolution tends to achieve better alignment with the brain as it approximates a
Gaussian distribution.

Neural activity prediction of V1 with Lp-CNNs To closely relate to computational neuroscience,
neural activity prediction is frequently used alongside representational similarity analysis. Using the
recent multimodal dataset with V1 neural activities from freely moving mice (Xu et al., 2024), we
applied Lp-convolution on the CNN of MMV1 model and compared the effect of different p values.
As can be seen in Table 5, Lp-Convolution with pinit = 2 gives the best prediction performance,
which implies that biologically inspired Gaussian sparsity can also benefit CNN architecture for
neural activity prediction.

Table 5: V1 activity prediction with Lp-CNNs. The MMV1 model is a CNN followed by a GRU, where the
CNN has 3 convolutional layers with kernel sizes of [7-7-7] (see details in (Xu et al., 2024)). For the GRU,
we used a sequence length of 4, which corresponds to 192 ms of history. Here, cc represents cross-correlation
(higher is better), and MSE represents mean squared error (lower is better). The values are formatted as mean
(std) from n = 3 mice.

MMV1 Lp=2 Lp=4 Lp=8 Lp=16 Base Large
cc 0.595 (0.046) 0.571 (0.076) 0.572 (0.071) 0.584 (0.066) 0.585 (0.052) 0.577 (0.048)
MSE 0.0722 (0.012) 0.0828 (0.021) 0.0786 (0.017) 0.0756 (0.018) 0.0746 (0.016) 0.0787 (0.013)

7 CONCLUSION AND REMARKS

In this study, we introduced a novel Lp-convolution, based on the MPND, with the objective of
narrowing the gap between artificial and biological RFs, and subsequently crafting neural network
modules more aligned with biological structures. Brain-inspired Lp-convolution enables the cultiva-
tion of diverse-shaped RFs with Gaussian-based structured sparsity, adaptable to various rotations,
distortions, and scales, and tailored for specific tasks. Significantly, Lp-convolution showcases its
adaptability and compatibility across an extensive spectrum of CNN models, from the conventional
to the contemporary, underscoring its proficiency, especially in contexts involving large kernels.
We believe our research serves as a noteworthy illustration of the symbiotic relationship between
advancements in artificial intelligence and our understanding of neural processes.

The advent of ViTs marked a paradigm shift from traditional CNN models, with the Swin Trans-
former emphasizing the significance of both attention mechanisms and large receptive fields, thereby
renewing interest in large kernel CNNs (Dosovitskiy et al., 2020; Liu et al., 2021b; Vaswani et al.,
2021). Recent innovations such as RepLKNet and SLaK have showcased performance comparable
to ViTs, highlighting the potential of large kernel CNNs in modern computer vision (Ding et al.,
2022; Liu et al., 2023). However, the effectiveness of large kernels in historically successful CNN
models remained unexplored until now. In this paper, we succesfuly implemented large-kernel con-
volution by overlaying trainable masks to the filters with Gaussian-based structured sparsity, for
adjustments in receptive fields tailored to specific tasks. Compared to previous unstructured sparsity
approach which may necessitate extensive hyperparameter tuning, our trainable masks streamline
the optimization process by automatically adjusting key parameters, thereby facilitating the applica-
tion of large kernel training in both traditional and modern CNN architectures.

In biological systems, both anatomical and functional studies have shown that local connectivity
patterns and population receptive fields in the visual system display sparse, circular and Gaussian-
like distributions in the early visual cortex (Lerma-Usabiaga et al., 2021; Seeman et al., 2018; Hage
et al., 2022). These findings prompted us to investigate whether Gaussian sparsity could serve as a
beneficial inductive bias in CNNs. Given the fundamental differences in the hardware architectures
between CNNs and the brain, it was suspected that introducing Gaussian sparsity might not be an
effective choice from an engineering perspective, and its efficacy may not have been effectively
tested previously. In our research, we addressed this gap by experimenting with Gaussian sparsity in
CNNs that feature large kernels, and systematically comparing artificial and biological connectivity
patterns through the introduction of the MPND model.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 BIOLOGICAL RFS

For the biological RF analysis, we have analyzed in vivo intracortical connectivity dataset of Rossi
et al. (2020) collected from the mouse primary visual cortex (V1) (Fig. 1a). It contains both ex-
citatory (CaMK2a-positive) and inhibitory (Gad2-positive) layer 2/3 neuronal spatial connectivity
distribution (Fig. 1b) which was determined by recording GCaMP6 signals (calcium activities) of
pre-and post-synaptic pairs (Fig. 8 and 7).

Given a post-synaptic neuron positioned at (x0, y0), (Fig. 1b black), and the Nb number of functional
synapse positions xn, yn ∈ (−∞,∞) for n = 1, 2, ..., Nb, then relative offsets are defined as
(∆xn,∆yn) = (xn − x0, yn − y0). We summarize functional synapse positions for biological RF
as following

∆sb = [(∆xn,∆yn)]
Nb
n=1. (4)

A.2 ARTIFICIAL RFS

For the artificial RF analysis, we used untrained or pre-trained AlexNet6 with inputs (224 × 224)
of 17 images either generated from Gaussian noises or selected among 118 Natural Scenes images
datasets (See details in Appendix A.10 and Fig. 8). When image inputs were shown to AlexNet, we
extracted RFs of the functional synapse from the first convolutional layer (Conv1) (Fig. 1, c and d).

Given the input X ∈ RCi×H×W and weights parameters for Artificial RFs WARF ∈
RCi×Kh×Kw , the post-synaptic unit in the Convolution layer, receives weighted-input Z ∈
RV×Ci×Kh×Kw , the results of element-wise multiplication between partial input and filters, where
Zv=m∗(H−Kh+1)+n = X·,m:m+Kh−1,n:n+Kw−1 ⊙ W (Fig. 1d black) for 0 ≤ m ≤ H − Kh and
≤ n ≤ W −Kw. We calculate the weighted input as the convolution operation without summation
across width, height and input channel. As a result, weighted input Z has V ×Ci×Kh×Kw shape,
where V = (H −Kh + 1)× (W −Kw + 1), and Zv ∈ RCi×Kh×Kw denotes the v-th element of
Z . Here, Ci, H , W , Kh and Kw denote the number of input channels, input height, input width,
kernel height and kernel width, respectively. For simplicity, we assume that there is stride one and
no zero-padding. For h ∈ [0, · · · ,Kh − 1] and w ∈ [0, · · · ,Kw − 1], the relative offsets from the
kernel center are defined as follows

∆s = (∆h,∆w) = (h− Kh

2
, w − Kw

2
). (5)

Since spatial connectivity pattern in the biological synapse is measured by the functional calcium
activities and given as coordinates, we applied a similar approach to that of CNN layers. We col-
lected Na functional weighted-inputs (functional synapses) where Na represents the number of cases
where each elements of |Z| exceeds a threshold θ. Here, we defined θ as the standard deviation of
|Z| 7. This selection process yielded a different set of functional synapses input-dependent manner.
We summarize functional synapse positions for artificial RF as following

∆sa = {(v, k,∆h,∆w)|Zv,k,h,w > θ}, where |∆sa| = Na. (6)

6For the pre-trained model, we used the torchvision’s ImageNet-1k pre-trained model
7We determined the activity threshold based on a common method used in neuroscience to extract mean-

ingful patterns in neural activity, which is similar to calculating the Z-score and typically setting a threshold at
a range of 2 to 3 standard deviations to identify values that are statistically significant.
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A.3 GAUSSIAN DISTRIBUTED FUNCTIONAL SYNAPSES OF POST-SYNAPTIC NEURON IN
MOUSE V1 LAYER 2/3

(a) (b)

(c) (d)

𝜇𝑚

𝜇𝑚

𝜇𝑚

3D coordinates of functional synapses

Figure 7: Distribution of post-synaptic functional synapses in mouse V1 layer 2/3 (a) Using
dataset from Rossi et al. (2020), 3D scatter plot represent relative positions of both excitatory (red)
and inhibitory (blue) functional synapses from the soma of the post-synaptic neuron. (b-d) 2d his-
togram (left) and Gaussian fitted probability density function (right), showing the laminar organiza-
tion of functional synapses for all (b), excitatory (c), and inhibitory (d)

A.4 INDIVIDUAL RECEPTIVE FIELDS COLLECTED FROM BOTH BIOLOGICAL AND ARTIFICIAL
SYSTEMS

(a)

(b)

(c)

Figure 8: Biological and artificial receptive fields with visual stimulus The receptive field dis-
cussed in this figure specifically refers to the spatial connectivity patterns of synapses. Note that
this differs from receptive fields typically associated with low-level visual feature selectivity. (a)
Receptive fields of individual neurons in V1 Layer2/3 from the dataset Rossi et al. (2020) (b) Re-
ceptive fields of untrained or ImageNet-1k pretrained AlexNet’s Conv1 layer when Natural Scenes
images were shown (c) Receptive fields of untrained or ImageNet-1k pretrained AlexNet’s Conv1
layer when Gaussian RGB noise were shown. All receptive fields are zero mean unit variance nor-
malized.
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A.5 EXPERIMENTAL DETAILS FOR SUDOKU CHALLENGE

We utilized the extensive 1M-sudoku dataset (Park, 2018), a resource also utilized in prior
works (Amos & Kolter, 2017; Palm et al., 2018; Wang et al., 2019). Sudoku, a widely popular
number puzzle, involves organizing digits in a grid such that each row (1×9), column (9×1), and
box (3×3) contains all numbers from 1 to 9. In the Sudoku challenge, where achieving these three
objectives simultaneously is essential for complete Sudoku solving, there is an advantage that we
can test the applicability and effectiveness of evolving RFs in the Lp-convolution. To achieve this,
we compared five distinct models of Sudoku CNN: (3×3) Base model, (7×7) Large model, (7×7)
Lp(pinit = 2), (7×7) Lp(pinit = 16), and finally (7×7) L†

p(pinit = 256) (frozen p and C model) 2.
For numerical stability, we clipped p ≥ 2 during the training of the Sudoku-solving task. The
inputs, targets, and model architecture are outlined in Figure 5a. As illustrated, our model com-
prises repeated Conv2dSame blocks, originally introduced in SudokuCNN (Oinar, 2021). Each
Conv2dSame block encompasses Reflection padding, followed by a conventional Convolutional or
Lp-Convolutional layer, Batch Normalization, and an activation function. The Convolutional layer
has 256 channels, and the number of blocks is set at L = 10.

A.6 CONFORMATIONAL ANALYSIS OF Lp-MASKS

We defined the properties of scale (α), rotation (θ), and distortion (γ) through Singular Value De-
composition (SVD) on C for each output channel, as shown in the following equation:

C = UΛVT . (7)

Here, U and V represent 2 × 2 unitary matrices containing the left and right singular vec-
tors. Λ is a diagonal matrix containing the singular values (λ0, λ1). Rotation is quantified as
θ = arctan

(
sin(VT [1])
cos(VT [1])

)
(in degrees), providing a measure of rotational transformation. Distor-

tion is quantified as γ = λ0

λ1
, offering valuable information about the deformation present in the

data. Scale is quantified as α =

√(
1
λ0

)2

+
(

1
λ1

)2

, indicating the size of mask. In Figure 5a, we

show the example shapes of Lp-masks by reverse calculating C from the given α, θ, γ.
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A.7 LAYER-WISE VISUALIZATION OF Lp-MASKS FOR SUDOKU-LpCONVNET

LpConv1 LpConv2 LpConv3 LpConv4 LpConv5

LpConv6 LpConv7 LpConv8 LpConv9 LpConv10

Layer-wise visualization of all receptive fields in Sudoku 𝑳𝒑ConvNet (p=2)

Figure 9: Layer-wise visualization of Lp-masks for Sudoku-LpconvNet All learned Lp-masks
after Sudoku task training of Lp-ConvNet(pinit = 2). With an increase in layer depth, the sizes of
masks get larger.
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A.8 ACCURACY CURVES FOR SUDOKU ABLATION EXPERIMENTS ON Lp(P=2)

A
c
c
u
ra

c
y

Theta ablation range

#1

#2

#3

Figure 10: Accuracy curves for Sudoku ablation experiments on Lp(p=2). 3 individual experi-
ments (rows) of vertical Lp-masks ablations with 3 different conditions (columns; layer 1 to 10, left;
layer 1 to 5, middle; layer 6 to 10, right) on Lp(p=2)
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A.9 EXPERIMENTAL DETAILS OF VISION CLASSIFICATION TASK

We conducted our training on two datasets: CIFAR-100 (Krizhevsky et al., 2009) and TinyIma-
geNet (Le & Mikolov, 2014). CIFAR-100 comprises 32 × 32 pixel images distributed across 100
classes, while TinyImageNet consists of 224×224 pixel images spanning 200 categories. Following
standard procedures, we reported top-1 accuracy with corresponding mean and standard deviation.
Our implementation is based on the PyTorch framework (Paszke et al., 2019), making extensive use
of the timm repository (Wightman, 2019). We adopted a training strategy rooted in DeiT (Touvron
et al., 2021), incorporating techniques such as RandAugment (Cubuk et al.), Mixup (Zhang et al.,
2017), Cutmix (Yun et al., 2019), random erasing (Zhong et al., 2020), and stochastic depth (Huang
et al., 2016). The optimization process employed AdamW (Loshchilov & Hutter, 2017) with a de-
fault momentum value of 0.9 and a weight decay set at 5 × 10−2. We initialized our learning rate
at 1 × 10−3 and implemented a cosine learning rate schedule. All models underwent training for
300 epochs, utilizing a batch size of 128. For CIFAR-100, training was conducted on 2 GTX 1080ti
GPUs, while 2 Tesla V100 GPUs were used for TinyImageNet.

A.10 THE ALLEN BRAIN OBSERVATORY DATASET

The Allen Brain Observatory dataset (de Vries et al., 2020) constitutes a comprehensive standard-
ized in vivo examination of physiological activity within the mouse visual cortex. It encompasses
recordings of visually-induced calcium responses from neurons expressing GCaMP6f. This dataset
encompasses cortical activity from nearly 60,000 neurons originating from six distinct visual areas,
four layers, and twelve transgenic mouse Cre lines. These recordings were gathered from 243 adult
mice in reaction to a diverse set of visual stimuli. In this study, we focused on utilizing the collective
neural responses from five visual areas (VISal, VISam, VISl, VISp, VISpm), Layer 2/3 (depth range
of 175mm to 275mm), and three mouse lines (Cux2-CreERT, Emx1-IRES-Cre, Slc17a7-IRES2-
Cre) when presenting a dataset of natural scenes to the mice. This dataset comprised 118 natural
images obtained from three different databases (Berkeley Segmentation Dataset (Martin et al., 2001),
van Hateren Natural Image Dataset (Van Hateren & van der Schaaf, 1998), and McGill Calibrated
Colour Image Database (Olmos & Kingdom, 2004)). Further details regarding the experiment can
be found in (de Vries et al., 2020). In our study, we employed both images and neural responses for
experiments involving representational similarity analysis to evaluate the correspondence between
CNNs and the visual cortex, mirroring earlier investigations (Shi et al., 2019; Bakhtiari et al., 2021).

A.11 REPRESENTATION SIMILARITY ANALYSIS

While the details of RSA are expertly addressed in Diedrichsen & Kriegeskorte (2017), let us briefly
cover our specific approach. We leveraged the codebase provided by Bakhtiari et al. (2021). In
RSA, we generate response matrices (R) for brain regions and neural network layers, with dimen-
sions N ×M (where N is the number of image inputs and M is the neuron count). Using Pearson
correlation, we compute similarities within matrix R to construct the N ×N Representation Simi-
larity Matrix (RSM). Additionally, following the methodology of Bakhtiari et al. (2021), we applied
noise correction by normalizing the RSAs using the noise ceiling values. These values were obtained
through comparisons of representations across different mice. For example, the noise ceiling value
for VISp is derived by calculating the RSMs of VISp from different animals and taking their median.
To assess the similarity between RSMs (SSM), we employ Kendall’s τ for robust agreement, which
helps mitigate potential bias from measurement noise Diedrichsen et al. (2020).
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A.12 PAIR-WISE REPRESENTATION SIMILARITY ANALYSIS BETWEEN ALL CNN LAYERS
AND V1 SUBREGIONS

S
S

M
S

S
M

S
S

M
S

S
M

S
S

M

Conv Layer Depth

Conv Layer Depth

Conv Layer Depth

Conv Layer Depth

Conv Layer Depth

Figure 11: Pair-wise representation similarity analysis between all CNN layers and VC sub-
regions. We show the SSM scores for all pairs of Conv layers from CNNs and VC subregions.
y-axis, SSM score; x-axis, Conv layer depth. For Max. SSM, we choose the highest SSM among all
pair-wise SSMs.
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A.13 VISUALIZATION OF FUNCTIONAL RECEPTIVE FIELDS OF PRE-TRAINED ALEXNET

Pre-trained AlexNet (     vs     )

Kernels only Kernels & Image inputs Kernels & Noise inputs

(a) (b) (c)

Functional Connectivity Distribution 

of Pre-trained AlexNet Conv1

+ Image inputs

Functional Connectivity Distribution 

of Pre-trained AlexNet Conv1

+ Noise inputs

(d) (e)

Figure 12: Visualization of functional receptive fields of pre-trained AlexNet Conv1 with image
or noise inputs. Visualization of first 20 kernels of total 64 without inputs (a; column orders: RGB,
R, G, B), with image inputs (b; column orders: RGB, R, G, B, R, G, B) with noise inputs (c; column
orders: RGB, R, G, B, R, G, B). (d) Histogram of functional connectivity from (b). (e) Histogram
of functional connectivity from (c). W , Weight; X̄ , kernel-sized input; Z̄ , kernel-sized output; θ,
activity threshold; ⊙, element-wise product. See Appendix A.2. for methodological details.
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A.14 VISUALIZATION OF FUNCTIONAL RECEPTIVE FIELDS OF UNTRAINED ALEXNET

Untrained AlexNet (     vs     )

(a) (b) (c)

Functional Connectivity Distribution 

of untrained AlexNet Conv1

+ Image inputs

Functional Connectivity Distribution 

of untrained AlexNet Conv1 

+ Noise inputs

(d) (e)

Kernels only Kernels & Image inputs Kernels & Noise inputs

Figure 13: Visualization of functional receptive fields of untrained AlexNet Conv1 with image
or noise inputs. Visualization of first 20 kernels of total 64 without inputs (a; column orders: RGB,
R, G, B), with image inputs (b; column orders: RGB, R, G, B, R, G, B) with noise inputs (c; column
orders: RGB, R, G, B, R, G, B). (d) Histogram of functional connectivity from (b). (e) Histogram
of functional connectivity from (c). W , Weight; X̄ , kernel-sized input; Z̄ , kernel-sized output; θ,
activity threshold; ⊙, element-wise product. See Appendix A.2. for methodological details.
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A.15 VISUALIZATION OF MPND WHEN p < 2

Figure 14: Visualization of MPND when p < 2 Given the value of p = 1, MPND distribution
becomes diamond shape. When p < 1, the distribution becomes a cross-like shape.

A.16 POST-TRAINED p-DISTRIBUTION IN Lp-MASKS

A.16.1 OVERALL DISTRIBUTION IN CIFAR100

AlexNet

VGG-16

ResNet-18

ResNet-34

ConvNeXt-T

Figure 15: CIFAR-100-trained p-distribution of Lp-masks

A.16.2 OVERALL DISTRIBUTION IN TINYIMAGENET

AlexNet

VGG-16

ResNet-18

ResNet-34

ConvNeXt-T

Figure 16: TinyImageNet-trained p-distribution of Lp-masks

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

A.16.3 LAYER-WISE DISTRIBUTION IN CIFAR100

Table 6: Layer-wise p-distribution of CIFAR-100-trained Lp-masks All values (Median ±
Stdev) are calculated with p of all Lp-masks in each layer, from 5 different trials of CIFAR-100-
trained models.

CIFAR-100
Model Layer Lp-Conv (p=2) Lp-Conv (p=4) Lp-Conv (p=8) Lp-Conv (p=16)

AlexNet

1 1.99 ± 0.08 3.88 ± 0.16 7.75 ± 0.35 15.45 ± 0.68
2 2.00 ± 0.06 3.93 ± 0.19 7.67 ± 0.52 15.35 ± 0.96
3 1.91 ± 0.07 3.70 ± 0.16 7.64 ± 0.37 15.06 ± 0.79
4 1.80 ± 0.13 3.38 ± 0.32 7.18 ± 0.36 14.73 ± 0.64
5 1.82 ± 0.11 3.35 ± 0.29 7.11 ± 0.38 14.45 ± 0.68

ResNet-18

1 1.98 ± 0.11 3.85 ± 0.23 7.70 ± 0.49 15.39 ± 1.27
2 2.01 ± 0.06 3.87 ± 0.13 7.91 ± 0.32 15.37 ± 0.84
3 1.93 ± 0.05 3.68 ± 0.11 7.45 ± 0.25 15.30 ± 0.58
4 1.95 ± 0.05 3.72 ± 0.12 7.61 ± 0.26 15.43 ± 0.61
5 1.92 ± 0.05 3.65 ± 0.12 7.45 ± 0.23 15.55 ± 0.52
6 1.98 ± 0.05 3.80 ± 0.10 7.58 ± 0.20 16.08 ± 0.56
7 1.82 ± 0.05 3.45 ± 0.13 7.30 ± 0.26 14.92 ± 0.57
8 1.71 ± 0.06 3.57 ± 0.17 8.00 ± 0.01 16.00 ± 0.00
9 1.88 ± 0.05 3.61 ± 0.12 7.49 ± 0.21 15.47 ± 0.58

10 1.93 ± 0.05 3.70 ± 0.11 7.50 ± 0.22 15.82 ± 0.48
11 2.01 ± 0.06 3.90 ± 0.13 7.68 ± 0.21 16.28 ± 0.56
12 1.79 ± 0.06 3.52 ± 0.13 7.35 ± 0.20 15.31 ± 0.51
13 1.62 ± 0.05 3.42 ± 0.14 8.00 ± 0.01 16.00 ± 0.00
14 1.93 ± 0.06 3.82 ± 0.11 7.72 ± 0.20 16.22 ± 0.56
15 2.01 ± 0.05 3.96 ± 0.10 7.93 ± 0.20 16.54 ± 0.54
16 2.09 ± 0.06 4.16 ± 0.11 8.07 ± 0.21 16.80 ± 0.60
17 1.94 ± 0.05 3.84 ± 0.10 7.69 ± 0.22 15.54 ± 0.41
18 1.74 ± 0.04 3.86 ± 0.12 8.00 ± 0.00 16.00 ± 0.00
19 1.99 ± 0.06 4.02 ± 0.11 8.10 ± 0.21 16.19 ± 0.35
20 2.02 ± 0.05 4.09 ± 0.09 8.21 ± 0.18 16.30 ± 0.25

ResNet-34

1 1.99 ± 0.12 3.87 ± 0.26 7.73 ± 0.44 15.51 ± 1.01
2 2.01 ± 0.06 3.87 ± 0.12 7.99 ± 0.33 15.25 ± 0.85
3 1.96 ± 0.05 3.75 ± 0.10 7.65 ± 0.28 15.35 ± 0.51
4 1.96 ± 0.05 3.78 ± 0.11 7.83 ± 0.25 15.54 ± 0.58
5 1.93 ± 0.05 3.71 ± 0.12 7.56 ± 0.26 15.56 ± 0.49
6 1.96 ± 0.05 3.76 ± 0.11 7.65 ± 0.23 15.72 ± 0.57
7 1.94 ± 0.05 3.74 ± 0.11 7.58 ± 0.24 15.80 ± 0.45
8 2.01 ± 0.05 3.90 ± 0.11 7.72 ± 0.21 16.27 ± 0.52
9 1.83 ± 0.05 3.52 ± 0.11 7.45 ± 0.28 14.83 ± 0.58

10 1.69 ± 0.06 3.49 ± 0.17 8.00 ± 0.01 16.00 ± 0.00
11 1.89 ± 0.05 3.69 ± 0.11 7.61 ± 0.22 15.60 ± 0.52
12 1.93 ± 0.05 3.76 ± 0.12 7.69 ± 0.25 15.81 ± 0.49
13 1.95 ± 0.05 3.79 ± 0.10 7.72 ± 0.21 15.95 ± 0.52
14 1.99 ± 0.05 3.89 ± 0.12 7.85 ± 0.24 16.16 ± 0.52
15 1.97 ± 0.05 3.85 ± 0.11 7.77 ± 0.21 16.06 ± 0.52
16 2.03 ± 0.05 3.98 ± 0.11 7.98 ± 0.23 16.39 ± 0.52
17 2.06 ± 0.06 4.07 ± 0.12 7.91 ± 0.23 16.67 ± 0.51
18 1.80 ± 0.07 3.59 ± 0.12 7.41 ± 0.21 15.41 ± 0.56
19 1.65 ± 0.05 3.48 ± 0.14 8.00 ± 0.01 16.00 ± 0.00
20 1.93 ± 0.06 3.87 ± 0.11 7.78 ± 0.21 16.29 ± 0.51
21 2.01 ± 0.06 4.03 ± 0.10 8.04 ± 0.21 16.45 ± 0.53
22 2.00 ± 0.06 4.00 ± 0.10 8.01 ± 0.20 16.49 ± 0.56
23 2.05 ± 0.06 4.10 ± 0.10 8.19 ± 0.21 16.59 ± 0.52
24 2.04 ± 0.05 4.06 ± 0.10 8.12 ± 0.20 16.57 ± 0.55
25 2.03 ± 0.06 4.11 ± 0.12 8.23 ± 0.24 16.83 ± 0.51
26 2.05 ± 0.05 4.08 ± 0.10 8.15 ± 0.20 16.59 ± 0.53
27 2.02 ± 0.07 4.09 ± 0.13 8.24 ± 0.27 16.89 ± 0.52
28 2.05 ± 0.06 4.08 ± 0.11 8.14 ± 0.20 16.51 ± 0.52
29 2.02 ± 0.06 4.11 ± 0.13 8.32 ± 0.28 16.86 ± 0.50
30 2.16 ± 0.06 4.31 ± 0.10 8.39 ± 0.20 17.12 ± 0.61
31 1.95 ± 0.05 3.86 ± 0.09 7.75 ± 0.19 15.63 ± 0.37
32 1.79 ± 0.04 3.95 ± 0.11 8.00 ± 0.00 16.00 ± 0.00
33 1.98 ± 0.05 3.99 ± 0.10 8.05 ± 0.19 16.12 ± 0.29
34 2.02 ± 0.04 4.06 ± 0.08 8.16 ± 0.18 16.26 ± 0.26
35 1.97 ± 0.06 3.98 ± 0.11 8.01 ± 0.21 16.01 ± 0.27
36 2.07 ± 0.05 4.14 ± 0.10 8.25 ± 0.30 16.22 ± 0.45

VGG-16

1 2.07 ± 0.09 4.08 ± 0.17 8.22 ± 0.37 16.62 ± 0.85
2 2.00 ± 0.06 3.90 ± 0.12 7.77 ± 0.25 15.88 ± 0.63
3 1.98 ± 0.05 3.88 ± 0.13 7.95 ± 0.31 15.51 ± 0.80
4 1.98 ± 0.06 3.83 ± 0.13 7.69 ± 0.26 15.60 ± 0.60
5 1.96 ± 0.06 3.86 ± 0.13 7.94 ± 0.26 15.43 ± 0.68
6 1.94 ± 0.07 3.82 ± 0.13 7.80 ± 0.25 15.87 ± 0.55
7 1.94 ± 0.06 3.81 ± 0.12 7.69 ± 0.22 15.94 ± 0.58
8 1.98 ± 0.06 3.93 ± 0.11 7.94 ± 0.26 15.94 ± 0.69
9 2.02 ± 0.06 4.04 ± 0.10 8.07 ± 0.24 16.17 ± 0.67

10 1.98 ± 0.07 3.98 ± 0.12 7.91 ± 0.18 16.59 ± 0.90
11 1.91 ± 0.08 3.88 ± 0.12 7.80 ± 0.23 15.78 ± 0.44
12 2.01 ± 0.06 4.06 ± 0.11 8.09 ± 0.20 16.19 ± 0.35
13 2.00 ± 0.05 4.01 ± 0.09 8.00 ± 0.20 15.95 ± 0.43

ConvNeXt-T

1 2.06 ± 0.11 3.99 ± 0.15 7.97 ± 0.39 15.71 ± 0.95
2 1.88 ± 0.06 3.66 ± 0.15 7.09 ± 0.34 14.47 ± 0.55
3 1.86 ± 0.06 3.59 ± 0.16 7.04 ± 0.31 14.33 ± 0.54
4 1.86 ± 0.07 3.61 ± 0.16 7.00 ± 0.35 14.43 ± 0.56
5 1.96 ± 0.07 3.99 ± 0.15 7.88 ± 0.34 15.71 ± 0.54
6 1.84 ± 0.08 3.77 ± 0.14 7.61 ± 0.29 15.41 ± 0.55
7 1.83 ± 0.10 3.72 ± 0.16 7.53 ± 0.32 15.27 ± 0.60
8 1.80 ± 0.09 3.72 ± 0.19 7.65 ± 0.29 15.38 ± 0.56
9 1.83 ± 0.07 3.61 ± 0.24 6.93 ± 0.48 14.20 ± 0.71

10 1.93 ± 0.07 3.89 ± 0.15 7.85 ± 0.23 16.00 ± 0.00
11 1.94 ± 0.07 3.87 ± 0.16 7.83 ± 0.23 16.00 ± 0.00
12 1.95 ± 0.08 3.78 ± 0.19 7.70 ± 0.35 16.00 ± 0.00
13 1.95 ± 0.07 3.90 ± 0.17 7.89 ± 0.26 16.00 ± 0.00
14 1.93 ± 0.07 3.85 ± 0.17 7.82 ± 0.26 16.00 ± 0.00
15 1.96 ± 0.07 3.93 ± 0.14 7.88 ± 0.20 16.00 ± 0.00
16 1.97 ± 0.07 3.91 ± 0.15 7.88 ± 0.25 16.00 ± 0.00
17 1.97 ± 0.07 3.93 ± 0.14 7.90 ± 0.20 16.00 ± 0.00
18 2.01 ± 0.06 3.97 ± 0.14 7.98 ± 0.18 16.00 ± 0.00
19 1.83 ± 0.06 3.64 ± 0.13 7.32 ± 0.26 15.08 ± 0.46
20 2.00 ± 0.00 4.00 ± 0.00 8.00 ± 0.00 16.00 ± 0.00
21 2.00 ± 0.00 4.00 ± 0.00 8.00 ± 0.00 16.00 ± 0.00
22 2.00 ± 0.00 4.00 ± 0.00 8.00 ± 0.00 16.00 ± 0.00
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A.16.4 LAYER-WISE DISTRIBUTION IN TINYIMAGENET

Table 7: Layer-wise p-distribution of TinyImageNet-trained Lp-masksAll values (Median ±
Stdev) are calculated with p of all Lp-masks in each layer, from 5 different trials of TinyImageNet-
trained models.c

TinyImageNet
Model Layer Lp-Conv (p=2) Lp-Conv (p=4) Lp-Conv (p=8) Lp-Conv (p=16)

AlexNet

1 1.91 ± 0.22 3.62 ± 0.31 7.21 ± 0.41 14.57 ± 0.89
2 1.99 ± 0.06 3.91 ± 0.28 7.52 ± 0.70 15.21 ± 1.33
3 1.91 ± 0.11 3.46 ± 0.25 7.15 ± 0.66 14.78 ± 1.34
4 1.71 ± 0.16 2.97 ± 0.37 6.51 ± 0.58 13.86 ± 0.91
5 1.70 ± 0.18 2.82 ± 0.47 6.34 ± 0.75 13.41 ± 1.14

ResNet-18

1 2.12 ± 0.33 4.04 ± 0.41 7.92 ± 0.70 15.93 ± 1.82
2 2.07 ± 0.08 4.02 ± 0.17 7.83 ± 0.49 16.56 ± 1.32
3 1.98 ± 0.08 3.75 ± 0.17 7.36 ± 0.39 16.97 ± 1.42
4 1.99 ± 0.09 3.75 ± 0.17 7.35 ± 0.36 16.92 ± 1.29
5 1.98 ± 0.08 3.68 ± 0.18 7.19 ± 0.30 17.19 ± 1.26
6 2.02 ± 0.10 3.85 ± 0.18 7.45 ± 0.28 17.52 ± 1.29
7 1.84 ± 0.11 3.35 ± 0.22 6.77 ± 0.42 15.33 ± 1.00
8 1.90 ± 0.08 4.05 ± 0.23 8.83 ± 0.31 17.29 ± 0.32
9 1.89 ± 0.12 3.48 ± 0.25 7.06 ± 0.43 15.96 ± 1.07

10 1.98 ± 0.10 3.63 ± 0.24 7.17 ± 0.41 16.97 ± 1.20
11 2.02 ± 0.11 3.82 ± 0.23 7.40 ± 0.37 17.15 ± 1.18
12 1.82 ± 0.11 3.30 ± 0.23 6.71 ± 0.35 15.50 ± 1.02
13 1.75 ± 0.06 3.77 ± 0.18 8.64 ± 0.25 17.16 ± 0.27
14 1.84 ± 0.12 3.39 ± 0.23 7.07 ± 0.37 16.47 ± 1.08
15 1.93 ± 0.12 3.57 ± 0.28 7.24 ± 0.42 17.77 ± 1.15
16 2.01 ± 0.11 3.82 ± 0.24 7.56 ± 0.41 17.49 ± 1.10
17 1.75 ± 0.08 3.19 ± 0.16 6.68 ± 0.26 15.60 ± 0.70
18 1.82 ± 0.06 4.28 ± 0.17 9.25 ± 0.18 17.59 ± 0.16
19 1.78 ± 0.10 3.25 ± 0.16 7.18 ± 0.38 17.55 ± 0.96
20 1.69 ± 0.06 3.57 ± 0.13 8.29 ± 0.27 18.37 ± 0.67

ResNet-34

1 2.11 ± 0.24 4.02 ± 0.36 7.92 ± 0.59 15.75 ± 1.97
2 2.10 ± 0.08 4.04 ± 0.17 7.93 ± 0.50 16.90 ± 1.29
3 2.04 ± 0.09 3.87 ± 0.20 7.48 ± 0.53 17.23 ± 1.30
4 2.04 ± 0.09 3.88 ± 0.19 7.50 ± 0.49 17.14 ± 1.28
5 2.02 ± 0.09 3.80 ± 0.22 7.36 ± 0.40 17.41 ± 1.27
6 2.02 ± 0.08 3.80 ± 0.17 7.39 ± 0.35 17.48 ± 1.32
7 2.05 ± 0.08 3.83 ± 0.19 7.35 ± 0.43 17.65 ± 1.18
8 2.10 ± 0.10 3.96 ± 0.17 7.53 ± 0.32 18.15 ± 1.33
9 1.87 ± 0.12 3.46 ± 0.25 6.93 ± 0.53 15.58 ± 0.98

10 1.86 ± 0.07 3.93 ± 0.20 8.67 ± 0.30 17.14 ± 0.30
11 1.87 ± 0.12 3.54 ± 0.24 7.21 ± 0.44 16.33 ± 1.07
12 1.96 ± 0.13 3.67 ± 0.28 7.27 ± 0.48 17.16 ± 1.17
13 1.96 ± 0.12 3.67 ± 0.22 7.34 ± 0.42 17.24 ± 1.21
14 2.06 ± 0.11 3.88 ± 0.25 7.64 ± 0.55 17.96 ± 1.18
15 1.98 ± 0.11 3.75 ± 0.22 7.48 ± 0.38 17.63 ± 1.25
16 2.12 ± 0.12 4.05 ± 0.25 7.98 ± 0.61 18.33 ± 1.11
17 2.11 ± 0.13 4.03 ± 0.24 7.62 ± 0.50 18.18 ± 1.24
18 1.88 ± 0.12 3.47 ± 0.26 6.90 ± 0.42 15.96 ± 1.15
19 1.73 ± 0.06 3.73 ± 0.18 8.61 ± 0.25 17.13 ± 0.26
20 1.89 ± 0.12 3.52 ± 0.24 7.20 ± 0.39 16.64 ± 1.10
21 1.94 ± 0.15 3.56 ± 0.32 7.27 ± 0.51 17.63 ± 1.20
22 1.90 ± 0.11 3.61 ± 0.21 7.40 ± 0.38 17.34 ± 1.13
23 1.99 ± 0.12 3.81 ± 0.27 7.55 ± 0.53 18.43 ± 1.07
24 1.87 ± 0.11 3.64 ± 0.19 7.57 ± 0.34 17.72 ± 1.07
25 2.00 ± 0.10 3.92 ± 0.22 7.91 ± 0.47 18.69 ± 0.85
26 1.85 ± 0.09 3.71 ± 0.16 7.69 ± 0.29 17.94 ± 0.95
27 2.03 ± 0.09 4.02 ± 0.20 8.18 ± 0.48 18.64 ± 0.82
28 1.86 ± 0.08 3.77 ± 0.16 7.79 ± 0.27 17.98 ± 0.88
29 2.07 ± 0.10 4.11 ± 0.21 8.35 ± 0.53 18.54 ± 0.83
30 1.95 ± 0.09 3.90 ± 0.20 7.69 ± 0.38 18.75 ± 1.07
31 1.98 ± 0.10 3.71 ± 0.21 7.31 ± 0.29 15.82 ± 0.70
32 1.86 ± 0.07 4.41 ± 0.22 9.44 ± 0.21 17.74 ± 0.18
33 1.82 ± 0.09 3.31 ± 0.16 6.90 ± 0.30 16.64 ± 1.02
34 1.88 ± 0.09 3.55 ± 0.19 7.43 ± 0.29 18.29 ± 1.02
35 1.87 ± 0.12 3.47 ± 0.19 7.54 ± 0.41 17.82 ± 0.97
36 1.90 ± 0.06 3.78 ± 0.13 8.07 ± 0.26 18.92 ± 0.69

VGG-16

1 2.07 ± 0.16 4.11 ± 0.24 8.29 ± 0.72 17.52 ± 1.71
2 2.15 ± 0.10 4.17 ± 0.21 8.18 ± 0.52 17.27 ± 1.11
3 2.08 ± 0.11 4.09 ± 0.23 7.99 ± 0.54 17.38 ± 1.30
4 2.15 ± 0.10 4.12 ± 0.21 7.92 ± 0.49 17.76 ± 1.16
5 1.95 ± 0.10 3.79 ± 0.22 7.65 ± 0.52 17.52 ± 1.39
6 1.98 ± 0.12 3.78 ± 0.29 7.55 ± 0.56 18.26 ± 1.25
7 2.04 ± 0.14 3.98 ± 0.31 7.72 ± 0.60 18.05 ± 1.36
8 1.95 ± 0.13 3.72 ± 0.30 7.50 ± 0.54 16.84 ± 1.32
9 1.91 ± 0.14 3.68 ± 0.29 7.69 ± 0.48 18.04 ± 1.27

10 2.00 ± 0.15 3.90 ± 0.29 7.91 ± 0.50 18.38 ± 1.64
11 1.82 ± 0.11 3.43 ± 0.19 7.28 ± 0.36 16.61 ± 1.28
12 1.83 ± 0.10 3.51 ± 0.18 7.52 ± 0.27 16.78 ± 1.29
13 1.96 ± 0.07 3.86 ± 0.14 7.64 ± 0.26 16.09 ± 0.80

ConvNeXt-T

1 1.98 ± 0.20 4.01 ± 0.37 8.16 ± 1.06 16.22 ± 2.12
2 1.95 ± 0.10 3.70 ± 0.22 7.42 ± 0.49 14.91 ± 0.92
3 1.97 ± 0.11 3.71 ± 0.21 7.26 ± 0.45 14.63 ± 0.93
4 1.96 ± 0.12 3.68 ± 0.23 7.25 ± 0.45 15.15 ± 0.99
5 1.88 ± 0.15 3.92 ± 0.36 7.66 ± 1.09 15.48 ± 2.55
6 1.94 ± 0.11 3.65 ± 0.22 7.11 ± 0.44 14.38 ± 1.01
7 1.96 ± 0.09 3.58 ± 0.22 7.01 ± 0.48 13.86 ± 0.88
8 1.95 ± 0.11 3.59 ± 0.24 7.02 ± 0.45 14.12 ± 0.96
9 1.83 ± 0.13 3.71 ± 0.47 7.11 ± 1.02 14.22 ± 2.32

10 1.94 ± 0.09 3.51 ± 0.20 6.64 ± 0.43 13.76 ± 0.89
11 1.93 ± 0.09 3.50 ± 0.20 6.68 ± 0.42 13.87 ± 0.84
12 1.93 ± 0.10 3.50 ± 0.20 6.62 ± 0.40 13.56 ± 0.84
13 1.94 ± 0.11 3.54 ± 0.20 6.64 ± 0.39 13.75 ± 0.80
14 1.94 ± 0.10 3.53 ± 0.21 6.66 ± 0.40 13.68 ± 0.77
15 1.93 ± 0.11 3.56 ± 0.22 6.71 ± 0.40 13.75 ± 0.75
16 1.94 ± 0.11 3.58 ± 0.19 6.80 ± 0.40 14.14 ± 0.85
17 1.94 ± 0.11 3.59 ± 0.29 7.03 ± 0.42 14.44 ± 0.88
18 1.95 ± 0.10 3.61 ± 0.25 7.01 ± 0.39 14.55 ± 0.80
19 1.74 ± 0.08 3.64 ± 0.25 7.32 ± 0.51 15.15 ± 1.17
20 1.87 ± 0.10 3.62 ± 0.21 7.20 ± 0.34 14.69 ± 0.77
21 1.87 ± 0.10 3.65 ± 0.19 7.21 ± 0.35 14.55 ± 0.77
22 1.92 ± 0.09 3.77 ± 0.17 7.45 ± 0.33 15.02 ± 0.76
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A.17 LEARNED Lp-MASK PROPERTIES (p=16)

Layer-wise learned 𝐿𝑝-mask properties for (7x7) 𝐿𝑝 (p=16)

Figure 17: Layer-wise distribution of learned Lp-mask properties (p=16)

A.18 STATISTICS FOR COMPARISON OF OPTIMIZED MPND p VALUES IN ARTIFICIAL AND
BIOLOGICAL RFS

Table 8: Holm-Bonferroni corrected multiple comparisons of each RFs using Welch’s t-test. Lower
diagonal elements denote corrected statistical p-values and upper diagonal elements denote degree
of significance (n.s, not significant; *, 0.01<p<0.05; **, 0.001<p<0.01; ***, p<0.001; )

Welch’s t-test
(corrected p-values)

Mouse V1
Layer 2/3

Trained
+ Image

Trained
+ Noise

Untrained
+ Noise

Untrained
+ Image

Mouse V1
Layer 2/3 - * * *** ***

Trained
+ Image 1.10e-2 - n.s *** ***

Trained
+ Noise 1.06e-2 7.6e-1 - *** ***

Untrained
+ Noise 1.23e-15 4.13e-28 1.49e-25 - ***

Untrained
+ Image 8.94e-14 1.59e-25 6.73e-23 1.39e-22 -
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A.19 IMPACT OF Lp-CONVOLUTION (P=2) ON OTHER CNN ARCHITECTURES

Table 9: Top-1 performance (mean±std, 5 trials) on the CIFAR-100 datasets with Lp-Convolution
applied in ConvNeXt-V2-T (Woo et al., 2023), ResNet-50 (He et al., 2016), ResNext-50 (Xie et al.,
2017) and DenseNet-121 (Huang et al., 2017). The symbol ✓ indicates Lp-Converted (pinit = 2) or
not. ‘***’ denotes statistical comparison using Welch’s t-test (p < 0.001).

CIFAR-100
Lp-Conv ConvNeXt-V2-T ResNet-50 ResNeXt-50 DenseNet-121

- 64.26 ± 0.41 73.17 ± 0.23 73.55 ± 0.57 74.12 ± 0.16
✓ *** 65.58 ± 0.25 *** 76.66 ± 0.19 *** 77.38 ± 0.36 *** 77.14 ± 0.18

A.20 RECEPTIVE FIELD

The term RF was initially confined to a specific area impacting a single neuron in the visual system,
as outlined by Sherrington in 1906 and later by Hartline in 1938 (Sherrington, 2023; Hartline, 1938).
It was defined as a distinct region in visual space capable of triggering electrical responses in retinal
ganglion cells, thus highlighting immediate and localized neural interactions.

Modern interpretations, however, have substantially expanded the scope of receptive fields. The
groundbreaking work of Hubel and Wiesel exemplifies this evolution, revealing how receptive fields
process complex visual patterns through multiple layers in the primary visual cortex (V1). This
progression from Hartline’s narrower viewpoint to a more all-encompassing approach mirrors the
intricate, multi-layered nature of sensory processing in the brain. The present-day definition, shaped
by Hubel and Wiesel’s insights, underscores the dynamic, multi-dimensional nature of neural re-
sponses.

In CNN, the concept of a receptive field aligns somewhat with Hartline’s original idea, focusing
mainly on local input processing (Fukushima, 1980; LeCun et al., 1989). In CNNs, RF typically de-
notes the localized interactions among successive layers, reflecting Hartline’s emphasis on localized
sensory inputs. In our analysis, we align with a more restricted definition of the receptive field,
akin to the original concepts from Sherrington and Hartline. This approach corresponds to the
local connectivity between adjacent layers in CNNs, aiming to provide a clearer and more focused
understanding in both biological and computational contexts.
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A.21 PYTORCH-STYLE PSEUDOCODE FOR Lp-CONVOLUTION

Algorithm 1 PyTorch-style pseudocode for Lp-Convolution
import torch
import torch.nn as nn
import torch.nn.functional as F

from torchvision.models import alexnet

class LpConv2d(nn.Conv2d):
def init (self, p init, sigma init, in channels, out channels, kernel size, stride, padding,

**kwargs):

# Create parameters p & C
params p = torch.ones( out channels ) * p init
params C = torch.zeros( out channels, 2, 2 )
params C[:,0,0] = 1/sigma init
params C[:,1,1] = 1/sigma init
self.p = nn.Parameter( params p )
self.C = nn.Parameter( params C )

def forward(self, input):
# Create channel-wise lp masks from parameters p and C
lp masks = get channel wise lp masks(self.p, self.C)

# Overlay lp masks on weight
masked weight = weight * lp masks
return F.conv2d(input, masked weight, bias, kernel size, stride, padding, **kwargs)

def LpConvert(model, p init):
# Convert all nn.Conv2d layers into LpConv2d
for i in range(num layers):

layer = model.layers[i]
if isinstance(layer, nn.Conv2d):

model.layers[i] = LpConv2d(
p init,
sigma init,
in channels=layer.in channels,
out channels=layer.out channels,
kernel size=layer.kernel size,
stride=layer.stride,
padding=layer.padding,
**layer.extra args)

return model

# Example LpConvert on Alexnet for TinyImageNet
base model = alexnet(num classes=200)
lp2 model = LpConvert(base model, p init=2)
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A.22 COMPARISON OF VIT AND LP2-CNNS

Model Top-1 (%) FLOPs (G) Params (M)
ViT-32x32 49.88 4.37 87.6
ViT-16x16 54.20 16.87 86.0
AlexNet 52.25 0.71 57.82
Lp2-AlexNet 54.13 3.41 68.6
Lp2-VGG-16 69.96 83.74 200.5
Lp2-ResNet-18 68.45 9.86 61.5
Lp2-ResNet-34 70.43 19.93 116.6
Lp2-ConvNeXt-T 70.72 5.42 33.8

Table 10: Lp2-AlexNet achieves comparable performance to ViT-16x16 on TinyImageNet with
significantly lower parameter counts and computational cost, demonstrating its efficiency.

A.23 THE JUSTIFICATION FOR USING LARGE, SPARSE KERNELS

The use of large kernels enables the model to cover the input space more effectively with fewer
layers compared to smaller kernels (Ding et al., 2022; Luo et al., 2016). However, simply increasing
the kernel size does not guarantee performance improvements, as shown in Table 1 (Base vs. Large).
This is presumably due to larger kernels inadvertently incorporating irrelevant global information,
which can hinder performance compared to smaller kernels that rely on locality inductive biases to
extract local features hierarchically. This is where sparsity plays a key role. We introduce sparsity
constraints to optimize the usage of large kernels, ensuring they focus on only relevant global
information while mitigating the disadvantages of naı̈vely expanding kernel sizes, supported by
Sudoku experiments.

A.24 EVIDENCE FOR GAUSSIAN SPARSITY AS BIOLOGICAL CONSTRAINTS

A.24.1 1.THEORETICAL EVIDENCE

Sparse Coding Theory : Sparse Coding Theory posits that neural systems optimize sensory rep-
resentations by minimizing redundancy. Learning a sparse code for natural images leads to the
emergence of simple-cell receptive field properties (Olshausen & Field, 1996). This process can
be linked with Gaussian priors, where synaptic weights follow a Gaussian distribution with most
connections being weak and a few strong, promoting efficient information encoding (Olshausen &
Millman, 1999).

Effective Receptive Field (ERF) Theory : In convolutional neural networks, the actual influence
of input pixels on an output neuron decreases in a Gaussian manner from the center of the theoretical
receptive field (Luo et al., 2016). This means that while the theoretical receptive field defines the
maximum possible area of influence, the ERF is effectively smaller and Gaussian-shaped, with
central pixels contributing most significantly to the neuron’s output.

A.24.2 EMPIRICAL EVIDENCE

Supporting References : These two references demonstrate both anatomical and functional dis-
tribution of synapses predominantly following a Gaussian-like distribution in the visual cortex (Hell-
wig, 2000; Rossi et al., 2020).

Analysis Result : We have demonstrated Gaussian distribution with the in vivo functional synapse
data (?)in alive mouse V1 in Appendix A.3.
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