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ABSTRACT

In-context reinforcement learning (ICRL) is an emerging RL paradigm where the
agent, after some pretraining procedure, is able to adapt to out-of-distribution
test tasks without any parameter updates. The agent achieves this by continually
expanding the input (i.e., the context) to its policy neural networks. For example,
the input could be all the history experience that the agent has access to until
the current time step. The agent’s performance improves as the input grows,
without any parameter updates. In this work, we propose the first method that
promotes the safety of ICRL’s adaptation process in the framework of constrained
Markov Decision Processes. In other words, during the parameter-update-free
adaptation process, the agent not only maximizes the reward but also minimizes an
additional cost function. We also demonstrate1 that our agent actively reacts to the
threshold (i.e., budget) of the cost tolerance. With a higher cost budget, the agent
behaves more aggressively, and with a lower cost budget, the agent behaves more
conservatively.

1 INTRODUCTION

Reinforcement learning (RL, Sutton & Barto (2018)) is a framework for solving sequential decision
making problems via trial and error. Modern RL agents are usually parameterized by deep neural
networks, and the trial-and-error process is typically achieved by updating the parameters of the
neural networks (Mnih et al., 2015). Recently, in-context reinforcement learning (ICRL, Moeini
et al. (2025)) emerges as an RL paradigm that achieves this trial-and-error process without any neural
network parameter updates (Duan et al., 2016; Mishra et al., 2018; Xu et al., 2022; Kirsch et al.,
2023; Lin et al., 2023; Lu et al., 2023; Raparthy et al., 2023; Sinii et al., 2023; Grigsby et al., 2024a;c;
Cook et al., 2024; Dai et al., 2024; Dong et al., 2024; Elawady et al., 2024; Huang et al., 2024;
Krishnamurthy et al., 2024; Laskin et al., 2023; Lee et al., 2024; Shi et al., 2024; Wang et al., 2024;
Zisman et al., 2023; 2024; Song et al., 2025; Wang et al., 2025b) Specifically, the pretrained agent
neural network takes as input not only the observation at the current time step but also an additional
context. For example, the simplest choice of the context can be all the history of experiences that
the agent has access to up to the current time step (Laskin et al., 2023). It is then observed that
the agent’s performance improves as the length of the context grows, even if the neural network
parameters are kept fixed and even if the agent is evaluated on a task that it has never encountered
during the pretraining process (Laskin et al., 2023). This phenomenon is called ICRL. A widely
accepted hypothesis for this performance improvement is that the forward pass of the pretrained agent
network implicitly implements some RL algorithm during inference time to process the information
in the context (Laskin et al., 2023; Lin et al., 2023; Wang et al., 2025a;b). As the context length
grows, the amount of information grows, and the implemented RL algorithm in the forward pass is
then able to output better actions.

ICRL has recently received increasing attention given its cheap yet strong adaptation capability. The
adaptation is cheap in that it does not require parameter tuning. So to support such adaptation, the
infrastructure only needs to support the inference of the neural network. For example, by using
ICRL in LLMs’ inference time, the LLMs are able to significantly improve on challenging tasks
such as ScienceWorld (Wang et al., 2022), HMMT (Harvard–MIT Mathematics Tournament), and
AIME (Mathematical Association of America) without any fine-tuning (Song et al., 2025). The
adaptation is strong in that ICRL allows adaptation to not only unseen but also out-of-distribution
tasks. For example, Laskin et al. (2023) show that after pretraining on some bandit tasks, their ICRL

1All the implementations will be made publicly available and are now located in the supplementary materials.
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agent is able to adapt quickly to test bandit tasks that have opposite optimal arms to the pretraining
bandit tasks. Kirsch et al. (2023) show that after pretraining on Ant robot manipulation tasks, their
ICRL agent is able to adapt to pole balancing tasks.

Despite the empirical success and the promising potential, the safety of ICRL has long been ignored.
Here we discuss safety in the framework of constrained Markov Decision Processes (Altman, 2021),
where each action the agent takes not only incurs a reward but also incurs a cost. Then when an agent
adapts to a new task, it needs to not only maximize the rewards but also minimize the cost, all without
updating the parameters. We argue that safe ICRL is a necessary condition to enable many possible
real-world applications of ICRL, such as embodied AI. Although such safe decision-making problems
have been well studied in the classical RL setup (Garcıa & Fernández, 2015), to our knowledge, no
prior work has studied the safety of ICRL, which is the gap that this paper shall close. We envision
that a safe ICRL agent should have the following two desiderata, both of which should be achieved
without any parameter updates during the adaptation to new tasks.

• When evaluated in out-of-distribution tasks, the agent should be able to maximize the rewards
while keeping the cost below a user-specified threshold.

• The agent should actively react to the cost threshold. For example, a smaller cost threshold should
induce a more conservative behavior, while a larger cost threshold should induce a more aggressive
behavior.

The key contribution of this work is to design the first safe ICRL agent that simultaneously fulfills
the two desiderata. Specifically, we make the following two contributions.

• We study both off-line (cf. (Laskin et al., 2023)) and on-line pretraining approaches (cf. (Duan et al.,
2016; Wang et al., 2016; Grigsby et al., 2024a;c)) for safe ICRL. We identify key limitations of the
offline approach and propose a novel online pretraining approach that fulfills the two desiderata.

• We empirically validate our proposed approach in challenging safe decision making problems.
Particularly, our test task is not only unseen during the pretraining stage but also out of the
pretraining task distribution. As a result, to succeed in our benchmarks, the agent has to demonstrate
strong out-of-distribution generalization. Particularly, the agent has to explore efficiently in out-of-
distribution test tasks, all without parameter updates.

2 BACKGROUND

We consider a finite horizon Markov Decision Process (MDP, Bellman (1957); Puterman (2014))
with a state space S, an action space A, a reward function r : S × A → R, a transition function
p : S × S × A → [0, 1], an initial distribution p0 : S → [0, 1), and a horizon length T . At time
step 0, an initial state S0 is sampled from p0. At time step t, an agent at a state St selects an action
At according to its policy π : A × S → [0, 1], i.e., At ∼ π(·|St). The agent then proceeeds to a
successor state St+1 ∼ p(·|St, At) and obtains a reward Rt+1

.
= r(St, At). This process continues

until the time T − 1, where the agent executes the action AT−1 and receives the last reward RT . We
use τ

.
= (S0, A0, R1, S1, . . . , ST−1, AT−1, RT ) to denote an episode. We use k to index episodes

and t to index time steps within an episode. When necessary, we write Sk
t to denote the state at

time step t within the k-th episode. Ak
t and Rk

t are similarly defined. For any episode τ , we use
G(τ)

.
=

∑T
t=1 Rt to denote the return associated with this episode. The performance of a policy π

is then measured by the expected total rewards J(π) .
= Eτ∼π[G(τ)]. One fundamental task in RL,

called control, is to adapt the policy π to maximize J(π).

Modern RL methods solve the control problem via parameterizing the policy π with neural networks
(Mnih et al., 2015). We denote such parameterized policy as πθ, where θ denotes the parameters
of the neural network. Typically, θ is updated at every time step, e.g., θt+1 is obtained by updating
θt with the newly obtained information (St, At, St+1, Rt+1). The performance of the policy πθt
improves along with such parameter updates. In other words, the reinforcement learning process
occurs with the parameter updates. ICRL is an emerging paradigm that allows the reinforcement
learning process to occur without any parameter updates. In ICRL, the policy π takes an additional
context as input. We denote the context at time t within the k-th episode as Hk

t and express the policy
as π(·|Sk

t , H
k
t ) to emphasize such dependency. The construction of the context is an active research

area and we refer the reader to Moeini et al. (2025) for a detailed survey. The simplest example is to
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use all the history as context, e.g., Hk
t

.
= (τ1, . . . , τk−1, S

k
0 , A

k
0 , R

k
1 , S

k
1 , . . . S

k
t−1, A

k
t−1, R

k
t ). After

some pretraining procedure on multiple MDPs to be detailed soon, we can obtain a parameter θ∗.
It is observed that the performance of πθ∗(·|Sk

t , H
k
t ) improves as the context grows with θ∗ kept

fixed. In other words, the reinforcement learning process now occurs without any parameter updates.
This cannot be attributed to the hypothesis that θ∗ memorizes a good policy, as such performance
improvement is also observed even when πθ∗ is evaluated in out-of-distribution MDPs that are very
different from the pretraining MDPs (Laskin et al., 2023; Kirsch et al., 2023). A widely accepted
hypothesis is that the neural network θ∗ implicitly implements some RL algorithm in its forward
pass, such that it can process the context with the RL algorithm in the inference time (Moeini et al.,
2025). As the context grows, the inference-time RL algorithm in the forward pass gains access to
more information. So the performance of the policy improves. This hypothesis is also theoretically
backed by Lin et al. (2023); Wang et al. (2025a;b).

We now elaborate on the pretraining methods for ICRL. According to the taxonomy in Moeini et al.
(2025), the pretraining can be divided into supervsied pretraining (Laskin et al., 2023; Lin et al., 2023)
and reinforcement pretraining (Duan et al., 2016; Wang et al., 2016; Grigsby et al., 2024a;c; Wang
et al., 2025a;b). Supervised pretraining is essentially behavior cloning but the goal is to imitate an
algorithm instead of a policy. Supervised pretraining is usually done in an offline manner. Specifically,
by running an existing RL algorithm on an MDP, we can collect a sequence of episodes, denoted
as Ξ .

= (τ1, τ2, . . . , τK). We call Ξ a trajectory. Suppose the RL algorithm behaves well, we would
expect that the episode return G(τk) increases as k increases. So the trajectory Ξ demonstrates the
learning process of the RL algorithm in the MDP. In supervised pretraining, we collect multiple
trajectories by running multiple existing RL algorithms on multiple MDPs, yielding a dataset {Ξi}.
The policy πθ is then trained with an imitation learning loss. In other words, for a state Sk

t from a
trajectory Ξi in the dataset, the loss for updating θ is

− log πθ(A
k
t |Sk

t , H
k
t ). (1)

By asking the neural network to imitate the behavior of RL algorithms demonstrated in the dataset,
we expect the neural network to be able to distill some RL algorithm into its forward pass. This is
known as algorithm distillation (Laskin et al., 2023). Instead of distilling existing RL algorithms,
reinforcement pretraining asks the network to discover its own RL algorithm. Reinforcement
pretraining is typically done in an online manner. At time step t within the k-th episode, the loss is

LossRL(πθ(·|Sk
t , H

k
t )), (2)

where LossRL can be any standard RL loss for standard online RL algorithms, e.g., Grigsby et al.
(2024a) use a variant of DDPG (Lillicrap et al., 2016), Elawady et al. (2024) use a variant of
PPO (Schulman et al., 2017), and Cook et al. (2024) use Muesli (Hessel et al., 2021). Since the
context is typically a long sequence, Transformers (Vaswani et al., 2017) or state space models (Gu &
Dao, 2024) are usually used to parameterize the policy (Laskin et al., 2023; Lu et al., 2023). The long
sequence context is one of the main driving forces for the remarkable generalization capability of
ICRL.

3 SAFE IN-CONTEXT REINFORCEMENT LEARNING

While ICRL has demonstrated remarkable generalization in out-of-distribution tasks, the safety of
such generalization has been largely overlooked. This paper is the first to study the safety of ICRL.
Particularly, we use the constrained MDP (CMDP) framework (Altman, 2021). In addition to the
reward function r, we also have a cost function c : S ×A → R. At a state St, the agent executes an
action At and receives both a reward Rt+1 and a cost Ct+1

.
= c(St, At). An episode is then

τ = (S0, A0, R1, C1, S1, . . . , ST−1, AT−1, RT , CT ). (3)

We use Gc(τ)
.
=

∑T
t=1 Ct to denote the toal cost in the episode τ . After some pretraining procedure,

we obtain a policy πθ∗ . We then execute this policy in a test MDP for multiple episodes τ1, . . . , τK .
With ICRL, we can expect that the episode return G(τk) increaes as k increaes. But for safe ICRL,
we would like to additionally see that the episode total cost Gc(τk) decreases as k increases, ideally
below some user-given threshold, say δ. Moreover, when the user is more tolerant of the cost (i.e.,
with a larger δ), the agent should obtain higher rewards (i.e., larger G(τk)). We formalize these
desiderata as the following constrained problem:

maxθ Eπθ
[
∑K

k=1 G(τk)] s.t. ∀k,Eπθ
[Gc(τk)] ≤ δ. (4)

3
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Here, K is the number of episodes that are allowed in the test time. τk is the k-th epsiode sampled
from the policy πθ. The policy πθ can depends on the context (i.e., πθ(A

k
t |Sk

t , H
k
t )) but the neural

network parameters θ is fixed for all the K episodes. We note that (4) is defined on a single test MDP
that the algorithm has no access to during pretraining. This test MDP is usually sufficiently different
from the MDPs that the algorithm has access to during pretraining. As a result, the agent cannot
solve this test MDP via memorizing some good policies in the pretraining MDPs. Instead, it has to
perform reinforcement learning over the K episodes, although the parameters θ are fixed. Notably,
although we formulate our problem in MDPs, the tasks we work on are only partially observable.
This is a widely used practice in the RL community to promote the clarity of presentation (Mnih
et al., 2015). We now explore different pretraining methods for solving the above problem.

Safe Supervised Pretraining. We first establish safe supervised pretraining as a baseline approach.
Similar to naive supervised pretraining, we collect a dataset {Ξi} by executing various safe RL
algorithms (e.g., Tessler et al. (2018); Ray et al. (2019)) in various safety-sensitive tasks (e.g., Ji et al.
(2023); Gu et al. (2025)). Now each trajectory Ξi consists of multiple episodes and each episode
contains both the reward and the cost (cf. (3)). To further guide the action generation, we additionally
condition the policy on both the return-to-go (RTG) Gt(τ) and the cost-to-go (CTG) Gc,t(τ). RTG is
the total future rewards in the current episode, i.e., Gt(τ)

.
=

∑T
i=t+1 Rt, and CTG is the total future

cost in the current episode, i.e., Gc,t(τ)
.
=

∑T
i=t+1 Ct. The RTG and CTG are inspired by Liu et al.

(2023) for constrained decision Transformers and are designed to bias the agent towards achieving
the specified return and cost. The main difference from Liu et al. (2023) is that in addition to RTG
and CTG, we use entire episodes in input, while Liu et al. (2023) only includes states and actions
but do not include per-step reward and per-step cost. As a result, Liu et al. (2023) still misses the
opportunity to learn the algorithm demonstrated in the dataset, and they demonstrated only limited
generalization capability. Specifically, given a trajectory Ξ = (τ1, . . . , τK) in the dataset, the safe
supervised pretraining loss at a state Sk

t is

− log πθ(A
k
t |Sk

t , H
k
t , Gt(τk), Gc,t(τk)). (5)

We recall that the context Hk
t is defined as (τ1, . . . , τk−1, S

k
0 , A

k
0 , R

k
1 , C

k
1 , . . . , S

k
t−1, A

k
t−1, R

k
t , C

k
t ).

In the pretraining, we do have access to RTG and CTG since the episode is already complete. But in
the test time, we do not have access to them since they are calculated based on future rewards and
costs, which are not available yet. Instead, we replace them with a spectrum of target RTG and CTG
values. This gives the user the opportunity to control the trade-off between rewards and costs in the
test time without fine-tuning the parameters. For example, in the test time, if the ratio RTG / CTG is
small, it means the user is more risk-tolerant. If the ratio RTG / CTG is large (in the extreme case,
CTG = 0), it means the user is more safety-focused.

Although the proposed safe supervised pretraining approach is to our knowledge novel, it is indeed a
straightforward extension of existing unconstrained superivsed pretraining approaches like Laskin
et al. (2023). We regard this as a baseline approach for sanity check. Any meaningful safe ICRL
method should at least outperform this baseline.

Safe Reinforcement Pretraining. Our safe supervised learning follows the offline pretraining
paradigm. It is well-known that the performance of offline trained policies is usually worse than
the online trained ones when online training is plausible (Vinyals et al., 2019; Mathieu et al., 2021).
Motivated by this, we now study safe reinforcement pretraining. We note that even when we consider
online pretraining, we still do not have access to the test MDP where (4) is defined. By online
pretraining, we mean that we can interact with the pretraining MDPs directly. By contrast, offline
supervised pretraining has access to only datasets collected from pretraining MDPs.

The underlying hypothesis of reinforcement pretraining is that by minimizing the loss (2) in a wide
range of pretraining MDPs, the sequence model should be able to discover its own RL algorithm and
implement it in the forward pass (see Lu et al. (2023); Grigsby et al. (2024a;c) for empirical evidence
and Wang et al. (2025b) for theoretical evidence). Following this hypothesis, we now design an
algorithm to solve (4) on a single pretraining MDP. To solve (4), primal-dual approaches in safe-RL
(Achiam et al., 2017; Tessler et al., 2018; Liang et al., 2018; Ray et al., 2019) convert it to the dual
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problem below2:

minλ⪰0 maxπ L(π,λ) = minλ⪰0 maxπ

[
Eπ

[∑K
k=1 G(τk)

]
−
∑K

k=1 λk(Eπ[Gc(τk)]− δ)
]

(6)

where λ ⪰ 0 is a componentwise inequality for the Lagrangian multipliers. Notably, the function
class of the policy π in maxπ is all the policies in the form of (5) but without RTG, i.e., the policy can
depend on the context and the CTG. However, we observe that while the CMDP formulation requires
a separate constraint and Lagrangian multiplier for each evaluation episode τk, this is not desirable in
our problem, as it would need to fix the number of evaluation episodes at the beginning of pretraining.
During pretraining, if we expect to evaluate over K episodes, we should initialize with K (or more)
multipliers. If pretraining rollouts contain fewer episodes than the number of multipliers, the later
multipliers are updated on a slower timescale, which destabilizes the optimization (Figure 5.(c)).

Furthermore, there should be symmetry among all the constraints since they are all coming from a
single cost function but simply correspond to different episodes. These encourage the use of a single
multiplier for all episodes. However, when using a single multiplier, we would need a new way to not
over-penalize the policy in the episodes that are already satisfying the constraint. To this end, We
propose a modified Lagrangian function and an iterative optimization scheme and show it is more
stable empirically while satisfying the desirable optimization properties. Let gk(π) := Eπ[Gc(τk)]−δ.
We consider the following surrogate objective for the policy

LΣ(π, λ) = Eπ

[∑K
k=1 G(τk)

]
− λ

∑K
k=1[gk(π)]+

where [x]+
.
= max {x, 0} and perform the following iterative updates:

πt+1 ∈ argmaxπ LΣ(π, λt) λt+1 = [λt + η maxk gk(πt+1)]+ η > 0. (7)

Assumption 1. The expected return Eπ

[∑K
k=1 G(τk)

]
and expected cost Eπ[Gc(τk)] are bounded

and continuous in π. The constrained problem (4) admits an optimal feasible policy π⋆.

Assumption 2. [Paternain (2018)] Problem (4) satisfies conditions ensuring zero duality gap with
(6) and there exists optimal Lagrange multipliers λ⋆ ⪰ 0 such that

maxπ
s.t. ∀k,Eπ [Gc(τk)]≤δ

Eπ

[∑K
k=1 G(τk)

]
= minλ⪰0 maxπ L(π,λ)

We now show that the set of the fixed points of (7) and the set of the optimizers of (4) are equal.

Theorem 1. [Proof in Appendix B.1] We say a pair (π̄, λ̄) is a fixed point of (7) if π̄ ∈
argmaxπ LΣ(π, λ̄), and for all sufficiently small η > 0, λ̄ = [λ̄ + η maxk gk(π̄)]+. Let As-
sumptions 1 - 2 hold. Then every primal-optimal policy π∗ admits a corresponding fixed point (π∗, λ̄)
for any multiplier λ̄ ≥ ∥λ⋆∥∞, where λ⋆ is an optimal dual solution. Conversely, every fixed point
(π̄, λ̄) of (7) is feasible and primal-optimal for (4).

To implement the policy update (7), we consider an actor-critic approach following Grigsby et al.
(2024a). The pseudocode is provided in Algorithm 1. Since our update (7) resembles an exact penalty
convex optimization technique when λ ≥ ∥λ⋆∥∞ (Nocedal & Wright, 2006), we call the resulting
actor-critic algorithm Exact Penalty Policy Optimization (EPPO).

4 EXPERIMENTS

We now empirically investigate the proposed safe ICRL algorithms. Specifically, we aim to answer
the following two questions.

(i) Do the proposed safe ICRL algorithms demonstrate generalization to out-of-distribution
(OOD) tasks in complex environments with safety constraints?

(ii) How effectively do the proposed safe in-context RL algorithms achieve flexible reward-cost
tradeoffs under varying cost tolerance?

2We omit θ and use maxπ f(π) instead of maxθ f(πθ) for simplicity.
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We evaluate our approach on two constrained environments: (1) SafeDarkRoom and (2) SafeDark-
Mujoco: Point and Car. These are modified from DarkRoom (Laskin et al., 2023) and SafetyGym
benchmark (Ji et al., 2023) respectively. SafeDarkRoom is a grid-world setting where the agent can
only perceive its own position and lacks visibility of the goal or obstacle locations. Rewards are
sparse, with a positive reward obtained upon reaching the single goal in the map. Costs arise from
multiple obstacles scattered across the environment. For instance, 25 obstacles in a 9×9 grid map,
which incur a cost of 1 each time the agent steps on one of the obstacles. To succeed, the agent
must learn obstacle positions based on encountered cost signals, introducing additional complexity
compared to goal-only environments due to the presence of multiple hazards. SafeDarkMujoco
environment operates in continuous space with MuJoCo simulation (Todorov et al., 2012) but with a
setup analogous to SafeDarkRoom. The robot senses its internal physical states, such as velocity,
acceleration, position, and rotation angle, while all lidar inputs are turned off, preventing detection
of obstacles and the goal. Consequently, the agent must develop exploratory behaviors to identify
obstacles and goals, akin to SafeDarkRoom design, while navigating to the goal and minimizing
collisions by learning from the previous collisions in the context.

Measuring OOD generalization. Goal discovery-oriented environments such as DarkRoom are
widely used in previous ICRL works (Laskin et al., 2023; Zisman et al., 2023; Son et al., 2025). In
those works, the goals are randomly spawned over the map. Each goal corresponds to a new task.
By ensuring the goals used in pretraining do not overlap with the goals used in testing, they ensure
the test task is unseen during pretraining and can thus evaluate the generalization capability of their
ICRL agents. However, such generalization can be achieved by interpolation (Kirk et al., 2021). For
example, if the goals are spawned only on the black squares of a chessboard during pretraining, then an
unseen goal location on one of the white squares can be viewed as an interpolation of the goals in the
pretraining tasks. The agent thus may navigate to this unseen test goal by interpolating policies learned
from pretraining. In other words, although those evaluation tasks are unseen during pretraining, it is
not clear whether those tasks can fully demonstrate the challenges of OOD generalization.

To measure the OOD generalization of our proposed safe ICRL methods, we employ a challenging
distance-based obstacle and goal spawning strategy: center-oriented for pretraining and edge-oriented
for evaluation. The agent spawns at the map center, with obstacles and the goal distributed propor-
tionally closer to this center during pretraining. During evaluation, obstacles and the goal follow an
edge-oriented distribution. This approach applies similarly to the SafeDarkRoom and SafeNavigation
environments. We argue that this setup is more challenging than those in prior studies (Laskin
et al., 2023; Zisman et al., 2023; Son et al., 2025), as the agent must learn extrapolation rather
than interpolation. More precisely, during pretraining, the grid position (i, j) has an obstacle with
probability Ptrain((i, j)) ∝ e−αd((i,j),c), where c is the map center, d(·, ·) denotes Euclidean distance,
and α > 0 to promote central density. To generate an evaluation task, the grid position (i, j) has an
obstacle with probability Ptest((i, j)) ∝ eαd((i,j),c) with α > 0 to favor edge density. The goals are
generated similarly. This distributional shift is demonstrably OOD, both visually (Appendix C) and
mathematically.

Proposition 1 (Proof in Appendix B.2). The total variation distance satisfies
limα→∞ δ(Ptrain,Ptest) = limα→∞

1
2

∑
O |Ptrain (O) − Ptest (O)| = 1 (maximum separation).

Similarly, the KL divergence holds limα→∞ DKL (Ptrain ∥Ptest ) =∞.

Question (i). We now demonstrate emergent safe learning behaviors in OOD test tasks, thus giving
an affirmative answer to Question (i). We use supervised pretraining and reinforcement pretraining in
Section 3 on pretraining tasks with center-oriented obstacles and goals. Particularly, for supervised
pretraining, the source algorithm to generate the dataset is PPO-Lagragian (Ray et al., 2019). For
reinforcement pretraining, we update the model for 30,000 steps on SafeDarkRoom and 10,000 steps
on SafeDarkMujoco using Algorithm 1.

After pretraining, we evaluate the learned agents in evaluation tasks with edge-oriented obstacles
and goals. The agent is able to interact with the evaluation task for multiple episodes, but cannot
update its network parameters. During evaluation, for supervised pretraining, we set RTG to 1.0
and CTG to 0.0, targeting successful performance while minimizing cost violations. Reinforcement
pretraining is solely conditioned on CTG. To evaluate robustness to CTG values during evaluation,
we set CTG to a value uniformly sampled from the interval [1, 15] for SafeDarkRoom and [10, 50] for
SafeDarkMujoco. Precisely, we sample 100 distinct CTG values and report the average performance
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(a) Reinforcement Pretraining

(b) Supervised Pretraining

SafeDarkroom SafeDarkMujoco-Point SafeDarkMujoco-Car

Figure 1: Evaluation performance of superivsed and reinforcement pretraining. The curves
are averaged over 16 distinct OOD evaluation tasks, with each task featuring edge-oriented goal
and obstacles. The shaded regions indicate standard errors. The x-axis is the episode index k
during the evaluation task. The y-axis is the corresponding episode return G(τk) and the epsiode
cost Gc(τk) respectively. The straightforward safe supervised pretraining baseline succeeds only in
SafeDarkRoom, while our novel safe reinforcement pretraining method succeeds in all three domains.

over these 100 distinct CTG values. We recall that although the safe supervised pretraining method
we propose is novel, we mostly regard it as a straightforward baseline. As can be seen in Figure 1, safe
supervised pretraining succeeds in SafeDarkRoom as the episode return grows and the episode cost
decreases. This aligns with the previously observed success of algorithm distillation in DarkRoom
(Laskin et al., 2023; Zisman et al., 2023). But this baseline approach fails in SafeDarkMujoco.
We conjecture that this is because of insufficiency in the dataset, as supported by ablation studies
(Figure 6). By contrast, our safe reinforcement pretraining approach consistently succeeds in all
three tested domains. It is also worth highlighting that in SafeDarkRoom, the safe reinforcement
pretraining enables much faster adaptation to the new evaluation task than the safe supervised
pretraining approach.

Question (ii). We now demonstrate that we can adjust the behavior of the pretrained policy in test
time by simply changing the RTG and/or CTG without making any parameter updates. Intuitively,
with a higher CTG (i.e., a higher cost tolerance), the agent should afford bolder exploration and thus
obtain higher rewards. Conversely, a lower CTG should promote conservative policies that prioritize
safety, potentially at the expense of suboptimal rewards.

For the supervised pretrained model, we initialize RTG at 0.5 and CTG at 0.0, then adjust RTG =
max{0.5, CTG

10 } as CTG increases from 5 to 15 for SafeDarkRoom and 0 to 10 for SafeDarkMujoco.
This setup enables gradual increases in both RTG and CTG to demonstrate balanced reward-cost
trade-offs, consistently applied to SafeDarkRoom and SafeDarkMujoco. However, the supervised
pretrained model fails to learn trade-off behaviors, exhibiting random patterns with varying RTG and
CTG (Figure 2.(b)). We hypothesize that this stems from insufficient CTG diversity during training,
leading to dataset inadequacy.

In our reinforcement pretrained model, we focus on controlling the CTG exclusively. This design
simplifies the regulation of RTG based on the CTG. Simultaneously controlling both RTG and CTG
is challenging, as determining the feasibility of RTG/CTG pairs is complex (Liu et al., 2023). Instead,
the reinforcement pretrained model is designed to control CTG and pursue the maximal possible
return for a given CTG, eliminating the need to justify the feasibility of specific solutions. Figure 2.(a)
illustrates this relationship, showing that as cost limits increase, the return also increases.
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Figure 2: Evaluation performance of supervised and reinforcement pretraining with varying
CTG. The curves are displayed across a range of cost limits. For each cost limit, the result is
averaged over 16 distinct OOD evaluation tasks, with each task incorporating edge-oriented goals and
obstacles. The shaded regions indicate standard errors. The x-axis is the CTG. The y-axis is the total
episode return (i.e.,

∑K
k=1 G(τk)) and the maximum episode cost (i.e., maxk∈K Gc(τk)) with the

corresponding CTG. The policy from safe reinforcement pretraining succeeds in converting a higher
cost limit (i.e., a higher CTG) to a higher return while the policy from safe supervised pretraining
fails to do so.

Supervised pretraining depends on a long replay buffer to learn from logged learning histories. Due
to context length constraints, we need to subsample trajectories from these learning histories for
supervised pretraining. These histories are sampled from distinct learning phases: early (low return,
high cost), middle (average return, average cost), and expert (high return, low cost). To make sequence
modeling feasible, trajectories need to be labeled with RTG, which provides information about the
expected phase (Dai et al., 2024). However, this approach requires significantly more data, as noted
by Liu et al. (2023). In contrast, reinforcement pretraining leverages online interaction histories,
eliminating the need to distinguish between different data phases.

Ablations. We further conduct ablation studies on reinforcement pretraining and supervised pre-
training, examining shared factors such as context length and model size, alongside specific factors
such as the dataset size for supervised pretraining. Our findings show distinct sensitivities to these
factors. Reinforcement pretraining is largely unaffected by model size, whereas model size signifi-
cantly influences supervised pretraining performance. For context length, reinforcement pretraining
performs better with longer sequences, while supervised pretraining performs worse. Conversely,
supervised pretraining excels with shorter context lengths, while reinforcement pretraining performs
poorly. These results suggest that learning long-term credit assignment is more challenging in
offline reinforcement learning due to dataset constraints, whereas online learning, with access to
environment interactions, handles long-term credit assignment more effectively. We confirm the
well-established finding that supervised pretraining is highly sensitive to dataset size. When the
dataset is small, the model fails to learn, exhibiting random behavior on out-of-distribution data. In
Figure 5.(c), we compare EPPO to a naive primal–dual solver for (6) with per-episode multipliers λ.
The overall structure of this naive algorithm resembles RCPO (Tessler et al., 2018). EPPO trains more
stably with minimal tuning and solves SafeDarkRoom and SafeDarkMujoco without changes beyond
time-limit related settings (Table 1). The detailed evaluation curves of the ablation study are provided
in Figures 5 & 6 in Appendix E. We evaluate a variant of safe supervised pretraining incorporating
algorithm distillation with noise in Appendix D. The results indicate that learning histories generated
by noisy actions do not effectively represent true learning histories in complex environments with
safety constraints.
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5 RELATED WORKS

ICRL. Learning to improve on a new MDP by interacting with it and without parameter updates is
first studied in meta RL (Duan et al., 2016; Wang et al., 2016). See Beck et al. (2023) for a detailed
survey of meta RL. In general, the demonstrated zero parameter update generalization is weak in
meta RL literature. Most of them rely on task identification, i.e., identifying pretraining tasks that are
similar to the evaluation task and acting as if the evaluation task were the pretraining tasks. Laskin
et al. (2023) coined the word ICRL and demonstrated generalization to evaluation tasks that are far
away from the pretraining tasks, which spurs increasing attention in ICRL. Variations of algorithm
distillation have been proposed for efficient in-context reinforcement learning, including the Decision
Pretrained Transformer (Lee et al., 2023) and Algorithm Distillation with Noise (Zisman et al., 2023).
Both approaches aim to efficiently train transformer models for in-context learning using optimal
policies. See Moeini et al. (2025) for a detailed survey of ICRL. The main novelty of this work is to
first study safe ICRL within the constrained MDP framework.

Safe RL. Safe RL methods commonly adopt CMDP formulations to enforce compliance with
safety constraints during exploration and policy optimization (Garcıa & Fernández, 2015; Gu et al.,
2022; Wachi et al., 2024). Constrained Policy Optimization (CPO) serves as a foundational algorithm
in this area, effectively balancing performance rewards with safety requirements (Achiam et al., 2017;
Wachi & Sui, 2020). Subsequent extensions, such as Constrained Update Projection and Constrained
Reward Policy Optimization, have built upon CPO to enhance theoretical guarantees and practical
applicability in safe RL scenarios (Xu et al., 2021; Yang et al., 2022). Shielding with function
encoders and conformal prediction has been proposed to handle unseen OOD environments (Kwon
et al., 2025). However, this work emphasizes runtime adaptation rather than learning algorithms
through contextual information. Reward-Constrained Policy Optimization (Tessler et al., 2018) is the
closest work to EPPO, but it enforces safety only in expectation rather than at the episode level. From
the offline RL perspective, the Constrained Decision Transformer (Liu et al., 2023) leverages the
transformer architecture for safe RL. However, existing approaches enforce safety constraints only
when the evaluation task closely matches the pretraining tasks. In contrast, our safe ICRL framework
verifies safety constraints even on evaluation tasks that differ substantially from the pretraining
distribution.

Safe Meta RL. Safe meta RL has emerged to enable fast adaptation to new tasks while enforcing
safety constraints. Earlier work (Luo et al., 2021) uses a three-phase approach that meta-learns a
safety critic from offline data across multiple environments, adapts it to a new environment with a
smaller offline dataset, and employs the adapted safety critic with a recovery policy to ensure safe
learning while minimizing constraint violations. Khattar et al. (2023) provides task-averaged regret
bounds for rewards and constraints via gradient-based meta-learning. More recently, Guan et al.
(2024) proposes a cost-aware context encoder that uses supervised cost relabeling and contrastive
learning to infer tasks based on safety constraints. To our knowledge, all previous safe meta RL
works require parameter updates to achieve safe adaptation in evaluation tasks. By contrast, our work
on safe ICRL enables safe adaptation to evaluation tasks without parameter updates.

6 CONCLUSION

This work pioneers the study of safe ICRL, examining both reinforcement pretraining and supervised
pretraining. We develope a safe supervised pretraining appraoch based on the constrained decision
transformer, showcasing its capability for OOD generalization while revealing its dependence on
dataset size. We introduce EPPO, a safe reinforcement pretraining approach via exact penalty
policy optimization to enforce strict cost constraints within each episode. Theoretically, we prove
that EPPO’s fixed point satisfies strict safety constraints while maximizing rewards. We conduct
a thorough empirical study of the proposed approaches in challenging benchmarks that provably
demand OOD generalization (Proposition 1). Such demand for OOD generalization is missing in
many benchmarks used by previous works (Laskin et al., 2023; Zisman et al., 2023; Son et al., 2025)
Through those challenging benchmarks, we confirm that our pretrained safe ICRL agents adapt to
not only unseen but also OOD evaluation tasks while respecting the safety constraints. We envision
this work guiding the development of robust, generalizable, and safe RL algorithms for real-world
applications.
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This research complies with the ICLR Code of Ethics (https://iclr.cc/public/
CodeOfEthics). Our study on safe in-context reinforcement learning (ICRL), conducted within
the framework of constrained Markov Decision Processes, was evaluated exclusively in simulated
Safe-Gym environments. No human subjects, sensitive data, or real-world deployments were involved,
thereby eliminating potential ethical risks associated with such factors. Our methodology prioritizes
safety by designing an ICRL agent that adheres to user-specified cost thresholds during adaptation to
out-of-distribution tasks, ensuring safe behavior when required. No conflicts of interest or external
funding influenced this work. We are committed to upholding the highest standards of research
integrity, transparency, and reproducibility as outlined in the ICLR guidelines. All implementation
details will be made publicly available in the supplementary materials.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, the complete source code will be provided in https://osf.io/
rs759/files/osfstorage?view_only=9810212f4bc5448b8f1caaafd334353d.
Training details are documented in Appendix C, and all theoretical results, including assumptions
and derivations, are presented with clear explanations in Appendix B.
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A ALGORITHM

Algorithm 1: EPPO Implemented with DDPG
1: Input: discount factor γ, cost threshold δ, number of training steps Tmax, batch size N , env time

limit tmax, episodes-per-history range [Kmin,Kmax], CTG range [CTGmin,CTGmax],
environment distribution E

2: Initialize: actor π(· | s,H,CTG; θp), reward critic Q(s, a; θv), cost critic Qc(s, a; θc), and
target nets {π′, Q′, Qc′}. λ← 0, replay buffer R← ∅

3: for T ← 1 to Tmax do
4: K ← rnd(Kmin,Kmax), CTG← rnd(CTGmin,CTGmax), t← 0

H ← [ ] // list of episodes
5: sample env∼ E , st ← env.reset()
6: for k ← 1 to K do
7: tstart ← t, CTGk ← CTG, ek ← [ ] // list of transitions
8: while t− tstart < tmax and st not terminal do
9: sample at ∼ πθp( · | st, H,CTGk)

10: step at in env→ (st+1, rt+1, ct+1)
11: append (st, at, rt+1, ct+1, st+1,CTGk) to ek
12: CTGk ← CTGk − ct+1, t← t+ 1
13: end while
14: append ek to H
15: st ← env.reset()
16: end for
17: append H to R
18: D ← Sample(R,N) // N trajectories
19: reset accumulators: dθv ← 0, dθc ← 0, dθp ← 0, dλ← 0
20: for each trajectory H ∈ D do
21: for each episode e ∈ H do
22: Ce ←

∑
c∈e c, Cmax

e ← −∞, ve ← 1{Ce > δ}
23: for each (st, at, rt+1, ct+1, st+1,CTGt) ∈ e do
24: sample a′t+1 ∼ πθ′

p
( · | st+1, H≤t+1,CTGt − ct+1)

25: Lv ←
(
Qθv (st, at)− [ rt+1 + γQθ′

v
(st+1, a

′
t+1) ]

)2
26: dθv ← dθv +∇θvLv

27: Lc ←
(
Qc

θc
(st, at)− [ ct+1 + γQc

θ′
c
(st+1, a

′
t+1) ]

)2
28: dθc ← dθc +∇θcLc

29: sample ât ∼ πθp( · | st, H≤t,CTGt)
30: Lp ← −Qθv (st, ât) + λ ve Q

c
θc
(st, ât)

31: dθp ← dθp +∇θpLp

32: end for
33: Cmax

e ← max {Cmax
e , Ce}

34: end for
35: dλ← dλ+ Cmax

e
36: end for
37: apply parameter updates to θv, θc, θp, λ using dθv, dθc, dθp, dλ
38: update targets π′, Q′, Qc′

39: end for

Note that our proposed optimization (7) can be used with any policy optimizer. In our implementation,
we chose DDPG following Grigsby et al. (2024a) to support continuous and discrete action spaces
and to enable highly parallel data-collection while doing off-policy training.

B PROOFS

We organize the proofs into two subsections: one for Theorem 1 and one for Proposition 1. For
Theorem 1, we first prove the supporting lemma and then Theorem 1 itself. For Proposition 1, we
provide proofs for both Total Variation Distance and KL Divergence.
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B.1 PROOF OF THEOREM 1

Lemma 1. Let [x]+ = max{0, x}. Fix (λ̄, s̄) ∈ R × R. If for all sufficiently small η > 0,
λ̄ = [λ̄+ η s̄]+, then λ̄ ≥ 0 , s̄ ≤ 0 , and λ̄ s̄ = 0.

Proof. Consider two cases.

Case λ̄ > 0. For all small η > 0, λ̄+ ηs̄ > 0, hence

[λ̄+ ηs̄]+ = λ̄+ ηs̄.

The equality λ̄ = [λ̄+ ηs̄]+ then forces λ̄ = λ̄+ ηs̄, so s̄ = 0. Thus s̄ ≤ 0 and λ̄s̄ = 0 hold.

Case λ̄ = 0. Then we have 0 = [ηs̄]+ = max{0, ηs̄} for all small η > 0, which implies ηs̄ ≤ 0,
hence s̄ ≤ 0. Trivially λ̄s̄ = 0 and λ̄ ≥ 0.

We now proceed to the proof of Theorem 1.

Proof. Let J(π) := Eπ

[∑K
k=1 G(τk)

]
in this proof. We prove the theorem in both directions. Also

let g+k (π) := max{0, gk(π)}, and s(π) := maxk gk(π).

1. Fixed point⇒ Primal optimal.

Feasibility. By the lemma 1, s(π̄) ≤ 0. Since s(π̄) = maxi gi(π̄), each gi(π̄) ≤ 0. Thus π̄ is feasible.

Optimality. Let π⋆ be any optimal feasible policy (exists by assumption 1). On the feasible set,
g+i (π

∗) = 0, so LΣ(π
∗, λ̄) = J(π∗). Because π̄ maximizes LΣ(·, λ̄),

J(π̄) = LΣ(π̄, λ̄) ≥ LΣ(π
⋆, λ̄) = J(π⋆).

Conversely, by optimality of π⋆ among feasible policies and feasibility of π̄, J(π̄) ≤ J(π⋆). Hence
J(π̄) = J(π⋆).

2. Primal optimal⇒ Fixed point.

Let λ⋆ be an optimal dual solution (assumption 2). Then by strong duality,

p⋆ = max
π

(
J(π)−

∑
i λ

⋆
i gi(π)

)
.

Therefore, for every π,

J(π)−
∑
i

λ⋆
i gi(π) ≤ p⋆. (8)

Using λ⋆
i ≤ ∥λ⋆∥∞ and g+i (π) ≥ gi(π),∑

i

λ⋆
i gi(π) ≤ ∥λ⋆∥∞

∑
i

g+i (π).

Subtract this from J(π) and combine with (8):

LΣ

(
π, ∥λ⋆∥∞

)
= J(π)− ∥λ⋆∥∞

∑
i

g+i (π) ≤ J(π)−
∑
i

λ⋆
i gi(π) ≤ p⋆. (9)

For a primal-optimal π⋆, feasibility gives
∑

i g
+
i (π

⋆) = 0, hence
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LΣ

(
π⋆, ∥λ⋆∥∞

)
= J(π⋆) = p⋆.

Together with (9), this shows

π⋆ ∈ argmax
π

LΣ

(
π, ∥λ⋆∥∞

)
.

It remains to check multiplier stationarity at λ̄ = ∥λ⋆∥∞. By complementary slackness,∑
i λ

⋆
i gi(π

⋆) = 0. If ∥λ⋆∥∞ > 0, at least one constraint is active at π⋆, so maxi gi(π
⋆) = 0.

Hence [λ̄+ η s(π⋆)]+ = [λ̄+ η · 0]+ = λ̄ for all small η > 0. If ∥λ⋆∥∞ = 0, π⋆ is unconstrained-
optimal with s(π⋆) ≤ 0, and [0 + η s(π⋆)]+ = 0. In both cases the projection is stationary. Thus
(π⋆, λ̄) with λ̄ = ∥λ⋆∥∞ is a fixed point.

On the multiplier update.
If s(πt+1) > 0, then λt+1 = [λt + ηs(πt+1)]+ ≥ λt. If constraints are strict (s(πt+1) < 0), then
λt+1 ≤ λt. Under persistent violation, λt eventually exceeds ∥λ∗∥∞, by the exact-penalty bound (9),
any maximizer of LΣ(·, λt) is then feasible/optimal and s(πt+1) ≤ 0, so λ stabilizes.

Note: The full convergence proof to an exact fixed point is beyond the scope of this work.

B.2 PROOF OF PROPOSITION 1

Total Variation Distance First, we present the exact form of probabillites for Ptrain(O) and Ptest(O)
where O ∈ O = {(i, j)}1≤i≤n,1≤j≤m. Let the map of center c = (ic, jc). Then, Ptrain((i, j)) ∝
e−αd((i,j),c) and Ptrain((i, j)) ∝ e−αd((i,j),c) implies:

Ptrain((i, j)) =
e−α((i−ic)

2+(j−jc)
2)

Z−α
and Ptest((i, j)) =

eα((i−ic)
2+(j−jc)

2)

Zα
,

where Z−α =
∑

(i′,j′)∈O e−α((i′−ic)
2+(j′−jc)

2) and Zα =
∑

(i′,j′)∈O eα((i
′−ic)

2+(j′−jc)
2). Let us

define supp(P ) as the set {x ∈ Dom(P ) | P (x) > 0}. If supp(Ptrain)∩ supp(Ptest) = ∅ holds, then
for each O ∈ O, Ptest(O) > 0 implies Ptrain(O) = 0, and Ptrain(O) > 0 implies Ptest(O) = 0. Hence,
we obtain

δ(Ptrain,Ptest) =
1

2

∑
O∈O
|Ptrain(O)− Ptest(O)| (10)

=
1

2

∑
O∈O

(|Ptrain(O)|+ |Ptest(O)|) = 1. (11)

Now, we claim that supp(Ptrain) ∩ supp(Ptest) = ∅ as α→∞. For the training distribution Ptrain, the
term e−α((i−ic)

2+(j−jc)
2) → 0 if (i− ic)

2
+ (j − jc)

2
> 0. Hence,

Z−α = e−α·0 +
∑

(i,j)̸=(ic,jc)

e−α((i−ic)
2+(j−jc)

2) → 1

Hence, only when i = ic and j = jc, we have positive probability Ptrain((ic, jc)) =
e−α·0

Z−α
= 1

Z−α
= 1.

Thus supp(Ptrain)→ {(ic, jc)}

For the test distribution Ptest, the term eα((i−ic)
2+(j−jc)

2) is maximized when (i− ic)
2
+

(j − jc)
2 is maximized. Let dmax = max(i,j)∈O

(
(i− ic)

2
+ (j − jc)

2
)

, and Oedge ={
(i, j) ∈ O | (i− ic)

2
+ (j − jc)

2
= dmax

}
. Then the partial function can be decomposed into

two terms:
Zα =

∑
(i,j)∈Oedge

eαdmax +
∑

(i,j)/∈Oedge

eα((i−ic)
2+(j−jc)

2).
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Hence, as α→∞, (i− ic)
2
+(j − jc)

2
< dmax implies that eα((i−ic)

2+(j−jc))

Zα
→ 0. Thus, we obtain

Ptest ((i, j))→

{
1

|Oedge | if (i, j) ∈ Oedge ,

0 otherwise
as α→∞.

Hence, supp(Ptest) → Oedge. Finally, we conclude that supp(Ptrain) ∩ supp(Ptest) = {(ic, jc)} ∩
Oedge = ∅ as α→∞.

KL Divergence We keep the same notation to the proof so far. By the definition of KL divergence
and explicit form of the probabilities, we have

DKL (Ptrain ∥Ptest ) =
∑

(i,j)∈O

Ptrain ((i, j)) log
Ptrain ((i, j))

Ptest ((i, j))
(12)

=
∑

(i,j)∈O

Ptrain ((i, j)) log
Zαe

−α((i−ic)
2+(j−jc)

2)

Z−αeα((i−ic)2+(j−jc)2)
(13)

=
∑

(i,j)∈O

Ptrain ((i, j))

(
log

Zα

Z−α
− 2α((i− ic)

2 + (j − jc)
2)

)
. (14)

As we have shown in the previous proof for TV distance, Zα → |Oedge|eαdmax and Z−α → 1. Hence,

for pairs (i, j) ̸= (ic, jc), the associated term Ptrain ((i, j))
(
log Zα

Z−α
− 2α((i− ic)

2 + (j − jc)
2)
)

goes to Ptrain ((i, j)) (log |Oedge|+ αdmax − 2αd((i, j), c)). For (i, j) ̸= (ic, jc) and dmin =
min(i,j)̸=(ic,jc) d((i, j), c), we have

Ptrain ((i, j)) =
e−αd((i,j),c)

Z−α
≤ e−αdmin → 0. (15)

Since the exponential rate converges to zero more rapidly than the linear rate with respect to α, the
term Ptrain ((i, j)) (log |Oedge|+ αdmax − 2αd((i, j), c)) goes to 0 as α → ∞. Therefore, we only
consider the term when (i, j) = (ic, jc). But this term comes down to Ptrain((i, j)) log

Zα

Z−α
, which

goes to∞ as α→∞. Thus DKL (Ptrain ∥Ptest ) ≥ ∞.
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C TRAINING DETAILS

(a) Training Environments

(b) Test Environments

SafeDarkroom SafeDarkMujoco-Point SafeDarkMujoco-Car

Figure 3: During training, goals and obstacles are generated with a center-oriented approach, while
during evaluation, they are edge-oriented. This applies consistently to both goals and obstacles. We
set α = 0.5 for generating goals and obstacles. The red color denotes the robot, the green color
represents the goal location, and obstacles are depicted in shades of blue.

Environments. We introduce the details of the environments. The environments are visualized in
Figure 3. Both environment uses α = 0.5 to generate goals and obstacles.

For SafeDarkRoom, We use a 9x9 Grid and give one reward upon reaching the goal and incur one
cost when going on an obstacle cell. We terminate the episode whenever the agent reaches the goal,
which results in a truly sparse reward, often referred to as DarkRoom Hard.

For SafeDarkMujoco, a continuous state and action space counterpart to SafeDarkRoom, the agent
lacks lidar information and is blind to goal and obstacle locations. Instead, it perceives its own
position and rotation matrix. A sparse reward is obtained when the agent reaches the goal, terminating
the episode. To enhance runtime efficiency, we employ macro actions, compressing n simulation
steps into a single step. For example, with n = 5, a policy action is repeated over five internal
simulation steps, reducing the default 250 simulation steps to 250

n . In our experiments, we set n = 5.

Reinforcement Pretraining. While running Algorithm 1 for reinforcement pretraining, we resam-
ple a new environment from the training distribution described in Section 4 every K episodes. For
each environment, a CTG is also sampled, ranging from [1, 15] for SafeDarkRoom and [10, 50] for
SafeDarkMujoco. The remaining hyperparameters are provided in Table 1.

Our architecture follows Grigsby et al. (2024b). We employ an MLP time-step encoder that maps
each tuple (St, At, Rt, Ct) to an embedding, which is then fed into a transformer-based trajectory
encoder. A prediction head outputs either the action distribution (for discrete actions) or the value
(for continuous actions).
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In practice, since the environments are generated randomly, it is possible that an environment doesn’t
have a feasible solution, causing the agent to inevitably violate the cost threshold. This results in λ
growing too large in an attempt to mitigate these cases. To avoid this, we suggest capping λ to a
reasonably large value. Ignoring abnormally high-cost episodes is another solution worth exploring.

Parameter SafeDarkRoom SafeDarkMujoco-Point SafeDarkMujoco-Car
Kmin, Kmax 50, 50 20, 20 20, 20
Episode time limit tmax 30 75 75
Replay buffer capacity 100,000 100,000 100,000
Embedding Dim 64 64 64
Hidden Dim 64 64 64
Num Layers 4 4 4
Num Heads 8 8 8
Seq Len 1500 1500 1500
Attention Dropout 0 0 0
Residual Dropout 0 0 0
Embedding Dropout 5 5 5
Learning Rate 3e-4 3e-4 3e-4
Betas (0.9, 0.99) (0.9, 0.99) (0.9, 0.99)
Clip Grad 1.0 1.0 1.0
Batch Size 32 32 32
Num Updates 30k 10k 10k
Optimizer Adam Adam Adam

Table 1: Parameters for Safe Reinforcement Pretraining

Supervised Pretraining. In supervised pretraining, we collect a dataset D = {Ξi} comprising
multiple trajectories, where each trajectory Ξi

.
= (τ1, τ2, . . . , τK) represents a sequence of episodes

generated by running existing safe RL algorithms on various CMDPs. Each episode τk in a trajectory
Ξi comprises states, actions, rewards, and costs, with the episode return G(τk)

.
=

∑T
t=1 Rt and

cost-to-go Gc,t(τk)
.
=

∑T
i=t+1 Ci, expected to increase and decrease, respectively, with k as the RL

algorithm learns. The policy πθ is trained autoregressively using an imitation learning loss to distill the
behavior of RL algorithms demonstrated in the dataset, following the concept of algorithm distillation
(Laskin et al., 2023). For discrete action spaces (e.g., SafeDarkRoom), we use a cross-entropy loss,
defined as:

LCE(θ) = EΞi∼D
[
− log πθ(A

k
t | Sk

t , H
k
t , Gt(τk), Gc,t(τk))

]
, (16)

where πθ is the categorical distribution over discrete actions. For continuous action spaces
(e.g., SafeDarkMujoco), we use an L2 loss, where the transformer outputs an action mean
µt = µθ(S

k
t , H

k
t , Gt(τk), Gc,t(τk)), minimizing:

LL2(θ) = EΞi∼D

[∥∥Ak
t − µθ(S

k
t , H

k
t , Gt(τk), Gc,t(τk))

∥∥2] . (17)

These losses extend the imitation learning loss from Equation (5) by incorporating RTG and CTG
conditioning, aligning with our goal of distilling RL algorithms into the policy’s forward pass while
optimizing for safety constraints.

Dataset Collection. For supervised pretraining, we collect learning trajectories using reinforcement
learning (RL) algorithms. As our base RL algorithm, we employ PPO-Lagrangian Schulman et al.
(2017); Ray et al. (2019), which is designed to maximize rewards while enforcing safety constraints.
These trajectories capture behaviors that learn to avoid obstacles.

To introduce variation in the learned behaviors, we vary the cost limits in PPO-Lag across multiple
settings. For the SafeDarkRoom environment, we use three cost limits: 0, 2.5, and 5.0. For the
SafeDarkMujoco environment, we similarly use three cost limits: 0, 5, and 10. For each cost limit,
we collect 50,000 steps of learning history in both environments.

Hyper Parameters. We report the hyperparameters used for reinforcement pretraining (Table 1) and
supervised pretraining (Table 2). Reinforcement pretraining adopts the AMAGO framework (Grigsby
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et al., 2024a) integrated with our novel EPPO method. Supervised pretraining employs a constrained
decision transformer as the backbone (Liu et al., 2023).

Parameter SafeDarkRoom SafeDarkMujoco-Point SafeDarkMujoco-Car
Embedding Dim 64 64 64
Hidden Dim 512 256 256
Num Layers 8 8 8
Num Heads 8 8 8
Seq Len 100 300 200
Attention Dropout 0.5 0.5 0.5
Residual Dropout 0.1 0.1 0.1
Embedding Dropout 0.3 0.3 0.3
Learning Rate 3e-4 3e-4 3e-4
Betas (0.9, 0.99) (0.9, 0.99) (0.9, 0.99)
Clip Grad 1.0 1.0 1.0
Batch Size 512 128 128
Num Updates 300k 500k 500k
Optimizer Adam Adam Adam

Table 2: Parameters for Safe Supervised Pretraining
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Figure 4: Performance Comparison of Algorithm Distillation (AD) style supervised pretraining and
Algorithm Distillation with Noise (AD-EPS) style supervised pretraining in SafeDarkRoom. AD-EPS
fails to generalize in OOD environments.

In this section, we compare the performance of Algorithm Distillation (AD) (Laskin et al., 2023)
and Algorithm Distillation with Noise (AD-EPS) (Zisman et al., 2023) in SafeDarkRoom. AD-EPS
is designed to learn in-context RL algorithms using datasets generated from a perturbed optimal
policy. This approach allows efficient generation of learning trajectories from a single optimal
policy. However, our results in complex environments with cost signals reveal that AD-EPS relies
on artificial trajectories. AD-EPS fails to learn effective in-context RL algorithms when relying
solely on perturbed optimal policies, as the perturbations do not account for obstacle avoidance in
SafeDarkRoom environment and instead introduce random action variations.
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Figure 5: Ablations of Safe Reinforcement Pretraining on SafeDarkRoom. (a), (b) The evaluation
is set up similarly to Question (i). For context length, we compare 150 and 3000 against the base
value of 1500. For model size, we compare embedding dimensions 32 and 128 against the base of 64.
(c) At each training step, the average total return of 50 episodes across 10 random test environments,
and the average Q Value across 50 episodes of 250 random train enironments are plotted. EPPO is
easier to tune and more stable to train than the naive primal-optimal method.

E ABLATION STUDIES

In this section, we present our ablation studies on reinforcement pretraining and supervised pretraining,
examining shared factors such as context length and model size, as well as specific factors like
dataset size for supervised pretraining. Our findings reveal distinct sensitivities to these factors.
Reinforcement pretraining remains largely unaffected by model size, whereas supervised pretraining
performance is significantly influenced by model size (See Figures 5.(b) and 6.(b)). Regarding
context length, reinforcement pretraining benefits from longer sequences, while supervised pretraining
exhibits degraded performance with longer contexts. Conversely, supervised pretraining performs
better with shorter context lengths, where reinforcement pretraining struggles (See Figures 5.(a)
and 6.(a)). These results indicate that learning long-term credit assignment is more challenging in
offline reinforcement learning due to dataset constraints, whereas online learning, with access to
environment interactions, manages long-term credit assignment more effectively. We also confirm
the well-established finding that supervised pretraining is highly sensitive to dataset size, with models
failing to learn and exhibiting random behavior on out-of-distribution data when the dataset is small
(See Figure 6.(c)).
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Figure 6: Ablations of Safe Supervised Pretraining on SafeDarkRoom. The evaluation is set up
similarly to Question (i). For context length, we use a smaller base model and test three sequence
lengths: 100, 500, and 1000. For dataset size, large refers to the full dataset, medium uses 50% of the
dataset, and small uses 5% of the original dataset. Model size increases with the number of hidden
layers: 2, 4, and 8, keeping other factors constant.
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