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ABSTRACT

Document Visual Question Answering (DocVQA) has introduced a new paradigm
for end-to-end document understanding, and quickly became one of the standard
benchmarks for multimodal LLMs. Automating document processing workflows,
driven by DocVQA models, presents significant potential for many business sec-
tors. However, documents tend to contain highly sensitive information, raising
concerns about privacy risks associated with training such DocVQA models. One
significant privacy vulnerability, exploited by the membership inference attack, is
the possibility for an adversary to determine if a particular record was part of the
model’s training data. In this paper, we introduce two novel membership inference
attacks tailored specifically to DocVQA models. These attacks are designed for
two different adversarial scenarios: a white-box setting, where the attacker has full
access to the model architecture and parameters, and a black-box setting, where
only the model’s outputs are available. Notably, our attacks assume the adver-
sary lacks access to auxiliary datasets, which is more realistic in practice but also
more challenging. Our unsupervised methods outperform existing state-of-the-art
membership inference attacks across a variety of DocVQA models and datasets,
demonstrating their effectiveness and highlighting the privacy risks in this domain.

1 INTRODUCTION

Automated document processing fuels a significant number of operations daily, ranging from fintech
and insurance procedures to interactions with public administration and personal record keeping. Up
until a few years ago, document processing services relied on template-based information extraction
models, which were created ad-hoc for each client. Although these approaches allowed for good
control of client data and could be extended to new documents with a few examples, they were
limited in scalability and difficult to maintain. Consequently, the introduction of Document Visual
Question Answering (DocVQA) Mathew et al. (2021) in 2019 has resulted in a paradigm shift in
document processing services, enabling end-to-end generic solutions to be applied in this domain.
DocVQA leverages multimodal large language models (LLMs) to streamline business workflows
and provide clients with novel ways to interact with the document processing pipeline.

However, as cloud-based DocVQA solutions become more prevalent, significant privacy risks
emerge, particularly concerning the potential leakage of sensitive information through model vul-
nerabilities. Indeed, during the training of a DocVQA model, each document can have several
associated question-answer pairs, with each pair considered a unique training data point. As a re-
sult, a single document can appear multiple times in the dataset, which significantly raises the risks
associated with privacy vulnerabilities. This repeated exposure enhances the likelihood of the model
memorizing specific details, thereby increasing the potential for data leakage during privacy attacks.
Furthermore, scanned document images often have high resolutions necessary for posterior analysis,
but they need to be rescaled for processing by image encoders, potentially rendering content unread-
able. To mitigate this issue, many DocVQA models utilize a dual representation of the document
Huang et al. (2022); Tang et al. (2023), comprising both a reduced-scale image and OCR-recognized
textual content. This approach introduces additional challenges, as sensitive information may leak
through multiple modalities.

Membership inference attacks are among the most prominent techniques for assessing privacy vul-
nerabilities in machine learning models. These attacks enable an adversary to determine whether a
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specific data point is included in the training dataset. However, there is limited research on member-
ship inference risks in the context of multimodal models. Among the few studies, Ko et al. (2023);
Hu et al. (2022) utilize powerful pre-trained models on large datasets to construct an aligned embed-
ding space for the two modalities—image as input and text as output—allowing for the inference of
membership information. Unfortunately, the reliance on these pre-trained models poses challenges
for document-based tasks, particularly in DocVQA scenarios, where an alignment model capable
of aligning the (document,question) as input and the answer as output is currently unavailable. Re-
cently, Tito et al. (2024) introduced a provider-level membership inference attack against DocVQA
models aimed at determining whether a provider (group) that may supply multiple invoice docu-
ments is part of the training dataset. In contrast, our research focuses on membership information
at a finer granularity, specifically targeting the inference of whether a single document is included
in the training dataset. Current MIA solutions that exploit standard features such as output logits,
probabilities, or loss are difficult to adapt to the DocVQA context, where outputs are generated in
an auto-regressive manner. Additionally, legal constraints surrounding copyright and private infor-
mation complicate centralized model training, making it challenging to create auxiliary datasets that
capture the variability and richness of real-world data. As a result, shadow training of proxy models
becomes infeasible.

In this work, we take a structured approach to privacy testing for DocVQA models. We design a
novel Document-level Membership Inference Attack (DocMIA), that deals with the multiple ap-
pearance of the same document in the training set. To overcome the difficulty in extracting typical
metrics (e.g. logit-based) in this scenario of auto-regressive output generation, we propose a new
method based on model optimisation for individual samples that allows us to generate novel, dis-
criminative features for the DocMIA. We apply this approach to three different multimodal models.
We propose attacks both for white-box and black-box models - to overcome the lack of auxiliary
datasets we propose an alternative way for transfering knowledge from the attacked model to a
proxy. We demonstrate that our methods yield state of the art results against a number of baseline
methods.

To summarize, we make the following contributions:

1. We present the first document-level membership inference attacks specifically targeting
multi-modal models for Document Visual Question Answering.

2. We introduce two novel auxiliary data-free attacks for both white-box and black-box set-
tings, leveraging novel discriminative metrics for DocMIA.

3. We explore three distinct approaches to quantify these metrics: fine-tuning layers (FL),
FLLoRA, and input gradients (IG).

4. Our attacks, evaluated on two benchmark datasets across three different models, outperform
existing state-of-the-art membership inference attacks as well as baseline attacks.

2 RELATED WORK

Membership Inference Attack. Membership inference attacks have been extensively explored in
various applications to highlight privacy vulnerabilities in deep neural networks or to audit model
privacy (Shokri et al., 2017). These attacks are categorized into two types: white-box and black-box
settings. In white-box settings, the adversary has full access to the target model’s internal param-
eters and computations (Carlini et al., 2022; Yeom et al., 2018; Nasr et al., 2019; Rezaei & Liu,
2021; Sablayrolles et al., 2019; Li & Zhang, 2021), enabling the use of informative features like loss
values, logits, and gradient norms. Conversely, in black-box settings, the adversary is limited to the
model’s outputs, such as predicted labels or confidence scores (Choquette-Choo et al., 2021; Shokri
et al., 2017; Salem et al., 2018; Sablayrolles et al., 2019; Song & Mittal, 2021; Hui et al., 2021). The
literature indicates that white-box attacks tend to be more effective due to the availability of richer
features (Song et al., 2019; Nasr et al., 2019). In this paper, we propose tailored attacks for both
settings, considering a more challenging scenario where the adversary lacks an auxiliary dataset
–which is used to train shadow models that mimic the behavior of the target model and are subse-
quently exploited to enhance attack performance– and is restricted to a limited number of queries.
Regarding gradient-based membership inference attacks, research on using gradients as features has
been limited. Nasr et al. (2019) leveraged the L2-norm of gradients with respect to model weights
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for membership inference. Rezaei & Liu (2021) suggested using the distance to the decision bound-
ary as a metric but found it ineffective for this purpose. In contrast, we introduce novel strategies
called FL, FLLoRA, and IG, demonstrating that the L2-norm of the cumulative gradient—computed
using these methods—provides a robust signal for membership inference. While Maini et al. (2021)
and Li & Zhang (2021) also explored distance metrics, but from input points for membership infer-
ence in image classification tasks, their approaches lack scalability and applicability in our context,
which involves larger-scale models with a wider vocabulary of tokens.

Membership Inference Attack Against Multi-modal Models. Research works into the privacy
vulnerabilities of multi-modal models is still in its early stages. Recently, Tito et al. (2024); Pinto
et al. (2024) proposed reconstruction attacks that exploit Document Visual Question Answering
(DocVQA) model memorization to recover hidden values in documents. They black out specific
target values in documents and query the model with questions about the modified documents. Since
the model memorizes training data, it often reconstructs the hidden target values. Tito et al. (2024)
also introduced a membership attack against DocVQA models to infer whether a document provider,
with multiple documents, is included in the training dataset. However, as far as we know, no research
has yet explored membership inference attacks at document-level granularity. Additionally, Ko
et al. (2023); Hu et al. (2022) leverage powerful pre-trained models on large datasets to create an
aligned embedding space for the two modalities to infer membership information. Unfortunately, the
reliance on these pre-trained models introduces difficulties for document-based tasks, especially in
Document Visual Question Answering (DocVQA) contexts, where an appropriate alignment model
for aligning (document, question) inputs to corresponding answers is not yet available. Furthermore,
the success of both attacks hinges on the availability of auxiliary datasets leveraged by the adversary,
which are key to executing the attack effectively. In this paper, we present two membership inference
attacks specifically tailored to tackle the unique characteristics of DocVQA models.

3 BACKGROUND

3.1 DOCUMENT-BASED VISUAL QUESTION ANSWERING

DocVQA is a multimodal task where natural language questions are posed based on the content
of document images. Notably, it establishes a unified query-response framework applicable across
various document understanding tasks, such as document classification, information extraction.

Formally, the DocVQA task is defined as follows: given a question-answer pair (q, a) related to a
document image x, the method F must generate an answer â = F(x, q) such that â closely matches
the correct answer a. More concretely, given Dt = {(xi, qi, ai)}Nt

i=1 as a set of valid training
examples, a model F , parameterized by θ, is trained to maximize the conditional log-likelihood of
the ground truth via the following loss:

L(θ) = − log pθ(ai|xi, qi) (1)

Standard metrics for evaluating DocVQA include Accuracy (ACC) and Normalized Levenshtein
Similarity (NLS) Biten et al. (2019), which measure the similarity between the predicted and correct
answer. In the following sections, for clarity, we often omit the data example index i from the
notation, unless referencing specific examples is essential for the discussion.

3.2 DOCUMENT-LEVEL MEMBERSHIP INFERENCE ATTACK

Membership Inference Attacks (MIAs) (Shokri et al., 2017) exploit privacy vulnerabilities to deter-
mine if a specific data point was included in the training set of a machine learning model. We extend
this definition to the Document-level MIA, which is particularly suited in the DocVQA context.

Given access to a trained DocVQA model F and a document x drawn from its data distribution
D, along with a set of question-answer pairs Q = {(qi, ai)}Mi=1 related to the information in the
document, an adversary A designs a decision rule fA(x,Q;F) to classify the membership status
of x, aiming for fA(x,Q;F) = 1 if x is a member of the training set, otherwise a non-member.
It is important to note that the adversary is focused solely on the membership of the document
x, rather than the entire DocVQA data point (x, q, a), which is typically the target of prior MI

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

attacks. Moreover, since a single document is associated with many question-answer pairs, this
allows the adversary to query the same document using multiple questions that seek various pieces
of information.

4 DOCMIA AGAINST DOCVQA MODELS

In this section, we elaborate on the threat models relevant to the Document-level membership infer-
ence attacks we perform, focusing specifically on two scenarios: white-box and black-box access.
We first explain our intuition behind our optimization-based attacks in the white-box setting, then
adapt this approach to our black-box attacks.

4.1 THREAT MODEL

MI attacks can be either a useful or harmful tool in various real-world scenarios, particularly when
sensitive data such as documents are used to train ML models. On the positive side, MI attacks can
act as a privacy auditing tool. For instance, in legal document processing, law firms may use MI
attacks to evaluate whether proprietary or confidential documents, such as contracts or court filings,
were included in model training, thereby identifying potential privacy risks. Conversely, MI attacks
can be maliciously leveraged. As an example, a business competitor could exploit these attacks on
an invoice-processing system to infer the presence of specific invoices in the training data, exposing
confidential business relationships and leading to risks such as supplier poaching.

In both scenarios, we assume that the adversary aims to infer membership information for a test set
of documents, determining whether each document is included in the training dataset. These docu-
ments may or may not be part of the target model’s training data. Crucially, we further assume the
adversary lacks access to an auxiliary data Daux that reflects the characteristics of these test docu-
ments. This assumption is realistic, as obtaining real-world documents at scale is often prohibitively
difficult due to their confidential nature and regulatory restrictions. Consequently, this negates the
application of MI attack techniques that require training shadow models. Even if auxiliary docu-
ments were available, training numerous shadow document-based models—typically designed with
a large number of parameters—would be prohibitively expensive.

Based on the previous examples, we refer to the owner of the document model as the trainer and
the law firms or competitors as the adversary. Given the document distribution D, the trainer trains
a document-based model Ft with private access to Dt ∼ D, following a training algorithm T , that
defines the model architecture, optimization process, and related details. The adversary owns the set
of sensitive documents Dtest ∼ D, where Dt ∩Dtest ̸= ∅, |Dtest| = Ntest; but does not know which
documents are in Dt. Given a document x ∈ Dtest with a set of related queries Q = {(qi, ai)}Mi=1,
the adversary’s goal is to determine whether x ∈ Dt or x /∈ Dt.

We formulate two attack settings, which specify the adversarial knowledge about the model Ft and
its data distribution D:

White-box Setting. In this scenario, the adversary has full access to the internal workings of the
target model, including the model’s architecture, weights, gradients from any further training and
other internal details. However, the adversary does not have access to the training algorithm T .

Black-box Setting. Here, the adversary can only interact with the target model through an API,
which only returns a prediction â for each question q on x. In addition, the adversary is constrained
by a limited number of queries. As in the white-box setting, the adversary has no information about
T . This setting reflects the most challenging case (Nasr et al., 2019; Song et al., 2019). Additionally,
we assume that the adversary possesses full knowledge of the DocVQA task for which the target
model has been trained, including the common training objective and the types of documentsand
the exact training questions. This assumption about the training objective/types of documents is
realistic, as general task details are often available to provide users with instructions and guidelines,
making such information accessible to adversaries as well. Assuming the knowledge of the exact
questions is also plausible, as an adversary can approximate them based on the knowledge of the
training document type. We discuss this assumption further and also conduct experiments in the
setting without assuming the knowledge of exact training questions in the Appendix G.2.
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4.2 WHITE-BOX DOCMIA

In the white-box setting, the adversary has access to the resulting model trained on private data.
However, shadow training is not feasible, due to the unavailability of auxiliary dataset and the pro-
hibitive cost of training if any, effectively ruling out the use of a supervised attack classifier. To
this end, our strategy is to develop unsupervised metric-based attacks. Specifically, for each docu-
ment in the attack test set, we optimize over the model parameters using one question-answer pair
from that document. During this optimization, we extract a set of features that serve as signals for
the membership inference attack. By repeating this process across all question-answer pairs for the
document, we aggregate the features into a feature vector. Using these feature vectors, we apply an
unsupervised clustering algorithm to separate member documents from non-members in the feature
space. A critical component of our strategy is the selection of features that provide a discrimina-
tive descriptor for the clustering algorithm, enabling it to differentiate between the two membership
classes. Some widely-studied metrics, such as logit and loss, may be challenging (as shown in Sec-
tion 6) in this setting. Therefore, we opt to design new features, accompanied by a utility score, to
form an informative feature vector for our attacks.

4.2.1 OPTIMIZATION-BASED DISCRIMINATIVE FEATURES

In this section, we introduce two novel discriminative membership features derived from an opti-
mization process for our attacks against DocVQA models.

x∗ is in of the training set

x∗ is out of the training set

Figure 1: Visualization of our
fine-tuning strategy in the pa-
rameters space. Each contour
plot represents the optimization
landscape with respect to each
pair (a∗

i , q
∗
i ) from document x∗.

In general, the average ∆ com-
puted by fine-tuning on mem-
ber document x∗

in is smaller than
fine-tuning on non-member doc-
ument x∗

out.

Intuition. Since DocVQA models are typically trained on multiple
question-answer pairs per document, the model parameters likely
converge to minimize the average distance to these ground-truth
answers after training. As a result, fine-tuning the model on one
question-answer pair through an iterative process is necessary to ex-
tract more reliable membership signals. More importantly, this op-
timization on training documents may converge faster than to non-
training documents, due to the lower generalization error. Figure 1
illustrates our reasoning.

We provide a formal definition of the distance feature.

Definition 4.1 (Optimization-based Distance Feature). Given a
model F parameterized by θ, let the model be initialized with θ0.
After undergoing a gradient-based optimization process O, the pa-
rameters converge to θ∗ according to a specified training objec-
tive L. The distance feature is then defined as the L2-norm of the
change in parameters:

∆(θ0, θ
∗) = ||θ0 − θ∗||2 (2)

This feature measures the difference between the initial parameters
θ0 and the converged parameters θ∗, as an approximation of the
optimization trajectory toward the optimal solution.

Specifically, we fine-tune the target DocVQA model on an individ-
ual document/question-answer pair and compute the distance re-
quired to reach the optimal answer. A small average distance indi-
cates the document is likely part of the training set, while a larger
distance suggests a non-training document. In addition, the number
of optimization steps serves as an orthogonal feature that reflects
the efficiency of the optimization process. With an optimal learning
rate and a good initialization provided from the target model, opti-
mization for training documents typically converges in fewer steps
compared to non-training documents. Consequently, we include
both the distance feature and the number of optimization steps in
our feature set for white-box attacks.
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4.2.2 METHODOLOGY

We now formally present our attack strategy, assuming white-box access to the target model Ft.

For any document x ∈ Dtest and a set of question-answer pairs Q, the goal is to assign a features
descriptor Fx. This is achieved by first extracting a set of features through the optimization process
O on a single question-answer pair. These features are aggregated across multiple questions then
concatenated to construct Fx. Repeating this process over Dtest, we apply an unsupervised clustering
algorithm to differentiate member documents from non-members based on their features descriptors.

Following our intuition, for each question-answer pair (q, a), we fine-tune the target model param-
eter θt using gradient descent to maximize the conditional probability pθ(a|x, q), as defined by the
objective in Equation 1. The optimization process always starts from the target model parameters θt,
and the learning rate α controls the optimization speed. During this process, we query the model at
each step s using q, tracking its prediction quality against (q, a) via a utility function U , either ACC
or NLS. The optimization stops when no further improvements is observed, governed by a threshold
τ or after a maximum of S steps. At the end of the optimization, we evaluate the distance ∆ based
on Equation 2, record the number of steps taken s, and aggregate the utility evolution throughout
the process to obtain an overall DocVQA score u. Collectively, these features serve as membership
signals for the current (q, a) pair in relation to the target document x.

Since each document is associated with a varying number of question-answer pairs M , we employ
an aggregation function Φ to aggregate the features across all M questions, producing in a scalar
value for each feature. Optionally, we can utilize a diverse set of aggregation functions to further
enrich the feature set. After aggregation, we normalize all aggregated features to ensure they are on a
consistent scale. The features descriptor Fx assigned to document x is constructed by concatenating
these normalized features. The specific assignment algorithm for each document x is detailed in
Algorithm 1 in the Appendix. Finally, we apply a clustering algorithm to the set of descriptors
extracted from the target documents in Dtest to differentiate members from non-members. We predict
the cluster with the larger ∆ to correspond to non-member documents.

Fine-tuning Ft, as described above, can help differentiate between members and non-members.
However, as the optimization must be performed on a single document/question-answer pair at a
time, this approach is relatively slow given the model’s size and the complexity of the data pre-
processing. To address this and improve the efficiency of the attack, we introduce three variants of
the method, as illustrated in Appendix Figure 5:

Optimize One Layer (FL). Instead of optimizing all parameters, we hope that gradients with respect
to a single layer’s parameters can provide sufficient signal for membership classification. In this
variant, we select one specific layer L to optimize while keeping the remaining parameters fixed.
We ablate the choice of layer for this method in Appendix D. In addition, we consider a variant
leveraging LoRA Hu et al. (2021), termed FLLoRA, where the LoRA parameters are initialized
with Kaiming initialization He et al. (2015). From Algorithm 1, we replace θ to θL or the LORA
parameters of the layer L, denoted as LORA(θL), respectively.

Optimize the Document Image (IG). By switching the perspective to the input space, this variant
directly optimizes the pixel values of the document image x. The underlying intuition remains
the same: training documents require less self-tuning allowing the model to converge faster to the
correct answer than non-trainings. However, this assumes the target model allows differentiation of
the document image through its architecture. Accordingly, we replace θ with x from Algorithm 1
while freezing the target model parameters θ.

These variants reduce computational costs while maintaining attack performance, providing more
practical options when the size of Dtest increases.

4.3 BLACK-BOX DOCMIA

In the black-box setting, the attack model’s access is restricted to Dtest and the predicted labels.
To address these limitations, we propose a distillation-based attack strategy. The key idea is to
transfer knowledge about the private data Dt from the black-box model Ft to a proxy model Fp,
parameterized by ω. With full control over the proxy model, the attacks we design for the white-box
setting can be fully applied to this proxy model.
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Specifically, the black-box model is first employed to generate labels for each question in Dtest,
creating a query dataset Dquery = {(xi, Qi)}Ntest

i=1 where Qi = {(qj ,Fθt(xi, qj))}Mj=1. The proxy
model Fp is then trained on this query dataset, with the objective to maximize the likelihood of
the predicted answer pω(Fθt(xi, qj)|xi, qj). In essence, the goal is to replicate the label-prediction
behavior of the black-box model. By doing so, we aim to transfer the label space structure from
the black-box to the proxy model, with the expectation that the membership features embedded in
the black-box model will also be transferred, thus making our attack assumptions under white-box
setting valid. Figure 5(c) illustrates the scheme of our proposed attack.

Since our focus is on the document domain, we initialize Fp using a publicly available checkpoint
ωpt, pre-trained with self-supervised learning on unlabeled document dataset Dpt, which is inacces-
sible and assumed to be disjoint from the private dataset Dt. This initialization equips the proxy
model with a certain level of document understanding while ensuring it has no prior knowledge of
the private dataset. As a result, it enables the proxy Fp to better mimic the prediction behavior and
internal dynamics of the black-box model Ft after fine-tuning.

It is important to note that, in this scenario, the adversary lacks information of the black-box training
algorithm T . This means there is no advantage in terms of model architecture or other training
details when constructing the proxy model. As a result, the choice of the proxy model, optimizer,
learning rate, etc., is independent of the target model. However, as we demonstrate empirically in
later sections (Section 6.1), while there is a clear benefit when the proxy model shares the same
architecture as the black-box model, our attack strategies remain effective even when using entirely
different architectures. This suggests that the proposed approach is robust and can be applied without
relying on specific model classes or requiring detailed knowledge of the black-box model.

5 EXPERIMENTAL SETUP

5.1 TARGET DATASET AND MODEL

Target Dataset. We study two established DocVQA datasets in the literature for our analysis:
DocVQA (DVQA) Mathew et al. (2021) and PFL-DocVQA (PFL) Tito et al. (2024). Both datasets
are designed for extractive DocVQA tasks, where the answer text is explicitly found within the
document image. Each document in these datasets is accompanied by varying number of questions
that target various aspects of understanding and reasoning.

Target Model. We consider three state-of-the-art models which are designed for document under-
standing tasks models: (1) Visual T5 (VT5) Tito et al. (2024) (250M parameters) follows the tradi-
tional design by utilizing Optical Character Recognition (OCR) to facilitate the reasoning process. It
leverages the T5 model, which is pre-trained on the C4 corpus Raffel et al. (2020), along with a Vi-
sion Transformer backbone that has been pre-trained on document data. (2) Donut Kim et al. (2022)
(201M parameters) is one of the first end-to-end DocVQA models capable of achieving competi-
tive performance without relying on OCR. It is pre-trained on a large collection of private synthetic
documents. (3) Pix2Struct Lee et al. (2023) is another OCR-free document model available in two
version: Base (282M parameters) and Large (1.3B parameters). This model is pre-trained to perform
semantic parsing on an 80M subset of the C4 corpus. We utilize publicly available checkpoints from
Hugging Face1 Wolf et al. (2020).

For the PFL-DocVQA dataset, we consider two targets: VT5, using the public checkpoint provided
by the authors2, and Donut, which we successfully trained to achieve strong performance following
the training procedure from the authors. For the DocVQA dataset, we attack four targets: VT5,
Donut, and Pix2Struct (both Base and Large), all of which have publicly available checkpoints. In
the black-box setting, we use VT5 and Donut as proxy models. To train the proxy models on the
query set Dquery, we initialize them with their public pre-trained checkpoints—the same checkpoints
used to fine-tune the target models on the respective target datasets, as outlined in their respective
papers. For more details on the models and datasets, please refer to Appendix A and E.

1https://huggingface.co/models
2https://benchmarks.elsa-ai.eu/?ch=2
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Model SCORE-TA SCORE-UA SCORE-UAall LOSS-TA GRADIENT-UA SCORELOSS-UAall Min-K%† Min-K%++†

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

PF
L VT5 62.33 64.13 61.000.0 68.800.0 60.670.0 60.670.0 57.83 62.81 60.670.0 60.670.0 60.670.0 60.670.0 57.17 64.84 61.33 72.16

Donut 73.33 75.14 68.330.0 75.770.0 71.170.67 71.333.32 73.67 78.99 70.670.0 69.550.0 70.830.0 69.670.0 36.5 32.09 50.5 60.35
D

V
Q

A VT5 75.67 75.75 72.170.0 76.180.0 75.170.0 75.130.0 73.67 77.99 71.170.0 67.540.0 75.500.0 76.020.0 71.0 76.16 66.67 74.56
Donut 79.67 79.53 75.970.07 79.570.07 80.500.0 81.100.0 51.83 53.46 77.170.0 75.920.0 80.500.0 81.100.0 47.0 48.38 53.33 59.89
Pix2Struct-B 67.33 67.97 68.170.0 71.360.0 69.130.07 67.670.09 59.33 64.63 66.00.0 68.320.0 69.000.0 67.480.0 68.0 72.8 54.50 66.99

Table 1: Results from Baseline Attacks.. Gray color indicate attacks conducted in the black-box setting. †
indicates methods requiring grey-box access. Results are reported based on five random seeds for KMEANS, if
any. The methods with the best average performance across the two metrics are highlighted in bold.

5.2 IMPLEMENTATION

Since the optimization process involves several hyperparameters; thus, our strategy is to tune the set
of hyperparameters such that our attacks remain effective against each target model under white-box
settings, which we then utilize to mount attacks on black-box models.

Assuming the knowledge of training algorithm T is unavailable for either white-box or black-box
settings, we use Adam Kingma (2014) as the optimizer OPT and fix this choice across all our attack
experiments. We explore the impact of learning rate α, the selected layer L, and we carefully tune
the values of threshold τ in the ablation study (Appendix D). Following this, we select the optimal
set of hyperparameters for each model and apply these settings in all black-box experiments. For
the aggregation Φ, we consider 4 aggregation functions {AVG; MIN; MAX; MED} for each feature,
denoted as Φall. Throughout our experiments, we employ KMEANS as the clustering algorithm.

5.3 EVALUATION METRIC

Using the official split of each target dataset, we sample 300 member documents from the train-
ing split and 300 non-member documents from the test split, resulting a total of Ntest = 600 test
documents. We report Balanced Accuracy and F1 score as this evaluation metrics for the attack’s
success in the balanced setting, as in prior works (Salem et al., 2018; Watson et al., 2022; Ye et al.,
2022). In addition, we evaluate our attacks using True Positive Rate (TPR) at 1% and 3% False Pos-
itive Rate (FPR), following standard practices in recent MIA literature Carlini et al. (2022). For all
unsupervised attacks, including baseline methods, the membership score for each document is com-
puted as the Euclidean distance between its feature vector and the centroid of the member cluster
obtained via KMEANS.

5.4 BASELINE

In the black-box setting, we evaluate three MI attacks as baselines, which only requires the pre-
dicted answer to determine membership: Score-Threshold Attack (SCORE-TA), Unsupervised
Score-based Attack (SCORE-UA) (Tito et al., 2024), and Unsupervised Score-based Attack with
Φall (SCORE-UAall).

For the grey-box setting, we consider two additional baselines: Min-K%Shi et al. (2023) and Min-
K%++ Zhang et al. (2024), which assumes access to token-level probabilities of the generated an-
swers to compute the membership score of each document.

In the white-box setting, where loss or gradient information is accessible, we evaluate three further
baselines: Loss-Threshold Attack (LOSS-TA) (Yeom et al., 2018), and Unsupervised Score+Loss
Attack (SCORELOSS-UAall).

For detailed descriptions of these methods, we refer readers to Appendix C.

6 EVALUATION

6.1 WHITE-BOX SETTING

Baseline Performance Evaluation. Table 1 (white) shows the performance of baseline attacks in
the white/gray-box setting. LOSS-TA, akin to the thresholding loss attack in Yeom et al. (2018),
performs poorly on complex DocVQA models, achieving under 60% accuracy for most targets. In
contrast, SCORELOSS-UAall, which combines DocVQA scores and loss-based features, achieves
stronger results: 81% F1 on Donut, 75% on VT5, and 69% on Pix2Struct. However, it underper-
forms LOSS-TA on PFL-DocVQA, with a 3% drop in accuracy and 8% in F1, likely due to high
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Figure 2: White-box Setting: Our proposed at-
tacks consistently achieve high performance, gen-
erally outperforming the considered baselines.

DVQA PFL
VT5 Donut Pix2Struct-B VT5 Donut

LOSS-TA 14.00 7.67 5.33 3.00 14.67
GRADIENT-UA 9.33 6.00 5.00 3.00 8.33
SCORELOSS-UAall 4.67 8.67 6.67 4.00 6.33
Min-K% 10.67 1.33 5.33 5.67 0.00
Min-K%++ 7.00 9.33 10.33 8.00 2.00

FL 5.67 10.67 11.00 8.67 7.00
FLLoRA 11.33 5.33 6.33 3.33 10.00
IG 5.67 8.00 10.33 2.33 11.00

Table 2: White-box Setting: TPR at 3% FPR. Com-
parison across all white-box methods, with the best-
performing method for each metric highlighted in bold.
We refer the readers to Appendix F for the complete re-
sults.

loss variance in this dataset. GRADIENT-UA, , which incorporates one-step gradient information,
matches the performance of score-based attacks, suggesting that the gradient serves as a useful signal
for membership inference. None of the baseline methods generalizes well across all target models.

Our Proposed Attacks Outperform the Baselines. We evaluate our proposed attacks—FL,
FLLoRA, and IG —in the white-box setting across target models. As shown in Figure 2, our meth-
ods consistently achieve high performance, indicating that optimization-based features generalize
well across various models. Compared to all baselines, our attacks achieve either the best or near-
best performance on both target datasets, with notable F1 scores of 72% against VT5 and Pix2Struct,
and 82.5% against Donut. Against GRADIENT-UA, our optimization-based features yield up to a
10% improvement in F1 on Donut, indicating that single-step gradients are insufficient for reliable
membership inference. From Table 2, our attacks consistently excel in the low-FPR regime, of-
ten surpassing or matching the strongest baselines. For instance, FL achieves a TPR of 8.67% at
3% FPR against VT5 (PFL-trained), despite minimal overfitting, and a TPR of 11.00% at the same
FPR against Pix2Struct-B on DocVQA. Additionally, our methods outperform both Min-K% and
Min-K%++ across all target models, underscoring their effectiveness, particularly for DocMIA set-
ting. These results highlight the privacy risks posed by optimization-based features in membership
inference. For full results and in-depth analysis, please refer to Appendices F and G.

Why Are Our Proposed Attacks More Effective? We evaluate the effectiveness of our
optimization-based features compared to traditional metrics such as loss or single-gradient norms.

The Loss-based attack LOSS-TA assumes that member documents exhibit lower loss values than
non-member documents after training the target model Ft. While this approach leverages the gen-
eralization gap, it proves too simplistic for large-scale models that are trained with complex train-
ing process to minimize overfitting. The generalization capability of these models, especially in
DocVQA tasks, often reduces the sensitivity of the loss as a membership indicator. Our attacks,
on the other hand, leverage the optimization landscape with respect to the model parameters, con-
ditioned on each question-answer pair. We hypothesize that the distance resulting from parameter
optimization pairs from a member document will be smaller compared to those for a non-member
document, as depicted in Figure 1. This fine-grained signal, which reflects the model’s internal
response to optimization, offers a more discriminative feature for identifying membership.

As illustrated in Appendix, Figure 8, our distance feature, derived from the optimization process,
provides a better separation between members and non-members compared to loss-based methods
(Figure 7 (top)). The t-SNE visualization van der Maaten & Hinton (2008) from Figure 7 (bottom)
further demonstrates that features derived from our attacks yield a more distinct clustering of mem-
ber and non-member documents in high-dimensional space for all target models, underscoring its
efficacy as a membership indicator, therefore outperforms the loss-based approach.

6.2 BLACK-BOX SETTING

Baseline Performance Evaluation. Table 1 (gray) presents the results of our black-box baseline
attacks, all of which rely on the DocVQA score as the only source of information in this setting.
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Proxy Model VT5

Black-box FL FLLoRA IG

ACC F1 ACC F1 ACC F1

PF
L VT5 63.330.0(+2.33) 69.510.03(+0.71) 63.330.0(+2.33) 69.010.0(+0.21) 62.000.16(+1) 69.350.2(+0.55)

Donut 70.830.0(−0.34) 76.640.0(+0.87) 70.830.0(−0.34) 76.700.0(+0.93) 70.670.0(−0.5) 76.720.0(+0.95)
D

V
Q

A
VT5 74.330.01(−0.84) 75.080.0(−1.1) 74.330.0(−0.84) 74.670.0(−1.51) 73.830.08(−1.34) 75.810.0(−0.37)
Donut 81.670.0(+1.17) 82.540.0(+1.44) 81.170.0(+0.67) 82.090.0(+0.99) 80.170.0(−0.33) 81.890.0(+0.79)
Pix2Struct-B 70.170.0(+1.04) 69.710.0(−1.65) 70.270.23(+1.14) 70.850.07(−0.51) 71.170.0(+2.04) 72.140.0(+0.78)

Pix2Struct-L 71.670.01(+0.84) 72.130.0(+1.30) 70.170.0(−0.66) 71.270.0(+0.44) 71.000.05(+0.17) 73.150.0(+2.32)

Proxy Model Donut

PF
L VT5 61.730.08(+0.73) 64.040.10(−4.76) 61.670.08(+0.67) 63.490.0(−5.31) 55.170.17(−5.83) 57.370.3(−11.43)

Donut 72.170.0(+2.33) 76.240.0(−0.19) 72.670.0(+1.5) 77.470.0(+1.7) 74.500.0(+3.33) 76.430.0(+0.66)

D
V

Q
A

VT5 73.500.0(−4.34) 75.580.0(−4.36) 74.170.0(−1) 76.040.0(−0.14) 74.00.0(−1.17) 75.930.01(−0.25)
Donut 79.500.0(−1) 81.500.0(+0.4) 80.00.0(−0.5) 81.820.0(+0.72) 80.270.0(−0.23) 81.960.0(+0.86)
Pix2Struct-B 70.830.0(+3.04) 71.820.0(+4.88) 70.830.06(+1.70) 71.730.14(+0.37) 71.00.01(+1.87) 71.940.0(+0.58)

Pix2Struct-L 70.830.0(0) 72.950.0(+2.12) 71.00.0(+0.17) 72.980.0(+2.15) 71.00.03(+0.17) 72.810.01(+1.98)

Table 3: Black-Box Setting: Main Results of Black-Box
DocMIA using Donut and VT5 as proxy models. The check-
points for the black-box models are trained on the respective
datasets. Values in parentheses indicate the improvement (pos-
itive/negative) compared to the best number from SCORE-UA-
based baselines. Results are reported over five random seeds.

Target DVQA PFL
VT5 Donut P2S-B P2S-L VT5 Donut

SCORE-TA 9.33 11.00 9.00 9.00 5.00 2.67
SCORE-UA 7.67 15.67 6.67 6.67 3.33 3.33
SCORE-UAall 9.33 11.00 9.00 9.00 5.00 2.67

VT5
FL 12.33 23.00 16.67 5.33 2.00 8.00
FLLoRA 11.33 23.00 9.33 4.67 3.33 2.00
IG 8.33 7.00 7.67 7.00 3.67 6.67

Donut
FL 6.33 4.00 4.67 7.33 1.33 4.00
FLLoRA 6.33 4.00 6.33 8.00 5.33 5.33
IG 5.00 11.00 9.33 6.33 6.33 4.33

Table 4: Black-box Setting: TPR at 3%
FPR using Donut and VT5 as proxy
models. Comparison across all black-box
methods, with the best-performing method
for each metric highlighted in bold. The
complete results can be found in the Ap-
pendix F.

Similar to the loss metric, the score metric is directly correlated with the generalization gap, making
attacks more effective when there is a higher degree of overfitting. This trend is illustrated in Figure
9, where we observe strong MI performance, particularly for the Donut model with 75% in PFL
and 79% F1 score in DocVQA. Meanwhile, both SCORE-UA-based baselines show comparable
performance, especially effective against models trained on DocVQA. Overall, no single method
emerges as the clear winner across all target models.

Our Black-box Attacks outperforms the Baselines. Table 3 presents the key results of our pro-
posed black-box attacks using two proxy models, VT5 and Donut. Several important observations
can be made:

First, we observe a clear advantage of attacking the proxy models distilled with our proposed tech-
niques. Across a wide range of black-box architectures trained on both target datasets, attacks
leveraging the proxy models outperform the black-box baselines in most cases, demonstrating better
MI performance. This suggests that, even without knowledge of the black-box model architecture,
one chosen proxy model still effectively distills certain behaviors from the black-box models which
are membership-indicative, enabling our attacks to infer membership with high accuracy.

When the architecture of the black-box model matches that of the proxy, we consistently observe
improvements in MI performance. This is particularly evident on the PFL-DocVQA dataset when
using both proxy models to attack black-box models of the same type.

Among the target, Pix2Struct proves to be the most vulnerable (both Base and Large versions). Both
VT5 and Donut proxies gains of +3.04% in Accuracy and +4.88% in F1 score over the best baseline,
even against the Pix2Struct-Large model, which exhibits strong generalization and a minimal Train-
Test gap (Figure 9).

Overall, using VT5 as a proxy yields robust results, achieving TPRs of 23.00% and 16.67% against
Donut and Pix2Struct-B, respectively, at 3% FPR on DocVQA, as shown in Table 4 . This aligns
with the observed Train-Test utility gaps in target models (Table 10), allowing proxies to closely
replicate black-box predictions and enhance attack success.

These results suggest that privacy vulnerabilities can be exploited under black-box settings, using
simple distillation-based strategies applied to the model’s output space.

7 CONCLUSION

In this paper, we introduce the first document-level membership inference attacks for Document Vi-
sual Question Answering (DocVQA) models, addressing privacy risks in multimodal contexts. By
employing a structured approach that leverages model optimization techniques, we extract mean-
ingful features that navigate the challenges posed by the intricacies of multimodal data, the frequent
presence of documents in training datasets, and autoregressive outputs. This enables us to propose
novel, auxiliary, data-free attack methods for both white-box and black-box scenarios. Our results,
validated across multiple datasets and models, significantly outperform existing membership infer-
ence baselines, underscoring the critical privacy risks in DocVQA models and the urgent need for
enhanced privacy measures in this rapidly evolving field.
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8 ETHICS STATEMENT

Our research introduces two novel membership inference attacks on Document Visual Question
Answering (DocVQA) models, designed to evaluate the privacy risks inherent in such systems.
While our methodology exposes vulnerabilities that could potentially be exploited for malicious
purposes, the primary objective of this work is to raise awareness about privacy issues in AI systems,
specifically in the context of DocVQA models, and to encourage the development of more privacy-
preserving technologies.

9 REPRODUCIBILITY STATEMENT

In this work, we have made several efforts to ensure the reproducibility of our results. We utilize
public datasets and open-source models, which are clearly described in Section 5.1. The implemen-
tation details of our proposed membership inference attacks are thoroughly presented in Section 5.2
and Appendix E. Additionally, all relevant hyperparameters used in our experiments are provided in
the appendix, offering detailed information for reproducing our results. We will provide a link to
the code for the camera-ready version, enabling future researchers to replicate and extend our work
with ease.
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CV Jawahar, and Dimosthenis Karatzas. Scene text visual question answering. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4291–4301, 2019.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer. Mem-
bership inference attacks from first principles. In 2022 IEEE Symposium on Security and Privacy
(SP), pp. 1897–1914. IEEE, 2022.

Christopher A Choquette-Choo, Florian Tramer, Nicholas Carlini, and Nicolas Papernot. Label-only
membership inference attacks. In International conference on machine learning, pp. 1964–1974.
PMLR, 2021.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Pingyi Hu, Zihan Wang, Ruoxi Sun, Hu Wang, and Minhui Xue. M 4̂ i: Multi-modal models mem-
bership inference. Advances in Neural Information Processing Systems, 35:1867–1882, 2022.

Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, and Furu Wei. Layoutlmv3: Pre-training for
document ai with unified text and image masking. In Proceedings of the 30th ACM International
Conference on Multimedia, pp. 4083–4091, 2022.

Bo Hui, Yuchen Yang, Haolin Yuan, Philippe Burlina, Neil Zhenqiang Gong, and Yinzhi Cao.
Practical blind membership inference attack via differential comparisons. arXiv preprint
arXiv:2101.01341, 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Geewook Kim, Teakgyu Hong, Moonbin Yim, JeongYeon Nam, Jinyoung Park, Jinyeong Yim,
Wonseok Hwang, Sangdoo Yun, Dongyoon Han, and Seunghyun Park. Ocr-free document un-
derstanding transformer. In Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria
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A DOCVQA DATASET

DocVQA Mathew et al. (2021) This dataset contains high-quality human annotations and is widely
used as a benchmark for document understanding. It comprises of real-world administrative docu-
ments across a diverse range of types, including letters, invoices, and financial reports.

PFL-DocVQA Tito et al. (2024) A large-scale dataset of real business invoices, often containing
privacy-sensitive information such as payment amounts, tax numbers, and bank account details. This
dataset is specifically designed for DocVQA tasks in a federated learning and differential privacy
setup, supporting different levels of privacy granularity. The dataset is accompanied by a variant of
MI attacks, where the goal is to infer the membership of the invoice’s owner (i.e., the provider) from
a set of their invoices that were not used during training.

DocVQA PFL-DocVQA

Split Num. Docs Num. Questions Num. Docs Num. Questions

Train 69894 221316 10194 39463
Val 9150 30491 1286 5349
Test 13463 43591 1287 5188

Table 5: Statistics from PFL and DocVQA dataset.
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Figure 3: Updated content: The distribution of number per-document questions from PFL and DocVQA
dataset.

In Table 5, we present statistics for both the DocVQA and PFL-DocVQA datasets, focusing on their
sizes. Additionally, Figure 3 illustrates the distribution of the number of questions per document.
Notably, the distribution is relatively skewed: (1) while a small subset of documents have more than
10 questions, the majority contain fewer than 10 questions, and (2) a small fraction of documents
are associated with a single question. These trends are consistent across both datasets.

B DOCUMENT-LEVEL MEMBERSHIP INFERENCE ATTACKS

We demonstrate the scheme of Document-level Membership Inference Attacks in Figure 4.

Q: Which account should we pay to?
Q: Who is the customer?
Q: Is this confidential?

…

Business 
Invoice

DocVQA
Model

Who is the customer?

Meredith 
Thompson

query

Auxiliary 
Data

Pre-trained 
Model

IN
Aggregate

Deployment

…

Q:What is the total? 
A: $461.00 

Training Data

Q:Who is the vendor? 
A: Kazt Media 

…

Figure 4: The General Scheme of Document-level Membership Inference Attacks. Training: A DocVQA
model has been trained on a dataset comprising a set of documents, each associated with multiple ques-
tions/answers. Inference/Deployment: an adversary exploits this structure by querying the model with several
questions related to a target document. By aggregating the model’s response patterns, the adversary can infer
the membership status of the document in the training set. This demonstrates a significant privacy vulnerability
in document-based models.

Figure 5 illustrates the overall designs of our propose attacks, which revolves around leveraging
optimization-based techniques to infer the membership status of a document. By systematically
optimizing model parameters on individual question-answer pairs, DocMIA extracts discriminative
features that reveal whether a document was part of the training set. Our method applies to both
white-box and black-box models and integrates multiple features for a robust attack.

We also detail the steps of our proposed attack in the Algorithm 1, highlighting the key operations
involved in feature extraction and membership prediction.
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White-box
Model

question

document

predicted 
answer

(a) Optimize the Document (b) Optimize One Layer (c) Distill the Black-box

Figure 5: Variants of our proposed DocMIA. Left: (a) (b) illustrate three attack strategies in the white-box
setting: optimizing either the Document Image or a Single Layer (LoRA). Dashed arrows indicate the back-
propagated gradient during optimization. Right: We distill the black-box into a proxy model, which is then
attacked using the white-box strategies.

Algorithm 1 DocMIA Assignment

1: Input: target model Fθt , target document x ∈ Dtest, question-answer pairs {(qi, ai)}Mi=1, utility function
U , aggregation function Φ.

2: Hyperparameters: optimization steps S, optimizer OPT, learning rate α, threshold τ .
3: for i = 1 to M do
4: Set θ.requires grad = True // Change θ to: θL or LORA(θL) or x and Freeze θ.
5: Initialize: si = 0, ui = {}; li ← 0, θ0 ← θt
6: while si < S do
7: ui ← ui ∪ U(Fθ(x, qi), ai)
8: if (L(θ)− l) < τ then break; // Early stopping
9: end if

10: θ ← OPT(α,∇θ(L(θ))
11: li ← L(θ), si ← si + 1
12: end while
13: ∆i ← ∥θ0 − θ∥ // Compute distance metric
14: end for
15: ∆M = Φ(∆i=1,...,M ); sM = Φ(si=1,...,M );uM = Φ(ui=1,...,M ) // Aggregating over M questions
16: Output: Fx = [∆M , sM , uM ] // Assign membership feature vector

C ATTACK BASELINES

For the black-box setting, we evaluate three MI attacks as baselines, which only requires generated
text to infer the membership of the target document:

Score-Threshold Attack (SCORE-TA) assumes that training documents should achieve higher
scores than non-training ones. This attack, adapted from Yeom et al. (2018), evaluates the pre-
diction â for each question q using the utility function U and computes the average score ū. A
document is then predicted as a member ū ≥ κ, and non-member otherwise. The threshold κ is set
as the average value of ū across Dtest.

Unsupervised Score-based Attack (SCORE-UA) Tito et al. (2024). This attack applies an unsuper-
vised clustering algorithm over the set of average score ū from test documents in Dtest, documents
within the cluster with higher average score are predicted as members.

Unsupervised Score-based Attack - An Extension (SCORE-UAall). This attack extends
SCORE-UA by considering multiple aggregation functions Φall to form the feature vector.

For the grey-box setting, we consider two additional baselines which assumes access to token-level
probabilities of the generated answers a to compute the membership score of each document:
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Min-K%Shi et al. (2023) computes the average log probability of the lowest-K% answer tokens
as the membership score: Min-K% = 1

|Min-K%(a)|Σai∈Min-K(a) log p(ai|a<i). Intuitively, training
documents are less likely to contain low-probability answer tokens, resulting in higher scores.

Min-K%++Zhang et al. (2024) also averages scores from the lowest-K% probability tokens but
assumes that tokens in the predicted answers for training documents have high probabilities or often
form the mode of the conditional distribution. Thus, for each token, the score is computed as:
Min-K%++(a<i, ai) =

log p(ai|a<i)−µa<t

σa<t
with µa<t

and σa<t
are the expectation and standard

deviation of p(ai|a<i) respectively.

We adapt these baselines to DocMIA by using an AVG aggregation function to combine scores
across question-answer pairs within a document. We evaluated K ∈ [0.6, 0.7, 0.8, 0.9, 1.0], which
correspond to corresponds to 60% to 100% the length of the answer and reported the best result.

In the white-box setting, where loss information is available, we consider three additional baselines:

Loss-Threshold Attack (LOSS-TA) Yeom et al. (2018) Similar to SCORE-TA, this attack computes
the average loss l̄ = 1

MΣM
i L(F(x, qi)). A document is predicted as a member if l̄ ≤ κ and

otherwise non-member, where κ is selected as the average value of l̄ across Dtest.

Unsupervised One-step Gradient Attack (GRADIENT-UA) Inspired from Nasr et al. (2019), this
attack utilizes the average norm of the gradient of the loss ∇θL from a single optimization step. It
also incorporates the average score ū as the features to perform clustering.

Unsupervised Score+Loss Attack (SCORELOSS-UAall) This attack extends SCOREUAall, com-
bining the average loss l̄ with the average utility score ū, then aggregating with Φall.

D ABLATION STUDY

In this section, we provide a detailed analysis of the hyperparameter tuning process for DocMIA in
the white-box setting, targeting all the considered models. Given the high computational cost due to
the numerous factors involved, we focus on the key parameters that may potentially affect the attack
performance. Our intuition behind this tuning process is that: achieving a reliable estimate of the
distance ∆ requires the optimization process to converge effectively, which in turn correlates with
higher attack accuracy. Thus in all of our experiments, to increase the likelihood of convergence,
we set the maximum number of optimization steps to S = 200. We fix the maximum number of
questions per document M to 10.

Learning Rate α We first study the effect of α, which controls the speed of the optimization pro-
cess in our attacks. This threshold τ is empirically set to be the average loss change observed
when performing one optimization step after reaching the correct answer. Only the distance ∆
and the number of steps s are used as the features. For FL and FLLoRA attacks, we perform a
hyperparameter search over a grid of learning rates, α ∈ {10−4, 0.001, 0.01, 0.1, 0.5, 1.0}, and
α ∈ {0.1, 0.5, 1.0, 5.0, 10.0, 20.0} for the IG attacks. For FL and FLLoRA, we specifically tune
the embedding projection layer, which projects the final hidden states into the vocabulary space, a
common design choice across all the target models considered.

As shown in Figure 6(a), setting a high learning rate can cause the optimization process to overshoot,
while lower values lead to a more stable but slower convergence. We find that a learning rate of
α = 10−3 consistently delivers the best attack performance across all models.

The layer to tune L We now investigate the impact of layer selection on the performance of our
FL and FLLoRA attacks. All target models in our study follow the transformer encoder-decoder
architecture Vaswani (2017), where each component consists of a stack of attention layers, and a
shared embedding projection layer maps the hidden states to logit vectors for prediction. Given this
common structure, we examine the effect of tuning similar layers across all models, with results for
attack accuracy presented in Table 6.

Our findings reveal that layers closer to the final output exhibit higher privacy leakage in terms of MI
compared to (randomly selected) intermediate layers, likely due to receiving larger gradient updates.
Specifically, fine-tuning the final fully connected layer alone leads to strong attack performance
while also being more efficient in terms of the number of parameters that need to be optimized. This
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Layer VT5(PFL) Donut(DocVQA) Pix2Struct-B(DocVQA)

Embedding Projection Layer 67.0 71.33 68.66
Embedding Layer Norm 65.33 76.0 64.67

Last Decoder Block FC1 68.33 78.0 68
Last Decoder Block FC2 68.17 77.33 68.83
Last Decoder Block Layer Norm 61.83 76.83 67.5

Random Decoder Block FC1 61.33 72.0 67.5
Random Decoder Block FC2 64.0 73.0 65.17

Table 6: Effect of selected layer to tune from each target model. Attack performances are reported in terms
of Accuracy.
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Figure 6: Ablation Study on Learning Rate α and Threshold τ . The best value for each model across all
datasets is used as the hyperparameters in our black-box attacks.

suggests that focusing on the last layers can achieve both high privacy leakage and computational
efficiency in our MI attacks.

Threshold τ With the optimizer OPT and learning rate α fixed, the threshold τ emerges as the
most critical hyperparameter that requires careful tuning for each attack. We experiment with a
wide range of τ values, spanning from 10−6 to 10.0, and select the optimal value based on attack
performance, as demonstrated in Figure 6(b). This optimal τ is then applied consistently in all
subsequent experiments. Careful selection of this threshold is crucial, as it directly influences the
stability and success of the optimization process.

Model αFL αIG S L τFL τIG

VT5
0.001

10.0
200 last FC layer

10−6 1.0
Donut 0.5 1.0 1.0

Pix2Struct-B 0.001 1.0 0.01

Table 7: Best Hyperaremeters from our tuning process with consistent performance across both PFL and
DocVQA dataset.

We summarize the set of tuned hyperparameters for our approach in Table 7.

E ATTACK IMPLEMENTATION

E.1 TARGET MODEL TRAINING

For all target models, whenever feasible, we utilize the public checkpoint fine-tuned on the consid-
ered private dataset from Hugging Face library and adhere to the data processing guidelines, such
as document resolution, as recommended by the authors. We deliberately opt for public checkpoints
for two reasons: (1) to make it consistent to further research in privacy attacks that use the same
trained models, and (2) to minimizing the biases in model training that affect the final results, given
the complexity of the original training process and our limited resources. Table 8 summarizes the
details of the process from which public checkpoints for the target models considered in this work
are obtained. This includes the datasets the models were pre-trained on, before by fine-tuning on
target DocVQA datasets, along with the corresponding download URLs for these checkpoints.
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Model Num. Params Downstream Task Data Checkpoint

Pretrain Finetune Pretrain Finetune

VT5 250M DocVQA C4+IIT-CDIP PFL https://benchmarks.elsa-ai.eu/?ch=2DocVQA

Donut 200M DocVQA CDIP 11M + 0.5M synthesized Docs PFL Ours
DocVQA naver-clova-ix/donut-base† naver-clova-ix/donut-base-finetuned-docvqa†

Pix2struct-B 282M DocVQA BooksCorpus + C4 Web HTML DocVQA google/pix2struct-base† google/pix2struct-docvqa-base†

Pix2struct-L 1.33B google/pix2struct-large† google/pix2struct-docvqa-large†

Table 8: Details of the public checkpoints used as target models in this work. † denotes checkpoint from
Hugging Face.

Model Optimizer Learning Rate Weight Decay Batch Size Scheduler Iteration

VT5 AdamW 2e-4 - 16 - 200k
Donut Adam 3e-5 0.01 4 Linear Warmup 10% 800k

Pix2Struct-B AdaFactor 1e-5 - 4 warmup 1000 steps, cosine decay to 0 800k

Table 9: Details of the training hyperparameter for each target model in this work.

If public checkpoints are unavailable, we fine-tune the selected model on the respective private
dataset, using the pre-trained checkpoint as the initialization, along with the training procedure
outlined by the respective authors. To prevent overfitting, we perform early stopping based on
validation loss, ensuring that all evaluated models generalize well to previously unseen data. We
also use the pre-trained checkpoint to initialize the proxy model Fp to train it on Dquery. We provide
an overview of the training procedure for each target model, based on the descriptions from the
respective papers. These procedures were adapted to fit our computational resources, as outlined in
Table 9.

E.2 TARGET MODEL PERFORMANCE ON DOCVQA

To ensure the utility of the target models for our experiments, we validated that the DocVQA per-
formance of each model checkpoint closely matched the results reported in the respective papers.
Table 10 presents the target models’ performance across both DocVQA datasets. We observe a clear
train-test performance gap, particularly in smaller models, while the gap tends to narrow for more
generalized models or with increased dataset size.

E.3 COMPUTATION AND RUNTIME

All attack methods are implemented using PyTorch and executed on an NVIDIA GeForce A40 GPU
with 45 GB of memory. The maximum runtime for each attack does not exceed 6 hours per run,
depending on the target model’s size and the preprocessing steps required for the data. This runtime
reflects the efficiency of our approach, especially when compared to methods based on shadow
training, which require retraining of large-scale models many times to be effective Carlini et al.
(2022). Our results demonstrate that the proposed attacks are both efficient and scalable, making
them practical for large-scale models in real-world applications.

F TRUE POSITIVE RATE AT LOW FALSE POSITIVE RATE

In this section, we evaluate our attacks using True Positive Rate (TPR) at fixed False Positive Rate
(FPR), following standard practices in recent membership inference attack (MIA) literature. Specif-
ically, we consider TPR at 1% and 3% FPR, as the size of both member and non-member class in
Dtest is 300. For all unsupervised attacks, including baseline methods, the membership score for
each document is computed as the Euclidean distance between its feature vector and the centroid of
the member cluster obtained via KMEANS clustering.

White-box settings. The evaluation results, presented in Table 11, show that our attacks consistently
achieve strong performance, often outperforming or closely matching the best baseline methods
across the target models and datasets. Notably, the FL attack demonstrates robustness in the low-
FPR regime. For instance, against VT5 trained on PFL, it achieves TPR of 3.67% and 8.67% at
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Dataset Model Test Set ACC ANLS Train-Test Gap

PFL

VT5
Original 81.4 90.17 -

MIA 82.74 90.91 11.44
MIA-rephrased 77.59 85.84 -

Donut
Original 74.73 88.66 -

MIA 80.15 91.64 22.2
MIA-rephrased 70.46 80.96 -

DVQA

VT5
Original 60.1 69.33 -

MIA 75.54 81.69 36.22
MIA-rephrased 73.57 79.89 -

Donut
Original 59.26 66.91 -

MIA 78.55 83.42 39.78
MIA-rephrased 72.57 77.12 -

Pix2Struct-B
Original 57.11 68.13 -

MIA 64.42 79.95 25.8
MIA-rephrased 63.81 74.06 -

Pix2Struct-L
Original 64.53 74.12 -

MIA 73.91 82.71 22.11
MIA-rephrased 69.93 79.15 -

Table 10: DocVQA Performance of the target models on PFL and DocVQA dataset. Train-Test Gap is
computed as the different of DocVQA Accuracy between member/non-member documents. MIA denotes the
attack evaluation set, which is a subset randomly sampled from the original train/test set, MIA-rephrased is its
variants with rephrased questions by LLM.

DVQA PFL

VT5 Donut Pix2Struct-B VT5 Donut

1% 3% 1% 3% 1% 3% 1% 3% 1% 3%

LOSS-TA 7.67 14.00 0.67 7.67 2.33 5.33 0.67 3.00 1.67 14.67
GRADIENT-UA 2.33 9.33 3.67 6.00 1.00 5.00 0.33 3.00 1.00 8.33
SCORELOSS-UAall 1.33 4.67 2.67 8.67 2.00 6.67 0.33 4.00 0.67 6.33
Min-K% 2.67 10.67 0.33 1.33(1.00) 0.33 5.33 1.67 5.67 0.00 0.00
Min-K%++ 1.00(2.67) 7.00(10.00) 4.33(0.33) 9.33 0.67(0.33) 10.33 1.00(1.67) 8.00 0.33(0.00) 2.00(1.67)

FL 2.33 5.67 3.33 10.67 6.00 11.00 3.67 8.67 0.33 7.00
FLLoRA 3.33 11.33 2.67 5.33 3.67 6.33 1.33 3.33 0.33 10.00
IG 0.67 5.67 1.33 8.00 3.00 10.33 1.00 2.33 5.67 11.00

Table 11: White-box: TPR at fixed FPR. Comparison across all white-box methods, with the best-performing
method for each metric highlighted in bold. 1% and 3% indicate TPR@1%FPR and TPR@3%FPR respec-
tively.

1% and 3% FPR, respectively, despite this model exhibits minimal overfitting. On DocVQA, FL
achieves TPRs of 6.00% and 11.00% at the same FPR thresholds against Pix2Struct-B.

An interesting observation is the high performance of the LOSS-TA method for VT5 on DocVQA
and Donut on PFL. This performance can be attributed to the clear separation in the loss distribution
between member and non-member samples (Figure 7), which indicates overfitting behavior in these
cases.

We also compare our attacks to two recent baselines, Min-K% Shi et al. (2023) and Min-K%++
Zhang et al. (2024), originally designed for detecting pre-trained data in LLMs. Using the offi-
cial code, we adapt these methods for the DocMIA setting as followed: (1) we aggregate Min-
K% scores across all questions for each document using the AVG function and (2) since pre-
dicted answers in DocVQA models are much shorter than those generated by LLMs, we evaluated
K ∈ [0.6, 0.7, 0.8, 0.9, 1.0], which correspond to corresponds to 60% to 100% the length of the
answer and reported the best result. Our methods outperform both Min-K% and Min-K%++ in MIA
performance across all target models, highlighting the effectiveness of our attack design, particularly
in the context of DocMIAs.

Black-box settings. The results for black-box evaluation are presented in Table 12. We observe
that using VT5 as a proxy model for our attacks generally leads to strong performance, for instance
against Donut and Pix2Struct-B on DocVQA. This can be attributed to the large Train-Test utility
gap observed in the target models (Table 10), which enables the proxy model to closely mimic the
black-box model’s predictions and enhance attack effectiveness.
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Target DVQA PFL

VT5 Donut Pix2Struct-B Pix2Struct-L VT5 Donut

Proxy 1% 3% 1% 3% 1% 3% 1% 3% 1% 3% 1% 3%

SCORE-TA 4.00 9.33 5.00 11.00 3.33 9.00 3.33 9.00 1.00 5.00 0.67 2.67
SCORE-UA 3.67 7.67 4.33 15.67 4.33 6.67 4.33 6.67 0.67 3.33 0.33 3.33
SCORE-UAall 4.00 9.33 5.00 11.00 3.33 9.00 3.33 9.00 1.00 5.00 0.67 2.67

VT5
FL 0.67 12.33 11.67 23.00 2.00 16.67 2.00 5.33 0.67 2.00 5.00 8.00
FLLoRA 4.67 11.33 11.67 23.00 2.33 9.33 1.00 4.67 2.00 3.33 0.00 2.00
IG 1.00 8.33 2.00 7.00 4.67 7.67 2.33 7.00 0.33 3.67 1.33 6.67

Donut
FL 0.33 6.33 0.33 4.00 1.33 4.67 3.00 7.33 0.33 1.33 1.33 4.00
FLLoRA 1.00 6.33 0.33 4.00 2.33 6.33 3.00 8.00 0.00 5.33 2.00 5.33
IG 1.67 5.00 0.67 11.00 3.67 9.33 4.67 6.33 2.67 6.33 1.67 4.33

Table 12: Black-box: TPR at fixed FPR. Comparison across all black-box methods, with the best-performing
method for each metric highlighted in bold. 1% and 3% indicate TPR@1%FPR and TPR@3%FPR respec-
tively.

White-box FL FLLoRA IG

ACC F1 ACC F1 ACC F1

PF
L VT5 66.630.07(+5.96) 72.400.1(+11.73) 65.170.0(+4.50) 70.520.0(+9.85) 61.830.0(+1.16) 69.180.0(+8.51)

Donut 72.670.0(+1.5) 77.960.0(+6.63) 72.830.0(+1.66) 77.940.0(+6.61) 75.170.0(+4) 79.390.0(+8.06)

D
V

Q
A VT5 75.670.0(+0.5) 76.600.0(+1.47) 75.570.08(+0.4) 77.310.13(+2.18) 74.830.0(−0.34) 76.880.0(+1.75)

Donut 80.330.0(−0.17) 82.180.0(+1.08) 80.00.0(−0.5) 81.930.0(+0.83) 80.330.0(−0.17) 82.340.0(+1.24)
Pix2Struct-B 71.670.0(+2.54) 72.220.0(+4.55) 70.500.0(+1.37) 71.950.0(+4.28) 72.000.0(+2.87) 72.820.0(+5.15)

Table 13: White-Box: Main Results of DocMIA. Values in parentheses indicate the improvement (posi-
tive/negative) of our proposed attacks compared to the SCORELOSS-UAall. Compared to all baselines, the
methods with the best average performance across the two metrics are highlighted in bold. Results are re-
ported over five random seeds.

G MORE ON ANALYSIS

In this section, we provide a deeper analysis of the effectiveness of our proposed white-box and
black-box attacks, highlighting their performance relative to the baseline approaches.

G.1 IMPACT OF SELECTED FEATURES

As outlined in the main paper, we fix the set of selected features across all experiments. These
features include the DocVQA score u, the optimization-based distance ∆, and the number of opti-
mization steps s, aggregated using the set of aggregation functions Φall = {AVG; MIN; MAX; MED} .
We first evaluate the impact of individual features and their combinations on attack performance in
the white-box DocMIA setting, using AVG as the aggregation function Φ. The analysis employs the
best hyperparameters identified during the tuning process described in Section D. For the DocVQA
score u, we use the Normalized Levenshtein Similarity (NLS) metric, which measures the similarity
between the predicted answer â and the ground-truth answer a:

NLS =

{
1− NL(â, a) if NL(â, a) < 0.5,

0 if NL ≥ 0.5
(3)

where NL(·, ·) denotes the normalized Levenshtein distance.

Table 14 and Table 16 summarize the attack performance when individual features or their combina-
tions are used. Additionally, Table 15 (Top) compares the attack performance of our optimization-
based features with the loss value ℓ and the gradient norm of the loss with respect to the model
parameters θ. Here, the loss value ℓ is computed uniformly across all target models over K genera-
tion steps, given a (document, question, answer) example (x, q, a) as:

ℓ = −
K∑

k=1

log pθ(ak|a<k, x, q) (4)

When used individually, our proposed optimization-based features outperform the DocVQA score
and the loss in most cases. Our attack methods are particularly effective against target models like
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Donut
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Figure 7: Membership Features against three different target mod-
els on DocVQA Dataset. Top: The distribution of average loss over all
questions from all target documents on each target model. Bottom: T-
SNE visualization of the features used in our proposed attacks.
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Figure 8: Distribution of Av-
erage Distance: Comparing the
ability of the distance feature
to differentiate between mem-
ber and non-member documents
across three models.
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(b) Black-box

Figure 9: MI performance versus the Train-Test gap. The target models exhibit varying Train-Test gaps,
measured by the difference in DocVQA scores between member and non-member documents. Our proposed
attacks remain effective even when the gap is small, with performance steadily improving as the gap increases
across most target models and datasets. In contrast, baseline methods show more variable performance under
these conditions.

VT5 and Donut trained on PFL-DocVQA, which exhibit lower overfitting and small Train-Test gaps
(as shown in Table10). These results highlight that our attacks provide more discriminative features
than the commonly used MIA features.

When combined, our selected features achieve the best or near-best performance across all cases.
Furthermore, extending aggregation functions from AVG to Φall adds notable improvements in attack
effectiveness, as shown in Table 15 (Bottom). These results demonstrate that our proposed feature
set is robust across different target models, making it a reliable choice for DocMIA.

G.2 IMPACT OF THE TRAINING QUESTIONS KNOWLEDGE

So far, our document MI attacks against DocVQA models have assumed complete knowledge of the
original training questions. We now relax this assumption and investigate how the lack of access
to the exact training questions affects attack performance. In practice, an adversary may not have
access to the exact training questions but can approximate them. For example, documents like
invoices often follow standard layouts, and biases in human annotation may lead to predictable
patterns in the types of questions asked during the creation of DocVQA datasets Tito et al. (2024);
Mathew et al. (2021). It is important to note that the original training questions tend to be simple,
natural questions designed to extract specific information from the document. Moreover, the type
of question is inherently linked to the type of document on which the DocVQA model is trained.
For instance, if the target model is trained on invoices, the natural type of question would focus
on extracting essential details from the invoice, such as the “total amount”, framed in a clear and
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VT5

AVG(NLS) AVG(∆) AVG(s) F1

✓ 68.88
✓ 71.5

✓ 70.92

✓ ✓ 71.09
✓ ✓ 71.11

✓ ✓ 71.22

✓ ✓ ✓ 71.53

Donut

AVG(NLS) AVG(∆) AVG(s) F1

✓ 67.58
✓ 71.36

✓ 73.16

✓ ✓ 72.87
✓ ✓ 73.67

✓ ✓ 73.86

✓ ✓ ✓ 73.89

Table 14: Impact of Selected Features on PFL-DocVQA Models.

PFL DVQA

VT5 Donut VT5 Donut Pix2Struct-B

AVG(ℓ) 67.53 67.80 73.43 56.79 69.97
AVG(||∇θL||2) 70.53 71.51 71.91 71.53 66.14

AVG(∆) 71.45 71.36 72.86 57.34 70.57
AVG(s) 70.92 73.16 74.34 60.32 69.00

PFL DVQA

VT5 Donut VT5 Donut Pix2Struct-B

Φ = AVG 71.53 73.89 74.96 72.94 73.22
Φ = Φall 72.4(+0.87) 77.96(+4.07) 76.6(+1.67) 82.18(+9.24) 72.22(-1.0)

Table 15: Comparisons in Attack
Performance in terms of F1 Score:
(Top) between our Optimization-
based Features with the loss value
ℓ and the gradient norm ||∇θL||2.
(Bottom) between AVG and Φall as the
aggregation functions.

VT5

AVG(NLS) AVG(∆) AVG(s) F1

✓ 72.73
✓ 72.86

✓ 74.34

✓ ✓ 75.81
✓ ✓ 75.04

✓ ✓ 74.19

✓ ✓ ✓ 74.96

Donut

AVG(NLS) AVG(∆) AVG(s) F1

✓ 76.88
✓ 57.34

✓ 60.32

✓ ✓ 65.94
✓ ✓ 72.17

✓ ✓ 60.29

✓ ✓ ✓ 72.94

Pix2Struct-B

AVG(NLS) AVG(∆) AVG(s) F1

✓ 72.60
✓ 70.57

✓ 69.00

✓ ✓ 73.20
✓ ✓ 72.87

✓ ✓ 70.17

✓ ✓ ✓ 73.22

Table 16: Impact of Selected Features on DocVQA Target Models. Only AVG is used as the aggregation
function Φ. Attack performances are obtained with our FL method using the best hyperparameters.

straightforward manner e.g., ”What is the total?”. This makes it possible for an adversary to generate
approximate versions of the training questions, simulating a more realistic attack setting.

Model SCORE-TA SCORE-UAall LOSS-TA SCORELOSS-UAall OURS (FL)

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

PF
L VT5 60.67 64.13 55.830.0 46.890.0 54.50 59.19 55.830.0 46.890.0 64.000.0 69.140.0

Donut 69.17 69.72 59.330.0 51.590.0 68.50 66.67 59.170.0 51.490.0 71.130.08 72.070.0

D
V

Q
A VT5 73.67 75.01 74.830.0 74.360.0 71.67 74.06 75.170.0 74.960.0 74.830.0 75.680.0

Donut 69.17 71.23 65.170.0 62.210.0 52.33 53.57 65.170.0 62.210.0 67.670.0 68.510.0

Table 17: Results with Rephrased Questions. Gray color indicate attacks conducted in the black-box setting.
All results are reported based on five random seeds. The methods with the best average performance across the
two metrics are highlighted in bold.

To explore this scenario, we conduct experiments where we paraphrase the original training ques-
tions using Mistral Jiang et al. (2023), and use these rephrased questions as inputs for the MI attacks.
As illustrated in Table 17, the performance of all MI attacks declines when rephrased questions are
used, mirroring the drop in DocVQA model performance (Table 10), which is expected due to the
increased uncertainty introduced by question rephrasing.

Among the baselines, the SCORE-TA attack proves particularly to be robust, especially against
models trained on DocVQA, which show a higher degree of overfitting. In contrast, attacks incorpo-
rating loss-based signals introduce additional noise due to uncertainty, leading to a noticeable drop
in performance.

Despite the rephrasing, our attacks remain effective, maintaining performance levels comparable to
those observed with the original questions, especially against the two PFL models, which demon-
strate a lower degree of overfitting.

We also evaluate our proposed attacks against other methods in this setting, focusing on TPR at 1%
and 3% FPR, with the results summarized in Table 19 and 20.
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FL IG

PF
L Model m = 1(1) m = 2(1) m = 3(85) ALL(300) m = 1(1) m = 2(1) m = 3(85) ALL(300)

VT5 0 0 83.53 87.67 100 100 85.88 86.33
Donut 100 100 100 97.67 100 100 97.65 97

D
V

Q
A

Model m = 1(51) m = 2(60) m = 3(52) ALL(300) m = 1(51) m = 2(60) m = 3(52) ALL(300)

VT5 86.27 71.67 84.62 77.00 90.2 85 86.54 80.67
Donut 88.24 73.33 76.92 77.33 56.86 68.33 55.77 61.33
Pix2Struct-B 90.2 93.33 90.38 87 88.24 88.33 76.92 73

Table 18: Membership Prediction Accuracy on Member Documents with minimal repetition. m denotes
the subset of testing documents with m training questions, with subset sizes shown in parentheses. Compared
to the performance measured on the entire member set (denoted as ALL), our attacks are still robust against
documents with the low risk of memorization.

G.3 THE RESULTING PROXY MODEL

The purpose of training the Proxy Model on Dquery, with labels generated by the black-box model,
is to mimic the prediction patterns of the black-box model. The expectation is that the proxy model
can capture internal decision-making patterns by following the black-box’s prediction strategies.
Instead of optimizing for ground-truth labels, we train the proxy to maximize the likelihood of
the generated labels. The training process concludes when the proxy achieves near-zero training
loss, at which point the final checkpoint is used for the attack. As illustrated in Figure 10(a), the
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Figure 10: The resulting Proxy Model against Pix2Struct-B in the black-box setting. (a) The attack accuracy
improves quickly once the loss reaches near zero. (b) The optimization distance values between member and
non-member documents exhibit a separation similar to that seen in the white-box setting.

attack performance quickly improves as training progresses. The model overfits quickly, with attack
performance reaching its peak early—after just a quarter of the training process—demonstrating the
efficiency of our approach. This suggests that once the proxy model converges, it has effectively
captured informative membership signals from the black-box model, making it ready for the attack.
Moreover, we compare the distribution of optimization distances between the proxy model and the
same model in the white-box setting, as shown in Figure 10(b). The results show a similar degree
of separation between the two clusters in both cases, indicating the proxy model’s effectiveness in
approximating the black-box model’s behavior to a certain extent.

G.4 ATTACK PERFORMANCE AGAINST MINIMAL-TRAINING DOCUMENTS

DocVQA models typically process each question-answer pair independently, resulting in multiple
exposures of each document during training. This increases the likelihood of being memorized by
the model, making such documents more vulnerable to MIAs. Intuitively, documents associated
with fewer training questions should be less exposed and therefore be less vulnerable.

To evaluate this, we measure the accuracy of membership predictions from our attacks on a subset
of member documents in Dtest associated with only a few training questions. These documents
represent a minimal memorization risk, posing a more challenging evaluation scenario. Results
in Table 18 show that our attacks remain effective on these subsets, achieving high accuracy even
for documents m = 1 training question. This demonstrates the robustness of our attacks under
conditions of minimal repetition.
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DVQA PFL
VT5 Donut VT5 Donut

1% 3% 1% 3% 1% 3% 1% 3%

Min-K% 3.00 4.33 0.33 1.00 6.33 20.33 2.00 2.33
Min-K%++ 3.00 4.67 0.00 2.67 6.33 10.00 0.00 7.00

FL 0.67 5.00 3.33 8.00 3.67 17.33 3.00 4.67
FLLoRA 5.00 9.33 0.67 3.67 5.00 9.33 4.33 10.00
IG 5.33 8.00 1.00 5.00 5.33 8.00 1.67 10.00

Table 19: White-box Results: TPR at 1% and 3% FPR
with Rephrased Questions. Comparison to white-box meth-
ods: Min-K% and Min-K%++ methods, with the best method
in bold.

PFL DVQA
VT5 Donut Pix2Struct-B

1% 3% 1% 3% 1% 3%

SCORE-TA 0.33 2.67 3.33 9.67 3 8.67
SCORE-UAall 0.33 2.67 2.33 9.33 4.67 8.67

FL 0.33 1.33 0.33 4.00 1.33 4.67
FLLoRA 1.00 5.33 1.67 5.00 2.33 6.33
IG 2.67 6.33 1.67 11.00 3.67 9.33

Table 20: Black-box Results: TPR at 1% and
3% FPR with Rephrased Questions. Donut is
used as The Proxy Model.

H DEFENSES

To mitigate the privacy vulnerabilities associated with membership inference attacks in Document
Visual Question Answering (DocVQA) systems, we can employ Differential Privacy (DP) tech-
niques (Dwork et al., 2014), specifically through the use of differentially private stochastic gradient
descent (DP-SGD) introduce by Abadi et al. (2016). DP is a robust framework that ensures an in-
dividual’s data contribution cannot be inferred, even when an adversary has access to the model’s
outputs. DP-SGD achieves this by adding calibrated noise to the model’s gradients during train-
ing, thus providing strong theoretical privacy guarantees. However, this approach is not without
its drawbacks; the necessity of noise injection can adversely affect the utility of the trained model,
leading to reduced performance in answering queries accurately. Alternatively, we can consider
ad-hoc solutions such as limiting the number of queries to one question per document in black-box
setting, which would inherently reduce the model’s usability and flexibility in practical applications.
While these measures can enhance privacy, they also necessitate careful consideration of the balance
between privacy protection and the functionality of DocVQA systems.

To evaluate the robustness of our proposed membership inference attacks against Differential Pri-
vacy (DP), we implemented the well-known DP-SGD algorithm. We considered five privacy budget
ε ∈ {8, 32}, with corresponding noise multiplier σ ∈ {0.5767822266, 0.3824234009}, respectively.
The composition of the privacy budget over multiple iterations was calculated using Rényi Differ-
ential Privacy (RDP). We then converted the RDP guarantees into the standard (ε, δ)-DP notion
following the conversion theorem from Balle et al. (2020).

We trained the Donut model on the DocVQA dataset with DP-SGD to provide theoretical privacy
guarantees for individual training documents. Due to resource constraints, we resized document
resolution to a smaller size (1280, 960) compared to (2560, 1920) in the public checkpoint provided
by the original authors, which slightly reduced the model’s DocVQA performance. For additional
details on the effects of document resolution, we refer readers to the original model’s paperKim
et al. (2022). The model was trained using the Adam optimizer with a learning rate of 1e − 4, for
10 epochs, and with a batch size of 16. DocVQA performance was evaluated using the Average
Normalized Levenshtein Similarity (ANLS) metric.

Table 21 summarizes the results. As expected, introducing DP into model training significantly
reduces the attack performance, for example from 73.81% F1 score with non-DP model to 55.09%
at ε = 8, but this comes at the cost of substantial utility degradation, with the DP model achieving
less than half of the performance of the non-DP model, 21.81 of ANLS at ε = 8 compared to 50.12
of ANLS from non-DP checkpoint. For higher privacy budgets (ε = 32), our attacks demonstrate
improved effectiveness, achieving notable gains, +3.75 in F1 and +2 in TPR3%FPR scores compared
to ε = 8, as the model becomes less privacy-constrained.
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ε = 8 ε = 32 ε =∞
ANLS F1 TPR@3%FPR ANLS F1 TPR@3%FPR ANLS F1 TPR@3%FPR

FL
19.16

55.09 2.33
21.81

58.84 4.33
50.12

73.81 7.33
FLLoRA 54.94 2.00 58.94 3.67 73.81 7.33
IG 56.29 1.67 59.35 5.00 73.52 8.67

Table 21: DocMIA Results for Donut trained with DP-SGD on DocVQA dataset. We report the attack
performance of our FL method in terms of F1 score and TPR3%FPR.
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