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ABSTRACT

Community detection and graph clustering are essential for unsupervised data ex-
ploration and understanding the high-level organisation of networked systems.
Recently, graph clustering has received attention as a primary task for graph neu-
ral networks. Although hierarchical graph pooling has been shown to improve
performance in graph and node classification tasks, it performs poorly in identify-
ing meaningful clusters. Community detection has a long history in network sci-
ence, but typically relies on optimising objective functions with custom-tailored
search algorithms, not leveraging recent advances in deep learning, particularly
from graph neural networks. In this paper, we narrow this gap between the deep
learning and network science communities. We consider the map equation, an
information-theoretic objective function for unsupervised community detection.
Expressing it in a fully differentiable tensor form that produces soft cluster assign-
ments, we optimise the map equation with deep learning through gradient descent.
More specifically, the reformulated map equation is a loss function compatible
with any graph neural network architecture, enabling flexible clustering and graph
pooling that clusters both graph structure and data features in an end-to-end way,
automatically finding an optimum number of clusters without explicit regulari-
sation by following the minimum description length principle. We evaluate our
approach experimentally using different neural network architectures for unsuper-
vised clustering in synthetic and real data. Our results show that our approach
achieves competitive performance against baselines, naturally detects overlapping
communities, and avoids over-partitioning sparse graphs.

1 INTRODUCTION

Graph neural networks have enabled applying deep learning to graph-structured data by incorporat-
ing elements of the graph structure in the computational graph of the neural network (Scarselli et al.,
2009; Gilmer et al., 2017; Kipf & Welling, 2017). An important application of learning methods
for graph-structured data is graph clustering, which involves grouping the set of nodes in a graph
into sets, or clusters, of “related” nodes (Schaeffer, 2007). A closely related problem in network
science is studying graph structure at the mesoscale (Griebenow et al., 2019; Petrović et al., 2022;
Villegas et al., 2023), in which a key inference problem is detecting communities of “similar” nodes.
While precise definitions of communities and clusters remain an active research field (Fortunato,
2010; Peixoto & Kirkley, 2022), graph clustering and community detection methods are essential in
unsupervised data exploration and in improving performance and scaling in graph neural networks
(Chiang et al., 2019; Tsitsulin et al., 2023; Bianchi & Lachi, 2023).

Typical network science approaches use search algorithms to minimise an objective function that
characterises what constitutes “good communities”. In contrast, embedding-based approaches, such
as node2vec (Grover & Leskovec, 2016) and DeepWalk (Perozzi et al., 2014), detect communities
by first computing embedding vectors for nodes, followed by clustering in the embedding space,
for example, using k-means (Kojaku et al., 2023; Tsitsulin et al., 2023). Recently, the community
detection approach known as modularity (Newman, 2006) has been integrated with graph neural
networks, improving deep graph clustering, community-aware node labelling, and link prediction
(Murata & Afzal, 2018; Tsitsulin et al., 2023).

Here, we consider the map equation, an information-theoretic objective function for community de-
tection. By expressing the map equation in differentiable tensor form using soft cluster assignments,
we enable end-to-end optimisation of the map equation as a loss function with gradient descent. We
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evaluate our approach using different graph neural network (GNN) architectures against Infomap,
the map equation’s stochastic optimisation algorithm, and various (deep) graph clustering methods
in synthetic and real networks. We find that with soft cluster assignments, the map equation naturally
produces overlapping communities, a task that is typically computationally expensive and requires,
for example, higher-order data (Rosvall et al., 2014; Holmgren et al., 2023) or clustering nodes indi-
rectly through clustering links (Evans & Lambiotte, 2009; Ahn et al., 2010). Using gradient descent,
we avoid getting stuck in spurious optima in degenerate solution landscapes, a problem that Infomap
addresses with a Bayesian approach (Smiljanić et al., 2021).

Our key contributions are:

1. We propose Neuromap, an alternative to the widely-used Infomap algorithm for minimising
the map equation in unsupervised clustering tasks, leveraging recent developments in deep
learning and GNNs.

2. Our differentiable adaptation of the map equation is a loss function compatible with any
GNN architecture to naturally detect overlapping communities, or soft clusters. Adapting
the map equation as an information theoretic-based loss function with a clear underlying
model allows interpretable end-to-end deep graph clustering that leverages node and edge
features to improve real-world performance without requiring explicit regularisation.

3. We evaluate our approach empirically in a suite of synthetic and real-world benchmarks,
and show the improvements it proffers over Infomap and other (deep) graph clustering
methods, and its potential as an exciting avenue for future work.

2 RELATED WORK

Community Detection and the Map Equation. The map equation (Rosvall & Bergstrom, 2008)
is an objective function for community detection and builds on the minimum description length prin-
ciple from information theory (Rissanen, 1978). It detects communities by compressing the modular
description of a network and has been shown to work well in synthetic and real networks from across
domains (Lancichinetti & Fortunato, 2009; Aldecoa & Marı́n, 2013; Šubelj et al., 2016). The map
equation framework has been extended to detect overlapping communities based on observed or
modelled higher-order data (Rosvall et al., 2014; Holmgren et al., 2023), avoid over-partitioning in
sparse networks using a Bayesian approach (Smiljanić et al., 2021), and to deal with sparse con-
strained structures (Edler et al., 2022). Moreover, the map equation framework can incorporate
node features through an extension (Emmons & Mucha, 2019) or by preprocessing data (Bassolas
et al., 2022). Detecting communities relies on Infomap, a stochastic search algorithm that optimises
the map equation (Edler et al., 2017). Other popular approaches to community detection include
the stochastic block model (SBM) and its variants (Peixoto, 2014), used as a benchmark in our
real-world experiments (Tsitsulin et al., 2023), and modularity maximisation which identifies com-
munities by comparing link densities between and within groups of nodes against expected densities
according to a null model (Newman, 2006). For a detailed overview of community detection in
complex networks, we refer to Fortunato (2010) and Fortunato & Newman (2022).

Graph Neural Networks and Hierarchical Pooling. Pooling is an essential component in graph
neural networks for tackling graph-level tasks that combine, or coarse-grain, node and edge-level
features into a single graph-level vector. Pooling also enables building deeper graph neural net-
works that perform better on node and graph classification tasks (Ying et al., 2018; Bianchi & Lachi,
2023). Inspired by pooling in convolutional neural networks, hierarchical pooling involves multistep
coarse-graining that “pools” groups of nodes into single nodes to obtain coarse-grained representa-
tions of a graph. When these groups are meaningful clusters, they have been shown to improve the
performance in hierarchical pooling architectures (Bianchi & Lachi, 2023). Consequently, graph
pooling has become a focus in GNN research, emphasising the importance of graph clustering as a
primary objective for GNNs (Tsitsulin et al., 2023). Chiang et al. (2019) have also shown how graph
clustering enables graph neural networks to scale to larger-than-memory graph-structured data by
partitioning the graph into subgraphs for splitting into mini-batches and avoiding the full space
complexity of training GNNs in full-batch.

Graph Clustering and (Deep) Representation Learning. When clustering a graph’s nodes into
sets of related nodes, those resulting sets may be disjoint, known as “hard” clusters, or they may
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overlap, known as “soft” clusters (Ferraro & Giordani, 2020), synonymous with overlapping com-
munities. Graph clustering has interested the machine learning community for at least 2 decades
(Yu et al., 2005) and we refer readers to Schaeffer (2007) for a detailed survey of earlier works. One
of the earliest approaches involves clustering in the eigenspace of a graph’s Laplacian matrix, popu-
larised in the machine learning community by Shi & Malik (2000). Since then, several methods for
clustering involving representation learning have been developed (Tandon et al., 2021), where neu-
ral representation learning methods such as DeepWalk (Perozzi et al., 2014) and node2vec (Grover
& Leskovec, 2016) have proffered better performance in detecting network communities (Kojaku
et al., 2023). A more recent development in neural graph clustering is deep graph clustering (Tsit-
sulin et al., 2023), where clustering objectives are incorporated into specifically designed loss func-
tions used for graph pooling and graph clustering. This approach enables incorporating both graph
structure and graph features, such as node and edge features, in fully end-to-end optimisation of
clustering objectives. Other approaches include graph autoencoders (Wang et al., 2017; Mrabah
et al., 2022), contrastive learning (Ahmadi et al., 2022), and self-expressiveness (Bandyopadhyay &
Peter, 2021). We refer readers to Yue et al. (2022) and Xing et al. (2022) for recent surveys of deep
graph clustering and community detection with deep learning.

3 THE MAP EQUATION GOES NEURAL

The Map Equation. The map equation (Rosvall & Bergstrom, 2008) is an information-theoretic
objective function for unsupervised community detection based on the minimum description length
principle (Rissanen, 1978). It formulates community detection as a compression problem and uses
random walks as a proxy to model dynamic processes on networks, also called flow. The goal is to
describe the random walk as efficiently as possible by minimising its expected per-step description
length, or codelength, through partitioning the network into groups of nodes, called modules, where
the random walker tends to stay for a relatively long time. In practice, however, the map equation
does not simulate random walks; instead, the codelength is calculated analytically.

Let G = (V,E, δ) be a graph with nodes V , links E, and δ : E → R+
0 a function that specifies non-

negative link weights. When all nodes are assigned to the same module, the codelength, that is the
expected minimum number of bits required to encode the random walker’s position, is the Shannon
entropy H over the nodes’ visit rates (Shannon, 1948), H (P ) = −∑

u∈V pu log2 pu, where pu is
node u’s visit rate and P is the set of node visit rates. In undirected graphs, we compute visit rates
directly as pu = su/

∑
v∈V sv , where su =

∑
v∈V δ (u, v) is node u’s strength. In directed graphs,

we use smart teleportation (Lambiotte & Rosvall, 2012) and a power iteration to compute node visit
rates numerically.

When we reflect the graph’s modular structure in how we partition the nodes, the codelength be-
comes a weighted average of module-level entropies. However, we also need to consider the
so-called index level and its entropy for switching between modules. Minimising the map equa-
tion means balancing between partitioning the network into many small modules for low module-
level entropy and into few large modules for low index-level entropy. This interplay between
module- and index-level codelengths naturally implements Occam’s razor and prevents trivial so-
lutions where all nodes are assigned to the same module or each node is assigned to a single-
ton module (Rissanen, 1978). The map equation calculates the codelength for a partition M as
L (M) = qH (Q) +

∑
m∈M pmH (Pm) . Here, q =

∑
m qm is the rate at which the random walker

enters modules, qm is module m’s entry rate, and Q = {qm |m ∈ M} is the set of module entry
rates; pm is the rate at which the random walker moves in module m, including the module exit rate
mexit, and Pm = {mexit} ∪ {pu |u ∈ m} is the set of module-normalised node visit and exit rates for
module m. We provide more details and an example in Appendix A. For our implementation, we
use the following way of rewriting the map equation (Rosvall & Bergstrom, 2008),

L (M) =
(∑
m∈M

qm
)
log2

(∑
m∈M

qm
)
− 2

∑
m∈M

qm log2 qm

−
∑
u∈V

pu log2 pu +
∑
m∈M

(
mexit +

∑
u∈m

pu
)
log2

(
mexit +

∑
u∈m

pu
)
. (1)

Inspired by recent work that highlighted the importance of deep graph clustering as a primary graph
learning task and introduced modularity as a clustering and pooling objective for graph neural net-
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works (Tsitsulin et al., 2023), we express the two-level map equation (Equation (1)) in differentiable
tensor form for optimisation with GNNs and gradient descent.

Notation. We use the following notation for the remainder of the paper. Boldface italic sym-
bols represent tensors, and non-boldface italic symbols represent scalars. Lowercase italic letter
subscripts of tensors such as i and j in Aij represent tensor indices, following Einstein notation
(Carroll, 2019). The number of tensor indices of a tensor indicates the rank of a tensor. Lowercase
italic letter subscripts of scalars such as i and j in Aij refer to indices of specific elements in tensors.
Integer, Roman letter, and uppercase italic letter subscripts are used to distinguish between different
tensors, scalars, and functions, e.g. (A1)ij = A1 ̸= A2 = (A2)ij . Replacing or fully omitting
tensor indices does not change the definition of a tensor, i.e. pi, pk, and p are equivalent. Swap-
ping tensor indices represents a transpose between two dimensions of the tensor, e.g. Aij

T = Aji.
We omit the use of superscript tensor indices and the distinction between covariant and contravari-
ant vectors. Summations over a tensor index, e.g. di =

∑
j Aij represents a sum over a tensor

dimension, and thereby a reduction of a free tensor index (j in this example). Matrix or tensor mul-
tiplications written with tensor indices are written as tensor contractions, e.g. Tij =

∑
k D

−1
ik Akj ,

summing over a shared tensor index (k in this example). Outer products such as Dik = δikdi are
written without a contraction or sum over a tensor index.

Map Equation Loss. Let Aij be the graph’s weighted adjacency matrix where each element Aij

in the matrix represents the weight on the link from node i to j, where 1 ≤ i ≤ n and 1 ≤ j ≤ n are
integer node indices, and n = |V | the number of nodes in the graph, and Tij the graph’s transition
matrix. In undirected graphs, we calculate Tij =

∑
k D

−1
ik Akj , where Dik = δik

∑
j Aij is the

diagonal degree matrix, D−1
ik is its matrix inverse, and δjk is the Kronecker delta whose elements

δjk = 1 where j = k and δjk = 0 otherwise. The graph’ flow matrix Fij =
∑

k Tik pk δjk, which
specifies the fraction of flow on each link, corresponding to the probability that a random walker
uses each respective link, can be calculated from the transition matrix Tij and pi = 1

d

∑
j Aij ,

which is the vector of node visit rates, and where d =
∑

i,j Dij is the total weighted degree of the
network. In directed graphs, we use recorded smart teleportation (Lambiotte & Rosvall, 2012), and
calculate T as

T = α
1

d
D 1n×n + (1− α)Tij = α

1

d
Dij δij 1j + (1− α)

∑
k

D−1
ik Akj , (2)

where 1j is a vector of ones and α is a teleportation parameter, typically α = 0.15. To obtain the
flow matrix Fij , we calculate pi with a power iteration from Tij .

Let Sia be a soft cluster assignment matrix whose elements Sia encode what fraction of node i is
assigned to cluster a, 1 ≤ i ≤ n and 1 ≤ a ≤ s, where s a specified maximum possible number of
clusters. Eab =

∑
i,j S

T
ia Fij Sjb =

∑
i,j Sai Fij Sjb encodes the fraction of flow between each

pair of clusters, where Eab is the total flow from cluster a to cluster b. Following Equation (1), we
define

e1 =
∑
a,b

Eab −
∑
a,b

δab Eab,
(
e2

)
a
=

∑
b

(Eab − δab Eab) ,

(
e3

)
i
= pi,

(
e4

)
b
=

∑
a

(Eab − δab Eab) +
∑
a

Eab.

Because e3 is constant and does not depend on S, it can be omitted. Finally, we obtain the map
equation in tensor form, where logarithms are applied component-wise,

L (S,F ) = e1 log2 e1 − 2
∑
a,b

((
e2

)
a
δab log2

(
e2

)
b

)
−
∑
i,j

((
e3

)
i
δij log2

(
e3

)
j

)
+
∑
a,b

((
e4

)
a
δab log2

(
e4

)
b

)
.

(3)

Learning. We focus on the task of unsupervised graph clustering and set out to learn the clus-
ter assignment matrix S that minimises Equation (3). The optimal number of clusters is chosen
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automatically during learning by minimising the map equation. In principle, any neural network
architecture, such as a multi-layer perceptron (MLP) or a graph neural network (GNN), can be used
to learn S. However, the quality of detected clusters depends on the expressivity of the (graph)
neural network architecture and node features X used. In the absence of real node features, the
identity matrix Xij = δij , where 1 ≤ i ≤ n and 1 ≤ j ≤ n, can be used as node features, however,
designing expressive lower-dimensional node features remains an active research area (Lim et al.,
2022). Because the map equation involves logarithms, we need to take care not to have zero values
in S, which we achieve by adding a small constant ϵ to each value of the network’s output to ensure
differentiability.

Unlike other methods that typically require a regularisation term to avoid over-partitioning (Tsitsulin
et al., 2023), the map equation naturally incorporates Occam’s razor by following the minimum
description length principle for balancing between model complexity and fit (Rissanen, 1978).

We note that this approach can be easily adapted for graph pooling (Tsitsulin et al., 2023).

Complexity Similar to DMoN (Tsitsulin et al., 2023), the most expensive calculation in the map
equation loss is the pooling operation Eab =

∑
i,j S

T
ia Fij Sjb. For undirected networks the com-

plexity is dictated by the sparsity of A, that is, the sparsity of the network. When s ≪ n, and we
have a sparse network with |E| ∼ |V |, the complexity of Neuromap becomes linear in the number
of nodes, O (n). When the network is dense, |E| ∼ |V |2, or the maximum number of clusters
approaches the number of nodes s ∼ n, we approach quadratic complexity, O

(
n2

)
. For scalability,

we therefore recommend keeping s ≪ n. For directed networks, F is calculated using recorded
smart teleportation (Equation (2)), and is, therefore, a dense square matrix such that the complexity
of the map equation loss becomes quadratic, O

(
n2

)
.

4 RESULTS

We evaluate our approach on a set of synthetic and real-world unsupervised graph clustering bench-
marks, using different neural network architectures to minimise the map equation. We use the
Python deep learning and geometric deep learning frameworks PyTorch (Paszke et al., 2019) and
PyTorch Geometric Fey & Lenssen (2019), respectively, to implement our models.

4.1 SYNTHETIC NETWORKS WITH HARD CLUSTERS

We generate both undirected and directed Lancichinetti-Fortunato-Radicchi (LFR) benchmark net-
works with planted ground-truth clusters (Lancichinetti et al., 2008) with N ∈ {100, 1000} nodes,
average degree k ∈ {lnN, 2 lnN}, rounded to the nearest integer, maximum degree kmax = 2

√
N ,

also rounded to the nearest integer, and mixing parameter µ between 0.05 and 0.85 with a step size
of 0.05. We set the power-law exponents for the node degree distribution to τ1 = 2, and for the
community size distribution to τ2 = 1. For each combination of parameters, we generate 25 LFR
networks using the implementation1 provided by the authors.

We use Infomap and four different neural network architectures to minimise the map equation and
detect communities. The first model is an MLP with two hidden layers:

Xout = softmax (ReLU (XinW1)W2) . (4)

The second model is a graph isomorphism network-inspired GNN (Xu et al., 2019), which we call
GIN, with four hidden layers, with message passing in the second and last layers:

Xhidden = MLP (A ReLU (XinWencoder)) , (5)
Xout = softmax (AXhiddenWdecoder) , (6)

where
MLP

(
X

)
= ReLU (ReLU (XW1)W2) .

1https://sites.google.com/site/andrealancichinetti/benchmarks
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The third and fourth models, which we call GNN1 and GNN2, respectively, are graph neural network
architectures with a single message passing layer and skip-connections between MLP layers:

XT+1 = MLPT (XT ) +AXin, (7)

Xout = softmax
(
ReLU (XT WT,1) WT,2 +

Tmax∑
T=1

XT

)
, (8)

where
MLPT (XT ) = ReLU (ReLU (XT WT,1) WT,2) ,

and Xin = X0. We set the number of layers Tmax = 1 and Tmax = 2 for GNN1 and GNN2,
respectively.

For each LFR network, we run Infomap and each neural network 10 times, choose the partition with
the lowest codelength, and measure their performance in terms of normalised mutual information
(NMI) against planted ground truth clusters. We train all models for 1000 epochs with dropout
probability 0.1 after each layer, and use a learning rate of 0.0001 for the MLP and GIN, and a
learning rate of 0.001 for GNN1 and GNN2. As initial node features, we use the identity matrix,
and, for all models, we obtain the soft cluster assignment matrix as S = Xout + ϵ with ϵ = 10−8.
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Figure 1: Results for Infomap, GIN, GNN1, and GNN2 on synthetic networks with planted commu-
nity structure. Column (a) shows results for undirected networks with 100 nodes, (b) for undirected
networks with 1000 nodes, and (c) for directed networks with 1000 nodes. Results are averages for
partition quality in terms of NMI, number of detected communities |M|, and codelength L. Error
bands show one standard deviation from the mean. We include additional results in Appendix B.

We find that cluster quality depends on the neural network architecture used (Figure 1). In small
undirected networks, GNN2 performs best in terms of NMI, followed by Infomap, GNN1, and then
GIN; in small directed networks, Infomap performs best, followed by GNN2, GNN1, and then GIN
(Appendix B). In larger undirected networks, GNN2 and Infomap perform similarly well for low
to medium mixing values. For large mixing values, Infomap generally achieves higher NMI val-
ues than the neural network-based approaches; GIN shows the weakest performance, being unable
to detect communities for low mixing values in larger networks. In directed networks, Infomap
achieves higher NMI values than the neural network-based models. Since the MLP detects a sin-
gle community in nearly all instances, we omit it from the results. Infomap consistently achieves
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the shortest codelength but tends to increasingly over-partition the networks with larger mixing val-
ues. Likewise, GNN2 over-partitions the networks, reporting increasingly more communities than
in the ground truth for higher µ. GIN and GNN1 detect a single community when µ becomes large
enough, indicating that a regularisation mechanism which avoids over-partitioning is at work. Gen-
erally speaking, we find that larger networks require more powerful neural network architectures
to achieve good performance in terms of NMI. Similarly, more powerful GNNs perform better for
larger values of µ. These observations suggest how practitioners may choose a neural network ar-
chitecture that fits their research question’s needs: simpler GNNs partition the networks into fewer
communities, achieving lower NMI values, while more powerful GNNs perform better in terms of
NMI, but at the expense of potentially over-partitioning the network.

4.2 SYNTHETIC NETWORKS WITH OVERLAPPING AND CONSTRAINED STRUCTURE

We applied our approach to small synthetic networks with overlapping communities. Through soft
cluster assignment, we naturally discover overlapping communities (Figure 2a-b). In contrast, the
standard map equation with hard cluster assignments requires higher-order data (Rosvall et al., 2014)
or flow modelling (Holmgren et al., 2023) and a memory network representation to detect overlap-
ping communities. We include further examples in Appendix C.

(a) (b)
(c)

Figure 2: Synthetic networks with overlapping communities (a, b) and constrained structure (c). In
each panel, the larger networks on the left show the communities detected with our approach. The
small networks at the top right show the communities detected with Infomap and the small networks
at the bottom right the communities detected with DMoN.

Infomap has been shown to split constrained structures, such as rings of cliques or chains of nodes,
at arbitrary points because such a split minimises the codelength (Edler et al., 2022). However,
this often leads to unexpected partitions: consider the network in Figure 2c where Infomap splits
the chain into three communities. Our approach can assign the nodes in the chain to the same
community and identify the chain’s starting nodes as overlapping. This is because a random walker
has a higher probability of visiting these nodes from the denser groups than from the chain.

We leave a rigorous study of overlapping communities and fine-tuning for different constrained
structures for future work.

4.3 REAL NETWORKS

We benchmark Neuromap on 8 datasets and compare its performance against other methods mea-
sured by Tsitsulin et al. (2023), including k-means on only node features (k-m (feat)), and in em-
beddings by DeepWalk (k-m (DW)) (Perozzi et al., 2014) and Deep Graph Infomax (k-m (DGI))
(Veličković et al., 2018), the stochastic block model (SBM) (Peixoto, 2014), Structural Deep Clus-
tering Network (SDCN) (Bo et al., 2020), Attributed Graph Clustering (AGC) (Zhang et al., 2019).
DAEGC (Wang et al., 2019), NOCD (Shchur & Günnemann, 2019), DiffPool (Ying et al., 2018),
MinCut and Ortho (Bianchi et al., 2020), and DMoN (Tsitsulin et al., 2023). All 8 datasets were
sourced from PyTorch Geometric (PyG) (Fey & Lenssen, 2019) and the Open Graph Benchmark
(OGB) (Hu et al., 2020), consisting of small networks of around 3,000 nodes to large networks of
greater than 100,000 nodes.
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Table 1: Summary statistics of the benchmarked real-world datasets. Datasets were sourced via
libraries PyTorch Geometric (PyG) Fey & Lenssen (2019) and Open Graph Benchmark (OGB) Hu
et al. (2020) and thus adopted their naming. For brevity, we refer to the (Amazon) Computer and
ogbn-arxiv datasets as “PC” and “arXiv”, respectively.

Dataset Source |V | |E| |X| |Y|
(Planetoid) Cora PyG and Sen et al. (2008) 2708 5278 1433 7

(Planetoid) CiteSeer PyG and Sen et al. (2008) 3327 4614 3703 6
(Planetoid) Pubmed PyG and Sen et al. (2008) 19717 44325 500 3
(Amazon) Computer PyG and Shchur et al. (2018) 13752 143604 767 10

(Amazon) Photo PyG and Shchur et al. (2018) 7650 71831 745 8
(Coauthor) CS PyG and Shchur et al. (2018) 18333 81894 6805 15

(Coauthor) Physics PyG and Shchur et al. (2018) 34493 247962 8415 5
ogbn-arxiv OGB (Hu et al., 2020) 169343 583121 128 40

Following Tsitsulin et al. (2023), for all datasets we use a graph neural network with 1 hidden layer,
512 hidden neurons, and 16 out channels, predicting a maximum of 16 clusters. We also use a similar
graph neural network architecture using SeLU activation (Klambauer et al., 2017) and a trainable
“skip-connection” instead of adding self-loops.

Xhidden = SeLU (AXinWencoder +XinWskip, encoder) (9)
Xout = softmax (AXhiddenWdecoder +XhiddenWskip, decoder) (10)

We calculate the cluster assignment matrix as S = Xout + ϵ and set ϵ = 10−8 to ensure differen-
tiability through the logarithms in the map equation loss function, as we did for our synthetic data
benchmarks. We use a dropout layer before the softmax with dropout probability set to 0.5, set the
maximum number of epochs to 10,000 for each run, and implement early stopping with a patience
of 100 epochs.

For each dataset, we run Infomap for 100 trials to search for the partition that returns the low-
est codelength. The map equation loss also guides tuning Neuromap’s hyperparameters fairly in
the unsupervised setting, again assuming that a lower codelength corresponds to a more accurate
clustering of data. The learning rate is the only hyperparameter tuned for by searching the space
{0.1, 0.05, 0.025, . . . , 0.1×0.520−1} to find the learning rate which returns the lowest average code-
length – that is, loss – over 10 runs, among which we select the result from the run producing the
lowest codelength. We report additional experimental details and results on node features, learning
rates, means, and standard deviations in Appendix D.

Neuromap performs competitively against other graph clustering benchmarks measured by Tsitsulin
et al. (2023) in terms of NMI, including both deep learning and non-deep learning-based approaches
(see Table 2). Among deep graph clustering approaches, Neuromap is among a select few able to
converge on the Amazon PC and Amazon Photo datasets, where MinCut and Ortho were not able
to. Tsitsulin et al. (2023)’s experiments involve a choice of 16 maximum clusters despite some
datasets having a larger number of ground-truth clusters, e.g. the ogbn-arxiv dataset has 40
ground-truth clusters. As shown in our results on overlapping communities, DMoN has limitations
in optimally determining the number of clusters and in identifying reasonable overlapping commu-
nities. When Neuromap is allowed a higher maximum number of clusters, specifically 100 and 1000,
it demonstrates competitive performance on the ogbn-arxiv dataset, among others, underlining
its proficiency in inferring a meaningful number of clusters without over-partitioning, a notable
improvement over many existing methods. Additionally, in both synthetic and real networks, we
observed that while Infomap attains lower codelengths, it does so at the cost of a significantly higher
number of communities compared to Neuromap. This finding underscores that a low codelength
alone is not indicative of meaningful communities, as it may misinterpret random patterns in sparse
network areas as communities, a type of overfitting Neuromap successfully avoids.

We contribute these empirical insights while leaving further theoretical analysis for exciting future
work. We also note that, while the benchmarks here do not have edge features, in principle edge
features can be used for clustering with Neuromap.
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Table 2: Normalised mutual information (NMI) scores for various methods on real-world networks
(higher is better). Learnt numbers of clusters are reported for Infomap and Neuromap in parentheses.
The best and second-best NMI scores, and closest and second-closest inferred cluster numbers to the
ground truth, are highlighted in bold and underlined font, respectively, for Infomap and Neuromap.
Standard deviations are reported in Table 6 in Appendix D.

Cora CiteSeer PubMed PC Photo CS Physics arXiv
k-m (feat) 18.5 24.5 19.4 21.1 28.8 35.7 30.6 20.3

SBM 36.2 15.3 16.4 48.4 59.3 58.0 45.4 31.9
k-m (DW) 24.3 27.6 22.9 38.2 49.4 72.7 43.5 28.4
k-m (DGI) 52.7 40.4 22.0 22.6 33.4 64.6 51.0 30.0

SDCN 27.9 31.4 19.5 24.9 41.7 59.3 50.4 15.3
AGC 34.1 25.5 18.2 51.3 59.0 43.3 - -

DAEGC 8.3 4.3 4.4 42.5 47.6 59.3 - -
NOCD 46.3 20.0 25.5 44.8 62.3 70.5 51.9 20.7

DiffPool 32.9 20.0 20.2 22.1 35.9 41.6 - -
MinCut 35.8 25.9 25.4 - - 64.6 48.3 36.0
Ortho 38.4 26.1 20.3 - - 64.6 44.7 35.6

DMoN 48.8 33.7 29.8 49.3 63.3 69.1 56.7 37.6
Infomap 41.4 33.2 17.1 51.5 58.5 45.3 28.1 40.1

(289) (628) (939) (458) (221) (824) (1194) (4808)
Neuromap 49.3 22.0 26.6 34.3 56.0 69.7 58.5 28.7
(s = 16) (12) (16) (9) (15) (16) (16) (14) (5)

Neuromap 47.9 23.9 23.3 36.1 53.6 64.9 47.6 32.4
(s = 100) (45) (57) (37) (54) (39) (46) (45) (7)
Neuromap 46.2 25.5 21.7 42.2 57.3 65.9 43.8 35.6
(s = 1000) (50) (85) (48) (162) (99) (49) (75) (15)

5 CONCLUSION

Network science and deep learning on graphs tackle community detection and graph clustering from
different perspectives. Community detection in network science does not leverage recent advances in
deep learning, and current deep graph clustering approaches have only recently started to incorporate
methods from network science to improve clustering performance. We narrow this gap by adapting
the map equation, a popular information-theoretic community-detection approach, as a differentiable
loss function for optimisation with graph neural networks through gradient descent.

We applied our approach to various synthetic and real-world unsupervised graph clustering bench-
marks, using different GNN architectures to minimise the map equation and detect communities. In
real-world benchmarks, our approach achieves competitive performance, and synthetic benchmarks
show that the quality of detected communities depends on the expressive power of the employed
GNN. Through soft cluster assignments and optimisation with gradient descent, our approach natu-
rally addresses over-partitioning in sparse networks, detecting overlapping communities, and avoid-
ing splitting constrained structures.

Our adaptation of the map equation as a differentiable loss function for graph clustering with graph
neural networks opens up several avenues for future research. Though our main focus was on unsu-
pervised graph clustering for undirected networks, we also demonstrated how our approach can be
used for directed networks where our results showed that further work is required to improve clus-
tering performance and scalability. While we have considered first-order networks with two-level
community structures, complex real-world networks often involve higher-order dependencies and
can have multi-level communities (Rosvall & Bergstrom, 2011; Rosvall et al., 2014), prompting a
generalisation of our approach. Our results highlight that the achieved cluster quality depends on
the expressiveness of the GNN architecture used, but understanding the precise connection between
the two requires further empirical and theoretical investigation. Although we expect our method to
be easily incorporated into graph pooling (Tsitsulin et al., 2023) and scaling graph neural networks
(Chiang et al., 2019), they require detailed further empirical and theoretical studies.
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A BACKGROUND ON THE MAP EQUATION

We illustrate the principles behind the map equation using a coding example. Consider a commu-
nication game where the sender updates the receiver about the position of a random walker on a
network. Both the sender and receiver know the network topology and use Huffman coding (Huff-
man, 1952) to assign unique codewords to nodes based on their stationary visit rates. When the
random walker takes a step, the sender communicates the codeword of the random walker’s current
node to the receiver (Figure 3). With all nodes in the same module, the sender needs to use

L (M1) = H (P ) =
∑
u∈V

pu log2 pu ≈ 3.07 bits (11)

on average to update the receiver about the random walker’s position. Here, pu is the visit rate of
node u, P is the set of node visit rates, and M1 is the so-called one-level partition. In undirected
graphs, we compute the nodes’ visit rates directly as pu = su/

∑
v∈V sv , where su =

∑
v∈V δ (u, v)

is the strength of node u. In directed graphs, we use smart teleportation (Lambiotte & Rosvall, 2012)
and a power iteration to compute node visit rates numerically.

1

2

3 4

5 6

7

8

9
0110

000

10 0111

001

010

110

1110

1111(a)
1

2

3 4

5 6

7

8

9

A0 1111

B1 111

110

10

00 1110

01 00

01

110

10(b)

Figure 3: Illustration of the coding principles behind the map equation on an undirected network.
Colours indicate modules and node codewords are shown next to nodes. The black trace shows a
possible sequence of random-walker steps. Figure adapted from Blöcker (2022). (a) When all nodes
belong to the same community, each node has a unique codeword. The random walk sequence is
encoded as 10 000 0110 10 001 010 1111 110 010, requiring 27 bits. (b) Partitioning
the network into two communities enables reusing codewords for different nodes in different com-
munities, reducing the overall codelength. However, for a unique encoding, we need to introduce
codewords for describing when the random walker enters and exits modules as shown next to the
coloured arrows. The random walk sequence is encoded as 000 10 110 00 01 1111100 10
01 00, requiring 25 bits, where colours indicate which codebook each codeword belongs to.

In networks with community structure, we can compress the description of the random walk by parti-
tioning the nodes according to where the random walker tends to spend a relatively longer time (Fig-
ure 3b). We assign unique codewords to nodes per module, derived from their module-normalised
visit rates; the same codeword can be used for nodes in different modules, overall making codewords
shorter. The codelength is then a weighted average of the module-level entropies. However, we need
to introduce designated module-exit codewords per module and an index-level codebook to describe
when the random walker leaves and enters modules.

The two-level map equation calculates the codelength for a two-level partition M,

L (M) = qH (Q) +
∑
m∈M

pmH (Pm) ≈ 2.62 bits. (12)

Here, q =
∑

m qm is the random walker’s usage rate for the index-level codebook, qm is the rate at
which the random walker enters module m, and Q = {qm |m ∈ M} is the set of module entry rates;
pm is the rate at which the random walker uses module m’s codebook, including module exit rate
mexit, and Pm = {mexit}∪{pu |u ∈ m} is the set of module-normalised node visit rates and exit rate
for module m.
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B ADDITIONAL RESULTS ON LFR NETWORKS

We provide further results on the performance in undirected (Figure 4) and directed (Figure 5) LFR
networks with planted community structure. We find that the results are qualitatively similar to
what we described in the main text. GNN2 performs best in small undirected networks. In larger
undirected networks, Infomap performs slightly better. In directed networks, Infomap achieves
higher NMI values than the tested neural network architectures. In denser networks and for low
to medium mixing values µ, all tested methods, except for GNN1 detect communities that are in
agreement with the ground truth.
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Figure 4: Results on denser synthetic undirected networks with k = 2 lnN , rounded to the nearest
integer, for Infomap, GIN, GNN1, and GNN2. Results are averages for partition quality in terms
of NMI, number of detected communities |M|, and codelength L. Error bands show one standard
deviation from the mean.
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Figure 5: Results on directed synthetic networks for Infomap, GIN, GNN1, and GNN2. Results are
averages for partition quality in terms of NMI, number of detected communities |M|, and codelength
L. Error bands show one standard deviation from the mean.
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C ADDITIONAL NETWORKS WITH OVERLAPPING COMMUNITIES

We include further examples of networks with overlapping communities, specifically, synthetic LFR
networks with planted community structures and a configurable number of nodes that belong to more
than one community. The networks shown here have 50 nodes of which 5 belong to two communities
and mixing of µ = 0.1. We use GIN and a GNN1, and run them for 10 trials to detect communities;
both recover the ground truth communities due to low mixing and identify some of the overlapping
nodes correctly.

(a)

(b)

(c)

Figure 6: Networks with overlapping communities. Each panel shows three networks: the left-hand
network is clustered using a GIN, the right-hand network is clustered using GNN1, and the smaller
middle network shows the ground truth communities.
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D ADDITIONAL DETAILS AND RESULTS ON REAL NETWORKS

Here we provide additional experimental details and results on our real-world data benchmarks, in-
cluding the learning rate chosen from hyperparameter tuning, as described in Section 4.3, in Table 3,
modularity scores in Table 10, and means and standard deviations for normalised mutual information
(NMI) in Tables 5 and 6, map equation codelengths in Tables 8 and 9, and modularity in Tables 10
to 12. Note that while the standard deviations for NMI and modularity are relatively large, the stan-
dard deviations of codelengths remain relatively small due to the complex loss landscape. However,
as detailed in Section 4.3, even in the unsupervised setting, it is simple and theoretically principled
to select the result that returns the lowest codelength from any number of trials.

We also test the performance of low dimensional (≪ n) positional encodings which maintain linear
complexity for GNNs when training on large sparse graphs, simulating scenarios where real node
features are either absent or inexpressive. We select 16 Laplacian eigenvector positional encodings,
using the implementation in PyG guided by Dwivedi et al. (2020). We find that Neuromap learns
accurate clusters from these positional encodings in some real-world networks, but performs poorly
in most others; which we suspect is due to when Laplacian eigenvectors do not sufficiently capture
graph topology, as evidenced by Infomap still performing well. Currently, designing expressive
node features for graph neural networks is an active research area (Lim et al., 2022), and we expect
more expressive node features to provide better performance in this setting.

Table 3: Learning rates for Neuromap on real-world networks.

Cora CiteSeer PubMed PC
Neuromap (feat+LE) (s = 16) 0.003125 0.003125 0.01250 0.000012

Neuromap (feat) (s = 16) 0.001563 0.001563 0.00625 0.000002
Neuromap (LE) (s = 16) 0.100000 0.100000 0.02500 0.003125

Neuromap (feat+LE) (s = 100) 0.001563 0.001563 0.003125 0.000006
Neuromap (feat) (s = 100) 0.001563 0.001563 0.006250 0.000012
Neuromap (LE) (s = 100) 0.006250 0.012500 0.012500 0.000391

Neuromap (feat+LE) (s = 1000) 0.001563 0.000781 0.003125 0.000006
Neuromap (feat) (s = 1000) 0.001563 0.001563 0.003125 0.000006
Neuromap (LE) (s = 1000) 0.012500 0.000781 0.006250 0.100000

Photo CS Physics arXiv
Neuromap (feat+LE) (s = 16) 0.000006 0.000195 0.001563 0.000195

Neuromap (feat) (s = 16) 0.000012 0.001563 0.001563 0.000391
Neuromap (LE) (s = 16) 0.003125 0.025000 0.025000 0.100000

Neuromap (feat+LE) (s = 100) 0.000006 0.000195 0.000781 0.000391
Neuromap (feat) (s = 100) 0.000012 0.000391 0.000781 0.000781
Neuromap (LE) (s = 100) 0.001563 0.006250 0.012500 0.012500

Neuromap (feat+LE) (s = 1000) 0.000012 0.000391 0.000781 0.000049
Neuromap (feat) (s = 1000) 0.000006 0.000391 0.000781 0.000098
Neuromap (LE) (s = 1000) 0.012500 0.006250 0.006250 0.100000
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Table 4: Normalised mutual information (NMI) scores for various methods on real-world networks
(higher is better). Inferred numbers of clusters are reported in parentheses. For Neuromap, “feat”
refers to using real node features, and “LE” refers to using Laplacian eigenvector positional encod-
ings as node features. Standard deviations are reported in Table 6.

Cora CiteSeer PubMed PC Photo CS Physics arXiv
Neuromap (feat+LE) 45.3 22.8 28.0 27.0 51.8 74.0 55.1 28.7

(s = 16) (11) (13) (7) (16) (11) (15) (14) (7)
Neuromap (LE) 2.2 0.2 24.5 13.4 38.0 56.0 53.1 0.1

(s = 16) (7) (1) (6) (2) (11) (10) (10) (4)
Neuromap (feat+LE) 47.6 24.4 23.2 43.6 58.2 67.2 48.1 30.3

(s = 100) (36) (67) (39) (51) (44) (41) (44) (7)
Neuromap (LE) 22.6 3.7 21.9 40.1 45.8 58.1 57.5 0.1

(s = 100) (11) (14) (12) (9) (9) (16) (17) (4)
Neuromap (feat+LE) 48.6 25.2 23.0 42.3 60.0 65.2 44.0 32.7

(s = 1000) (39) (97) (38) (142) (91) (54) (77) (17)
Neuromap (LE) 11.9 0.0 23.2 0.1 53.2 60.2 53.2 0.3

(s = 1000) (12) (1) (18) (2) (14) (22) (13) (8)

Table 5: Mean normalised mutual information (NMI) scores for Neuromap on real-world networks
(higher is generally better).

Cora CiteSeer PubMed PC Photo CS Physics arXiv
s = 16 feat+LE 43.5 22.0 23.3 10.0 50.6 71.7 56.1 26.1
s = 16 feat 44.8 23.6 24.4 28.1 50.0 68.9 55.4 24.8
s = 16 LE 0.5 0.3 16.4 7.6 34.3 38.5 37.4 0.1
s = 100 feat+LE 47.7 24.7 23.4 37.6 55.6 67.2 48.1 29.2
s = 100 feat 47.3 24.7 23.5 34.8 55.6 66.8 48.2 29.8
s = 100 LE 13.2 0.5 20.6 33.5 44.7 53.7 52.4 0.1
s = 1000 feat+LE 47.6 26.0 23.2 38.6 57.8 66.6 46.3 30.4
s = 1000 feat 47.4 25.1 23.0 38.6 56.6 66.4 46.1 31.1
s = 1000 LE 8.0 0.0 21.3 0.2 54.9 58.4 54.2 0.3

Table 6: Standard deviation of normalised mutual information (NMI) scores for Neuromap on real-
world networks.

Cora CiteSeer PubMed PC Photo CS Physics arXiv
s = 16 feat+LE 3.7 2.9 5.3 11.5 5.0 1.5 2.1 3.9
s = 16 feat 2.9 2.5 3.0 8.6 4.5 2.0 2.2 2.8
s = 16 LE 0.7 0.4 11.6 6.9 4.0 20.3 26.0 0.0
s = 100 feat+LE 1.7 0.9 1.1 3.5 3.7 1.9 0.8 2.7
s = 100 feat 1.9 1.0 0.8 10.7 3.7 1.2 0.9 2.2
s = 100 LE 6.2 1.1 7.3 5.3 0.9 8.2 2.2 0.0
s = 1000 feat+LE 0.8 0.9 0.6 3.3 2.4 0.8 1.3 1.7
s = 1000 feat 2.0 1.4 1.0 3.5 2.2 1.4 1.2 2.8
s = 1000 LE 4.5 0.0 2.7 0.2 1.3 1.2 1.6 0.4
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Table 7: Codelengths for map equation-based clustering methods on real-world networks (lower is
generally better). For Neuromap, “feat” refers to using real node features, and “LE” refers to using
Laplacian eigenvector positional encodings as node features. Standard deviations are reported in
Table 9 in Appendix D.

Cora CiteSeer PubMed PC Photo CS Physics arXiv
Infomap 6.4 5.0 8.7 10.6 9.4 9.8 11.1 11.9

Neuromap (feat+LE) 11.2 11.4 13.8 13.7 12.7 14.0 15.0 16.6
(s = 16)

Neuromap (feat) 11.3 11.4 13.7 13.7 12.7 14.0 15.0 16.7
(s = 16)

Neuromap (LE) 12.0 12.2 13.9 13.8 12.9 14.2 15.2 17.0
(s = 16)

Neuromap (feat+LE) 11.0 10.9 13.4 13.6 12.6 13.8 14.8 16.7
(s = 100)

Neuromap (feat) 11.0 11.0 13.5 13.6 12.6 13.8 14.8 16.7
(s = 100)

Neuromap (LE) 11.8 11.9 13.8 13.6 12.8 14.1 15.1 17.0
(s = 100)

Neuromap (feat+LE) 10.9 10.8 13.4 13.6 12.6 13.8 14.8 16.6
(s = 1000)

Neuromap (feat) 11.0 10.9 13.4 13.5 12.6 13.8 14.8 16.6
(s = 1000)

Neuromap (LE) 11.8 12.2 13.7 13.9 12.6 14.1 15.1 17.0
(s = 1000)

Table 8: Mean codelengths for Neuromap on real-world networks (lower is generally better).

Cora CiteSeer PubMed PC Photo CS Physics arXiv
s = 16 feat+LE 11.4 11.5 13.8 13.8 12.9 14.0 15.0 16.7
s = 16 feat 11.4 11.5 13.8 13.7 12.8 14.1 15.0 16.7
s = 16 LE 12.0 12.2 14.0 13.8 12.9 14.4 15.3 17.0
s = 100 feat+LE 11.1 11.1 13.5 13.6 12.7 13.8 14.8 16.7
s = 100 feat 11.1 11.1 13.6 13.7 12.7 13.8 14.8 16.7
s = 100 LE 11.8 12.2 13.9 13.6 12.8 14.2 15.1 17.0
s = 1000 feat+LE 11.0 11.0 13.5 13.6 12.6 13.8 14.8 16.6
s = 1000 feat 11.0 11.0 13.5 13.6 12.6 13.8 14.8 16.6
s = 1000 LE 11.9 12.2 13.8 13.9 12.6 14.1 15.1 17.0

Table 9: Standard deviation of codelengths for Neuromap on real-world networks.

Cora CiteSeer PubMed PC Photo CS Physics arXiv
s = 16 feat+LE 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.1
s = 16 feat 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0
s = 16 LE 0.0 0.0 0.2 0.0 0.0 0.2 0.2 0.0
s = 100 feat+LE 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0
s = 100 feat 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0
s = 100 LE 0.1 0.1 0.2 0.0 0.0 0.2 0.0 0.0
s = 1000 feat+LE 0.1 0.2 0.1 0.1 0.0 0.0 0.0 0.0
s = 1000 feat 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
s = 1000 LE 0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0
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Table 10: Modularity scores for various methods on real-world networks (higher is generally better).

Cora CiteSeer PubMed PC Photo CS Physics arXiv
k-m (feat) 19.8 30.3 33.4 5.4 10.5 23.1 19.4 16.4

SBM 77.3 78.1 53.5 60.8 72.7 72.7 66.9 67.6
k-m (DW) 30.7 24.3 75.3 11.8 22.9 59.4 47.0 58.2
k-m (DGI) 64.0 73.7 9.6 22.8 35.1 57.8 51.2 29.7

SDCN 50.8 62.3 50.3 45.6 53.3 55.7 52.8 36.8
AGC 43.2 50.0 46.8 42.8 55.9 40.1 - -

DAEGC 33.5 36.4 37.5 43.3 58.0 49.1 - -
NOCD 78.3 84.4 69.6 59.0 70.1 72.2 65.5 41.9

DiffPool 66.3 63.4 56.8 30.4 46.8 41.6 - -
MinCut 70.3 78.9 63.1 - - 64.6 64.3 52.6
Ortho 65.6 74.5 32.9 - - 64.6 59.5 52.2
DMoN 76.5 79.3 65.4 59.0 70.1 72.4 65.8 57.4

Infomap 73.1 82.8 65.8 59.4 70.6 59.6 52.6 59.3
Neuromap (feat+LE) 66.0 76.5 67.4 41.4 59.8 73.4 64.7 45.8

(s = 16)
Neuromap (feat) 74.5 79.5 70.8 53.6 66.1 71.5 65.8 45.3

(s = 16)
Neuromap (LE) 4.3 0.1 60.1 33.0 48.4 65.7 56.8 0.1

(s = 16)
Neuromap (feat+LE) 77.1 83.5 71.6 53.6 66.1 72.3 65.5 44.8

(s = 100)
Neuromap (feat) 76.6 80.3 69.4 50.0 64.1 71.5 64.7 46.5

(s = 100)
Neuromap (LE) 42.0 34.0 64.4 49.4 52.7 66.4 58.1 0.1

(s = 100)
Neuromap (feat+LE) 75.4 85.0 71.2 50.1 63.9 70.1 63.2 56.7

(s = 1000)
Neuromap (feat) 76.7 83.2 71.7 49.0 64.8 71.6 63.4 56.8

(s = 1000)
Neuromap (LE) 20.0 0.0 66.4 0.0 59.7 67.4 59.2 0.1

(s = 1000)

Table 11: Mean modularity scores for Neuromap on real-world networks.

Cora CiteSeer PubMed PC Photo CS Physics arXiv
s = 16 feat+LE 69.9 77.3 64.2 13.7 59.8 73.0 64.6 44.8
s = 16 feat 72.6 78.9 66.5 41.8 59.7 71.0 64.9 44.2
s = 16 LE 0.6 1.7 38.9 16.4 47.1 47.4 37.7 0.1
s = 100 feat+LE 76.1 82.5 70.8 46.0 64.5 71.5 64.6 44.0
s = 100 feat 75.3 82.0 68.6 40.6 61.6 71.0 64.8 45.3
s = 100 LE 23.6 3.6 54.6 46.1 52.3 62.6 56.8 0.0
s = 1000 feat+LE 76.4 83.3 70.5 42.4 63.9 70.5 63.6 49.7
s = 1000 feat 75.4 81.7 70.3 46.9 63.2 70.9 63.6 49.1
s = 1000 LE 12.6 0.0 60.5 0.0 58.8 66.3 58.2 0.1
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Table 12: Standard deviations of modularity scores for Neuromap on real-world networks.

Cora CiteSeer PubMed PC Photo CS Physics arXiv
s = 16 feat+LE 2.7 1.5 5.0 17.2 3.9 0.3 0.7 2.1
s = 16 feat 1.5 1.7 2.8 14.1 4.2 0.7 0.8 1.6
s = 16 LE 1.4 3.0 27.3 16.1 2.6 25.2 26.2 0.0
s = 100 feat+LE 1.0 1.0 1.2 8.2 3.2 1.2 0.9 2.6
s = 100 feat 1.4 1.1 1.7 14.8 4.8 0.7 0.3 0.8
s = 100 LE 13.5 10.7 19.5 3.0 0.5 6.7 0.9 0.0
s = 1000 feat+LE 0.7 1.6 1.4 9.9 3.0 0.5 1.0 5.1
s = 1000 feat 1.5 1.4 0.9 5.3 3.1 0.7 0.7 5.9
s = 1000 LE 8.8 0.0 9.0 0.0 1.5 1.0 1.1 0.0
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